[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5181269B2 - Vertical seismic isolation mechanism - Google Patents

Vertical seismic isolation mechanism Download PDF

Info

Publication number
JP5181269B2
JP5181269B2 JP2007231571A JP2007231571A JP5181269B2 JP 5181269 B2 JP5181269 B2 JP 5181269B2 JP 2007231571 A JP2007231571 A JP 2007231571A JP 2007231571 A JP2007231571 A JP 2007231571A JP 5181269 B2 JP5181269 B2 JP 5181269B2
Authority
JP
Japan
Prior art keywords
seismic isolation
vertical
horizontal
lower structure
movable members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007231571A
Other languages
Japanese (ja)
Other versions
JP2009062733A (en
Inventor
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2007231571A priority Critical patent/JP5181269B2/en
Publication of JP2009062733A publication Critical patent/JP2009062733A/en
Application granted granted Critical
Publication of JP5181269B2 publication Critical patent/JP5181269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は免震構造物に適用される免震機構に係わり、特に上部構造体と下部構造体との間に設置されてそれらの間の上下方向の相対振動に対する免震効果を得る上下免震機構に関する。   The present invention relates to a seismic isolation mechanism applied to a seismic isolation structure, and in particular, is installed between an upper structure and a lower structure to obtain a seismic isolation effect with respect to the relative vibration in the vertical direction between them. Regarding the mechanism.

一般に免震構造は水平動に対しては有効であるが上下動に対しては殆ど効果がないのが現状である。これは免震装置の鉛直剛性が水平剛性の千倍以上と極めて大きく、上下方向の減衰も小さいためである。
そのため、上下動に効果的な免震構造として空気バネや皿バネを用いる上下免震装置が考えられており、特許文献1には皿バネによる上下免震装置と水平免震装置とを併用した3次元免震装置についての開示がある。
特開2001−82542号公報
In general, the seismic isolation structure is effective for horizontal motion but has little effect on vertical motion. This is because the vertical stiffness of the seismic isolation device is extremely large, 1000 times the horizontal stiffness, and the vertical damping is small.
Therefore, a vertical seismic isolation device using an air spring or a disc spring is considered as an effective seismic isolation structure for vertical motion. Patent Document 1 uses both a vertical seismic isolation device using a disc spring and a horizontal seismic isolation device in combination. There is disclosure about 3D seismic isolation devices.
JP 2001-82542 A

しかし、空気バネや皿バネによる上下免震装置では、建物全体の重量を空気バネや皿バネにより安定に支持するためには大型化が不可避であるし、コストもかさむことから、現実的とはいえない。
また、いずれにしても上下動の変位振幅は水平動に比較すると桁違いに小さいのであるが、微小振幅で大きな負担力をもつような有効なダンパー(減衰装置)は実用化されていないことから、微小な上下動に対してダンパーを効果的に作動させてエネルギーを有効に吸収するためには鉛直剛性を小さくして上下動の変位振幅を大きくする必要がある。しかし、過度に鉛直剛性を小さくすると「ふかふかバネ」の状態となって常時の使い勝手や居住性が大きく損なわれ、好ましくない。
However, with the vertical seismic isolation device using air springs or disc springs, it is inevitable to increase the size of the building in order to stably support the weight of the entire building with air springs or disc springs, and the cost is also high. I can't say that.
In any case, the displacement amplitude of the vertical movement is orders of magnitude smaller than that of the horizontal movement, but an effective damper (attenuator) with a small amplitude and a large burden has not been put into practical use. In order to effectively actuate the damper by effectively operating the damper with respect to a minute vertical movement, it is necessary to reduce the vertical rigidity and increase the displacement amplitude of the vertical movement. However, if the vertical rigidity is excessively reduced, a “fluffy spring” state is caused, and the usual usability and comfort are greatly impaired.

以上のことから、上下動に対する免震効果を発揮するためには、上部構造の大きな鉛直荷重に対応できて充分な支持力を有し、適度に低下した鉛直剛性を持ち、微小振幅から有効な減衰性能を持つという性能が要求されるのであるが、現時点ではそのような要求に応え得る有効適切な上下免震装置は提供されていない。
上記事情に鑑み、本発明は上記のような性能を備える有効適切な上下免震機構を提供することを目的とする。
From the above, in order to demonstrate the seismic isolation effect for vertical motion, it has sufficient supporting force to cope with the large vertical load of the superstructure, has moderately reduced vertical rigidity, and is effective from minute amplitude The performance of having a damping performance is required, but at present, an effective and appropriate vertical seismic isolation device that can meet such a demand is not provided.
In view of the above circumstances, an object of the present invention is to provide an effective and appropriate vertical seismic isolation mechanism having the above-described performance.

請求項1記載の発明は、上部構造体と下部構造体の間に生じる上下方向の相対振動に対して免震効果を得る上下免震機構であって、上部または下部のいずれか一方が水平に対して傾斜する傾斜面とされ、他方が水平面とされた略楔状の可動部材を少なくとも1対用いて、双方の可動部材の一端どうしを対向させた状態で対称配置して上部構造体と下部構造体との間に介装し、各可動部材の傾斜面を傾斜滑り支承により上部構造体または下部構造体に対して水平方向に変位自在に支持するとともに、各可動部材の水平面を水平滑り支承により下部構造体または上部構造体に対して水平方向に変位自在に支持することにより、上部構造体と下部構造体との間に上下方向の相対変位が生じた際に双方の可動部材を傾斜滑り支承および水平滑り支承により案内して互いに離接するように逆向きの水平方向に変位可能とし、かつ、双方の可動部材の一端どうしをバネ要素により連結してなることを特徴とする。   The invention according to claim 1 is a vertical seismic isolation mechanism that obtains a seismic isolation effect with respect to the vertical relative vibration generated between the upper structure and the lower structure, wherein either the upper part or the lower part is horizontal. The upper structure and the lower structure are symmetrically arranged with at least one pair of substantially wedge-shaped movable members that are inclined with respect to each other and the other is a horizontal surface, with one end of each movable member facing each other. The inclined surface of each movable member is supported between the upper structure and the lower structure by an inclined sliding support so that the movable member can be displaced in the horizontal direction, and the horizontal surface of each movable member is supported by the horizontal sliding support. By supporting the lower structure or the upper structure so as to be displaceable in the horizontal direction, both of the movable members are supported by the slanted sliding support when a vertical displacement occurs between the upper structure and the lower structure. And on horizontal sliding bearings Ri and guided to be displaced in a horizontal direction opposite to mutually separating, and is characterized in that one end each other of both the movable member formed by connecting the spring element.

請求項2記載の発明は、請求項1記載の発明の上下免震機構であって、傾斜滑り支承における摩擦抵抗力によって上部構造体と下部構造体との間の上下方向の相対振動に対する減衰力を得るように傾斜滑り支承における摩擦係数を設定し、かつ、水平滑り支承における摩擦係数を傾斜滑り支承における摩擦係数よりも小さく設定して、該水平滑り支承によって上部構造体を下部構造体に対して水平各方向に相対変位自在に支持してなることを特徴とする。   A second aspect of the present invention is the vertical seismic isolation mechanism according to the first aspect of the present invention, wherein the damping force against the relative vibration in the vertical direction between the upper structure and the lower structure is caused by the frictional resistance force in the inclined sliding bearing. The friction coefficient in the inclined sliding bearing is set so that the friction coefficient in the horizontal sliding bearing is set smaller than the friction coefficient in the inclined sliding bearing, and the upper structure is moved to the lower structure by the horizontal sliding bearing. It is characterized by being supported so as to be relatively displaceable in horizontal directions.

請求項3記載の発明は、上部構造体と下部構造体の間に生じる上下方向の相対振動に対して免震効果を得る上下免震機構であって、上部および下部の双方が水平に対して互いに逆方向に同角度傾斜する傾斜面とされた略楔状の可動部材を少なくとも1対用いて、双方の可動部材の一端どうしを対向させた状態で対称配置して上部構造体と下部構造体との間に介装し、各可動部材の上下の傾斜面をそれぞれ傾斜滑り支承により上部構造体および下部構造体に対して水平方向に変位自在に支持することにより、上部構造体と下部構造体との間に上下方向の相対変位が生じた際に双方の可動部材を上下の傾斜滑り支承により案内して互いに離接するように逆向きの水平方向に変位可能とし、かつ、双方の可動部材の一端どうしをバネ要素により連結し、傾斜滑り支承における摩擦抵抗力によって上部構造体と下部構造体との間の上下方向の相対振動に対する減衰力を得るように傾斜滑り支承における摩擦係数を設定し、かつ、下部構造体とそれを支持する基盤との間に、下部構造体を基盤に対して水平各方向に相対変位自在に支持する水平免震機構を介装してなることを特徴とする。 The invention according to claim 3 is a vertical seismic isolation mechanism that obtains a seismic isolation effect with respect to the vertical relative vibration generated between the upper structure and the lower structure, wherein both the upper part and the lower part are horizontal. Using at least one pair of substantially wedge-shaped movable members inclined at the same angle in opposite directions, symmetrically arranged with one end of both movable members facing each other, the upper structure and the lower structure Between the upper structure and the lower structure by supporting the upper and lower inclined surfaces of each movable member in a horizontal direction with respect to the upper structure and the lower structure by means of inclined sliding bearings. When a relative displacement in the vertical direction occurs between the two movable members, both movable members are guided by the upper and lower inclined sliding bearings and can be displaced in the opposite horizontal direction so as to be separated from each other, and one end of both movable members How connected by a spring element The friction coefficient in the inclined sliding bearing is set so as to obtain a damping force against the relative vibration in the vertical direction between the upper structure and the lower structure by the frictional resistance force in the inclined sliding bearing, and the lower structure and A horizontal seismic isolation mechanism is provided between the supporting base and a base structure that supports the lower structure so as to be relatively displaceable relative to the base in each horizontal direction.

本発明の上下免震機構によれば、略楔状の1対の可動部材を上部構造体と下部構造体の間に傾斜滑り支承を介して水平方向に変位可能な状態で介装し、それら可動部材どうしをバネ要素により連結した構成により、可動部材を介して上部構造体の鉛直荷重を支持しつつその鉛直剛性を傾斜角とバネ剛性の設定により任意に設定でき、したがって鉛直剛性を適度に低下させることによって上下方向の固有周期を長周期化でき、地震応答を大きく低減することができる。
また、可動部材を変位自在に支持する傾斜滑り支承における摩擦係数を適切に設定することにより、その摩擦抵抗力により履歴吸収エネルギーが生じて滑り支承自体がダンパー(減衰装置)として機能し、したがって他に格別の減衰要素を必要とすることなく優れた減衰効果が得られるし、滑り支承における傾斜角と摩擦係数の設定により減衰特性を自由にかつ広範に設定することができる。
さらに、摩擦係数が充分に小さい水平滑り支承により上部構造体を水平変位自在に支持したり、あるいは下部構造体(すなわち上下免震機構の全体)を基盤に対して水平免震機構により支持することにより全体として3次元免震機構を構成でき、上下免震効果のみならず水平免震効果も得られる。
According to the vertical seismic isolation mechanism of the present invention, a pair of substantially wedge-shaped movable members are interposed between an upper structure and a lower structure so as to be horizontally displaceable via an inclined sliding bearing, and these movable members are movable. By connecting the members with spring elements, the vertical rigidity of the upper structure can be arbitrarily set by setting the inclination angle and the spring rigidity while supporting the vertical load of the upper structure via the movable member. By doing so, the natural period in the vertical direction can be lengthened, and the seismic response can be greatly reduced.
Also, by appropriately setting the coefficient of friction in the inclined sliding bearing that supports the movable member so as to be displaceable, hysteresis absorption energy is generated by the frictional resistance, and the sliding bearing itself functions as a damper (damping device). In addition, an excellent damping effect can be obtained without requiring any special damping element, and the damping characteristics can be freely and widely set by setting the inclination angle and the friction coefficient in the sliding bearing.
Furthermore, the upper structure can be supported by a horizontal sliding bearing with a sufficiently small coefficient of friction so that the upper structure can be displaced horizontally, or the lower structure (that is, the entire vertical seismic isolation mechanism) can be supported by the horizontal seismic isolation mechanism. As a whole, a three-dimensional seismic isolation mechanism can be configured, and not only a vertical seismic isolation effect but also a horizontal seismic isolation effect can be obtained.

図1は本発明の一実施形態である上下免震機構の基本構成を示すものである。本実施形態の上下免震機構は、上部構造体1(たとえば免震建物の本体)と、それを支持する下部構造体2(たとえば基礎)との間に設置されて、それらの間に生じる上下方向の相対振動に対して免震効果を得るものである。   FIG. 1 shows a basic configuration of a vertical seismic isolation mechanism according to an embodiment of the present invention. The vertical seismic isolation mechanism of the present embodiment is installed between the upper structure 1 (for example, the main body of the base isolation building) and the lower structure 2 (for example, the foundation) that supports the vertical structure, and the vertical motion generated between them. A seismic isolation effect is obtained against relative vibrations in the direction.

本実施形態の上下免震機構は、上部が水平に対して傾斜している傾斜面とされ下部が水平面とされた略楔状の可動部材3を1対用いて、それら可動部材3の一端(図示例では高さ寸法の大きい基端側)どうしを対向させた状態で対称配置して上部構造体1と下部構造体2との間に介装するとともに、双方の可動部材3の傾斜面(図示例では上面)と水平面(同、下面)をそれぞれ傾斜滑り支承4および水平滑り支承5によって上部構造体1と下部構造体2に対して水平方向に変位自在に支持して双方の可動部材3どうしを互いに離接するように変位可能とし、かつ双方の可動部材3の一端どうしをバネ要素6により連結したものである。   The vertical seismic isolation mechanism of the present embodiment uses a pair of substantially wedge-shaped movable members 3 whose upper part is inclined with respect to the horizontal and whose lower part is a horizontal plane. In the example shown, the base end side having a large height dimension is arranged symmetrically with each other facing each other and interposed between the upper structure 1 and the lower structure 2, and the inclined surfaces of the movable members 3 (see FIG. In the example shown, the upper surface) and the horizontal surface (the same lower surface) are supported by an inclined sliding bearing 4 and a horizontal sliding bearing 5 so as to be displaceable in the horizontal direction with respect to the upper structure 1 and the lower structure 2, respectively. Can be displaced so as to be separated from each other, and one end of each of the movable members 3 is connected by a spring element 6.

各可動部材3の上部の傾斜面の水平に対する傾斜角θは適宜設定すれば良いが、たとえば tanθ=1/2〜1/5 程度とすることが好適である。なお、図示例ではその傾斜角θに対応して上部構造体1の底面に同角度の傾斜面を形成している。   The inclination angle θ with respect to the horizontal of the upper inclined surface of each movable member 3 may be set as appropriate. For example, it is preferable that tan θ is about 1/2 to 1/5. In the illustrated example, an inclined surface having the same angle is formed on the bottom surface of the upper structure 1 corresponding to the inclination angle θ.

傾斜滑り支承4および水平滑り支承5は、たとえばステンレス等からなる平滑な滑り面上を低摩擦係数の樹脂等(たとえばテフロン(登録商標))で被覆された滑り材が、鉛直荷重を支持しつつ直線上に滑らかに相対移動できるように構成した摺動(滑り)機構であるが、本実施形態では後述するように上面側の傾斜滑り支承4における摩擦抵抗力によって所望の減衰力を得るようにその摩擦係数μを適切に設定するものである。その摩擦係数μの値としては、たとえばμ=0.03〜0.1程度とすることが好適である。
また、下面側の水平滑り支承5における摩擦係数μは可及的に小さくして(実質的にゼロにして)、上部構造体1を可動部材3とともに水平各方向に滑らかに摺動させることが好ましく、それにより本実施形態の上下免震機構は上下方向のみならず水平方向に対する免震効果も得られて実質的に3次元免震機構として機能するものとなる。
The inclined sliding bearing 4 and the horizontal sliding bearing 5 are supported by a sliding material in which a smooth sliding surface made of, for example, stainless steel is covered with a resin having a low friction coefficient (for example, Teflon (registered trademark)) while supporting a vertical load. The sliding (sliding) mechanism is configured so as to be able to move relatively smoothly on a straight line. In the present embodiment, as will be described later, a desired damping force is obtained by the frictional resistance force on the inclined sliding bearing 4 on the upper surface side. The friction coefficient μ 1 is appropriately set. The value of the friction coefficient μ 1 is preferably about μ 1 = 0.03 to 0.1, for example.
Further, the friction coefficient μ 2 in the horizontal sliding bearing 5 on the lower surface side is made as small as possible (substantially zero), and the upper structure 1 is slid smoothly in each horizontal direction together with the movable member 3. Accordingly, the vertical seismic isolation mechanism of the present embodiment can obtain a seismic isolation effect not only in the vertical direction but also in the horizontal direction, and substantially functions as a three-dimensional seismic isolation mechanism.

可動部材3どうしを連結しているバネ要素6は可動部材3どうしが離接することに伴って伸縮して所望の鉛直剛性を与えるものであり、図示例の場合はそのバネ要素6として可動部材3どうしを常に外側に付勢する押しバネを使用している。
なお、図示例ではバネ要素6をコイルバネのように示しているが、所望のバネ剛性を有するものであればバネ要素6の形態や素材は適宜で良い。いずれにしても、バネ要素6は水平方向に伸縮するだけで可動部材3に対する回転が生じることはないので、可動部材3に対する連結はクレビスやボールジョイント等の複雑な接合機構を用いることなく単に固定するだけで良い。
The spring element 6 connecting the movable members 3 expands and contracts as the movable members 3 come in contact with each other to give a desired vertical rigidity. In the illustrated example, the movable member 3 serves as the spring element 6. A push spring that constantly urges each other outward is used.
In the illustrated example, the spring element 6 is shown as a coil spring, but the form and material of the spring element 6 may be appropriate as long as the spring element 6 has a desired spring rigidity. In any case, since the spring element 6 only expands and contracts in the horizontal direction and does not rotate with respect to the movable member 3, the connection to the movable member 3 is simply fixed without using a complicated joining mechanism such as a clevis or a ball joint. Just do it.

本実施形態の上下免震機構は、上部構造体1と下部構造体2との間で上下方向の相対振動が生じた際には各可動部材3が離接するように逆向きの水平方向に変位し、かつバネ要素6の弾性付勢力が復元力となって元の位置に復元するものである。
すなわち、図示例の場合には、上部構造体1と下部構造体2とが接近するように相対変位した際(つまり、上部構造体1が下方に変位して下部構造体2との間の距離が狭まる場合)には、各可動部材3はバネ要素6に抗してそれを圧縮しつつ互いに接近するように内側に押し込まれる。逆に、上部構造体1と下部構造体2とが離反するように相対変位した際(つまり、上部構造体1が上方に変位して下部構造体2との間の距離が拡がる場合)には、バネ要素6の弾性付勢力によって各可動部材3は互いに離反するように外側に押し出される。
The vertical seismic isolation mechanism of the present embodiment is displaced in the opposite horizontal direction so that the movable members 3 come into contact with each other when vertical relative vibrations occur between the upper structure 1 and the lower structure 2. In addition, the elastic biasing force of the spring element 6 becomes a restoring force and is restored to the original position.
That is, in the illustrated example, when the upper structure 1 and the lower structure 2 are relatively displaced so as to approach each other (that is, the distance between the upper structure 1 and the lower structure 2 when the upper structure 1 is displaced downward). Each of the movable members 3 is pushed inward so as to approach each other while compressing it against the spring element 6. Conversely, when the upper structure 1 and the lower structure 2 are relatively displaced so that they are separated from each other (that is, when the upper structure 1 is displaced upward and the distance between the lower structure 2 increases). The movable members 3 are pushed outward by the elastic biasing force of the spring element 6 so as to be separated from each other.

その際、可動部材3間の水平変位δxは上下方向の相対変位δzに対して2/tanθ倍に拡大され、上部の傾斜滑り支承4と下部の水平滑り支承5に作用する鉛直方向の反力の合計は、摩擦が無ければ可動部材3間に作用する水平力の2/tanθ倍となる。したがって、この機構によって鉛直方向のバネ剛性は、可動部材3間に設置したバネ要素6の実際のバネ剛性kの4/tan2θ倍に拡大されることになる。たとえば、傾斜角tanθ=1/5の場合、鉛直方向のバネ剛性Kはバネ要素の実際のバネ剛性kの100倍となる。 At that time, the horizontal displacement δx between the movable members 3 is enlarged 2 / tanθ times the vertical relative displacement δz, and the vertical reaction force acting on the upper inclined sliding bearing 4 and the lower horizontal sliding bearing 5 is applied. Of the horizontal force acting between the movable members 3 if there is no friction. Therefore, the spring stiffness in the vertical direction is expanded by 4 / tan 2 θ times the actual spring stiffness k of the spring element 6 installed between the movable members 3 by this mechanism. For example, when the inclination angle tan θ = 1/5, the vertical spring stiffness K is 100 times the actual spring stiffness k of the spring element.

また、傾斜滑り支承4に所定の摩擦係数μを与えているため、上下動が一定の大きさになるまでは滑らないで、一定の大きさを超えてから免震効果を発揮する。したがって、歩行や車の移動等のような小さな加振力によって上部構造体が敏感に振動してしまう「ふかふかバネ状態」にはならない。
そして、傾斜面の傾斜角θと摩擦係数μにより、どの程度の変位から滑り始めて免震効果を発揮させるかを任意に設定できるし、後述する手法によりそのときの減衰定数の値を定式化することができる。
Further, since the given predetermined frictional coefficient mu 1 to the inclined sliding bearings 4, not slide until the vertical movement has a predetermined size, exerts a seismic isolation effect from beyond a certain size. Therefore, it does not become a “fluffy spring state” in which the upper structure vibrates sensitively due to a small excitation force such as walking or moving a car.
In addition, it is possible to arbitrarily set the degree of displacement from which the sliding starts to exert the seismic isolation effect by the inclination angle θ and the friction coefficient μ 1 of the inclined surface, and formulate the value of the damping constant at that time by the method described later can do.

しかも、鉛直方向のバネ剛性は可動部材3どうしを連結しているバネ要素6の実際のバネ剛性kに対して拡大されることから過大な変形(沈下)を生じない。また、そのバネ要素6による復元力によって地震後に大きな残留変形が生じることもない。   In addition, since the spring stiffness in the vertical direction is increased with respect to the actual spring stiffness k of the spring element 6 connecting the movable members 3, the excessive deformation (sinking) does not occur. In addition, the restoring force of the spring element 6 does not cause a large residual deformation after the earthquake.

以下、図2〜図6を参照して本実施形態の上下免震機構による免震原理とその解析手法および解析結果について詳細に説明する。
なお、以下の検討においては、可動部材3の上部の傾斜面の傾斜角度をθ、傾斜滑り支承での摩擦係数をμとする。下部の水平滑り支承での摩擦係数は充分小さく無視できるものとする。また、鉛直荷重をP、したがって片側の鉛直方向加力をP/2、傾斜面の抗力(傾斜面に垂直な方向に作用)をN、バネ反力をf、バネ要素6のバネ剛性をk、鉛直方向変位をδz、可動部材3の水平方向変位(伸縮量)をδx、自重をPoとする。
図2に示すように、鉛直方向に摩擦抵抗を受けながら載荷されてバネ反力が増す方向(可動部材3どうしが接近する方向)に水平変位する場合には、上記各諸元の関係から(1)式が導かれる。

Figure 0005181269
Hereinafter, the seismic isolation principle by the vertical seismic isolation mechanism of this embodiment, its analysis method, and an analysis result are demonstrated in detail with reference to FIGS.
In the following examination, the inclination angle of the upper inclined surface of the movable member 3 is θ, and the friction coefficient at the inclined sliding bearing is μ. The coefficient of friction at the lower horizontal sliding bearing is sufficiently small and can be ignored. Also, the vertical load is P, and therefore the vertical force on one side is P / 2, the reaction force of the inclined surface (acting in a direction perpendicular to the inclined surface) is N, the spring reaction force is f, and the spring stiffness of the spring element 6 is k. The vertical displacement is δz, the horizontal displacement (expansion / contraction amount) of the movable member 3 is δx, and its own weight is Po.
As shown in FIG. 2, in the case of horizontal displacement in a direction in which the spring reaction force is increased while receiving frictional resistance in the vertical direction (direction in which the movable members 3 approach each other), 1) Equation is derived.
Figure 0005181269

逆に、図3に示すように、鉛直方向に摩擦抵抗を受けながら除荷されてバネ反力が減る方向(可動部材3どうしが離反する方向)に水平変位する場合には、同様に(2)式が導かれる。

Figure 0005181269
On the contrary, as shown in FIG. 3, in the case where the load is unloaded while receiving frictional resistance in the vertical direction and the spring reaction force is reduced (the direction in which the movable members 3 are separated) is horizontally displaced (2 ) Formula is derived.
Figure 0005181269

摩擦力が作用しない場合においては、(1)式および(2)式において傾斜面での摩擦係数μ=0として(3)式となる。

Figure 0005181269
When the frictional force does not act, the equation (3) is obtained with the friction coefficient μ = 0 on the inclined surface in the equations (1) and (2).
Figure 0005181269

以上の結果を図4に示す。図4(a)に示されるように、摩擦がない場合の(3)式を基準にして、載荷時(加重方向に変位する場合)の挙動を示す(1)式の剛性は高く、除荷時(荷重が減って荷重逆方向に変位(復元)する場合)の挙動を示す(2)式の剛性は低くなる。
また、上下振動する場合の「荷重と変形の履歴特性」は、図4(a)に示しているようなループ状を呈する。すなわち、
・自重Poによる変位δoが生じている状態から、(1)式にぶつかるまでは変位は変わらず荷重が増加する。
・さらに荷重Pが増えると、(1)式の線上を移動する。
・荷重Pが減少に転ずると、変位が変わらず(2)式に達する。なお、(2)式に至る前 に荷重が増すと、Y軸に平行に(1)式に向かう。
・さらに荷重Pが減ると、(2)式の線上を原点に向けて移動する。
・荷重Pが増加に転じると、変位が変わらず(1)式に達する。
・さらに荷重Pが増えると、(1)式の線上を移動する(以下、繰り返し)。
The above results are shown in FIG. As shown in FIG. 4A, the rigidity of the equation (1) showing the behavior at the time of loading (displacement in the load direction) is high with reference to the equation (3) when there is no friction. The rigidity of the equation (2), which shows the behavior at the time (when the load decreases and is displaced (restored) in the reverse direction of the load), becomes low.
In addition, the “load and deformation history characteristics” in the case of vertical vibration exhibit a loop shape as shown in FIG. That is,
-From the state where the displacement δo due to its own weight Po occurs, the displacement does not change and the load increases until it hits the equation (1).
・ When load P further increases, it moves on the line of equation (1).
・ When the load P starts to decrease, the displacement does not change and the equation (2) is reached. If the load increases before reaching Equation (2), the load goes to Equation (1) parallel to the Y axis.
・ If load P is further reduced, it moves toward the origin on the line of equation (2).
・ When the load P starts to increase, the displacement does not change and the equation (1) is reached.
・ When load P further increases, it moves on the line of equation (1) (hereinafter repeated).

このような履歴特性をもつため、上下振動すると摩擦により履歴吸収エネルギー(図4(b)に示す四角形の履歴ループの内側の面積に相当する)が生じて振動減衰機能を発揮する。
この場合、摩擦が無いときの鉛直方向の初期剛性K、自重Poによる初期変位δo、振幅a、各振動数ωで上下振動している場合の履歴吸収エネルギーWは次式となる。

Figure 0005181269
Since it has such hysteresis characteristics, when it vibrates up and down, hysteresis absorbs energy (corresponding to the area inside the square hysteresis loop shown in FIG. 4B) due to friction, and exhibits a vibration damping function.
In this case, the initial absorption K in the vertical direction when there is no friction, the initial displacement δo due to its own weight Po, the amplitude a, and the history absorption energy W when the vibration is up and down at each frequency ω is expressed by the following equation.
Figure 0005181269

さらに、図4(b)に示すように振幅(−a〜+a)での等価剛性をK’とすると、その等価剛性K’とこれにより支持される質量mによって上下振動が決定されることから、等価な減衰係数をCeq、減衰定数をheqとして、減衰で吸収されるエネルギーWは次式で表すことができ、これを上式と等値とすることで減衰定数heqは(4)式として求められる。

Figure 0005181269
Further, as shown in FIG. 4B, when the equivalent stiffness at the amplitude (−a to + a) is K ′, the vertical vibration is determined by the equivalent stiffness K ′ and the mass m supported thereby. The equivalent attenuation coefficient is Ceq, the attenuation constant is heq, and the energy W absorbed by the attenuation can be expressed by the following equation. By making this equal to the above equation, the attenuation constant heq can be expressed as equation (4) Desired.
Figure 0005181269

上記の解析により、いくつかの諸元を設定して等価な減衰定数heqを算定した結果の一例を図5に示す。(a)は傾斜角が1/5すなわちtanθ=0.2の場合、(b)は傾斜角が1/2すなわちtanθ=0.5の場合の例である。
図5から、振幅が大きくなると減衰が小さくなる傾向はあるが、傾斜滑り支承における摩擦係数μを通常の滑り支承と同等にμ=0.05〜0.1程度に設定することで減衰定数heqを0.1〜0.2程度とすることができることが分かる。すなわち、格別の減衰装置を設置しない通常の構造減衰の場合には減衰定数は0.01程度しかないが、本機構によればそれに比較して上下振動を抑制するための充分な減衰性能を付与できることが分かる。
FIG. 5 shows an example of the result of calculating the equivalent attenuation constant heq by setting several specifications by the above analysis. (A) is an example when the tilt angle is 1/5, that is, tan θ = 0.2, and (b) is an example when the tilt angle is 1/2, that is, tan θ = 0.5.
As shown in FIG. 5, the damping tends to decrease as the amplitude increases. However, the damping constant heq is set to 0.1 to 0.2 by setting the friction coefficient μ in the inclined sliding bearing to about 0.05 to 0.1 as in the normal sliding bearing. It turns out that it can be made into a grade. In other words, in the case of normal structural damping without a special damping device, the damping constant is only about 0.01. However, according to this mechanism, sufficient damping performance for suppressing vertical vibrations can be provided. I understand.

以上の解析は変位振幅をもとに整理したものであるが、応力振幅(軸力変動)で整理すると、変位δoで滑りを生じない範囲の応力振幅ΔPが次式の範囲の場合には、変位がδoのままで履歴ループを描かないため、減衰を付与できず、heq=0となる。

Figure 0005181269
The above analysis is organized based on the displacement amplitude, but when organized by stress amplitude (axial force fluctuation), if the stress amplitude ΔP where slip does not occur due to displacement δo is in the range of Since no hysteresis loop is drawn while the displacement remains δo, no attenuation can be imparted and heq = 0.
Figure 0005181269

応力振幅がさらに大きくなると、履歴ループを描くようになり、その場合においては次式によりΔP、a/δoが求められる。

Figure 0005181269
When the stress amplitude is further increased, a hysteresis loop is drawn. In this case, ΔP and a / Δo are obtained by the following equations.
Figure 0005181269

そして、上記で求めたa/δoを(4)式に代入することにより、等価な減衰定数heqは次式で求められる。なお、ΔP/Poは応力振幅比(応答軸力/自重)である。

Figure 0005181269
Then, by substituting a / δo obtained above into the equation (4), an equivalent attenuation constant heq can be obtained by the following equation. ΔP / Po is a stress amplitude ratio (response axial force / self-weight).
Figure 0005181269

以上の解析により変位振幅と同様に等価な減衰定数heqを算定した結果を図6に示す。図6から明らかなように、傾斜角θが小さいほど、また摩擦係数μが大きいほど、減衰効果を発揮し始める応力振幅は大きくなる(つまり、大きな応力振幅にならないと滑り始めず、効き始めが遅くなる)。具体的に一例を挙げれば、傾斜角θが1/2(図6(b)参照)の場合において摩擦係数μ=0.05の場合には、応力軸力が自重Poの0.13倍から効き始め、自重Poの0.8倍までは減衰定数が0.1以上となり、かなり広範囲に応答低減効果を期待できる。
また、減衰定数heqの式にバネ剛性kを含まないことから、減衰定数heqはバネ剛性kによらないことがわかる。
FIG. 6 shows the result of calculating the equivalent attenuation constant heq in the same manner as the displacement amplitude by the above analysis. As is clear from FIG. 6, the smaller the inclination angle θ and the larger the friction coefficient μ, the greater the stress amplitude at which the damping effect begins to be exhibited (that is, the slip amplitude does not start unless the stress amplitude becomes large, and the effect begins to be effective). Become slow). To give a specific example, when the inclination angle θ is 1/2 (see FIG. 6B) and the friction coefficient is μ = 0.05, the stress axial force starts to be effective from 0.13 times its own weight Po. The attenuation constant is 0.1 or more up to 0.8 times Po, and a response reduction effect can be expected over a wide range.
Further, since the spring stiffness k is not included in the expression of the damping constant heq, it can be seen that the damping constant heq does not depend on the spring stiffness k.

以上、本実施形態の上下免震機構について説明したが、以下にその効果について列挙する。
(1)複雑かつ高価な直動機構(リニアガイド)等のメカニズムやオイルダンパー等の減衰装置を使用せず、単なる滑り支承を水平に対してわずかに傾斜配置することのみでその摩擦力により減衰力が得られ、鉛直荷重が大きい場合にも充分に対応できる。そのため、単純な構成でローコストでありながら高性能な上下免震機構を実現することができる。
(2)滑り支承に所定の摩擦係数をもつため、微小振動に対しては滑らず免震効果を発揮しない。このため、常時の歩行や車の移動によって敏感に揺れてしまう所謂「ふかふかバネ」状態にはならない。勿論、大地震時には滑りを生じて摩擦抵抗力を減衰に利用することで応答を充分に低減でき、上下免震機構として有効に機能する。
(3)一般的に、上下動による鉛直方向変位は全ての支承位置でほぼ同一となる。常時荷重(軸力)による支承の鉛直変位が均等になるように(不同沈下しないように)支承内のバネ要素6のバネ剛性kを設定しておけば、応力振幅比ΔP/Poも同一になる。この場合、滑り始めるときの応力振幅比ΔP/Poは次式で決定されるから、バネ剛性kによらず、摩擦係数μ、傾斜角θが一定であれば変わらない。そこで、全ての支承において傾斜面の摩擦係数μと傾斜角θを同じにすれば同時に滑り始め、同一の上下振動をさせることができる。

Figure 0005181269
As mentioned above, although the vertical seismic isolation mechanism of this embodiment was demonstrated, the effect is enumerated below.
(1) Damping by frictional force only by placing a simple sliding bearing slightly inclined with respect to the horizontal without using complicated and expensive linear motion mechanisms (linear guides) and damping devices such as oil dampers Force can be obtained, and it can sufficiently cope with a large vertical load. Therefore, it is possible to realize a high-performance vertical seismic isolation mechanism with a simple configuration and low cost.
(2) Since the sliding bearing has a predetermined coefficient of friction, it does not slide against minute vibrations and does not exhibit a seismic isolation effect. For this reason, a so-called “fluffy spring” state that does not sway sensitively by walking or moving the car at all times is not obtained. Of course, when a large earthquake occurs, slipping occurs and the frictional resistance is used for damping, so that the response can be sufficiently reduced, and it functions effectively as a vertical seismic isolation mechanism.
(3) Generally, the vertical displacement due to vertical movement is substantially the same at all the support positions. If the spring stiffness k of the spring element 6 in the bearing is set so that the vertical displacement of the bearing due to constant load (axial force) is uniform (so that it does not sink unevenly), the stress amplitude ratio ΔP / Po is also the same. Become. In this case, since the stress amplitude ratio ΔP / Po at the start of sliding is determined by the following equation, it does not change as long as the friction coefficient μ and the inclination angle θ are constant regardless of the spring stiffness k. Therefore, if the friction coefficient μ and the inclination angle θ of the inclined surface are made the same in all the bearings, the sliding starts simultaneously and the same vertical vibration can be caused.
Figure 0005181269

(4)減衰定数heqもバネ要素6のバネ剛性kに依存しない(バネ剛性kの値により変化しない)。したがって、全ての支承において傾斜面の摩擦係数μ、傾斜角θを同じにすれば、軸力に比例した減衰力をもつことができる。
(5)傾斜面の摩擦係数μと傾斜角θにより、上下動免震の効果を発揮し始める(滑り始める)時の応力振幅比を任意に設定できる。
なお、応力振幅比ΔP/Poが小さい場合から効果的にするためには摩擦係数μを小さくして傾斜角θを大きくすれば良いが、その場合は応力振幅比ΔP/Poが大きくなったときの減衰定数heqが小さくなってしまう。したがって、上下動が問題となる応力振幅比ΔP/Poの下限を滑り始めとなるように設定することで、これより大きな地震動に対する上下振動を大幅に低減することができる。
また、応力振幅比ΔP/Poが増大するとこれに反比例するように減衰定数heqが減少し、応答低減効果も低下するが、いずれにしても等価な減衰定数heqを0.1程度以上には容易に確保することができる。つまり、一般的な構造物における上下振動に対する減衰定数は0.01程度しかないことを考慮すると、それに比べて10倍以上もの減衰性能を確保でき、大幅な応答低減効果が得られる。
(4) The damping constant heq does not depend on the spring stiffness k of the spring element 6 (it does not change depending on the value of the spring stiffness k). Therefore, if the friction coefficient μ and the inclination angle θ of the inclined surface are the same in all the bearings, it is possible to have a damping force proportional to the axial force.
(5) The stress amplitude ratio at the time when the effect of the vertical motion isolation is started (sliding) can be arbitrarily set by the friction coefficient μ and the inclination angle θ of the inclined surface.
In order to be effective from the case where the stress amplitude ratio ΔP / Po is small, it is only necessary to decrease the friction coefficient μ and increase the inclination angle θ, but in this case, when the stress amplitude ratio ΔP / Po increases. The attenuation constant heq becomes smaller. Therefore, by setting the lower limit of the stress amplitude ratio ΔP / Po in which vertical motion becomes a problem so as to begin to slip, vertical vibration for earthquake motion larger than this can be significantly reduced.
In addition, when the stress amplitude ratio ΔP / Po increases, the damping constant heq decreases in inverse proportion to this, and the response reduction effect also decreases, but in any case, the equivalent damping constant heq is easily secured above 0.1. can do. In other words, considering that the damping constant for vertical vibrations in a general structure is only about 0.01, it is possible to secure a damping performance of 10 times or more, and a significant response reduction effect can be obtained.

(6)全ての支承が同一の上下振動をするため、エネルギー吸収効率が高く、免震層上部基礎に過大な応力を生じない。隣接する支承の鉛直変位が異なると下部構造体2(通常は基礎梁がこれに相当する)に強制変位による大きな応力が生じてしまうが、全ての支承の鉛直変位が同一になるように容易に設定できるのでそのような応力を生じない。
(7)支承内に可動部材3どうしを連結するバネ要素6があるため、そのバネ剛性kにより揺れが収まると原位置に復元するので、残留変形が小さくなる。
(8)滑りを生じた後の鉛直剛性はバネ要素6のバネ剛性kで決定されるが、従来の免震より大幅に低下させることができるので、上下動に対して長周期化し、地震応答が大きく低減される。
(9)傾斜滑り支承4による上下方向の免震のみならず、水平滑り支承5による水平方向の免震効果も同時に得られるので、全体として3次元免震機構となる。
(6) Since all the bearings vibrate in the same vertical direction, the energy absorption efficiency is high and no excessive stress is generated on the base of the seismic isolation layer. If the vertical displacement of adjacent bearings is different, a large stress due to forced displacement is generated in the lower structure 2 (usually the foundation beam is equivalent to this), but it is easy to make the vertical displacement of all the bearings the same. Since it can be set, such stress does not occur.
(7) Since the spring element 6 that connects the movable members 3 to each other in the support is present, when the vibration is settled by the spring stiffness k, the spring element 6 is restored to the original position, so that residual deformation is reduced.
(8) The vertical stiffness after the occurrence of slipping is determined by the spring stiffness k of the spring element 6, but it can be significantly lower than the conventional seismic isolation, so that the vertical motion is longer and the seismic response Is greatly reduced.
(9) Since not only the vertical isolation by the inclined sliding bearing 4 but also the horizontal isolation effect by the horizontal sliding bearing 5 can be obtained at the same time, a three-dimensional seismic isolation mechanism as a whole is obtained.

以上で本発明の一実施形態を説明したが、図7に他の実施形態を示す。
図7(a)は全体の天地を逆に構成したものである。すなわち、可動部材3の上部を水平面として水平滑り支承5により上部構造体1の底面に対して水平変位自在に支持し、可動部材3の下部を傾斜面として傾斜滑り支承4により下部構造体2の上面に対して水平変位自在に支持したものである。この場合は上部側の水平滑り支承5における摩擦係数μを可及的に小さくし、下部側の傾斜滑り支承4における摩擦係数μを所望の減衰を得るように設定することにより、上記実施形態と同様の効果が得られる。
Although one embodiment of the present invention has been described above, another embodiment is shown in FIG.
FIG. 7 (a) is a reverse configuration of the whole top and bottom. That is, the upper part of the movable member 3 is horizontally supported by the horizontal sliding support 5 with respect to the bottom surface of the upper structure 1 with the horizontal slide support 5, and the lower structure 2 is supported by the inclined sliding support 4 with the lower part of the movable member 3 as the inclined surface. It is supported so as to be horizontally displaced with respect to the upper surface. In this case, the friction coefficient μ 1 in the upper horizontal sliding bearing 5 is made as small as possible, and the friction coefficient μ 2 in the lower inclined sliding bearing 4 is set so as to obtain a desired damping. The same effect as the form can be obtained.

図7(c)は他の実施形態を示すもので、図7(b)はその基本構成を示すものである。すなわち、図7(b)は可動部材3の上部および下部の双方を傾斜面とし、双方の傾斜面をいずれも傾斜滑り支承4により水平変位自在に支持したものであり、上下の傾斜滑り支承4の摩擦係数の設定により充分な減衰力が得られる。但し、この場合は上部構造体1と下部構造体2との間の水平方向の相対変位は可動部材3により拘束されるので水平免震効果は期待できず、それが不要な場合に限られる。 FIG. 7 (c) shows another embodiment, and FIG. 7 (b) shows its basic configuration. That is, in FIG. 7B, both the upper and lower parts of the movable member 3 are inclined surfaces, and both of the inclined surfaces are supported by the inclined sliding bearing 4 so as to be horizontally displaceable. A sufficient damping force can be obtained by setting the friction coefficient. However, in this case, since the horizontal relative displacement between the upper structure 1 and the lower structure 2 is restrained by the movable member 3, a horizontal seismic isolation effect cannot be expected, and only when it is unnecessary.

そこで、図7(c)はさらに下部構造体2を基盤7に対して水平免震機構8を介して水平方向に免震支持したもの、すなわち(b)に示した上下免震機構全体をさらに水平免震支持して全体として3次元免震機構を構成したものである。この場合、上下免震機構全体を免震支持するための水平免震機構8としては、水平滑り支承はもとよりベアリング支承やローラ支承等の転がり支承のみならず積層ゴム等も採用可能である。 Therefore, FIG. 7 (c) further shows a structure in which the lower structure 2 is supported in the horizontal direction with respect to the base 7 via the horizontal seismic isolation mechanism 8, that is, the entire vertical seismic isolation mechanism shown in FIG. A three-dimensional seismic isolation mechanism is constructed as a whole in support of horizontal seismic isolation. In this case, as the horizontal seismic isolation mechanism 8 for isolating and supporting the entire vertical seismic isolation mechanism, not only horizontal sliding bearings but also rolling bearings such as bearing bearings and roller bearings, laminated rubber or the like can be adopted.

図7(d)は可動部材3の向きを上記各例とは逆にして高さ寸法の小さい先端どうしを対向させ、バネ要素6として可動部材3どうしを常に内側に付勢する引きバネを用いたものである。この場合は、上部構造体1が下方に変位した際には各可動部材3はバネ要素6に抗してそれを伸張させつつ互いに離反するように外側に押し出され、上部構造体1が上方に変位した際にはバネ要素6の付勢力によって各可動部材3は互いに接近するように内側に引き寄せられることになり、動作方向が逆になるだけで上記各例と同様に機能する。勿論、この場合も傾斜面の位置は任意であって図示しているように下部を傾斜面とすることに限らず、図7(a)〜(c)に示したように傾斜面を下部としたり、あるいは上部と下部の双方にしても良いことはいうまでもない。   In FIG. 7D, the movable member 3 is turned in the opposite direction to the above examples, the tips having small heights are opposed to each other, and a pulling spring that constantly urges the movable members 3 inward is used as the spring element 6. It was. In this case, when the upper structure 1 is displaced downward, each movable member 3 is pushed outward so as to be separated from each other while extending the spring element 6 against the spring element 6, and the upper structure 1 is moved upward. When displaced, the movable members 3 are attracted inward so as to approach each other by the urging force of the spring element 6 and function in the same manner as in the above examples only in the reverse direction of operation. Of course, in this case as well, the position of the inclined surface is arbitrary, and the lower surface is not limited to the inclined surface as shown, but the inclined surface is the lower portion as shown in FIGS. It goes without saying that both the upper part and the lower part may be used.

なお、上記各例ではいずれも可動部材3を1対2台として使用したが、2対4台の可動部材を直交方向に配置したり、あるいは多数対の可動部材を放射状に配置したり任意の方向に向けて配置することも考えられる。   In each of the above examples, the movable members 3 are used as one-to-two units, but two-to-four movable members are arranged in an orthogonal direction, or a large number of pairs of movable members are arranged radially. It can also be arranged in the direction.

本発明の一実施形態である上下免震機構を示す概略構成図である。It is a schematic block diagram which shows the vertical seismic isolation mechanism which is one Embodiment of this invention. 同、解析例を示す図である。It is a figure which shows the example of an analysis same as the above. 同、解析例を示す図である。It is a figure which shows the example of an analysis same as the above. 同、解析例を示す図である。It is a figure which shows the example of an analysis same as the above. 同、解析結果を示す図である。It is a figure which shows an analysis result similarly. 同、解析結果を示す図である。It is a figure which shows an analysis result similarly. 同、他の実施形態を示す図である。It is a figure which shows other embodiment same as the above.

符号の説明Explanation of symbols

1 上部構造体
2 下部構造体
3 可動部材
4 傾斜滑り支承
5 水平滑り支承
6 バネ要素
7 基盤
8 水平免震機構
DESCRIPTION OF SYMBOLS 1 Upper structure 2 Lower structure 3 Movable member 4 Inclined sliding bearing 5 Horizontal sliding bearing 6 Spring element 7 Base 8 Horizontal seismic isolation mechanism

Claims (3)

上部構造体と下部構造体の間に生じる上下方向の相対振動に対して免震効果を得る上下免震機構であって、
上部または下部のいずれか一方が水平に対して傾斜する傾斜面とされ、他方が水平面とされた略楔状の可動部材を少なくとも1対用いて、双方の可動部材の一端どうしを対向させた状態で対称配置して上部構造体と下部構造体との間に介装し、
各可動部材の傾斜面を傾斜滑り支承により上部構造体または下部構造体に対して水平方向に変位自在に支持するとともに、各可動部材の水平面を水平滑り支承により下部構造体または上部構造体に対して水平方向に変位自在に支持することにより、上部構造体と下部構造体との間に上下方向の相対変位が生じた際に双方の可動部材を傾斜滑り支承および水平滑り支承により案内して互いに離接するように逆向きの水平方向に変位可能とし、
かつ、双方の可動部材の一端どうしをバネ要素により連結してなることを特徴とする上下免震機構。
A vertical seismic isolation mechanism that obtains a seismic isolation effect with respect to the vertical relative vibration generated between the upper structure and the lower structure,
With at least one pair of substantially wedge-shaped movable members in which either the upper part or the lower part is inclined with respect to the horizontal and the other is a horizontal surface, the ends of both movable members are opposed to each other. Symmetrically placed between the upper structure and the lower structure,
The inclined surface of each movable member is supported so as to be horizontally displaceable with respect to the upper structure or the lower structure by an inclined sliding support, and the horizontal surface of each movable member is supported against the lower structure or the upper structure by a horizontal sliding support. In this way, when the relative displacement in the vertical direction occurs between the upper structure and the lower structure, both movable members are guided by the inclined sliding bearing and the horizontal sliding bearing so that they are mutually supported. Displaceable in the opposite horizontal direction so as to be separated,
A vertical seismic isolation mechanism characterized in that one end of both movable members is connected by a spring element.
請求項1記載の上下免震機構であって、
傾斜滑り支承における摩擦抵抗力によって上部構造体と下部構造体との間の上下方向の相対振動に対する減衰力を得るように傾斜滑り支承における摩擦係数を設定し、
かつ、水平滑り支承における摩擦係数を傾斜滑り支承における摩擦係数よりも小さく設定して、該水平滑り支承によって上部構造体を下部構造体に対して水平各方向に相対変位自在に支持してなることを特徴とする上下免震機構。
The vertical seismic isolation mechanism according to claim 1,
Set the coefficient of friction in the inclined sliding bearing so as to obtain a damping force against the relative vibration in the vertical direction between the upper structure and the lower structure by the frictional resistance force in the inclined sliding bearing,
In addition, the friction coefficient in the horizontal sliding bearing is set to be smaller than the friction coefficient in the inclined sliding bearing, and the upper structure is supported by the horizontal sliding bearing so as to be relatively displaceable relative to the lower structure in each horizontal direction. A vertical seismic isolation mechanism.
上部構造体と下部構造体の間に生じる上下方向の相対振動に対して免震効果を得る上下免震機構であって、
上部および下部の双方が水平に対して互いに逆方向に同角度傾斜する傾斜面とされた略楔状の可動部材を少なくとも1対用いて、双方の可動部材の一端どうしを対向させた状態で対称配置して上部構造体と下部構造体との間に介装し、
各可動部材の上下の傾斜面をそれぞれ傾斜滑り支承により上部構造体および下部構造体に対して水平方向に変位自在に支持することにより、上部構造体と下部構造体との間に上下方向の相対変位が生じた際に双方の可動部材を上下の傾斜滑り支承により案内して互いに離接するように逆向きの水平方向に変位可能とし、
かつ、双方の可動部材の一端どうしをバネ要素により連結し、
傾斜滑り支承における摩擦抵抗力によって上部構造体と下部構造体との間の上下方向の相対振動に対する減衰力を得るように傾斜滑り支承における摩擦係数を設定し、
かつ、下部構造体とそれを支持する基盤との間に、下部構造体を基盤に対して水平各方向に相対変位自在に支持する水平免震機構を介装してなることを特徴とする上下免震機構。
A vertical seismic isolation mechanism that obtains a seismic isolation effect with respect to the vertical relative vibration generated between the upper structure and the lower structure,
Using at least one pair of substantially wedge-shaped movable members whose upper and lower surfaces are inclined at the same angle in the opposite direction with respect to the horizontal, they are arranged symmetrically with one end of both movable members facing each other. Interposing between the upper structure and the lower structure,
The upper and lower inclined surfaces of each movable member are supported by an inclined sliding support so as to be horizontally displaceable with respect to the upper structure and the lower structure. When the displacement occurs, both movable members can be displaced in the horizontal direction in the opposite direction so as to be guided by the upper and lower inclined sliding bearings and separated from each other,
And, one end of both movable members are connected by a spring element ,
Set the coefficient of friction on the inclined sliding bearings to obtain a damping force against vertical relative vibrations between the upper structure and the lower structure by the frictional resistance on the inclined sliding bearings,
In addition, a vertical seismic isolation mechanism is provided between the lower structure and the base that supports it, and a horizontal seismic isolation mechanism that supports the lower structure so as to be relatively displaceable relative to the base in each horizontal direction. Seismic isolation mechanism.
JP2007231571A 2007-09-06 2007-09-06 Vertical seismic isolation mechanism Expired - Fee Related JP5181269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007231571A JP5181269B2 (en) 2007-09-06 2007-09-06 Vertical seismic isolation mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007231571A JP5181269B2 (en) 2007-09-06 2007-09-06 Vertical seismic isolation mechanism

Publications (2)

Publication Number Publication Date
JP2009062733A JP2009062733A (en) 2009-03-26
JP5181269B2 true JP5181269B2 (en) 2013-04-10

Family

ID=40557558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231571A Expired - Fee Related JP5181269B2 (en) 2007-09-06 2007-09-06 Vertical seismic isolation mechanism

Country Status (1)

Country Link
JP (1) JP5181269B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103410242A (en) * 2013-08-16 2013-11-27 姚庚明 Vertical variable-rigidity elastic support
KR101479282B1 (en) 2013-08-08 2015-01-05 부산대학교 산학협력단 Vertical direction vibration reducing device
CN105696707A (en) * 2016-01-26 2016-06-22 熊伟 Multi-pyramid-surface friction shock insulation support and shock insulation system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581626A4 (en) * 2010-06-14 2018-01-24 National University Corporation Kumamoto University Vibration dampening device
JP5469019B2 (en) * 2010-08-27 2014-04-09 帝二 児島 Vertical seismic isolation support device
JP5850231B2 (en) * 2011-12-20 2016-02-03 清水建設株式会社 Slip isolation mechanism
JP5967440B2 (en) * 2012-12-17 2016-08-10 清水建設株式会社 Slip isolation mechanism
KR101575743B1 (en) 2014-06-20 2015-12-11 한국철도공사 Vibration damper utilizing wedges
JP2017125324A (en) * 2016-01-13 2017-07-20 清水建設株式会社 Base isolation structure
CN110144815A (en) * 2019-06-03 2019-08-20 成都济通路桥科技有限公司 A kind of stepless height-adjustable supports and method is turned up
CN110230359B (en) * 2019-06-13 2020-05-12 山东大学 Self-resetting damper utilizing friction energy dissipation of wedge-shaped sliding block and manufacturing method
JP6669333B1 (en) * 2019-06-26 2020-03-18 有限会社沖田工業技術開発 Seismic isolation device
JP7286472B2 (en) * 2019-08-22 2023-06-05 清水建設株式会社 ROOF STRUCTURE AND ROOF STRUCTURE CONSTRUCTION METHOD
CN112748067B (en) * 2020-12-23 2024-06-04 济通智能装备股份有限公司 Calibration method for force measuring device and support based on friction coefficient measurement
CN114607724A (en) * 2022-01-21 2022-06-10 清远翻转信息科技有限公司 Digital audio processor with efficient protection function and use method thereof
CN114575199B (en) * 2022-03-11 2023-09-26 中国航空规划设计研究总院有限公司 Vertical shock-proof device
CN118310667B (en) * 2024-06-11 2024-09-27 石家庄铁道大学 Bridge support force measuring device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS214285B1 (en) * 1980-10-10 1982-04-09 Jaroslav Jerabek Friction insulator with unchanging cross section
JPS63210433A (en) * 1987-02-24 1988-09-01 Yokohama Rubber Co Ltd:The Damping device
JPH0469431A (en) * 1990-07-06 1992-03-04 Sumitomo Rubber Ind Ltd Vibro-isolating supporter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479282B1 (en) 2013-08-08 2015-01-05 부산대학교 산학협력단 Vertical direction vibration reducing device
CN103410242A (en) * 2013-08-16 2013-11-27 姚庚明 Vertical variable-rigidity elastic support
CN103410242B (en) * 2013-08-16 2015-07-22 姚庚明 Vertical variable-rigidity elastic support
CN105696707A (en) * 2016-01-26 2016-06-22 熊伟 Multi-pyramid-surface friction shock insulation support and shock insulation system

Also Published As

Publication number Publication date
JP2009062733A (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP5181269B2 (en) Vertical seismic isolation mechanism
JP5850231B2 (en) Slip isolation mechanism
JP5970818B2 (en) Seismic isolation mechanism
JP6183478B2 (en) Seismic isolation mechanism
JP6482373B2 (en) Seismic isolation structure
JP5638762B2 (en) Building
JP2012042016A (en) Three-dimensional base isolation device
JP4822132B2 (en) Vertical seismic isolation mechanism
JP4410725B2 (en) Vertical seismic isolation unit and seismic isolation device using the same
JP6636383B2 (en) Seismic isolation structure and method of designing seismic isolation structure
JPH02107843A (en) Three dimentional oscillation isolating device
JP4822133B2 (en) Displacement expansion mechanism, damping damper and seismic isolation mechanism
JP5662923B2 (en) Seismic isolation device
JP2015105554A (en) Base-isolation structure
JP7222219B2 (en) Vertical vibration damping device and vertical vibration damping structure
JP4706958B2 (en) Seismic isolation structure
JP2016056875A (en) Seismic base isolation structure with vibration control function
JP7129780B2 (en) Floor seismic isolation system
JP5518399B2 (en) Seismic isolation device
JPH04154B2 (en)
WO2005111345A1 (en) Base isolation structure
JP2006291670A (en) Base isolating device
JP2020169540A (en) Structure and design method of structure
JP7529611B2 (en) Seismic isolation mechanism
JPH1096445A (en) Base isolation device and electronic device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5181269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees