[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5826138B2 - Tough cemented carbide and coated cemented carbide - Google Patents

Tough cemented carbide and coated cemented carbide Download PDF

Info

Publication number
JP5826138B2
JP5826138B2 JP2012196429A JP2012196429A JP5826138B2 JP 5826138 B2 JP5826138 B2 JP 5826138B2 JP 2012196429 A JP2012196429 A JP 2012196429A JP 2012196429 A JP2012196429 A JP 2012196429A JP 5826138 B2 JP5826138 B2 JP 5826138B2
Authority
JP
Japan
Prior art keywords
cemented carbide
phase
fcc
strength
tough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012196429A
Other languages
Japanese (ja)
Other versions
JP2013170315A (en
Inventor
良彦 土井
良彦 土井
佐々木 賢
賢 佐々木
穣太郎 志田
穣太郎 志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTS Systems Corp
Original Assignee
MTS Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTS Systems Corp filed Critical MTS Systems Corp
Priority to JP2012196429A priority Critical patent/JP5826138B2/en
Publication of JP2013170315A publication Critical patent/JP2013170315A/en
Application granted granted Critical
Publication of JP5826138B2 publication Critical patent/JP5826138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は、強靱超硬合金及び被覆超硬合金に関する。   The present invention relates to a tough cemented carbide and a coated cemented carbide.

従来、炭化タングステン(WC)粒子と結合金属としてのコバルト(Co)とを適切な割合で混合し焼結させた超硬合金が知られている。WC粒子とCoを混合し焼結させた超硬合金(Cemented Carbide)は、高硬度かつ高強度であることなどから、切削工具や金型などの超硬工具を製造するための材料として使用されている。   Conventionally, a cemented carbide in which tungsten carbide (WC) particles and cobalt (Co) as a binding metal are mixed and sintered at an appropriate ratio is known. Cemented Carbide made by mixing and sintering WC particles and Co is used as a material for manufacturing cemented carbide tools such as cutting tools and molds because of its high hardness and high strength. ing.

最近の冷間或いは熱間鍛造加工では超硬合金製金型に対し、ますます負荷も大きく且つ長寿命が要求されるようになっている。切削工具においても同様であり、被覆超硬合金(Coated Cemented Carbide)の開発もこの要求に沿ったものである。切削条件の高速化、高負荷化に伴い、被覆超硬合金の母材にも硬さ、耐塑性変形性、高強度に耐えるものが要求されてきている。これら超硬合金は切削工具や金型、鉱山工具や耐磨耗工具等幅広く使われている。   In recent cold or hot forging processes, an increasingly heavy load and a long life are required for a cemented carbide mold. The same applies to cutting tools, and the development of coated cemented carbide (Coated Cemented Carbide) is in line with this requirement. As the cutting conditions are increased in speed and load, a coated cemented carbide base material is required to withstand hardness, plastic deformation resistance and high strength. These cemented carbides are widely used for cutting tools, dies, mining tools, wear-resistant tools and so on.

特許文献1には、超硬合金において、クロム(Cr)或いは炭化クロム(通常はCr)を添加することで、WCの成長抑制や耐食性の向上が見込めるとの記述がある。 Patent Document 1 describes that the addition of chromium (Cr) or chromium carbide (usually Cr 3 C 2 ) to cemented carbide can be expected to suppress WC growth and improve corrosion resistance.

特許文献2には、Crが結合相を固溶強化し、超硬合金製切断刃の耐摩耗性を向上させるとの記述がある。 Patent Document 2 describes that Cr 3 C 2 solid-solution strengthens the binder phase and improves the wear resistance of the cemented carbide cutting blade.

特許文献3には、Coを含む鉄族金属(Fe、Co、Ni)の結合相中にWCを主体とする硬質相が分散された超硬合金を、加熱温度が1200〜1300℃まで加熱した後、直ちに急冷することによって、Coの格子数が3.570Å以上となり、抗折力は変わらないが、衝撃強度を向上できるとの記述がある。
In Patent Document 3, a cemented carbide in which a hard phase mainly composed of WC is dispersed in a binding phase of an iron group metal (Fe, Co, Ni) containing Co is heated to a heating temperature of 1200 to 1300 ° C. after immediately by quenching, the lattice constants of Co becomes higher 3.570A, but transverse rupture strength is not changed, there is a description that can be improved impact strength.

非特許文献1には、WC―Cr3C2―15%Coの超硬合金においてCr3C2が2質量%までの添加では、抗折力(Transverse-Rupture-Strength;TRS)がほとんど変わらないが、それ以上の添加量ではかなり低下するとの記述がある。WC/Co合金ではη相(Co3W3C)も遊離炭素も発生しない領域を一般に健全相領域と言うが、非特許文献1によると、それに対応するCo相(fcc)の格子定数は上限値が約3.573Å〜3.572Åで且つ下限値が約3.552Å〜3.553Åである。又Crを添加すると少しその上限値は低下し、下限値は上昇すると述べられている。上限値近傍を超えるとη相が発生する危険性が高まる。η相発生は致命的な強度低下をもたらすことから絶対に避けねばならないし、下限値に近づくと遊離炭素が発生しやすくなり、性能低下になる危険性がある。従ってこのη相も遊離炭素も発生しない領域を健全相領域と一般に言われ良く知られていることであるが、超硬合金の品質管理は通常この健全相領域を厳守して行われている。
In Non-Patent Document 1, in the cemented carbide of WC—Cr3C2-15% Co, the addition of Cr3C2 up to 2% by mass does not change the transverse strength (Transverse-Rupture-Strength; TRS), but more than that. There is a description that the amount of addition decreases considerably. In a WC / Co alloy, a region where neither η phase (Co3W3C) nor free carbon is generated is generally called a healthy phase region. According to Non-Patent Document 1, the upper limit of the lattice constant of the corresponding Co phase (fcc) is about 3 .573 to 3.572 and the lower limit is about 3.552 to 3.553. Further, it is stated that when Cr is added, the upper limit value is slightly lowered and the lower limit value is increased. If the vicinity of the upper limit is exceeded, the risk of the occurrence of η phase increases. The generation of η phase must be avoided because it causes a fatal decrease in strength, and when approaching the lower limit value, free carbon is likely to be generated, and there is a risk of performance degradation. Accordingly, the region where neither the η phase nor free carbon is generated is generally known as a healthy phase region and is well known. However, quality control of cemented carbide is usually performed with strict adherence to this healthy phase region.

特公昭62−56224号公報Japanese Examined Patent Publication No. 62-56224 特許第3175077号公報Japanese Patent No. 3175077 特許第4537501号公報Japanese Patent No. 4537501

“WC−Cr3C2−15%Co超硬合金の組織と機械的性質”, 鈴木寿,徳本啓,「粉体および粉末冶金」第31巻第2号 1984年2月"Structure and mechanical properties of WC-Cr3C2-15% Co cemented carbide", Hisashi Suzuki, Kei Tokumoto, "Powder and Powder Metallurgy", Vol. 31, No. 2, February 1984 “熱間静水圧燒結したWC−12%Co合金の疲労”藤原由雄,植田文洋,正富宏明,鈴木寿,「粉体および粉末冶金」第27巻第6号 1980年8月"Fatigue of WC-12% Co alloy sintered by hot isostatic pressing" Yuji Fujiwara, Fumihiro Ueda, Hiroaki Masatomi, Hisashi Suzuki, "Powder and Powder Metallurgy", Vol. 27, No. 6, August 1980

特許文献3では、WC―Co合金(Crを含まない)を加熱した後、直ちに急冷することによって、Co相の六方最密充填構造(hcp)を減少させるとともに、Coの格子数が3.570Å以上となり、抗折力は変わらないが、衝撃強度を向上できるとしている。
しかし、そのような性能向上をさせるには冷却速度が1000℃/分以上の急冷が必要であると述べている。Coの格子定数が3.570Å以上と言うのはよく知られている通りη相発生の危険がある領域である。同文献でも性能向上には1000℃/分以上の急冷が必要であると述べているのは、このη相発生を避けるためでもある。超急冷によって初めてη相の発生を防ぎ且つ高格子定数の健全組織が得られるのである。一般的には、η相の発生を避けるため格子定数は3.570Å近傍では極めて慎重に又3.570Å近傍を凌駕する領域は避けるべきであると考えられている。このような急冷は小さい製品や試験片或いはCo含有量が多く硬度が低い合金には適用可能であるが、一般に実用されている硬度が高い合金製品に適用しようとすると亀裂が発生するか、亀裂の発生が回避できたとしても内部応力の残留等によって信頼性が低下する危険がある。更に実施例の格子定数を見るとその平均値は3.573Åであり、健全相を逸脱したη相発生の危険領域にあるか或いはその近傍にある物ばかりである。超急冷でη相は回避しているが冷却速度の僅かな変化、或いは大きい製品であれば同一物でも場所によっては冷却速度が異なり、部分的にη相の発生が危惧される。また、本願が対象としているクロム(Cr)は含有されておらず、当然ながら、Crを添加しCrを含有させた場合の超硬合金に対する影響やその効果については言及していない。本発明は、このような超高速冷却を用いてη相の発生を防ぎつつ大きい格子定数を実現しようとするものでなく、格子定数は一般に認識された3.570Å近傍以下で、上述のようなη相の発生の危惧や超急冷に伴う危険を冒さないで、高性能を実現する方法であって、それをCrの添加により可能とするものである。
そして、従来の技術的な見解では、クロム(Cr)或いは炭化クロム(通常はCr3C2)を添加することで、WCの粒成長抑制や耐食性の向上、特殊切断刃における耐摩耗性の向上が見込まれているが(特許文献1,2)、微量の添加では抗折力(TRS)がほとんど変わらないが、添加量を増加させると抗折力(TRS)が低下するとされている(非特許文献1)。
In Patent Document 3, after heating the WC-Co alloy (not including Cr), by quenching immediately with decreasing the Co phase hexagonal close-packed structure (hcp), the lattice constants of Co 3. Although the bending strength is not changed, the impact strength can be improved.
However, it states that rapid cooling at a cooling rate of 1000 ° C./min or more is necessary to improve such performance. As is well known, the lattice constant of Co is 3.570 mm or more is an area where there is a risk of η phase generation. This document also states that rapid cooling of 1000 ° C./min or more is necessary for improving the performance in order to avoid the occurrence of this η phase. For the first time, the rapid quenching prevents the generation of η phase and provides a healthy structure with a high lattice constant. In general, in order to avoid the generation of η phase, it is considered that the lattice constant should be avoided very carefully in the vicinity of 3.570 mm, and the region exceeding 3.570 mm should be avoided. Such quenching can be applied to small products, specimens, or alloys with high Co content and low hardness, but cracks may occur when trying to apply to alloy products with high hardness that are generally used in practice. Even if the occurrence of this can be avoided, there is a risk that the reliability may be lowered due to residual internal stress or the like. Further, looking at the lattice constants of the examples, the average value is 3.573 mm, which is only in the vicinity of or in the vicinity of the danger region of the occurrence of η phase that deviates from the healthy phase. Although the η phase is avoided by ultra-rapid cooling, the cooling rate varies slightly depending on the location even if the cooling rate changes slightly, or even if it is a large product, the generation of the η phase is a concern. Moreover, the chromium (Cr) which is the object of the present application is not contained, and of course, there is no mention about the influence on the cemented carbide and the effect when Cr is added and Cr is contained. The present invention does not intend to realize a large lattice constant while preventing the generation of η phase by using such ultrafast cooling, and the lattice constant is generally less than or equal to around 3.570Å, as described above. This is a method that realizes high performance without risking the occurrence of η phase and the risk associated with ultra rapid cooling, which is made possible by the addition of Cr.
From the conventional technical point of view, the addition of chromium (Cr) or chromium carbide (usually Cr3C2) is expected to suppress WC grain growth, improve corrosion resistance, and improve wear resistance of special cutting blades. However, the bending strength (TRS) is hardly changed by adding a small amount, but it is said that the bending strength (TRS) is lowered when the addition amount is increased (Non-Patent Document 1). ).

コバルト(Co)は420℃付近に変態点があり、その温度以上ではfccが安定状態であり、それ以下ではhcpが安定状態である。しかし、超硬合金ではWC等の炭化物相が多くてCo相が少なく薄いため、変態が抑制され、高温の焼結温度から温度が420℃以下や室温に冷却されてもfccが多く残存し、fccとhcpが混在しているのが通常である。fcc構造はhcp構造より延性に富むことから、硬いが延性に劣るWC等の炭化物を結合するCo相(結合相)にはfccのほうが適していると考えられる。また、前記超硬合金は多くの用途で疲労強度も要求されるが、非特許文献2によると疲労が進行するとfccがhcpに変態しhcp/fcc比が増大し遂には破壊に至るのではないかということが推定される。   Cobalt (Co) has a transformation point near 420 ° C., fcc is stable above that temperature, and hcp is stable below that temperature. However, in the cemented carbide, since there are many carbide phases such as WC and few Co phases, the transformation is suppressed, and a lot of fcc remains even when the temperature is lowered to 420 ° C. or room temperature from the high sintering temperature, Usually, fcc and hcp are mixed. Since the fcc structure is more ductile than the hcp structure, it is considered that fcc is more suitable for the Co phase (bonding phase) that binds carbides such as WC that are hard but poor in ductility. Further, although the cemented carbide is required to have fatigue strength in many applications, according to Non-Patent Document 2, when fatigue progresses, fcc transforms into hcp, and the hcp / fcc ratio increases and does not eventually break. It is estimated that.

このような実情に鑑みて、本発明の目的は、炭化タングステン(WC),コバルト(Co)及びクロム(Cr)を含有する超硬合金に関し、クロム(Cr)を微量含有させつつ、従来よりも抗折力や圧縮強度を高めるとともに疲労強度をも高めた強靱超硬合金並びに被覆超硬合金を提供することにある。   In view of such circumstances, the object of the present invention relates to a cemented carbide containing tungsten carbide (WC), cobalt (Co) and chromium (Cr), while containing a small amount of chromium (Cr), compared with the conventional case. An object of the present invention is to provide a tough cemented carbide and a coated cemented carbide that have increased bending strength and compressive strength, as well as increased fatigue strength.

本発明の強靭超硬合金は、炭化タングステン(WC),コバルト(Co)及びクロム(Cr)を含有し、WCの平均粒度が1.5〜20.0μm、ビッカース硬度が650〜1650Hvであり、Coが4〜30質量%含有し、CrがCo含有量の2〜18質量%含有し、残部がWC及び不可避不純物よりなり、hcp構造のCoを少なくするために、CrをCo中に固溶させて、Cu‐Kα線を用いたCo相のfccの(111)面のX線回折像(2θ=44.3度)とhcpの(002)面のX線回折像(2θ=44.9度)が重なりあったX線回折像の半価巾を0.42度以下としたことを特徴とする。ここで、前記X線回折像は、Cu‐Kα線を用いた回折角度2θでのX線回折像である。   The tough cemented carbide of the present invention contains tungsten carbide (WC), cobalt (Co) and chromium (Cr), WC has an average particle size of 1.5 to 20.0 μm, Vickers hardness of 650 to 1650 Hv, Co is contained in an amount of 4 to 30% by mass, Cr is contained in an amount of 2 to 18% by mass of the Co content, the balance is made of WC and inevitable impurities, and Cr is dissolved in Co in order to reduce Co in the hcp structure. The X-ray diffraction image (2θ = 44.3 degrees) of the fcc (111) plane of the Co phase using Cu—Kα rays and the X-ray diffraction image (2θ = 44.9) of the (002) plane of hcp. The half-value width of the X-ray diffraction images overlapping each other is 0.42 degrees or less. Here, the X-ray diffraction image is an X-ray diffraction image at a diffraction angle 2θ using Cu-Kα rays.

本発明では、CrをCo中に固溶させCo相(γ相とも呼称される)を強化させ、また靱性を向上させることにより超硬合金の強度を向上させるものである。Co相の強化と改質ではWC粒子間のCo層の厚みがある程度厚くないと、超硬合金の強度向上に寄与し難い。よって、Co質量%がある程度以上であるときに強度向上の効果が期待され、また、Co質量%が少ない場合はWC粒子が大きいときに強度向上の効果が期待されることから、それらの領域で超硬合金のCrの微量添加による効果を詳しく実験した。そして、Crを添加することによりCo相のfcc/hcp比を増大させ易くなることを発見するとともに、このCr添加効果を活用してfcc/hcp比を増大させた合金がその抗折力や圧縮強度等の強度が向上することを発見し、この合金を使用した耐衝撃工具、耐磨耗工具、切削工具において従来品に比較して大幅な性能向上を見出したものである。本発明に関する実験によれば、WCの平均粒度が1.5μm未満ではCo層の厚みが小さくなることに起因して改善はみられなかった。そこで、WCの平均粒度が1.5μm以上にて、Co質量%を変化させて抗折力、圧縮強度を調査した。Co質量%が4質量%以下或いはビッカース硬度が1650Hvを超える場合はやはりCo層の厚みが小さくなることから改善効果がなかった。また、ビッカース硬度が650Hvを下回る場合は超硬合金の実用性がほとんどない。   In the present invention, Cr is solid-solved in Co to strengthen the Co phase (also referred to as γ phase) and to improve toughness, thereby improving the strength of the cemented carbide. In strengthening and reforming the Co phase, it is difficult to contribute to improving the strength of the cemented carbide unless the thickness of the Co layer between the WC particles is thick to some extent. Therefore, the effect of improving the strength is expected when the Co mass% is above a certain level, and the effect of improving the strength is expected when the WC particles are large when the Co mass% is small. The effect of the addition of a small amount of Cr in the cemented carbide was examined in detail. Then, it was discovered that the addition of Cr makes it easy to increase the fcc / hcp ratio of the Co phase, and an alloy that increases the fcc / hcp ratio by utilizing this Cr addition effect has its bending strength and compression. It has been found that strength such as strength is improved, and has found a significant improvement in performance in impact resistant tools, wear resistant tools and cutting tools using this alloy compared to conventional products. According to the experiment relating to the present invention, when the average particle size of WC is less than 1.5 μm, no improvement was observed due to the reduced thickness of the Co layer. Therefore, when the average particle size of WC was 1.5 μm or more, the bending strength and compressive strength were investigated by changing Co mass%. When the Co mass% was 4 mass% or less or the Vickers hardness exceeded 1650 Hv, the thickness of the Co layer was too small, so there was no improvement effect. Further, when the Vickers hardness is less than 650 Hv, the practicality of the cemented carbide is almost absent.

本発明では、CrのCo含有量に対する割合が、2〜18質量%に設定される。2質量%を下回る場合はCrの効果が現れず、18質量%より大きい場合はCr3C2の結晶が出現し超硬合金の強度はかえって低下したからである。後述する実験結果によれば、本発明に係る超硬合金は、従来品よりも圧縮強度が大きくなるとともに、破壊靭性が大きくなることが判明しており、また、本発明に係る超硬合金は、従来品よりもビッカース硬度が大きくなるとともに、抗折力が大きくなることが判明している。本発明の強靱超硬合金は段落0023に述べるごとく一般的な粉末冶金法で生産される。本発明は特許文献3のような超急冷を利用して健全領域を越える大きいCo格子定数を実現し高性能を狙うるものではない。従ってCoの格子定数はη相の危険が少ない3.570Å近傍以下が望ましい。一方実施例1表2では試料A2の格子定数が3.570Åで、η相もなく抗折力も高く、高性能を実現していることから本特許はCrを添加し、Co相(fcc)の格子定数は3.570Å以下とするものである。
In this invention, the ratio with respect to Co content of Cr is set to 2-18 mass%. This is because the Cr effect does not appear when the content is less than 2% by mass, and the Cr3C2 crystal appears when the content is greater than 18% by mass, and the strength of the cemented carbide decreases. According to the experimental results to be described later, it has been found that the cemented carbide according to the present invention has higher compressive strength and greater fracture toughness than conventional products, and the cemented carbide according to the present invention is It has been found that the Vickers hardness is increased and the bending strength is increased as compared with the conventional product. The tough cemented carbide of the present invention is produced by a general powder metallurgy method as described in paragraph 0023. The present invention cannot achieve high performance by realizing a large Co lattice constant exceeding the sound region by utilizing the ultra rapid cooling as in Patent Document 3. Accordingly, the lattice constant of Co is preferably less than or equal to around 3.570 mm where there is little risk of η phase. On the other hand, in Table 1 of Example 1, the lattice constant of Sample A2 is 3.570 、, there is no η phase, high bending strength, and high performance is realized. Therefore, this patent added Cr, and Co phase (fcc) The lattice constant is 3.570 mm or less.

本発明は、前記WCの一部をTiC、TaC、NbC、HfC、ZrC、VC等の遷移金属の炭化物又はこれら遷移金属の炭窒化物、若しくはWを含むこれら遷移金属の複炭化物又はWを含むこれら遷移金属の複炭窒化物のうちいずれか1種以上で置き換えたことを特徴とする。   In the present invention, a part of the WC includes carbides of transition metals such as TiC, TaC, NbC, HfC, ZrC, and VC, carbonitrides of these transition metals, or double carbides of these transition metals including W or W. It is characterized in that it is replaced with any one or more of these transition metal double carbonitrides.

後述する本発明に関する実験によれば、抗折力の向上が認められ、切削時の耐摩耗性に改善がみられた。   According to the experiment relating to the present invention described later, an improvement in the bending strength was recognized, and an improvement in wear resistance during cutting was observed.

本発明は、その合金表面に脱β層が形成されており、脱β層の厚みが1〜30μmであることを特徴とする。   The present invention is characterized in that a de-β layer is formed on the surface of the alloy, and the thickness of the de-β layer is 1 to 30 µm.

この脱β層が形成された超硬合金は被覆超硬合金の母材として利用される。この母材は被覆超硬合金の強度や靱性を向上させ切削工具の長寿命化や信頼性向上に役立っている。しかし欠点として高硬度鋼の切削や一般鋼の高速度切削おいて刃先ダレ(高温での塑性変形)が起こり易いことからこれら切削分野での利用が制限されている。
本発明に係る脱β層が形成された超硬合金を母材とした被覆超硬合金を切削工具に使用すると前記刃先ダレを改善出来ることが判明した。ここで、脱β層とは、β相がない層のことであり、Co含有量がやや多くなり硬度がやや低くなるが強度や靭性に優れている層である。被覆材はセラミックであり硬くて脆いことから、この脱β層で被覆材の脆さを補い、切削工具の靭性を向上させる。その反面、高硬度鋼の切削においては、この脱β層が柔らかいが故に刃先ダレが生じ易く、特に高温時に刃先ダレが生じ易い。本発明によれば、この脱β層のCo中に,Crが固溶し高温での強度を向上させており、前記刃先ダレが改善される。この脱β層の効果が有効な範囲として本発明では脱β層の厚みを1〜30μmとしている。
The cemented carbide in which the β-free layer is formed is used as a base material for the coated cemented carbide. This base material improves the strength and toughness of the coated cemented carbide, and helps to extend the life and reliability of the cutting tool. However, as a drawback, cutting edge of the cutting edge (plastic deformation at high temperature) is likely to occur in cutting of high hardness steel and high speed cutting of general steel, so that the use in these cutting fields is limited.
It has been found that the cutting edge sagging can be improved by using a coated cemented carbide made of a cemented carbide with a de-β layer according to the present invention as a base material. Here, the de-β layer is a layer having no β phase, and is a layer having a high Co content and a slightly lower hardness but excellent strength and toughness. Since the coating material is ceramic and is hard and brittle, this de-beta layer compensates for the brittleness of the coating material and improves the toughness of the cutting tool. On the other hand, in the cutting of high hardness steel, the sag of the cutting edge is likely to occur because the de-β layer is soft. According to the present invention, Cr dissolves in Co in the de-β layer to improve the strength at high temperature, and the cutting edge sag is improved. In the present invention, the thickness of the de-β layer is set to 1 to 30 μm as an effective range of the de-β layer.

本発明ではCoのfcc/hcp比を定量的にとらえる手段としてX線回折像を利用する方法を採用し、ターゲットとしてCuを用いている。測定対象となる合金の測定面は研削加工後に50μm研磨を行い鏡面に仕上げた。研削面の表面から10−30μmの深さにおいては通常研削による残留応力や歪によりCo相のfccの一部がhcpに代わりhcp/fcc比が大きくなることが知られている。この研削表面層の影響を避けるため、本特許では半価巾の測定や格子定数の測定では研削面を50μm以上研磨により除去し、鏡面に仕上げた面を測定した。Co相のfccの(111)面のX線回折像は2θが44.3度であり、hcpの(002)面のX線回折像は2θが44.9度である。通常はfccの(111)面のX線回折像のほうが回折強度が大きいが、hcpの(002)面のX線回折像が重なる場合には、この重なったX線回折像の半価巾はhcpが多いほど大きくなる。本明細書では、上記の重なったX線回折像を便宜上、fchp回折像と記述する。実験結果によれば、fchp回折像の半価巾が0.43度以上の合金の強度は、fchp回折像の半価巾が0.42度以下の合金と比べて、強度が劣っていた。
図1に示すCo相のX線回折像において、本発明の強靭超硬合金では、図1(a)と図1(c)に示すようにfchp回折像の半価巾が小さくなっており、fcc/hcp比が大きくなっていることが分かる。その一方で、従来例の超硬合金では、図1(b)と図1(d)に示すようにfchp回折像の半価巾が大きくなっており、fcc/hcp比が小さくなっていることが分かる。ここで、本明細書では、上記の測定法でfchp回折像の半価巾が0.42度以下のものを本発明における高性能強靭超硬合金としている。図1(a)と図1(b)に示す合金ではCoを20質量%含有しており、図1(c)と図1(d)に示す合金ではCoを9質量%含有している。
In the present invention, a method using an X-ray diffraction image is employed as means for quantitatively capturing the Co fcc / hcp ratio, and Cu is used as a target. The measurement surface of the alloy to be measured was polished to a mirror surface by polishing 50 μm after grinding. It is known that at a depth of 10-30 μm from the surface of the ground surface, the hcp / fcc ratio is increased by replacing part of the fcc of the Co phase with hcp due to residual stress and strain caused by normal grinding. In order to avoid the influence of this ground surface layer, in this patent, the half surface width and the lattice constant were measured by removing the ground surface by polishing 50 μm or more and measuring the mirror finished surface. The X-ray diffraction image of the (111) plane of the fcc of the Co phase has 2θ of 44.3 degrees, and the X-ray diffraction pattern of the (002) plane of hcp has 2θ of 44.9 degrees. Normally, the diffraction intensity of the X-ray diffraction image of the (111) plane of fcc is higher, but when the X-ray diffraction images of the (002) plane of hcp overlap, the half width of the overlapped X-ray diffraction image is The larger hcp is, the larger it is. In the present specification, the above-described overlapping X-ray diffraction images are described as fchp diffraction images for convenience. According to the experimental results, the strength of the alloy whose half width of the fchp diffraction image is 0.43 degrees or more is inferior to that of the alloy whose half width of the fchp diffraction image is 0.42 degrees or less.
In the X-ray diffraction image of the Co phase shown in FIG. 1, in the tough cemented carbide of the present invention, the half width of the fchp diffraction image is small as shown in FIGS. 1 (a) and 1 (c). It can be seen that the fcc / hcp ratio is increased. On the other hand, in the conventional cemented carbide, the half width of the fchp diffraction image is large and the fcc / hcp ratio is small as shown in FIGS. I understand. Here, in the present specification, the half-width of the fchp diffraction image obtained by the above measurement method is 0.42 degrees or less as the high-performance tough cemented carbide in the present invention. The alloys shown in FIGS. 1 (a) and 1 (b) contain 20% by mass of Co, and the alloys shown in FIGS. 1 (c) and 1 (d) contain 9% by mass of Co.

本発明によれば、fchp半価巾が0.42度以下においても、Crを添加しCr等(Wを含む)の固容元素を増加させることにより、強靱性や耐熱強度が向上する。そしてCo相へのその固容元素量の測定法としてfccの格子定数を測定している。Co相のfccの格子定数が大きいほど固容元素の含有量が増大し強度や耐熱性が向上する。本発明では、Co中でのCrやWの固溶量を増加させて、Co相のfccの格子定数を3.560Å以上としたことを特徴としている。Co相のfccの格子定数が3.550Å以下では、強度や耐熱性の向上効果は少ない。   According to the present invention, even when the fchp half-value width is 0.42 degrees or less, toughness and heat resistance strength are improved by adding Cr and increasing solid elements such as Cr (including W). The fcc lattice constant is measured as a method for measuring the amount of solid elements in the Co phase. As the fcc lattice constant of the Co phase is larger, the content of the solid element is increased and the strength and heat resistance are improved. The present invention is characterized in that the solid solution amount of Cr and W in Co is increased so that the fcc lattice constant of the Co phase is 3.560% or more. When the fcc lattice constant of the Co phase is 3.550 or less, the effect of improving strength and heat resistance is small.

これら本発明によれば、前記超硬合金の用途に応じて、硬さ、抗折強度、被加工材料との相性などを最適化した良好な加工性を有する切削工具や金型、鉱山工具や耐磨耗工具等となる。   According to these inventions, according to the use of the cemented carbide, cutting tools and molds having good workability optimized for hardness, bending strength, compatibility with the work material, mining tools, It becomes a wear-resistant tool.

本発明に係る超硬合金の製造方法は、粉末冶金法が適用される。例えば、WC、Co及びCrの各粉末を予め適量混合し、その混合粉末をプレス成型した後、真空中で適温に加熱し焼結させ焼結体とする。前記焼結体に熱間等方加圧焼結処理(HIP処理)を施してもよい。または、SinterHIP炉により焼結とHIP処理を同一炉で同時に行うこともできる。又品質管理についても、η相もなく、遊離炭素も出ないように(健全相域を維持するように)製作する等粉末冶金法で製造される超硬合金の一般的な考え方が適用される。
The powder metallurgy method is applied to the method for manufacturing the cemented carbide according to the present invention. For example, an appropriate amount of WC, Co, and Cr powders are mixed in advance, the mixed powder is press-molded, and then heated to an appropriate temperature in a vacuum to be sintered to obtain a sintered body. The sintered body may be subjected to hot isostatic pressing (HIP treatment). Alternatively, sintering and HIP treatment can be performed simultaneously in the same furnace using a SinterHIP furnace. Also, for quality control, the general concept of cemented carbide manufactured by powder metallurgy is applied, such as manufacturing without η phase and free carbon (so as to maintain a healthy phase range). .

本発明によれば、CrをCo中に固溶させCo相を強化させ靱性を向上させることにより超硬合金の強度が向上する。Co相の強化・改質ではWC粒子間のCo層の厚みがある程度厚くないと、超硬合金の強度向上に寄与し難いことから、Co質量%が4質量%以上とし、WCの平均粒度を1.5μm以上とした。但しCoが30質量%を超える割合の超硬合金やWCの平均粒度が20.0μmを超える大きさの超硬合金は工業的には実用的ではないことから、Co質量%の上限を30質量%とし、WCの平均粒度の上限を20.0μmとしている。   According to the present invention, the strength of the cemented carbide is improved by solid solution of Cr in Co to strengthen the Co phase and improve toughness. In the strengthening / modification of the Co phase, if the thickness of the Co layer between the WC particles is not thick to some extent, it is difficult to contribute to the improvement of the strength of the cemented carbide. It was set to 1.5 μm or more. However, cemented carbides with a proportion of Co exceeding 30% by mass and cemented carbides with an average WC particle size exceeding 20.0 μm are not practical in practice, so the upper limit of Co% by mass is 30% by mass. %, And the upper limit of the average particle size of WC is 20.0 μm.

本発明によれば、既知の合金と同じ硬さでありながら強度向上が期待できるので種々の応用分野で高性能が期待でき、例えば、Co含有量が比較的多い超硬合金が使われる冷間鍛造用金型では、従来品と比較して約2倍の長寿命を発揮する。自動車部品業界や電子部品業界等では冷間鍛造金型が多く使用されており、これら部品の原価低減に貢献することとなる。本発明によれば、常温での強度向上のみならず高温での強度向上も期待でき、切削工具では、その耐摩耗性が向上する。
特に脱β層が形成された母材を用いた被覆超硬合金では脱β層の欠点である切削時の刃先ダレの防止に貢献することとなる。また、その他、鉱山工具等WC粒が大きいか、Co含有量が比較的多い超硬合金において、欠損の低減や耐摩耗性の向上が期待でき工具の長寿命化が実現する。
According to the present invention, strength improvement can be expected while having the same hardness as a known alloy, so high performance can be expected in various application fields, for example, a cold alloy in which a cemented carbide with a relatively high Co content is used. Forging dies exhibit a life that is about twice as long as conventional products. Cold forging dies are often used in the automotive parts industry, the electronic parts industry, and the like, which will contribute to the cost reduction of these parts. According to the present invention, not only the strength at normal temperature but also the strength at high temperature can be expected, and the wear resistance of the cutting tool is improved.
In particular, a coated cemented carbide using a base material on which a β-free layer is formed contributes to prevention of cutting edge sag during cutting, which is a defect of the β-free layer. In addition, in cemented carbides such as mining tools that have large WC grains or a relatively large Co content, it is possible to expect reduction in fractures and improvement in wear resistance, thus realizing a long tool life.

各種超硬合金におけるCo相のX線回折像であり、(a)と(c)が本発明を適用した実施形態の強靭超硬合金のCo相のX線回折像であり、(b)と(d)が従来例の超硬合金のCo相のX線回折像である。It is an X-ray diffraction image of the Co phase in various cemented carbides, (a) and (c) are X-ray diffraction images of the Co phase of the tough cemented carbide of the embodiment to which the present invention is applied, (b) (D) is an X-ray diffraction image of the Co phase of the cemented carbide of the conventional example. 本発明を適用した実施形態の強靭超硬合金の組織を光学式金属顕微鏡にて撮像した画像である。It is the image which imaged the structure | tissue of the tough cemented carbide alloy of embodiment to which this invention was applied with the optical metal microscope. 従来の超硬合金の組織を光学式金属顕微鏡にて撮像した画像である。It is the image which imaged the structure | tissue of the conventional cemented carbide with the optical metal microscope. クロスジョイントを例示する平面図である。It is a top view which illustrates a cross joint. 上記実施形態の強靭超硬合金からなるクロスジョイントの寿命試験後の状態を顕微鏡にて観察した画像である。It is the image which observed the state after the lifetime test of the cross joint consisting of the tough cemented carbide of the said embodiment with the microscope. 上記従来の超硬合金からなるクロスジョイントの寿命試験後の状態を顕微鏡にて観察した画像である。It is the image which observed the state after the life test of the cross joint which consists of the said conventional cemented carbide alloy with the microscope. ボルト・ナット用冷間鍛造金型を例示する断面図である。It is sectional drawing which illustrates the cold forge metal mold | die for volt | bolts and nuts.

以下、本発明を実施するための最良の形態を、実施例に基づいて以下に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、本発明と実質同一又は均等の範囲内において、既知の変更を加えることが可能である。   Hereinafter, the best mode for carrying out the present invention will be described based on examples. It should be noted that the present invention is not limited to the following embodiments, and known modifications can be made within a range substantially the same as or equivalent to the present invention.

(実施形態1)
冷間或いは熱間鍛造加工金型や工具等の耐摩耗用工具、或いは鉱山工具用途としては、その平均粒度が1.5〜20.0μmのWC粉が使用され、Co粉末が7〜25質量%配合される。CrはCoに対する重量比で2〜18%配合する。Crの添加は、Cr粉末を使用するのが良い。Cr粉末も使用出来る。ただし、Cr粉末はその表面が酸化しておりCo%が小さい超硬合金ではその炭素調整が難しくなることがあるので注意する必要がある。高価であるがCrNを使用することも出来る。
(Embodiment 1)
For wear resistant tools such as cold or hot forging dies and tools, or mining tools, WC powder having an average particle size of 1.5 to 20.0 μm is used, and Co powder is 7 to 25 mass. % Blended. Cr is blended by 2 to 18% by weight with respect to Co. For addition of Cr, Cr 3 C 2 powder is preferably used. Cr powder can also be used. However, it is necessary to pay attention to the fact that the surface of the Cr powder is oxidized and the carbon adjustment may be difficult in a cemented carbide with a small Co%. Although it is expensive, CrN can also be used.

これらWC粉、Co粉末、Cr粉末をそれぞれ秤量して有機溶媒(アルコール、アセトン、ヘキサン等)とともにボールミル或いはアトライターにいれて湿式混合する。その後、有機溶媒を蒸発除去し混合した粉末を乾燥させる。スプレードライヤでこれら粉末を乾燥し同時に造粒を行うことで、量産性を高められる。 These WC powder, Co powder, and Cr 3 C 2 powder are weighed and placed in a ball mill or attritor together with an organic solvent (alcohol, acetone, hexane, etc.) and wet mixed. Thereafter, the organic solvent is removed by evaporation, and the mixed powder is dried. Mass production can be improved by drying these powders with a spray dryer and granulating them at the same time.

プレスし易くするための潤滑材(パラフィン、ポリエチレングリコール、樟脳等)を前記粉末混合物に混ぜて、製品の形状に見合った金型に前記粉末混合物を入れて、プレスする。その後、温度が1280℃から1500℃の範囲で真空中で焼結する。焼結は組成・用途に応じて、真空焼結、真空焼結後HIP処理、焼結とHIP処理を同一炉で行うSinterHIP等がある。焼結条件は組成、形状、用途に応じて最適の条件が選ばれる。そして、焼結後に放電加工、研削加工、研磨加工の順に加工が施されて金型等の工具を完成させる。
fchp半価巾を0.42度以下に制御する方法の一つとしては、1200℃以上1500℃以下に加熱された加熱温度から、50℃以上200℃以下の冷却温度までの冷却速度が10℃/分以上であることが望ましい。ここで、上記加熱温度には、焼結温度としての1280℃以上1500℃以下の温度が含まれる。fchp半価巾を制御する方法は上記以外にもあると考えられるが未検討である。
A lubricant (paraffin, polyethylene glycol, camphor, etc.) for facilitating pressing is mixed with the powder mixture, and the powder mixture is put into a mold suitable for the shape of the product and pressed. Thereafter, sintering is performed in a vacuum at a temperature in the range of 1280 ° C to 1500 ° C. Sintering includes vacuum sintering, HIP treatment after vacuum sintering, and SinterHIP for performing sintering and HIP treatment in the same furnace, depending on the composition and use. The optimum sintering conditions are selected according to the composition, shape and application. And after sintering, electric discharge machining, grinding, and polishing are processed in this order to complete a tool such as a mold.
As one of the methods for controlling the fchp half-value width to 0.42 degrees or less, the cooling rate from the heating temperature heated to 1200 to 1500 ° C. to the cooling temperature of 50 to 200 ° C. is 10 ° C. / Min or more is desirable. Here, the heating temperature includes a temperature of 1280 ° C. or more and 1500 ° C. or less as a sintering temperature. Although there are other methods for controlling the fchp half-width, it has not been studied.

Co相のfcc格子定数を3.560Å以上とし且つfchp回折像の半価巾を0.42度以下にする実用的方法として、超硬合金をその加熱温度又は焼結温度が1200℃以上1500℃以下の温度から800℃以下500℃以上の温度までを1次冷却として急冷し、被熱処理品の温度が均一になるように1次冷却の冷却温度範囲内で一定時間保持し、その1次冷却温度から200℃以下の温度までを2次冷却として急冷する2段階冷却法を見出した。ここで、1次冷却の冷却速度は25℃/分以上とすることが好ましく、2次冷却の冷却速度は5℃/分以上とすることが好ましい。さらに、1次冷却の冷却速度は30℃/分以上とすることが好ましく、2次冷却の冷却速度は10℃/分以上とすることが望ましい。
その一方で、超硬合金をその温度が1200℃以上1500℃以下の範囲から50℃以上200℃以下の範囲まで連続して急速冷却しても、上記2段階冷却法と相当の半価巾と格子定数が得られる。しかし上記2段階冷却のほうが、製品に対する残留応力が軽減されること等を考えるとより汎用性に富んでいるといえる。そして、格子定数を3.560Å以上にする方法としては、上記以外にもWC等の炭化物の結合炭素を不足させる方法もある。しかし、炭化物の結合炭素を不足させる方法では、格子定数を3.560Å以上にすることが安定して実現できず、現状の技術では困難であると考えられる。なお、X線回折像を測定する際は、研削面から10−30μmの深さに残留する研削影響層を除去する必要がある。このため、超硬合金における研削面の表面からその深さ方向に50μm以上の研磨を行い鏡面に仕上げることが望ましい。
As a practical method of setting the fcc lattice constant of the Co phase to 3.560 mm or more and the half width of the fchp diffraction image to 0.42 degrees or less, the heating temperature or sintering temperature of the cemented carbide is 1200 ° C. or more and 1500 ° C. From the following temperatures to 800 ° C or lower and 500 ° C or higher, rapid cooling is performed as primary cooling, and the temperature of the product to be heat-treated is maintained for a certain period of time within the cooling temperature range of primary cooling so that the primary cooling is performed. The inventors have found a two-stage cooling method in which the temperature is rapidly cooled from the temperature to 200 ° C. or less as secondary cooling. Here, the cooling rate of the primary cooling is preferably 25 ° C./min or more, and the cooling rate of the secondary cooling is preferably 5 ° C./min or more. Furthermore, the cooling rate of primary cooling is preferably 30 ° C./min or more, and the cooling rate of secondary cooling is preferably 10 ° C./min or more.
On the other hand, even if the cemented carbide is continuously rapidly cooled from the range of 1200 ° C. to 1500 ° C. to the range of 50 ° C. to 200 ° C., the above two-stage cooling method and the corresponding half width A lattice constant is obtained. However, it can be said that the above two-stage cooling is more versatile considering that the residual stress on the product is reduced. Further, as a method for setting the lattice constant to 3.560 or more, there is a method of making the bonded carbon of carbides such as WC insufficient in addition to the above. However, with the method of lacking the bonded carbon of the carbide, it is not possible to stably realize the lattice constant of 3.560 or more, and it is considered difficult with the current technology. When measuring an X-ray diffraction image, it is necessary to remove the grinding-affected layer remaining at a depth of 10-30 μm from the grinding surface. For this reason, it is desirable to polish it to a mirror surface by polishing 50 μm or more in the depth direction from the surface of the ground surface in the cemented carbide.

(実施形態2)
平均粒度が1.5〜7.0μmのWC粉が使用され、Co粉末が4〜15質量%配合される。CrはCoに対する重量比で2〜18%配合する。Crの添加は、Cr粉末を使用するのが良い。そして、用途に応じて、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)、ハフニウム(Hf)、ジルコニウム(Zr)、バナジウム(V)の炭化物、炭窒化物、或いはタングステン(W)を含むこれら遷移金属の複炭化物、或いは複炭窒化物のいずれか1種以上を配合する。秤量、湿式混合、プレス、焼結及びfchp像の半価巾を0.42度以下に制御する方法や、格子定数を3.560Å以上に制御する方法は、実施形態1と同様である。この組成は主として切削工具用超硬合金に用いられる。焼結後そのまま切削工具として使用できるものも多いがさらに研削して高精度の工具に仕上げることもある。
(Embodiment 2)
WC powder having an average particle size of 1.5 to 7.0 μm is used, and 4 to 15 mass% of Co powder is blended. Cr is blended by 2 to 18% by weight with respect to Co. For addition of Cr, Cr 3 C 2 powder is preferably used. Depending on the application, titanium (Ti), tantalum (Ta), niobium (Nb), hafnium (Hf), zirconium (Zr), vanadium (V) carbide, carbonitride, or tungsten (W) is included. Any one or more of these transition metal double carbides or double carbonitrides are blended. The method for controlling weighing, wet mixing, pressing, sintering, and the half width of the fchp image to 0.42 degrees or less, and the method for controlling the lattice constant to 3.560 mm or more are the same as in the first embodiment. This composition is mainly used for cemented carbide for cutting tools. There are many things that can be used directly as a cutting tool after sintering, but they may be further ground into a high-precision tool.

(実施形態3)
脱β層が形成された被覆超硬合金の母材を製造する場合は、実施形態2の配合粉に微量の窒化物或いは炭窒化物を加える。秤量、湿式混合、プレス、焼結及びfchp像の半価巾を0.42度以下に制御する方法や、格子定数を3.560Å以上に制御する方法は、上述の実施形態1と同様である。この添加した窒素の作用で真空焼結時に脱β層を発現させることが出来る。本発明に係る被覆超硬合金を製作するための被覆法としては既知のCVD法が適用され、その被覆条件は通常どおりである。
(Embodiment 3)
When manufacturing the base material of the coated cemented carbide in which the de-β layer is formed, a small amount of nitride or carbonitride is added to the blended powder of Embodiment 2. The method of controlling the weighing, wet mixing, pressing, sintering, and the half width of the fchp image to 0.42 degrees or less, and the method of controlling the lattice constant to 3.560 mm or more are the same as in the first embodiment. . By the action of this added nitrogen, a deβ layer can be developed during vacuum sintering. A known CVD method is applied as a coating method for producing the coated cemented carbide according to the present invention, and the coating conditions are as usual.

温度が1200℃以上からの冷却速度が速いほうが本発明の実施が安定して実行出来ることから以下に示す実施例では冷却速度を所定速度範囲内に管理して実験している。しかしこの冷却速度の下限値にはまだ余裕があると考えられ、以下に示す実施例よりも遅い冷却速度でもfcc/hcp比を大きく出来、本発明を実施出来ると考えられる。   Since the implementation of the present invention can be carried out more stably when the cooling rate from a temperature of 1200 ° C. or higher is higher, in the examples shown below, the cooling rate is controlled within a predetermined speed range for experiments. However, it is considered that there is still a margin in the lower limit value of the cooling rate, and it is considered that the fcc / hcp ratio can be increased even at a cooling rate slower than the following examples, and the present invention can be implemented.

(実施例1)
冷間鍛造金型の実施例を以下に述べる。
Example 1
Examples of cold forging dies are described below.

表1は、発明品A1,A2、比較品A3並びに従来品Bのそれぞれの配合組成割合を質量%表示したものである。ここでは、その平均粒度が3μmのWCを使用した。上記の配合比でアルコール中でアトライター混合を6時間行った。アルコールを蒸発させ粉末を乾燥させたのち、プレス圧が1ton/cmでプレスを行い、焼結温度が1380℃で、圧力が1MPa(10bar)の条件にてSinterHIP炉で焼結を行った。発明品A1と従来品Bとは、焼結温度から200℃までの冷却速度が12℃/分で冷却した。発明品A2は、焼結後に温度が1250℃まで加熱し、温度が1250℃から650℃まで冷却速度が30℃/分で1次冷却し、温度が650℃で10分間保持し、温度が200℃まで冷却速度が10℃/分で2次冷却した。比較品A3は、焼結温度から200℃までの冷却速度を調整しなかったが実際の冷却速度は4℃/分であった。各試料について、それぞれ抗折力(TRS)等の物理特性を測定した。その結果を表2に示す。 Table 1 shows the composition ratios of the inventive products A1 and A2, the comparative product A3, and the conventional product B in mass%. Here, WC having an average particle size of 3 μm was used. Attritor mixing was performed for 6 hours in alcohol at the above blending ratio. After the alcohol was evaporated and the powder was dried, pressing was performed at a pressing pressure of 1 ton / cm 2 , and sintering was performed in a SinterHIP furnace under a sintering temperature of 1380 ° C. and a pressure of 1 MPa (10 bar). Invention product A1 and conventional product B were cooled at a cooling rate of 12 ° C./min from the sintering temperature to 200 ° C. Inventive product A2 is heated to 1250 ° C. after sintering, primarily cooled from 1250 ° C. to 650 ° C. at a cooling rate of 30 ° C./min, held at 650 ° C. for 10 minutes, and temperature 200 Secondary cooling to 10 ° C. was performed at a cooling rate of 10 ° C./min. Comparative product A3 did not adjust the cooling rate from the sintering temperature to 200 ° C., but the actual cooling rate was 4 ° C./min. For each sample, physical characteristics such as bending strength (TRS) were measured. The results are shown in Table 2.

表2に示すように、発明品A1とA2は、Crを含有しない従来品Bよりも抗折力(TRS)、ビッカース硬度及び圧縮強度が優れている。また、発明品A1とA2は、Crを含有してもfchp像の半価巾が大きい比較品A3よりも抗折力(TRS)及び圧縮強度が優れている。A1、A2はCoの格子定数もそれぞれ3.555Å、3.570ÅとA3、Bよりも大きい。A2は半価巾も小さく、格子定数も3.570Åで許容される上限値に近いが抗折力、硬度共に他より大きい。
As shown in Table 2, invention products A1 and A2 are superior in bending strength (TRS), Vickers hardness and compression strength to conventional product B not containing Cr. Inventive products A1 and A2 have better bending strength (TRS) and compressive strength than comparative product A3, which contains Cr and has a large half-value width of the fchp image. A1 and A2 also have Co lattice constants of 3.555 and 3.570, respectively, which are larger than A3 and B. A2 has a small half width and a lattice constant close to the upper limit allowed at 3.570 mm, but both the bending strength and hardness are larger than others.

次に、上述した発明品A1,A2と従来品Bとを用いて冷間鍛造金型を作製した。そして、閉塞鍛造によってクロスジョイントを製造して寿命試験を行なった。   Next, a cold forging die was manufactured using the above-described invention products A1 and A2 and the conventional product B. Then, a cross joint was manufactured by closed forging and a life test was performed.

図4は、クロスジョイントを示す平面図である。図中の一点鎖線で囲った箇所がその構造上、応力が集中し易くなっている箇所である。図5は、上記実施形態の強靭超硬合金A1を用いた金型からなるクロスジョイントの寿命試験後の状態を顕微鏡にて観察した画像であり、30万ショットにおいても異常がなかった。図6は、上記従来の超硬合金Bを用いた金型からなるクロスジョイントの寿命試験後の状態を顕微鏡にて観察した画像であり、15万ショットでカケが発生した。上記実施形態の強靭超硬合金A2を用いた金型からなるクロスジョイントにおいても同様に30万ショットにおいても異常がなかった。発明品A2は、発明品A1よりもさらに高寿命が期待できる状態であった。このことから、発明品A1、A2からなる金型寿命は、従来品Bからなる金型寿命と比較して、2倍以上の長寿命であるといえる。実用テストでこのように2倍以上の高性能がだせるのは単にTRSや圧縮強度が少し高いという理由だけではなくfcc/hcp比を増大させることにより疲労強度を大きく向上させることができたからである。   FIG. 4 is a plan view showing the cross joint. A portion surrounded by a one-dot chain line in the figure is a portion where stress is easily concentrated due to its structure. FIG. 5 is an image obtained by observing a state of a cross joint made of a mold using the tough cemented carbide A1 of the above embodiment after a life test with a microscope, and there was no abnormality even after 300,000 shots. FIG. 6 is an image obtained by observing a state of a cross joint made of a mold using the conventional cemented carbide B after a life test with a microscope, and chipping occurred in 150,000 shots. Similarly, in the cross joint made of a mold using the tough cemented carbide A2 of the above embodiment, there was no abnormality even after 300,000 shots. Invention A2 was in a state where a longer life could be expected than Invention A1. From this, it can be said that the mold life made of the inventive products A1 and A2 is twice as long as the life of the mold made of the conventional product B. In the practical test, the reason why the performance is more than doubled is not only because the TRS or the compressive strength is a little high, but because the fatigue strength can be greatly improved by increasing the fcc / hcp ratio. .

(実施例2)
切削工具の実施例を以下に述べる。
(Example 2)
Examples of cutting tools are described below.

表3は、発明品C1、比較品C2並びに従来品Dのそれぞれの配合組成割合を質量%表示したものである。ここでは、その平均粒度が2μmのWCを使用した。上記の配合比でアルコール中でアトライター混合を6時間行った。アルコールを蒸発させ粉末を乾燥させたのち、プレス圧が1ton/cmでプレスを行い、温度が1400℃で真空焼結を行なった。発明品C1は、1300℃から200℃まで冷却速度が12℃/分で冷却した。比較品C2と従来品Dとは、1300℃から200℃まで冷却速度が4℃/分で冷却した。各試料について、それぞれ抗折力(TRS)等の物理特性を測定した。その結果を表4に示す。 Table 3 shows the composition ratios of Invention C1, Comparative Product C2 and Conventional Product D in mass%. Here, WC having an average particle size of 2 μm was used. Attritor mixing was performed for 6 hours in alcohol at the above blending ratio. After the alcohol was evaporated and the powder was dried, pressing was performed at a pressing pressure of 1 ton / cm 2 and vacuum sintering was performed at a temperature of 1400 ° C. Invention C1 was cooled from 1300 ° C. to 200 ° C. at a cooling rate of 12 ° C./min. The comparative product C2 and the conventional product D were cooled from 1300 ° C. to 200 ° C. at a cooling rate of 4 ° C./min. For each sample, physical characteristics such as bending strength (TRS) were measured. The results are shown in Table 4.

表4に示すように、発明品C1は、比較品C2や従来品Dと比較して、ビッカース硬度は同程度であるが、抗折力(TRS)が大きくなった。発明品C1、比較品C2、従来品Dの合金でそれぞれSNMA432のチップを製作し、下記の条件で旋盤による切削試験を行った。
切削条件としては、被削材がSCM3、切削速度v=100
mm/分、切り込み深さd=2mm、送り速度f=0.4mm/rev、切削時間が30分である。
その結果、発明品C1からなるチップの磨耗度合いは、比較品C2からなるチップの磨耗度合いや、従来品Dからなるチップの磨耗度合いと比較して、約2/3となり、発明品C1の耐摩耗性が優れていることが判った。
As shown in Table 4, the inventive product C1 has the same Vickers hardness as compared with the comparative product C2 and the conventional product D, but has a higher bending strength (TRS). SNMA432 chips were manufactured from the alloys of Invention C1, Comparative Product C2, and Conventional Product D, respectively, and a cutting test using a lathe was performed under the following conditions.
As the cutting conditions, the work material is SCM3, and the cutting speed v = 100.
mm / min, cutting depth d = 2 mm, feed rate f = 0.4 mm / rev, cutting time is 30 minutes.
As a result, the wear level of the chip made of the inventive product C1 is about 2/3 compared to the wear level of the chip made of the comparative product C2 and the wear level of the chip made of the conventional product D. It was found that the abrasion was excellent.

(実施例3)
脱β層が形成された母材を用いた被覆超硬合金の切削工具の実施例を以下に述べる。
(Example 3)
An example of a coated cemented carbide cutting tool using a base material on which a de-β layer is formed will be described below.

表5は、発明品Eと従来品Fのそれぞれの配合組成割合を質量%表示したものである。ここでは、その平均粒度が4μmのWCを使用した。上記の配合比でアルコール中でアトライター混合を6時間行った。アルコールを蒸発させ粉末を乾燥させたのち、プレス圧が1ton/cm2でプレスを行い、焼結温度が1400℃で真空焼結を行い、その厚みが10μmの脱β層を有する超硬合金を試作した。ここでは、発明品E、従来品Fのいずれも、焼結温度から200℃までの冷却速度が10℃/分であった。そして、各試料の硬さを測定した後、それら母材にTiCNをその厚みが7μmで被覆し、切削試験によって刃先ダレを比較した。
切削条件としては、被覆超硬合金の形状がSNMA432、被切削材がSNCM439、切削速度v=140mm/分、切り込み深さd=2mm、送り速度f=0.7mm/rev、切削時間が40分である。その結果を次の表6に示す。
Table 5 shows the composition ratios of Invention E and Conventional Product F in mass%. Here, WC having an average particle size of 4 μm was used. Attritor mixing was performed for 6 hours in alcohol at the above blending ratio. After the alcohol is evaporated and the powder is dried, pressing is performed at a pressing pressure of 1 ton / cm 2, vacuum sintering is performed at a sintering temperature of 1400 ° C., and a cemented carbide having a de-β layer with a thickness of 10 μm is prototyped did. Here, the cooling rate from the sintering temperature to 200 ° C. was 10 ° C./min for both the inventive product E and the conventional product F. Then, after measuring the hardness of each sample, TiCN was coated on the base material with a thickness of 7 μm, and the cutting edge sagging was compared by a cutting test.
As cutting conditions, the shape of the coated cemented carbide is SNM A 432, the workpiece is SNCM439, the cutting speed v = 140 mm / min, the cutting depth d = 2 mm, the feed speed f = 0.7 mm / rev, and the cutting time. 40 minutes. The results are shown in Table 6 below.

表6に示すように、発明品Eは従来品Fと比較して、ビッカース硬度は同程度であるが、発明品Eは刃先ダレが改善されていることが判る。   As shown in Table 6, it can be seen that the inventive product E has the same Vickers hardness as the conventional product F, but the inventive product E has improved cutting edge sagging.

(実施例4)
上述した本発明の強靱超硬合金と従来の超硬合金とで、Co含有量と、ビッカース硬度、抗折力、圧縮強度、破壊靭性、並びにfchp回折像半価巾との関係を比較測定した。その結果を次の表7に示す。ここでは、その平均粒度が3μmのWCを使用した。
Example 4
The relationship between the Co content and the Vickers hardness, bending strength, compressive strength, fracture toughness, and half-value width of the fchp diffraction image was compared between the tough cemented carbide of the present invention and the conventional cemented carbide. . The results are shown in Table 7 below. Here, WC having an average particle size of 3 μm was used.

表7は、発明品A(A11―A15)と従来品B(B10―B1)のそれぞれについて、ビッカース硬度,抗折力,圧縮強度,破壊靭性並びにfchp回折像の半価巾を測定したものである。
Table 7, for each of the inventions A (A11-A15) and conventional B (B10-B1 4), Vickers hardness, transverse rupture strength, compressive strength, a measure of the half value width of the fracture toughness and fchp diffraction pattern It is.

表7によれば、発明品A(A11―A15)は従来品B(B10―B1)と比較して、その圧縮強度が0.3〜0.4[GPa]程度大きい値となっている。また、発明品Aは従来品Bと比較して、その破壊靭性が2〜6[MN・m1/2]程度大きい値となっており、Co含有量が大きいほど破壊靭性の差が大きくなる傾向が見られる。
According to Table 7, the inventive product A (A11-A15) has a compressive strength of about 0.3 to 0.4 [GPa] greater than the conventional product B (B10-B1 4 ). . Inventive product A has a fracture toughness of about 2 to 6 [MN · m1 / 2] larger than that of conventional product B, and the difference in fracture toughness tends to increase as the Co content increases. Is seen.

表7によれば、発明品A(A11―A15)は従来品B(B10―B1)と比較して、Co含有量が9〜25wt%の範囲内においては、そのビッカース硬度が80〜140[Hv]程度大きい値となっている。また、発明品Aは従来品Bと比較して、Co含有量が9〜25wt%の範囲内においては、その抗折力が0.2〜0.3[GPa]程度大きい値となっている。
According to Table 7, the inventive product A (A11-A15) has a Vickers hardness of 80-140 when the Co content is in the range of 9-25 wt%, compared to the conventional product B (B10-B1 4 ). [Hv] is a large value. In addition, the inventive product A has a greater bending strength of about 0.2 to 0.3 [GPa] when the Co content is in the range of 9 to 25 wt% compared to the conventional product B. .

表7に示す超硬合金のうち、Co含有量が25wt%のものについて、超硬合金の組織を光学式金属顕微鏡にて撮像した。図2は、発明品の強靭超硬合金の組織を光学式金属顕微鏡にて撮像した画像である。図3は、従来の超硬合金の組織を光学式金属顕微鏡にて撮像した画像である。   Among the cemented carbides shown in Table 7, the structure of the cemented carbide was imaged with an optical metal microscope for those having a Co content of 25 wt%. FIG. 2 is an image obtained by imaging the structure of the tough cemented carbide of the invention with an optical metal microscope. FIG. 3 is an image obtained by imaging the structure of a conventional cemented carbide with an optical metal microscope.

(実施例5)
ボルト・ナット用冷間鍛造金型の実施例を以下に述べる。
(Example 5)
Examples of cold forging dies for bolts and nuts will be described below.

表8は、発明品G、Hのそれぞれの配合組成割合を質量%表示したものである。ここでは、その平均粒度が3μmのWCを使用した。試料Hは、上記の配合比でアルコール中でアトライター混合を6時間行った。アルコールを蒸発させ粉末を乾燥させたのち、プレス圧が1ton/cmでプレスを行い、焼結温度が1380℃で、圧力が1MPa(10bar)の条件にてSinterHIP炉で焼結を行った。試料Gは、上記の1380℃で焼結された試料Hを、1280℃で再加熱し、1280℃から540℃までを35℃/分の冷却速度で1次冷却し、540℃で30分間保持し、500℃から200℃までを8℃/分の冷却速度で2次冷却した。発明品G、H各試料について、それぞれ圧縮強度や破壊靭性等の物理特性を測定した。その結果を表9に示す。 Table 8 shows the composition ratios of invention products G and H in mass%. Here, WC having an average particle size of 3 μm was used. Sample H was mixed with attritor in alcohol at the above blending ratio for 6 hours. After the alcohol was evaporated and the powder was dried, pressing was performed at a pressing pressure of 1 ton / cm 2 , and sintering was performed in a SinterHIP furnace under a sintering temperature of 1380 ° C. and a pressure of 1 MPa (10 bar). Sample G is the above-mentioned sample H sintered at 1380 ° C., reheated at 1280 ° C., primarily cooled from 1280 ° C. to 540 ° C. at a cooling rate of 35 ° C./min, and held at 540 ° C. for 30 minutes. Then, secondary cooling was performed from 500 ° C. to 200 ° C. at a cooling rate of 8 ° C./min. For each of the inventive products G and H, physical properties such as compressive strength and fracture toughness were measured. The results are shown in Table 9.

表9に示すように、試料Gは、Crを含有してもfchp像の半価巾が大きい試料Hよりも圧縮強度及び破壊靭性が優れている。   As shown in Table 9, the sample G is superior in compressive strength and fracture toughness to the sample H which contains Cr and has a large half width of the fchp image.

次に、上述した発明品G、Hをそれぞれ用いて冷間鍛造金型を作製した。図7は、ボルト・ナット用冷間鍛造金型を例示する図であり、図7(a)は上方向から見た断面図であり、図7(b)は横方向から見た断面図である。被加工材はS25Cである。超硬合金金型の外周には、補強リングが取付けられている(図7)。前方押出鍛造によってボルトを製造してそれぞれの金型にて製造したボルトの生産数を比較した。製造された上記ボルトの六角コーナー部からクラックが入った時点を金型の寿命と判断し製造を止めた。その結果を表10に示す。   Next, a cold forging die was produced using each of the above-described invention products G and H. FIG. 7 is a view illustrating a cold forging die for bolts and nuts, FIG. 7 (a) is a sectional view seen from above, and FIG. 7 (b) is a sectional view seen from the side. is there. The workpiece is S25C. A reinforcing ring is attached to the outer periphery of the cemented carbide mold (FIG. 7). Bolts were manufactured by forward extrusion forging, and the number of bolts manufactured in each mold was compared. The point in time when the crack was generated from the hexagonal corner of the manufactured bolt was judged as the life of the mold, and the manufacturing was stopped. The results are shown in Table 10.

表10から明らかなように、上記実施形態の強靭超硬合金製の試料Gを用いた金型の寿命は、試料Hを用いた金型の寿命と比較すると、1.5倍以上の長寿命であるといえる。実用テストでこのように1.5倍以上の高性能が発揮できるのは、圧縮強度及び破壊靭性が優れていることだけでなく、fcc/hcp比を増大させることにより疲労強度を大きく向上させることができたからである。それに加えて、Co中でのCrやWの固溶量を増加させたことで耐熱強度が向上したことも高寿命化に寄与しているものと考えられる。   As is clear from Table 10, the life of the mold using the tough cemented carbide sample G of the above embodiment is 1.5 times longer than that of the mold using the sample H. You can say that. The reason why 1.5 times or more high performance can be demonstrated in practical tests is not only excellent in compressive strength and fracture toughness, but also greatly improves fatigue strength by increasing the fcc / hcp ratio. It was because it was made. In addition, it is considered that the increase in the heat resistance strength by increasing the solid solution amount of Cr and W in Co contributes to a longer life.

Claims (5)

炭化タングステン(WC)、コバルト(Co)及びクロム(Cr)を含有し、WCの平均粒度が1.5〜20.0μm、ビッカース硬度が650〜1650Hvであり、Coが4〜30質量%含有し、CrがCo含有量の2〜18質量%含有し、残部がWC及び不可避不純物よりなり、hcp構造のCoを少なくするために、CrをCo中に固溶させて、Cu‐Kα線を用いたCo相のfccの(111)面のX線回折像(2θ=44.3度)とhcpの(002)面のX線回折像(2θ=44.9度)が重なりあったX線回折像の半価巾を0.42度以下とし、且つCo相(fcc)の格子定数が3.570Å以下であることを特徴とする強靱超硬合金。   Contains tungsten carbide (WC), cobalt (Co) and chromium (Cr), WC has an average particle size of 1.5 to 20.0 μm, Vickers hardness of 650 to 1650 Hv, and Co of 4 to 30% by mass. , Cr contains 2 to 18% by mass of Co content, the balance consists of WC and inevitable impurities, and in order to reduce Co in the hcp structure, Cr is dissolved in Co and Cu-Kα rays are used. X-ray diffraction in which the X-ray diffraction image (2θ = 44.3 degrees) of the fcc (111) plane of the Co phase overlapped with the X-ray diffraction image (2θ = 44.9 degrees) of the (002) plane of hcp A tough cemented carbide having a half width of an image of 0.42 degrees or less and a lattice constant of a Co phase (fcc) of 3.570 Å or less. 請求項1において、Co中でのCrやWの固溶量を増加させて、Co相のfccの格子定数を3.560Å以上としたことを特徴とする強靭超硬合金。   The tough cemented carbide according to claim 1, wherein the amount of solid solution of Cr or W in Co is increased so that the fcc lattice constant of the Co phase is 3.560 or more. 請求項1または2において、WCの一部をTiC、TaC、NbC、HfC、ZrC、VCの遷移金属の炭化物又はこれら遷移金属の炭窒化物、若しくはWを含むこれら遷移金属の複炭化物又はWを含むこれら遷移金属の複炭窒化物のうちいずれか1種以上で置き換えたことを特徴とする強靱超硬合金。 In claim 1 or 2, a part of WC is TiC, TaC, NbC, HfC, ZrC, VC transition metal carbide or carbonitride of these transition metals, or double carbide of these transition metals including W or W. A tough cemented carbide comprising one or more of these transition metal double carbonitrides. 請求項3において、その合金表面に脱β層が形成されており、脱β層の厚みが1〜30μmであることを特徴とする強靱超硬合金。   4. A tough cemented carbide according to claim 3, wherein a de-β layer is formed on the alloy surface, and the thickness of the de-β layer is 1 to 30 µm. 請求項1から4のいずれか一項に記載の強靱超硬合金を母材とした被覆超硬合金。
A coated cemented carbide comprising the tough cemented carbide according to any one of claims 1 to 4 as a base material.
JP2012196429A 2012-09-06 2012-09-06 Tough cemented carbide and coated cemented carbide Active JP5826138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012196429A JP5826138B2 (en) 2012-09-06 2012-09-06 Tough cemented carbide and coated cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012196429A JP5826138B2 (en) 2012-09-06 2012-09-06 Tough cemented carbide and coated cemented carbide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012033672A Division JP5152770B1 (en) 2012-02-20 2012-02-20 Method for producing tough cemented carbide

Publications (2)

Publication Number Publication Date
JP2013170315A JP2013170315A (en) 2013-09-02
JP5826138B2 true JP5826138B2 (en) 2015-12-02

Family

ID=49264454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012196429A Active JP5826138B2 (en) 2012-09-06 2012-09-06 Tough cemented carbide and coated cemented carbide

Country Status (1)

Country Link
JP (1) JP5826138B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7488752B2 (en) 2020-11-17 2024-05-22 Mmcリョウテック株式会社 Carbide Tools
JP7541423B1 (en) 2023-10-20 2024-08-28 冨士ダイス株式会社 Cemented carbide and its processing method, dies and tools

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839764A (en) * 1981-09-02 1983-03-08 Hitachi Metals Ltd Sintered hard alloy
JP4537501B2 (en) * 1997-07-30 2010-09-01 住友電工ハードメタル株式会社 Cemented carbide and method for producing the same
JP4731645B2 (en) * 1999-02-09 2011-07-27 住友電工ハードメタル株式会社 Cemented carbide and coated cemented carbide and method for producing the same
SE0602494L (en) * 2006-11-22 2008-05-23 Sandvik Intellectual Property Method of manufacturing a sintered body, a powder mixture and a sintered body
JP2009035802A (en) * 2007-08-03 2009-02-19 Sumitomo Electric Ind Ltd Cemented carbide

Also Published As

Publication number Publication date
JP2013170315A (en) 2013-09-02

Similar Documents

Publication Publication Date Title
KR102436457B1 (en) Steel suitable for plastic forming tools
JP5152770B1 (en) Method for producing tough cemented carbide
JP6953674B2 (en) Cemented Carbide and Cutting Tools
JP6719216B2 (en) α-β type titanium alloy
EP3467128B9 (en) Extrusion die made of hot working steel and production method thereof
JP2017035750A (en) Ti-BASED CERMET CUTTING TOOL EXCELLENT IN ANTI-PLASTIC DEFORMATION, ABNORMAL DAMAGE RESISTANCE AND WEAR RESISTANCE
WO2013058338A1 (en) Nickel-based intermetallic compound composite sintered material, and method for producing same
JP5826138B2 (en) Tough cemented carbide and coated cemented carbide
JP6922110B1 (en) Crushing / stirring / mixing / kneading machine parts
EP2606996A1 (en) A method for sintering metal matrix composite materials
JP2021134364A (en) Wc-based hard metal-made cutting tool excellent in plastic deformation resistance and defect resistance, and surface-coated wc-based hard metal-made cutting tool
JPH07197180A (en) High strength and high hardness sintered hard alloy excellent in corrosion resistance
JP6805454B2 (en) Cemented carbide and its manufacturing method, and cemented carbide tools
JP7205257B2 (en) Mold for plastic working made of cemented carbide and its manufacturing method
AT10479U1 (en) FLUID-DENSITY SINTERED METAL PARTS AND METHOD FOR THE PRODUCTION THEREOF
JP2022108807A (en) Cutting tool
JP6819018B2 (en) TiCN-based cermet cutting tool
JP6900099B1 (en) Cemented carbide and mold
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
WO2016152663A1 (en) α-β TITANIUM ALLOY
JP2013032559A (en) High-strength cemented carbide and coated cemented carbide
JP7209216B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JPH01215947A (en) Sintered hard alloy for machining or cutting tool member
JP2018080375A (en) Cemented carbide and cemented carbide tool
CN105567927A (en) Methods for processing nanostructured ferritic alloys, and articles produced thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141125

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20141204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141125

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151013

R150 Certificate of patent or registration of utility model

Ref document number: 5826138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250