[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6994951B2 - Seismic isolation device - Google Patents

Seismic isolation device Download PDF

Info

Publication number
JP6994951B2
JP6994951B2 JP2018002485A JP2018002485A JP6994951B2 JP 6994951 B2 JP6994951 B2 JP 6994951B2 JP 2018002485 A JP2018002485 A JP 2018002485A JP 2018002485 A JP2018002485 A JP 2018002485A JP 6994951 B2 JP6994951 B2 JP 6994951B2
Authority
JP
Japan
Prior art keywords
sliding
bearing
rolling
axial force
sliding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018002485A
Other languages
Japanese (ja)
Other versions
JP2019120098A (en
Inventor
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2018002485A priority Critical patent/JP6994951B2/en
Publication of JP2019120098A publication Critical patent/JP2019120098A/en
Application granted granted Critical
Publication of JP6994951B2 publication Critical patent/JP6994951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、免震装置に関する。 The present invention relates to a seismic isolation device.

下部構造体と上部構造体との間に設けられる転がり支承やすべり支承は、上部構造体からの軸力を支持しつつ下部構造体と上部構造体とを相対変位可能とすることができ、免震装置に広く用いられている(例えば、特許文献1および2参照)。
転がり支承は、球体やコロなどの転動部が下部構造体のすべり面を転がるように構成され、すべり面との摩擦係数μを非常に小さな値(例えば、μ≒0.005)で実現できる特徴がある。
すべり支承は、低摩擦材が設けられた摺動部が下部構造体のすべり面を滑るように構成され、積層ゴム支承と同等以上の大きな耐荷重を安価に実現できる特徴がある。
Rolling bearings and sliding bearings provided between the lower structure and the upper structure can support the axial force from the upper structure and allow the lower structure and the upper structure to be relatively displaced. It is widely used in seismic devices (see, for example, Patent Documents 1 and 2).
The rolling bearing is configured so that a rolling portion such as a sphere or a roller rolls on the sliding surface of the lower structure, and the coefficient of friction μ with the sliding surface can be realized with a very small value (for example, μ≈0.005). There is a feature.
The sliding bearing is configured so that the sliding portion provided with the low friction material slides on the sliding surface of the lower structure, and has a feature that a large load capacity equal to or higher than that of the laminated rubber bearing can be realized at low cost.

特開2017-110447号公報Japanese Unexamined Patent Publication No. 2017-110447 特開2017-166518号公報JP-A-2017-166518

しかしながら、転がり支承は、一般的に耐荷重が小さく大きな軸力を支持できないという問題がある。また、転がり支承は、高精度の機械部品で構成されていることにより、耐荷重を大きくすることが容易ではなく、コストがかかるという問題がある。 However, rolling bearings generally have a problem that the load capacity is small and a large axial force cannot be supported. Further, since the rolling bearing is composed of high-precision machine parts, there is a problem that it is not easy to increase the load capacity and it is costly.

一方、すべり支承は、一般的に耐荷重が大きく大きな軸力を支持可能であるが、すべり面との摩擦係数を、転がり支承とすべり面との摩擦係数のような小さな値にすることは困難である。
また、すべり支承の摩擦係数は、すべり面の面圧に依存する性質があり、支承に作用する軸力が小さく低面圧の場合には大きくなり、作用する軸力が大きく低面圧の場合には小さくなる性質がある。
例えば、現在市販されている低摩擦すべり支承の摩擦係数μは、基準面圧20MPa(20N/mm)の場合には0.014であるが、基準面圧が1/4の5MPaの場合には0.029となり、基準面圧20MPa(20N/mm)の場合と比べて約2倍となる。さらに、すべり支承の摩擦係数μは、基準面圧が1/20の1MPaの場合には0.07となって基準面圧20MPa(20N/mm)の場合と比べて約5倍となり、基準面圧が1/200の0.1MPaの場合には0.24となって基準面圧20MPa(20N/mm)の場合と比べて約17倍ともはや低摩擦とは言い難いものになってしまう。
On the other hand, sliding bearings generally have a large load capacity and can support a large axial force, but it is difficult to set the coefficient of friction with the sliding surface to a small value such as the coefficient of friction between the rolling bearing and the sliding surface. Is.
In addition, the coefficient of friction of the sliding bearing has the property of depending on the surface pressure of the sliding surface, and the axial force acting on the bearing is small and large when the surface pressure is low, and when the axial force acting is large and the surface pressure is low. Has the property of becoming smaller.
For example, the coefficient of friction μ of the low friction slip support currently on the market is 0.014 when the reference surface pressure is 20 MPa (20 N / mm 2 ), but when the reference surface pressure is 1/4, 5 MPa. Is 0.029, which is about twice as high as that in the case of a reference surface pressure of 20 MPa (20 N / mm 2 ). Furthermore, the coefficient of friction μ of the slip support is 0.07 when the reference surface pressure is 1 MPa, which is 1/20, which is about 5 times higher than that when the reference surface pressure is 20 MPa (20 N / mm 2 ). When the surface pressure is 1/200, 0.1 MPa, it becomes 0.24, which is about 17 times that of the reference surface pressure of 20 MPa (20 N / mm 2 ), which is no longer low friction. It ends up.

このように、転がり支承は、耐荷重が小さく高軸力時の支持が困難であるという問題があり、すべり支承は、低軸力時にすべり面との摩擦係数が大きくなってしまうという問題がある。これらのことから、現状の転がり支承やすべり支承では、低軸力から高軸力まで安定した性能(低摩擦)の支承を合理的に構築することができない。
また、転がり支承は、高精度の機械部品で構成されているため、耐荷重を大きくしようとするとコスト高になるという問題もある。
As described above, the rolling bearing has a problem that the load capacity is small and it is difficult to support it at a high axial force, and the sliding bearing has a problem that the coefficient of friction with the sliding surface becomes large at a low axial force. .. For these reasons, with the current rolling bearings and sliding bearings, it is not possible to rationally build bearings with stable performance (low friction) from low axial forces to high axial forces.
Further, since the rolling bearing is composed of high-precision machine parts, there is a problem that the cost increases when trying to increase the load capacity.

そこで、本発明は、作用する軸力の大きさにかかわらず性能を安定的に維持できるとともに、コストを抑えることができる免震装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a seismic isolation device capable of stably maintaining performance and suppressing costs regardless of the magnitude of the acting axial force.

上記目的を達成するため、本発明に係る免震装置は、水平方向に相対変位可能な下部構造体と、上部構造体との間に設けられる免震装置において、前記上部構造体の下側に連結され前記下部構造体に設けられたすべり面に沿って水平方向に転動可能な転動部を備える転がり支承と、前記転がり支承と並列され、前記上部構造体の下側に連結され前記すべり面に沿って水平方向に摺動可能な摺動部を有するすべり支承と、を有し、前記上部構造体から作用する軸力が所定の値以下の場合は、前記転動部が前記すべり面と当接して前記すべり面を転動可能になるとともに、前記摺動部が前記すべり面と離間し、前記転がり支承および前記すべり支承に作用する軸力が前記所定の値を超える場合は、前記転動部が前記すべり面と当接して前記すべり面を転動可能になるとともに、前記摺動部が前記すべり面と当接して前記すべり面を滑動可能にすることを特徴とする。 In order to achieve the above object, the seismic isolation device according to the present invention is a seismic isolation device provided between a lower structure that can be relatively displaced in the horizontal direction and the upper structure, and is located below the upper structure. A rolling bearing that is connected and has a rolling portion that can roll horizontally along a sliding surface provided on the lower structure, and a rolling bearing that is parallel to the rolling bearing and is connected to the lower side of the upper structure and the sliding portion. A sliding bearing having a sliding portion that can slide horizontally along a surface, and when the axial force acting from the superstructure is equal to or less than a predetermined value, the rolling portion is the sliding surface. When the sliding portion is separated from the sliding surface and the axial force acting on the rolling bearing and the sliding bearing exceeds the predetermined value, the sliding portion becomes rollable. The rolling portion comes into contact with the sliding surface so that the sliding surface can be rolled, and the sliding portion comes into contact with the sliding surface to make the sliding surface slidable.

摺動部は、上部構造体から作用する軸力が大きく、すべり面の面圧が大きくなるほど、すべり面での摩擦係数が小さくなり、上部構造体から作用する軸力が小さくすべり面の面圧が小さくなるほど、すべり面での摩擦係数が大きくなる性質がある。
本発明では、すべり支承は、上部構造体から作用する軸力が所定の値を上回る場合には、摺動部がすべり面を摺動可能とし、上部構造体から作用する軸力が所定の値以下で小さく、面圧が小さいため摺動部とすべり面との摩擦係数が大きいときには、摺動部がすべり面と離間する構成である。このため、すべり支承は、面圧が大きくすべり面との摩擦係数を小さく維持できる場合のみすべり面を摺動することになる。
一方、転動部は、上部構造体から作用する軸力の変化によるすべり面との摩擦係数の変化は小さいため、上部構造体から作用する軸力の大きさにかかわらず、すべり面との摩擦係数を略一定の小さい値に維持することができる。
In the sliding part, the axial force acting on the superstructure is large, and the larger the surface pressure on the sliding surface, the smaller the coefficient of friction on the sliding surface, and the smaller the axial force acting on the superstructure, the smaller the surface pressure on the sliding surface. The smaller the value, the larger the coefficient of friction on the slip surface.
In the present invention, in the sliding support, when the axial force acting from the superstructure exceeds a predetermined value, the sliding portion allows the sliding portion to slide on the sliding surface, and the axial force acting from the superstructure has a predetermined value. Below, when the friction coefficient between the sliding portion and the sliding surface is large because the surface pressure is small and the surface pressure is small, the sliding portion is separated from the sliding surface. Therefore, the sliding bearing slides on the sliding surface only when the surface pressure is large and the coefficient of friction with the sliding surface can be kept small.
On the other hand, since the change in the coefficient of friction of the rolling portion with the sliding surface due to the change in the axial force acting from the superstructure is small, the friction with the sliding surface regardless of the magnitude of the axial force acting from the superstructure. The coefficient can be maintained at a substantially constant small value.

上部構造体から作用する軸力が小さい場合は、すべり面との摩擦係数が小さい転がり支承のみが軸力を支持しながらすべり面を転動可能となり、上部構造体から作用する軸力が大きい場合は、すべり面との摩擦係数が小さい転がり支承と、すべり面に対する面圧が大きくなってすべり面との摩擦係数が小さくなったすべり支承とが軸力を支持しながらすべり面を転動可能となるため、上部構造体から作用する軸力の大きさにかかわらず、すべり面との摩擦係数を小さく維持することができる。これにより、上部構造体から作用する軸力の大きさにかかわらず、免震装置の性能を安定的に維持することができる。 When the axial force acting from the superstructure is small, the friction coefficient with the sliding surface is small. Only the rolling support can roll on the sliding surface while supporting the axial force, and when the axial force acting from the superstructure is large. The rolling support, which has a small friction coefficient with the sliding surface, and the sliding support, which has a large surface pressure on the sliding surface and a small friction coefficient with the sliding surface, can roll the sliding surface while supporting the axial force. Therefore, the coefficient of friction with the sliding surface can be kept small regardless of the magnitude of the axial force acting on the superstructure. As a result, the performance of the seismic isolation device can be stably maintained regardless of the magnitude of the axial force acting on the superstructure.

また、転がり支承は、一般的に大きな軸力を支持する構造にしようとすると、コストが増大する傾向がある。
本発明では、上部構造体から作用する軸力が所定の値を超えて大きい場合には、転がり支承のみで軸力を支持しているが、上部構造体から作用する軸力が所定の値を超えて大きい場合には、転がり支承のみでなく転がり支承およびすべり支承の両方がその軸力を支持している。このため、上部構造体から作用する軸力が大きくなっても、その軸力を転がり支承およびすべり支承の両方で負担するため、転がり支承が負担する軸力を軽減させることができ、転がり支承にかかるコストを削減することができる。
In addition, the cost of rolling bearings tends to increase if a structure that generally supports a large axial force is attempted.
In the present invention, when the axial force acting from the superstructure exceeds a predetermined value, the axial force is supported only by the rolling bearings, but the axial force acting from the superstructure has a predetermined value. If it is larger than that, not only the rolling bearings but also both the rolling bearings and the sliding bearings support the axial force. Therefore, even if the axial force acting from the superstructure becomes large, the axial force is borne by both the rolling bearings and the sliding bearings, so that the axial force borne by the rolling bearings can be reduced, and the rolling bearings can be used. Such costs can be reduced.

また、本発明に係る免震装置では、前記転がり支承は、前記転がり支承と前記上部構造体とを互いに上下方向に離間するように付勢する付勢部材を介して前記上部構造体の下側に連結され、前記上部構造体から作用する軸力が前記所定の値以下の場合は、前記付勢部材の付勢力によって前記摺動部が前記転動部よりも上側に配置され前記すべり面から離間し、前記上部構造体から作用する軸力が前記所定の値を超える場合は、前記付勢部材が圧縮されて前記摺動部が前記転動部と同じ高さとなり前記すべり面と当接するようにしてもよい。
このような構成とすることにより、転動部のみがすべり面を摺動可能な状態と、転動部および摺動部の両方がすべり面を摺動可能な状態と、の切り替えを、上部構造体から作用する軸力によって容易に行うことができる。
Further, in the seismic isolation device according to the present invention, the rolling bearing is on the lower side of the superstructure via an urging member that urges the rolling bearing and the superstructure so as to be separated from each other in the vertical direction. When the axial force acting from the superstructure is equal to or less than the predetermined value, the sliding portion is arranged above the rolling portion by the urging force of the urging member and from the sliding surface. When the axial force acting from the superstructure is separated and exceeds the predetermined value, the urging member is compressed so that the sliding portion has the same height as the rolling portion and comes into contact with the sliding surface. You may do so.
With such a configuration, it is possible to switch between a state in which only the rolling portion can slide on the sliding surface and a state in which both the rolling portion and the sliding portion can slide on the sliding surface. It can be easily done by the axial force acting on the body.

本発明によれば、作用する軸力の大きさにかかわらず性能を安定的に維持できるとともに、コストを抑えた装置とすることができる。 According to the present invention, it is possible to stably maintain the performance regardless of the magnitude of the acting axial force, and it is possible to obtain a device with reduced cost.

本発明の実施形態による免震装置の一例を示す模式図で、作用する軸力が小さい場合を示す図である。It is a schematic diagram which shows an example of the seismic isolation device by embodiment of this invention, and is the figure which shows the case where the acting axial force is small. 本発明の実施形態による免震装置の分解図である。It is an exploded view of the seismic isolation device by embodiment of this invention. 本発明の実施形態による免震装置の一例を示す模式図で、作用する軸力が大きい場合を示す図である。It is a schematic diagram which shows an example of the seismic isolation device by embodiment of this invention, and is the figure which shows the case where the acting axial force is large. 転がり支承、すべり支承それぞれの軸力と摩擦係数との関係を示すグラフである。It is a graph which shows the relationship between the axial force and the friction coefficient of each of a rolling bearing and a sliding bearing.

以下、本発明の実施形態による免震装置について、図1乃至図4に基づいて説明する。
図1に示すように、本実施形態による免震装置1は、上下方向に離間し水平方向に相対変位可能な下部構造体11と上部構造体12との間の免震層13に設けられている。本実施形態では、免震層13には複数の免震装置1が設けられている。
図1および図2に示すように、免震装置1は、並列に配置された転がり支承2と、すべり支承3と、を有している。本実施形態では、すべり支承3が上下方向に貫通する筒状に形成され、転がり支承2がすべり支承3の内側に配置されてすべり支承3に囲まれている。
転がり支承2は、上部構造体12の下側に圧縮ばね(付勢部材)4を介して連結され、下部構造体11の上面11aを転動可能に構成されている。すべり支承3は、上部構造体12の下側に連結され、下部構造体11の上面11aを滑動可能に構成されている。
下部構造体11の上面11aは、水平面に形成され、例えばステンレスの板材などが設けられ、すべり面5が構成されている。
Hereinafter, the seismic isolation device according to the embodiment of the present invention will be described with reference to FIGS. 1 to 4.
As shown in FIG. 1, the seismic isolation device 1 according to the present embodiment is provided in the seismic isolation layer 13 between the lower structure 11 and the upper structure 12 which are separated in the vertical direction and can be relatively displaced in the horizontal direction. There is. In the present embodiment, the seismic isolation layer 13 is provided with a plurality of seismic isolation devices 1.
As shown in FIGS. 1 and 2, the seismic isolation device 1 has a rolling bearing 2 and a sliding bearing 3 arranged in parallel. In the present embodiment, the sliding bearing 3 is formed in a tubular shape penetrating in the vertical direction, and the rolling bearing 2 is arranged inside the sliding bearing 3 and surrounded by the sliding bearing 3.
The rolling bearing 2 is connected to the lower side of the upper structure 12 via a compression spring (urging member) 4, and is configured to be able to roll the upper surface 11a of the lower structure 11. The sliding bearing 3 is connected to the lower side of the upper structure 12 and is configured to be slidable on the upper surface 11a of the lower structure 11.
The upper surface 11a of the lower structure 11 is formed on a horizontal surface, and for example, a stainless steel plate or the like is provided to form a sliding surface 5.

転がり支承2は、すべり面5を転動可能な鋼球やコロなどのベアリング(転動部)21と、ベアリング21を支持し圧縮ばね4を介して上部構造体12と連結されるベアリング支持部22と、を有している。
ベアリング支持部22は、ベアリング21の上方に設けられ、ベアリング21を上側から転動可能に支持している。ベアリング支持部22の側部には下部側および外側(すべり支承3側)に開口する切欠き部23が形成されている。切欠き部23を構成する面のうち、下側を向く面を下向き面23aとする。下向き面23aは、略水平面に形成されている。
The rolling bearing 2 is a bearing (rolling portion) 21 such as a steel ball or a roller that can roll on the sliding surface 5, and a bearing support portion that supports the bearing 21 and is connected to the superstructure 12 via a compression spring 4. 22 and.
The bearing support portion 22 is provided above the bearing 21 and supports the bearing 21 so as to be rollable from above. A notch 23 that opens to the lower side and the outside (slip bearing 3 side) is formed on the side portion of the bearing support portion 22. Of the surfaces constituting the notch portion 23, the surface facing downward is referred to as a downward surface 23a. The downward surface 23a is formed in a substantially horizontal plane.

圧縮ばね4は、ベアリング支持部22と上部構造体12との間に設けられ、ベアリング支持部22と上部構造体12とを上下方向に離間する向きに付勢している。圧縮ばね4が伸縮することによって、上部構造体12の下面12aからベアリング21の下端部21aまでの寸法が変化するように構成されている。圧縮ばね4としては、図2に示す皿ばねやコイルばねや板ばねが好適である。
本実施形態では、転がり支承2に作用する耐荷重(支持軸力)がNの場合、ベアリング21とすべり面5との摩擦係数μがμ≦0.006となるように設定されている。
The compression spring 4 is provided between the bearing support portion 22 and the upper structure 12, and urges the bearing support portion 22 and the upper structure 12 in a direction that separates them in the vertical direction. As the compression spring 4 expands and contracts, the dimensions from the lower surface 12a of the upper structure 12 to the lower end 21a of the bearing 21 change. As the compression spring 4, a disc spring, a coil spring, or a leaf spring shown in FIG. 2 is suitable.
In the present embodiment, when the load capacity (supporting axial force) acting on the rolling bearing 2 is N 1 , the coefficient of friction μ 1 between the bearing 21 and the sliding surface 5 is set to be μ 1 ≤ 0.006. There is.

すべり支承3は、すべり面5を摺動可能な摺動部31と、摺動部31を支持し上部構造体12と連結される摺動部支持部32と、を有している。
摺動部支持部32の下面は、水平面に形成され、この下面に沿って摺動部31が設けられている。摺動部31は、摺動部支持部32の下面にテフロン(登録商標)のコーティングを施したり、テフロン(登録商標)テープを貼りつけたりすることで形成されている。摺動部31は、摺動部支持部32の下面の略全体に形成されている。
摺動部支持部32の下部側には、内側(転がり支承2側)に突出する顎部33が形成されている。顎部33の上面33aは、略水平面に形成されている。顎部33は、ベアリング支持部22の切欠き部23の内部に設けられていて、顎部33の上面33aが切欠き部23の下向き面23aの下側に上下方向に対向するように配置されている。
The sliding bearing 3 has a sliding portion 31 slidable on the sliding surface 5 and a sliding portion support portion 32 that supports the sliding portion 31 and is connected to the superstructure 12.
The lower surface of the sliding portion support portion 32 is formed in a horizontal plane, and the sliding portion 31 is provided along the lower surface. The sliding portion 31 is formed by applying a Teflon (registered trademark) coating to the lower surface of the sliding portion support portion 32 or attaching a Teflon (registered trademark) tape. The sliding portion 31 is formed on substantially the entire lower surface of the sliding portion support portion 32.
On the lower side of the sliding portion support portion 32, a jaw portion 33 protruding inward (rolling bearing 2 side) is formed. The upper surface 33a of the jaw portion 33 is formed in a substantially horizontal plane. The jaw portion 33 is provided inside the notch portion 23 of the bearing support portion 22, and the upper surface 33a of the jaw portion 33 is arranged so as to face the lower side of the downward surface 23a of the notch portion 23 in the vertical direction. ing.

転がり支承2が圧縮ばね4の伸縮によって上部構造体12に対して上下方向に変位すると、すべり支承3は上部構造体12に対して上下方向に変位しないため、切欠き部23の下向き面23aが顎部33の上面33aに対して上下方向に変位する。
このため、圧縮ばね4が伸長し、転がり支承2が上部構造体12と離間するように下方に変位すると、切欠き部23の下向き面23aが顎部33の上面33aに近接し、圧縮ばね4が圧縮し、転がり支承2が上部構造体12と近接するように上方に変位すると、切欠き部23の下向き面23aが顎部33の上面33aと離間する。
顎部33の上面33aと切欠き部23の下向き面23aとは、近接すると当接し、離間すると間に隙間が形成される。
When the rolling bearing 2 is displaced in the vertical direction with respect to the superstructure 12 due to the expansion and contraction of the compression spring 4, the sliding bearing 3 is not displaced in the vertical direction with respect to the superstructure 12, so that the downward surface 23a of the notch 23 is formed. It is displaced in the vertical direction with respect to the upper surface 33a of the jaw portion 33.
Therefore, when the compression spring 4 expands and the rolling bearing 2 is displaced downward so as to be separated from the upper structure 12, the downward surface 23a of the notch portion 23 approaches the upper surface 33a of the jaw portion 33, and the compression spring 4 Compresses and the rolling bearing 2 is displaced upward so as to be close to the superstructure 12, the downward surface 23a of the notch 23 is separated from the upper surface 33a of the jaw 33.
The upper surface 33a of the jaw portion 33 and the downward surface 23a of the notch portion 23 are in contact with each other when they are close to each other, and a gap is formed between them when they are separated from each other.

上部構造体12の下面12aから摺動部31の下面31aまでの寸法は、常に一定の値hとなるように設定されている。
本実施形態では、すべり支承3に作用する耐荷重(支持軸力)がNの場合、摺動部31とすべり面5との摩擦係数μが0.01≦μ≦0.1となるように設定されている。基準面圧σで摺動部31とすべり面5との接触面積をAとしたときの耐荷重Nは、N=A・σ>10Nとしている。このように、すべり支承3の耐荷重を転がり支承2の耐荷重と比較して桁違いに大きく設定している。
The dimensions from the lower surface 12a of the upper structure 12 to the lower surface 31a of the sliding portion 31 are set so as to always have a constant value h1.
In the present embodiment, when the load capacity (supporting axial force) acting on the sliding bearing 3 is N 2 , the coefficient of friction μ 2 between the sliding portion 31 and the sliding surface 5 is 0.01 ≤ μ 2 ≤ 0.1. It is set to be. When the contact area between the sliding portion 31 and the sliding surface 5 is A at the reference surface pressure σ 0 , the withstand load N 2 is N 2 = A · σ 0 > 10N 1 . In this way, the load capacity of the sliding bearing 3 is set to an order of magnitude larger than the load capacity of the rolling bearing 2.

転がり支承2と、すべり支承3とは、図1に示すように、圧縮ばね4が伸長し切欠き部23の下向き面23aと、すべり支承3の顎部33の上面33aとが当接すると、転がり支承2のベアリング21の下端部21aが、すべり支承3の摺動部31の下面31aよりも下側に配置される。このときの上部構造体12の下面12aから転がり支承2のベアリング21の下端部21aまでの寸法hは、上部構造体12の下面12aからすべり支承3の摺動部31の下面31aまでの寸法hよりも大きくなっている。
ベアリング支持部22の切欠き部23の下向き面23aは、圧縮ばね4が伸長してすべり支承3の顎部33の上面33aに当接すると、顎部33の上面33aよりも下側は変位できないように構成されている。このため、上部構造体12の下面12aから転がり支承2のベアリング21の下端部21aまでの寸法は、最大でhとなる。このとき、伸長した圧縮ばね4に付勢される力はN´である。
In the rolling bearing 2 and the sliding bearing 3, as shown in FIG. 1, when the compression spring 4 is extended and the downward surface 23a of the notch 23 and the upper surface 33a of the jaw portion 33 of the sliding bearing 3 come into contact with each other, the rolling bearing 2 and the sliding bearing 3 are brought into contact with each other. The lower end portion 21a of the bearing 21 of the rolling bearing 2 is arranged below the lower surface 31a of the sliding portion 31 of the sliding bearing 3. At this time, the dimension h2 from the lower surface 12a of the upper structure 12 to the lower end portion 21a of the bearing 21 of the rolling bearing 2 is the dimension from the lower surface 12a of the upper structure 12 to the lower surface 31a of the sliding portion 31 of the sliding bearing 3. It is larger than h 1 .
When the compression spring 4 extends and abuts on the upper surface 33a of the jaw 33 of the sliding bearing 3, the downward surface 23a of the notch 23 of the bearing support 22 cannot be displaced below the upper surface 33a of the jaw 33. It is configured as follows. Therefore, the maximum dimension from the lower surface 12a of the upper structure 12 to the lower end 21a of the bearing 21 of the rolling bearing 2 is h2. At this time, the force urged by the extended compression spring 4 is N 1 ′.

このような免震装置1は、上方から受ける軸力Nが所定の値N´以下の場合(N≦N´)には、圧縮ばね4の付勢力によってベアリング支持部22の切欠き部23の下向き面23aがすべり支承3の顎部33の上面33aに当接した状態で保たれ、上部構造体12の下面12aと下部構造体11の上面11a(すべり面5の上面5a)との間隔が上記のhに維持されるように構成されている。
これに対し、上方から受ける軸力Nが所定の値N´よりも大きい場合(N>N´)には、図3に示すように、圧縮ばね4が上方から受ける軸力Nが所定の値N´以下の場合よりも圧縮されてベアリング支持部22の切欠き部23の下向き面23aがすべり支承3の顎部33の上面33aから離間し、すべり支承3の摺動部31の下面31aがすべり面5と当接するまで上部構造体12が下部構造体11に近接する。すべり支承3の摺動部31の下面31aがすべり面5と当接すると、上部構造体12の下面12aと下部構造体11の上面11aとの間隔が、上部構造体12の下面12aから摺動部31の下面31aまでの寸法と同じhとなるとともに、圧縮ばね4が圧縮されて、上部構造体12の下面12aから転がり支承2のベアリング21の下端部21aまでの間隔もhとなる。
In such a seismic isolation device 1, when the axial force N received from above is a predetermined value N 1 ′ or less (N ≦ N 1 ′), the notch portion of the bearing support portion 22 is provided by the urging force of the compression spring 4. The downward surface 23a of the 23 is kept in contact with the upper surface 33a of the jaw portion 33 of the sliding bearing 3, and the lower surface 12a of the upper structure 12 and the upper surface 11a of the lower structure 11 (the upper surface 5a of the sliding surface 5) are formed. The interval is configured to be maintained at h 2 above.
On the other hand, when the axial force N received from above is larger than the predetermined value N 1 ′ (N> N 1 ′), the axial force N received from above by the compression spring 4 is predetermined as shown in FIG. The downward surface 23a of the notch 23 of the bearing support 22 is separated from the upper surface 33a of the jaw 33 of the sliding bearing 3 by being compressed more than the case of N 1 ′ or less, and the sliding portion 31 of the sliding bearing 3 is separated from the upper surface 33a. The upper structure 12 is close to the lower structure 11 until the lower surface 31a comes into contact with the sliding surface 5. When the lower surface 31a of the sliding portion 31 of the sliding bearing 3 comes into contact with the sliding surface 5, the distance between the lower surface 12a of the upper structure 12 and the upper surface 11a of the lower structure 11 slides from the lower surface 12a of the upper structure 12. The dimension of the portion 31 up to the lower surface 31a is the same as h 1 , and the compression spring 4 is compressed so that the distance from the lower surface 12a of the upper structure 12 to the lower end portion 21a of the bearing 21 of the rolling bearing 2 is also h 1 . ..

このように、上方から受ける軸力Nが所定の値N´以下の場合(N≦N´)は、上部構造体12の下面12aと下部構造体11の上面11aとの間隔がhとなるため、ベアリング21の下端部21aはすべり面5と当接するが、摺動部31の下面31aはすべり面5と離間する。このときのすべり支承3の摺動部31の下面31aと下部構造体11のすべり面5との間隔は、例えば、0.2~0.5mm程度となるように設定されている。
この状態で上部構造体12と下部構造体11とが水平方向に相対変位すると、ベアリング21がすべり面5を転動し、摺動部31は、すべり面5を滑動しないことになる。
これにより、免震装置1とすべり面5との摩擦抵抗力は、転がり支承2のベアリング21とすべり面5との摩擦抵抗力だけとなるため、摩擦係数μ(μ≦0.006)によるものとなる。
このときの上方から受ける軸力N、摩擦抵抗力Q、摩擦係数μ、見かけ上の摩擦係数μの関係は、下記の式(1)となる。
As described above, when the axial force N received from above is a predetermined value N 1 ′ or less (N ≦ N 1 ′), the distance between the lower surface 12a of the upper structure 12 and the upper surface 11a of the lower structure 11 is h 2 . Therefore, the lower end portion 21a of the bearing 21 comes into contact with the sliding surface 5, but the lower surface 31a of the sliding portion 31 is separated from the sliding surface 5. At this time, the distance between the lower surface 31a of the sliding portion 31 of the sliding bearing 3 and the sliding surface 5 of the lower structure 11 is set to be, for example, about 0.2 to 0.5 mm.
When the upper structure 12 and the lower structure 11 are relatively displaced in the horizontal direction in this state, the bearing 21 rolls on the sliding surface 5, and the sliding portion 31 does not slide on the sliding surface 5.
As a result, the frictional resistance between the seismic isolation device 1 and the sliding surface 5 is only the frictional resistance between the bearing 21 of the rolling bearing 2 and the sliding surface 5, so that the friction coefficient is μ 11 ≤ 0.006). Will be due to.
At this time, the relationship between the axial force N, the frictional resistance force Q, the friction coefficient μ 1 , and the apparent friction coefficient μe received from above is given by the following equation (1).

Figure 0006994951000001
Figure 0006994951000001

これに対し、上方から受ける軸力Nが所定の値N´よりも大きい場合(N>N´)は、上部構造体12の下面12aと下部構造体11の上面11aとの間隔がhとなり、転がり支承2のベアリング21の下端部21aがすべり面5と当接し、すべり支承3の摺動部31の下面31aもすべり面5と当接する。このとき転がり支承2の圧縮ばね4が縮むが、圧縮量がわずかであるため圧縮ばね4から転がり支承2に付勢される力N´はほとんど変化しない。
この状態で上部構造体12と下部構造体11とが水平方向に相対変位すると、ベアリング21がすべり面5を転動し、摺動部31がすべり面5を滑動することになる。
これにより、免震装置1とすべり面5との摩擦抵抗力は、転がり支承2のベアリング21とすべり面5との摩擦抵抗力およびすべり支承3の摺動部31とすべり面5との摩擦抵抗力となるため、摩擦係数μ(μ≦0.006)、および摩擦係数μ(0.01≦μ≦0.1)によるものとなる。
このとき上方から受ける軸力N、摩擦抵抗力Q、摩擦係数μ、摩擦係数μ、見かけ上の摩擦係数μの関係は、下記の式(2)となる。
On the other hand, when the axial force N received from above is larger than the predetermined value N 1 ′ (N> N 1 ′), the distance between the lower surface 12a of the upper structure 12 and the upper surface 11a of the lower structure 11 is h. The lower end portion 21a of the bearing 21 of the rolling bearing 2 abuts on the sliding surface 5 , and the lower surface 31a of the sliding portion 31 of the sliding bearing 3 also abuts on the sliding surface 5. At this time, the compression spring 4 of the rolling bearing 2 contracts, but since the amount of compression is small, the force N 1 ′ urged from the compression spring 4 to the rolling bearing 2 hardly changes.
When the upper structure 12 and the lower structure 11 are relatively displaced in the horizontal direction in this state, the bearing 21 rolls on the sliding surface 5, and the sliding portion 31 slides on the sliding surface 5.
As a result, the frictional resistance between the seismic isolation device 1 and the sliding surface 5 is the frictional resistance between the bearing 21 of the rolling support 2 and the sliding surface 5 and the frictional resistance between the sliding portion 31 of the sliding support 3 and the sliding surface 5. Since it is a force, it is based on the friction coefficient μ 11 ≤ 0.006) and the friction coefficient μ 2 (0.01 ≤ μ 2 ≤ 0.1).
At this time, the relationship between the axial force N, the frictional resistance force Q, the friction coefficient μ 1 , the friction coefficient μ 2 , and the apparent friction coefficient μ e received from above is given by the following equation (2).

Figure 0006994951000002
Figure 0006994951000002

すべり支承3の摩擦係数μは、すべり面5からの圧縮応力度が増加すると摩擦係数μが低下するという面圧依存性がある。すべり面5とすべり材との接触面積A、基準面圧σ=20MPa(20N/mm)の摩擦係数μ=0.014とすると、面圧σでの摩擦係数μは、下記の式(3)で表される。 The friction coefficient μ 2 of the slip support 3 has a surface pressure dependence that the friction coefficient μ 2 decreases as the degree of compressive stress from the slip surface 5 increases. Assuming that the contact area A between the sliding surface 5 and the sliding material and the friction coefficient μ 0 = 0.014 of the reference surface pressure σ 0 = 20 MPa (20 N / mm 2 ), the friction coefficient μ 2 at the surface pressure σ is as follows. It is represented by the equation (3).

Figure 0006994951000003
Figure 0006994951000003

ここで、すべり支承3の基準面圧に対する耐荷重N=A・σ、転がり支承2に作用する軸力N´=N/20とする。転がり支承2の摩擦係数μ=0.006とし、支承(免震装置1)全体への作用軸力N=αNとすると、下記の式(4)が成りたつ。 Here, it is assumed that the load capacity N 2 = A · σ 0 with respect to the reference surface pressure of the sliding bearing 3 and the axial force N 1 ′ = N 2/20 acting on the rolling bearing 2 . Assuming that the coefficient of friction of the rolling bearing 2 is μ 1 = 0.006 and the axial force acting on the entire bearing (seismic isolation device 1) is N = αN 2 , the following equation (4) is established.

Figure 0006994951000004
Figure 0006994951000004

また、見かけ上の摩擦係数μは下記の式(5)、(6)となる。 Further, the apparent friction coefficient μe is given by the following equations (5) and (6).

Figure 0006994951000005
Figure 0006994951000005

一方、免震装置1をすべり支承3だけで構成した場合はσ/σ=αより軸力によらず下記の式(7)となる。 On the other hand, when the seismic isolation device 1 is composed of only the sliding bearing 3, the following equation (7) is obtained from σ / σ 0 = α regardless of the axial force.

Figure 0006994951000006
Figure 0006994951000006

図4に本実施形態の転がり支承2およびすべり支承3の両方(転がりすべり支承)で構成された免震装置1と、すべり支承のみで構成された従来の免震装置とを比較した結果を示す。
図4では以下のように定義している。
FIG. 4 shows the results of comparison between the seismic isolation device 1 composed of both the rolling bearings 2 and the sliding bearings 3 (rolling and sliding bearings) of the present embodiment and the conventional seismic isolation device composed of only the sliding bearings. ..
In FIG. 4, it is defined as follows.

μ:支承全体の摩擦係数=支承全体の摩擦抵抗力Q/支承に作用する全軸力N
α :軸力比=支承に作用する全軸力N/すべり支承の基準面圧時耐力N
=A・σ
σ:基準面圧(本実施形態では20MPa)
A :摺動部のすべり材との接触面積
μe : Friction coefficient of the entire bearing = Friction resistance force of the entire bearing Q / Total axial force acting on the bearing N
α: Axial force ratio = Total axial force acting on the bearing N / Yield strength at reference surface pressure of sliding bearing N 2
N 2 = A · σ 0
σ 0 : Reference surface pressure (20 MPa in this embodiment)
A: Contact area of the sliding part with the sliding material

従来のすべり支承のみで構成された免震装置は、低軸力であると摩擦係数が大きくなる。これに対し、本実施形態の転がり支承2およびすべり支承3の両方で構成された免震装置1は、軸力が小さくても過大な摩擦係数が生じることがなく、軸力によらず摩擦係数を小さくすることができる。 The conventional seismic isolation device consisting only of sliding bearings has a large coefficient of friction when the axial force is low. On the other hand, in the seismic isolation device 1 composed of both the rolling bearing 2 and the sliding bearing 3 of the present embodiment, an excessive friction coefficient does not occur even if the axial force is small, and the friction coefficient does not depend on the axial force. Can be made smaller.

軸力比α≦1/20=0.05の場合は、転がり支承2のみがすべり面5を転動し、すべり支承3はすべり面5を摺動しないため、摩擦係数μは、μ=0.006となり一定の値となる。
軸力比α>1/20=0.05の場合は、転がり支承2がすべり面5を転動するとともに、すべり支承3もすべり面5を摺動するため、摩擦係数は増加するが、軸力比によらず摩擦係数μは、μ<0.04となる。
なお、免震装置1に転がり支承2を併用せずにすべり支承3のみを用いる場合は、軸力比α≦0.1では、摺動部31とすべり面5との摩擦係数が軸力の低下とともに急激に増大してしまうが、軸力比α>0.2であれば、免震装置1に転がり支承2およびすべり支承3の両方を用いる場合とほぼ同等の摩擦係数になることがわかる。
When the axial force ratio α ≦ 1/20 = 0.05, only the rolling bearing 2 rolls on the sliding surface 5, and the sliding bearing 3 does not slide on the sliding surface 5, so that the friction coefficient μ e is μ e . = 0.006, which is a constant value.
When the axial force ratio α> 1/20 = 0.05, the rolling support 2 rolls on the sliding surface 5 and the sliding support 3 also slides on the sliding surface 5, so that the coefficient of friction increases, but the shaft The coefficient of friction μ e is μ e <0.04 regardless of the force ratio.
When only the sliding bearing 3 is used without using the rolling bearing 2 for the seismic isolation device 1, when the axial force ratio α ≦ 0.1, the friction coefficient between the sliding portion 31 and the sliding surface 5 is the axial force. It increases sharply as it decreases, but if the axial force ratio α> 0.2, it can be seen that the friction coefficient is almost the same as when both the rolling bearing 2 and the sliding bearing 3 are used for the seismic isolation device 1. ..

次に、上述した本実施形態による免震装置1の作用・効果について図面を用いて説明する。
摺動部31は、上部構造体12から作用する軸力が大きく、すべり面5に対する面圧が大きくなるほど、すべり面5との摩擦係数が小さくなり、上部構造体12から作用する軸力が小さくすべり面5に対する面圧が小さくなるほど、すべり面5との摩擦係数が大きくなる性質がある。
本発明の実施形態によるすべり支承3は、上部構造体12から作用する軸力が所定の値を超えて大きく、この軸力に対する摺動部31とすべり面5との摩擦係数が小さくなる場合には、摺動部31がすべり面5を摺動可能とし、上部構造体12から作用する軸力が所定の値以下で小さく、この軸力に対する摺動部31とすべり面5との摩擦係数が大きくなる場合には、摺動部31がすべり面5と離間するため摺動しない構成である。このため、すべり支承3は、支承全体の摩擦係数を小さく維持できる場合のみすべり面5を摺動することになる。
一方、ベアリング21は、上部構造体12から作用する軸力の変化によるすべり面5との摩擦係数の変化は小さいため、上部構造体12から作用する軸力の大きさにかかわらず所定の値以下の軸力を支持し、すべり面5との摩擦係数を略一定の小さい値に維持することができる。
Next, the operation and effect of the seismic isolation device 1 according to the above-described embodiment will be described with reference to the drawings.
The sliding portion 31 has a large axial force acting on the upper structure 12, and the larger the surface pressure on the sliding surface 5, the smaller the coefficient of friction with the sliding surface 5, and the smaller the axial force acting on the upper structure 12. The smaller the surface pressure with respect to the sliding surface 5, the larger the coefficient of friction with the sliding surface 5.
In the sliding support 3 according to the embodiment of the present invention, when the axial force acting from the superstructure 12 exceeds a predetermined value and the friction coefficient between the sliding portion 31 and the sliding surface 5 with respect to the axial force becomes small. The sliding portion 31 makes the sliding surface 5 slidable, the axial force acting from the superstructure 12 is small below a predetermined value, and the friction coefficient between the sliding portion 31 and the sliding surface 5 with respect to this axial force is When it becomes large, the sliding portion 31 is separated from the sliding surface 5, so that the sliding portion 31 does not slide. Therefore, the sliding bearing 3 slides on the sliding surface 5 only when the friction coefficient of the entire bearing can be kept small.
On the other hand, since the change in the coefficient of friction of the bearing 21 with the sliding surface 5 due to the change in the axial force acting on the superstructure 12 is small, it is equal to or less than a predetermined value regardless of the magnitude of the axial force acting on the superstructure 12. It is possible to support the axial force of the above and maintain the coefficient of friction with the sliding surface 5 at a substantially constant small value.

上部構造体12から作用する軸力が小さい場合は、すべり面5との摩擦係数が小さい転がり支承2のみがすべり面5を転動可能となり、上部構造体12から作用する軸力が大きい場合は、すべり面5との摩擦係数が小さい転がり支承2と、すべり面5に対する面圧が大きくなってすべり面5との摩擦係数が小さくなったすべり支承3とがすべり面5を転動可能となるため、上部構造体12から作用する軸力の大きさにかかわらず、すべり面5との摩擦係数を小さく維持することができる。これにより、上部構造体12から作用する軸力の大きさにかかわらず、免震装置1の性能を安定的に維持することができる。 When the axial force acting from the superstructure 12 is small, only the rolling support 2 having a small coefficient of friction with the sliding surface 5 can roll on the sliding surface 5, and when the axial force acting from the superstructure 12 is large. The rolling support 2 having a small friction coefficient with the sliding surface 5 and the sliding support 3 having a small friction coefficient with the sliding surface 5 due to a large surface pressure with respect to the sliding surface 5 can roll the sliding surface 5. Therefore, the coefficient of friction with the sliding surface 5 can be kept small regardless of the magnitude of the axial force acting on the superstructure 12. As a result, the performance of the seismic isolation device 1 can be stably maintained regardless of the magnitude of the axial force acting on the superstructure 12.

また、転がり支承2は、一般的に大きな軸力を支持する構造にしようとすると、コストが増大する傾向がある。
本発明では、上部構造体12から作用する軸力が所定の値以下で小さい場合には、転がり支承2のみで軸力を支持しているが、上部構造体12から作用する軸力が所定の値を超えて大きい場合には、転がり支承2のみでなく転がり支承2およびすべり支承3の両方でその軸力を支持している。このため、上部構造体12から作用する軸力が大きくなっても、その軸力を転がり支承2およびすべり支承3の両方で負担するため、転がり支承2が負担する軸力を頭打ちさせることができ、転がり支承2にかかるコストを削減することができる。
Further, the rolling bearing 2 generally tends to increase in cost if it is attempted to have a structure that supports a large axial force.
In the present invention, when the axial force acting from the superstructure 12 is smaller than a predetermined value, the axial force is supported only by the rolling bearing 2, but the axial force acting from the superstructure 12 is predetermined. When the value exceeds the value, the axial force is supported not only by the rolling bearing 2 but also by both the rolling bearing 2 and the sliding bearing 3. Therefore, even if the axial force acting on the superstructure 12 becomes large, the axial force is borne by both the rolling bearing 2 and the sliding bearing 3, so that the axial force borne by the rolling bearing 2 can be leveled off. , The cost required for the rolling bearing 2 can be reduced.

また、本実施形態による免震装置1では、転がり支承2は、転がり支承2と上部構造体12とを互いに上下方向に離間するように付勢する圧縮ばね4を介して上部構造体12の下側に連結され、上部構造体12から作用する軸力が所定の値以下の場合は、圧縮ばね4の付勢力によって摺動部31がベアリング21よりも上側に配置され、上部構造体12から作用する軸力が所定の値を超える場合は、圧縮ばね4が圧縮されて摺動部31がベアリング21と同じ高さとなる。
このような構成とすることにより、ベアリング21のみがすべり面5を摺動可能な状態と、ベアリング21および摺動部31の両方がすべり面5を摺動可能な状態と、の切り替えを、上部構造体12から作用する軸力によって容易に切り替えることができる。
Further, in the seismic isolation device 1 according to the present embodiment, the rolling bearing 2 is under the upper structure 12 via a compression spring 4 that urges the rolling bearing 2 and the upper structure 12 so as to be separated from each other in the vertical direction. When the axial force that is connected to the side and acts from the superstructure 12 is less than or equal to a predetermined value, the sliding portion 31 is arranged above the bearing 21 by the urging force of the compression spring 4 and acts from the superstructure 12. When the axial force to be applied exceeds a predetermined value, the compression spring 4 is compressed and the sliding portion 31 has the same height as the bearing 21.
With such a configuration, switching between a state in which only the bearing 21 can slide on the sliding surface 5 and a state in which both the bearing 21 and the sliding portion 31 can slide on the sliding surface 5 can be switched to the upper part. It can be easily switched by the axial force acting on the structure 12.

以上、本発明による免震装置1の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、上記の実施形態では、免震層13には複数の免震装置1が設けられているが、免震層13に1つの免震装置1のみが設けられていてもよいし、転がり支承やすべり支承のみで構成される免震装置と併用してもよい。
また、上記の実施形態では、ベアリング21のみがすべり面5を摺動可能な状態と、ベアリング21および摺動部31の両方がすべり面5を摺動可能な状態と、の切り替え機構に圧縮ばね4が用いられているが、圧縮ばね4以外の部材を用いた機構としてもよい。
Although the embodiment of the seismic isolation device 1 according to the present invention has been described above, the present invention is not limited to the above embodiment and can be appropriately modified without departing from the spirit of the present invention.
For example, in the above embodiment, the seismic isolation layer 13 is provided with a plurality of seismic isolation devices 1, but the seismic isolation layer 13 may be provided with only one seismic isolation device 1 or a rolling bearing. It may be used in combination with a seismic isolation device consisting only of bearings.
Further, in the above embodiment, the compression spring is used as a switching mechanism between a state in which only the bearing 21 is slidable on the sliding surface 5 and a state in which both the bearing 21 and the sliding portion 31 are slidable on the sliding surface 5. Although 4 is used, a mechanism using a member other than the compression spring 4 may be used.

1 免震装置
2 転がり支承
3 すべり支承
4 圧縮ばね(付勢部材)
5 すべり面
11 下部構造体
12 上部構造体
21 ベアリング(転動部)
31 摺動部
1 Seismic isolation device 2 Rolling bearings 3 Sliding bearings 4 Compression springs (urgency members)
5 Sliding surface 11 Lower structure 12 Upper structure 21 Bearing (rolling part)
31 Sliding part

Claims (2)

水平方向に相対変位可能な下部構造体と、上部構造体との間に設けられる免震装置において、
前記上部構造体の下側に連結され前記下部構造体に設けられたすべり面に沿って水平方向に転動可能な転動部を備える転がり支承と、
前記転がり支承と並列され、前記上部構造体の下側に連結され前記すべり面に沿って水平方向に摺動可能な摺動部を有するすべり支承と、を有し、
前記上部構造体から作用する軸力が所定の値以下の場合は、前記転動部が前記すべり面と当接して前記すべり面を転動可能になるとともに、前記摺動部が前記すべり面と離間し、
前記転がり支承および前記すべり支承に作用する軸力が前記所定の値を超える場合は、前記転動部が前記すべり面と当接して前記すべり面を転動可能になるとともに、前記摺動部が前記すべり面と当接して前記すべり面を滑動可能にすることを特徴とする免震装置。
In the seismic isolation device provided between the lower structure that can be displaced relative to the horizontal direction and the upper structure.
A rolling bearing provided with a rolling portion connected to the lower side of the upper structure and capable of rolling horizontally along a sliding surface provided on the lower structure.
It has a sliding bearing that is parallel to the rolling bearing, is connected to the underside of the superstructure, and has a sliding portion that can slide horizontally along the sliding surface.
When the axial force acting from the superstructure is equal to or less than a predetermined value, the rolling portion comes into contact with the sliding surface to enable rolling of the sliding surface, and the sliding portion is in contact with the sliding surface. Separated,
When the axial force acting on the rolling bearing and the sliding bearing exceeds the predetermined value, the rolling portion comes into contact with the sliding surface to enable rolling on the sliding surface, and the sliding portion becomes capable of rolling. A seismic isolation device characterized in that it comes into contact with the sliding surface and makes the sliding surface slidable.
前記転がり支承は、前記転がり支承と前記上部構造体とを互いに上下方向に離間するように付勢する付勢部材を介して前記上部構造体の下側に連結され、
前記上部構造体から作用する軸力が前記所定の値以下の場合は、前記付勢部材の付勢力によって前記摺動部が前記転動部よりも上側に配置され前記すべり面から離間し、前記上部構造体から作用する軸力が前記所定の値を超える場合は、前記付勢部材が圧縮されて前記摺動部が前記転動部と同じ高さとなり前記すべり面と当接することを特徴とする請求項1に記載の免震装置。
The rolling bearing is connected to the underside of the superstructure via an urging member that urges the rolling bearing and the superstructure to be vertically separated from each other.
When the axial force acting on the superstructure is equal to or less than the predetermined value, the sliding portion is arranged above the rolling portion by the urging force of the urging member and separated from the sliding surface. When the axial force acting from the superstructure exceeds the predetermined value, the urging member is compressed so that the sliding portion has the same height as the rolling portion and comes into contact with the sliding surface. The seismic isolation device according to claim 1.
JP2018002485A 2018-01-11 2018-01-11 Seismic isolation device Active JP6994951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018002485A JP6994951B2 (en) 2018-01-11 2018-01-11 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002485A JP6994951B2 (en) 2018-01-11 2018-01-11 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2019120098A JP2019120098A (en) 2019-07-22
JP6994951B2 true JP6994951B2 (en) 2022-01-14

Family

ID=67306208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002485A Active JP6994951B2 (en) 2018-01-11 2018-01-11 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP6994951B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283220A (en) 1999-03-30 2000-10-13 Ohbayashi Corp Base isolation display stand
JP2001173719A (en) 1999-12-15 2001-06-26 Bridgestone Corp Sliding bearing device
JP2011214703A (en) 2010-04-02 2011-10-27 Takenaka Komuten Co Ltd Sliding support apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283220A (en) 1999-03-30 2000-10-13 Ohbayashi Corp Base isolation display stand
JP2001173719A (en) 1999-12-15 2001-06-26 Bridgestone Corp Sliding bearing device
JP2011214703A (en) 2010-04-02 2011-10-27 Takenaka Komuten Co Ltd Sliding support apparatus

Also Published As

Publication number Publication date
JP2019120098A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
JP5181269B2 (en) Vertical seismic isolation mechanism
US8079563B2 (en) Elevating mechanism with an elasticity compensative function and related display device
JP2013130216A (en) Sliding base isolation mechanism
KR20150047754A (en) polyurethane friction surface seismic isolation bearing using spring and rubber damper
KR20180120191A (en) Seismic isolator of structure
JP6994951B2 (en) Seismic isolation device
JP6717817B2 (en) Seismic support for warehouses and load-bearing structure with such support
KR101103983B1 (en) Shock Absorbing Device and Structural Bearing having the same
JP2018179041A (en) Spring member
JP2019035493A (en) Slide bearing device
US20140270602A1 (en) Disc and Spring Isolation Bearing
JP5513956B2 (en) Sliding bearing device
JP3771117B2 (en) Seismic isolation device
US20050045575A1 (en) Crane
JPH04221792A (en) Feeding device
TWI712727B (en) Isolation mechanism
KR20120136132A (en) Elastic device and mechanism to control horizontal displacement utilizing a horizontal component of elastic force and bridge bearing using the same
JP6796817B2 (en) Seismic isolation mechanism
KR101835811B1 (en) Apparatus for testing performance of seismic isolation bearing
JP6497642B2 (en) Slip isolation mechanism
JP6420679B2 (en) Seismic isolation device
JP2009168062A (en) Spring structure having nonlinear characteristics, and flat spring
KR20200041763A (en) Elastic bearing with multi-layer friction core
JP6283193B2 (en) Load support mechanism
TW436563B (en) Seismic isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211214

R150 Certificate of patent or registration of utility model

Ref document number: 6994951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150