[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6947164B2 - 電子回路、および、電子回路の制御方法 - Google Patents

電子回路、および、電子回路の制御方法 Download PDF

Info

Publication number
JP6947164B2
JP6947164B2 JP2018506785A JP2018506785A JP6947164B2 JP 6947164 B2 JP6947164 B2 JP 6947164B2 JP 2018506785 A JP2018506785 A JP 2018506785A JP 2018506785 A JP2018506785 A JP 2018506785A JP 6947164 B2 JP6947164 B2 JP 6947164B2
Authority
JP
Japan
Prior art keywords
signal
capacitor
output
voltage
duty ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018506785A
Other languages
English (en)
Other versions
JPWO2017163528A1 (ja
Inventor
彰人 関谷
彰人 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Sony Group Corp
Original Assignee
Sony Corp
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Sony Group Corp filed Critical Sony Corp
Publication of JPWO2017163528A1 publication Critical patent/JPWO2017163528A1/ja
Application granted granted Critical
Publication of JP6947164B2 publication Critical patent/JP6947164B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/02Sample-and-hold arrangements
    • G11C27/024Sample-and-hold arrangements using a capacitive memory element
    • G11C27/026Sample-and-hold arrangements using a capacitive memory element associated with an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0036Means reducing energy consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/466Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter using switched capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Electronic Switches (AREA)

Description

本技術は、電子回路、および、電子回路の制御方法に関する。詳しくは、信号の取込みを行う電子回路、および、電子回路の制御方法に関する。
従来より、アナログデジタル変換器などにおいて、アナログ信号の取込み(サンプリング)を行って保持するサンプリングホールド回路が用いられている。このサンプリングホールド回路は、例えば、ゲートに入力されたアナログ信号をドレインから出力するトランジスタと、その出力されたアナログ信号を保持するコンデンサとを備える。このトランジスタのゲート電圧を固定にすると、ソース電圧(すなわち、アナログ信号のレベル)の変動に起因してゲート−ソース間電圧が変動してトランジスタのオン抵抗が変化してしまう。このオン抵抗の変化により、ドレインから出力されたアナログ信号のレベルがソースに入力されたアナログ信号のレベルに比例しなくなり、AD変換の精度が低下する。このため、ゲート−ソース間電圧を一定に維持することが望ましい。
そこで、トランジスタのゲートおよびソースにブートストラップ回路を接続したサンプリングホールド回路が提案されている(例えば、特許文献1参照。)。このブートストラップ回路は、サンプリングクロックがローレベルの際には、コンデンサの両端の接続先を電源端子および接地端子に切り替えてコンデンサを充電する。一方、サンプリングクロックがハイレベルの際には、ブートストラップ回路はコンデンサの両端の接続先をトランジスタのソースおよびゲートに切り替えて、ゲート−ソース間にコンデンサの充電電圧を印加する。
特開2004−228988号公報
上述の従来技術では、ブートストラップ回路を用いることにより、ソース電圧(すなわち、アナログ信号のレベル)の変動に対して、トランジスタの駆動電圧(ゲート−ソース間電圧)を一定にしていた。しかしながら、上述の従来技術では、サンプリングクロックのハイレベルの期間が長くなると、ゲート−ソース間電圧が変動してしまうおそれがある。これは、コンデンサの接続先を切り替えるスイッチにリーク電流が生じ、そのリーク電流によりコンデンサの充電電圧が時間の経過に伴って低下してしまうためである。サンプリングクロックのハイレベルの期間を分周器を用いて短くする方法もあるが、サンプリングクロックよりも周波数の高いクロックにより分周器を駆動する必要があり、消費電力が増大するおそれがある。このように、上述の従来技術では、トランジスタの駆動電圧(ゲート−ソース間電圧)を一定に制御することが困難であるという問題がある。
本技術はこのような状況に鑑みて生み出されたものであり、信号を取り込む回路において、トランジスタの駆動電圧を一定に制御することを目的とする。
本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、所定の入力周期信号のデューティ比を変更して出力周期信号として出力するデューティ比制御部と、ソースに入力された入力信号をドレインから出力信号として出力するトランジスタと、コンデンサと、上記出力周期信号が特定のレベルでない場合には上記コンデンサに所定電圧を充電する充電制御部と、上記出力周期信号が上記特定のレベルである場合には上記充電された所定電圧を上記トランジスタのゲートおよびソースの間に印加するトランジスタ駆動部とを具備する電子回路、および、その制御方法である。これにより、コンデンサに充電された所定電圧がトランジスタのゲートおよびソースに印加されるという作用をもたらす。
また、この第1の側面において、上記デューティ比制御回路は、上記所定の入力周期信号が上記特定のレベルである期間を所定時間より短くしてもよい。これにより、特定のレベルである期間が所定時間より短い周期信号に同期して入力信号が取り込まれるという作用をもたらす。
また、この第1の側面において、上記デューティ比制御回路は、上記所定の入力周期信号を反転して反転信号として出力する反転部と、上記反転信号を遅延させて遅延信号として出力する遅延部と、上記所定の入力周期信号が上記特定のレベルである場合には上記遅延信号を選択して上記出力周期信号として出力する選択部とを備えてもよい。これにより、入力周期信号が特定のレベルである場合に遅延信号が選択されるという作用をもたらす。
また、この第1の側面において、上記充電制御部は、上記出力周期信号が上記特定のレベルでない場合には端子間電圧が上記所定電圧である2つの端子に上記コンデンサの両端を接続し、上記トランジスタ駆動部は、上記出力周期信号が上記特定のレベルである場合には上記コンデンサの両端を上記ゲートおよび上記ソースに接続してもよい。これにより、コンデンサの両端が2つの端子またはゲートおよびソースに接続されるという作用をもたらす。
また、この第1の側面において、上記出力信号を保持する保持部をさらに具備してもよい。これにより、信号がサンプリングおよびホールドされるという作用をもたらす。
また、この第1の側面において、上記保持された出力信号をデジタル信号に変換する変換部をさらに具備してもよい。これにより、保持された信号がデジタル信号に変換されるという作用をもたらす。
また、この第1の側面において、上記出力信号を保持するキャパシタと、上記出力周期信号に応じて上記キャパシタを充放電する充放電制御部とを具備してもよい。これにより、取り込まれた信号に対するフィルタリングが行われるという作用をもたらす。
本技術によれば、信号を取り込む回路において、トランジスタの駆動電圧を一定に制御することことができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の第1の実施の形態における電子回路の一構成例を示すブロック図である。 本技術の第1の実施の形態におけるアナログデジタル変換器の一構成例を示すブロック図である。 本技術の第1の実施の形態における正側サンプリングホールド回路の一構成例を示す回路図である。 本技術の第1の実施の形態における電源側スイッチおよび接地側スイッチの一構成例を示す回路図である。 本技術の第1の実施の形態におけるブートストラップ回路の動作の一例を示す図である。 本技術の第1の実施の形態におけるデューティ比制御回路の一構成例を示す回路図である。 本技術の第1の実施の形態におけるデューティ比制御回路の動作の一例を示すタイミングチャートである。 本技術の第1の実施の形態におけるデジタルアナログ変換部の一構成例を示す回路図である。 本技術の第1の実施の形態における逐次比較制御部の一構成例を示すブロック図である。 本技術の第1の実施の形態におけるアナログデジタル変換器の動作の一例を示すタイミングチャートである。 比較例におけるアナログデジタル変換器の動作の一例を示すタイミングチャートである。 本技術の第1の実施の形態におけるアナログデジタル変換器の動作の一例を示すフローチャートである。 本技術の第2の実施の形態における電子回路の一構成例を示すブロック図である。 本技術の第2の実施の形態におけるスイッチドキャパシタフィルタの一構成例を示す回路図である。
以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
1.第1の実施の形態(サンプリングクロックのデューティ比を制御する例)
2.第2の実施の形態(スイッチングクロックのデューティ比を制御する例)
<1.第1の実施の形態>
[電子回路の構成例]
図1は、第1の実施の形態における電子回路100の一構成例を示すブロック図である。この電子回路100は、デジタル信号を処理する回路であり、例えば、環境モニター機器やデジタルヘルス機器、無線通信機器などに搭載される。電子回路100は、サンプリングクロック供給部110、アナログ信号供給部120、アナログデジタル変換器200およびデジタル信号処理部130を備える。
サンプリングクロック供給部110は、所定の周波数の周期信号をサンプリングクロックCLKSMPとして生成し、信号線119を介してアナログデジタル変換器200に供給するものである。
アナログ信号供給部120は、アナログ信号をアナログデジタル変換器200に信号線128および129を介して供給するものである。このアナログ信号は、例えば、差動信号であり、正側入力電圧Vinpと負側入力電圧Vinnとからなる。アナログ信号供給部120として、例えば、温度センサー、湿度センサーおよび圧力センサーなどのセンサーやアンテナが想定される。なお、アナログ信号供給部120は、電圧の代わりに電流をアナログ信号として供給してもよい。また、アナログ信号供給部120は、差動信号の代わりにシングルエンド信号を供給してもよい。
アナログデジタル変換器200は、入力サンプリングクロックCLKinに同期してアナログの入力電圧Vinをサンプリングしてデジタル信号Doutに変換するものである。そして、アナログデジタル変換器200は、デジタル信号Doutを信号線209を介してデジタル信号処理部130に供給する。
デジタル信号処理部130は、デジタル信号Doutに対して所定の処理を実行するものである。実行される処理は、温度センサー、湿度センサーまたは圧力センサー等の測定値による環境モニタリングや無線通信処理などである。
[アナログデジタル変換器の構成例]
図2は、第1の実施の形態におけるアナログデジタル変換器200の一構成例を示すブロック図である。このアナログデジタル変換器200は、正側サンプリングホールド回路210、負側サンプリングホールド回路250およびデジタルアナログ変換部260を備える。また、アナログデジタル変換器200は、コンパレータ282と、反転部281および283と、逐次比較制御部270とを備える。
正側サンプリングホールド回路210は、入力サンプリングクロックCLKinに同期して正側入力電圧Vinpをサンプリングして保持するものである。この正側サンプリングホールド回路210は、保持した正側入力電圧Vinpを正側出力電圧Voutpとしてデジタルアナログ変換部260に供給する。
負側サンプリングホールド回路250は、入力サンプリングクロックCLKinに同期して負側入力電圧Vinnをサンプリングして保持するものである。この負側サンプリングホールド回路250は、保持した負側入力電圧Vinnを負側出力電圧Voutnとしてデジタルアナログ変換部260に供給する。
デジタルアナログ変換部260は、正側制御信号xDACpおよび負側制御信号xDACnに従って、正側出力電圧Voutpおよび負側出力電圧Voutnを増減するものである。正側制御信号xDACpおよび負側制御信号xDACnのそれぞれのデータサイズは、N(Nは整数)−1ビットである。このデジタルアナログ変換部260は、増減後の正側出力電圧Voutpおよび負側出力電圧Voutnをコンパレータ282の非反転入力端子(+)および反転入力端子(−)に供給する。
コンパレータ282は、制御クロックCLKCOMPに同期して非反転入力端子(+)の電圧と反転入力端子(−)の電圧とを比較するものである。このコンパレータ282は、比較結果COMPpおよびCOMPnを逐次比較制御部270に供給する。
逐次比較制御部270は、コンパレータ282の比較結果に基づいて制御クロックCLKCOMPと正側制御信号DACpおよび負側制御信号DACnとを生成するものである。この逐次比較制御部270は、正側制御信号DACpを反転部281に供給し、負側制御信号DACnを反転部283に供給する。また、逐次比較制御部270は、制御クロックCLKCOMPを生成してコンパレータ282に供給する。また、逐次比較制御部270は、N個の比較結果からNビットのデジタル信号Doutを生成してデジタル信号処理部130に出力する。
上述のように逐次比較制御部270は、外部からのクロック信号を用いずに逐次比較制御を行っている。このように、外部クロックを用いないアナログデジタル変換器200は、内部同期型と呼ばれる。内部同期型の副次的な効果としてAD変換のワンショット動作が可能となる。ここで、ワンショット動作とは、プッシュスイッチの操作などによる1回だけの信号変化によりAD変換を開始し、AD変換の終了まで継続する動作である。
これに対して、外部からのクロック信号を用いて逐次比較制御を行う変換器は、外部同期型と呼ばれる。アナログデジタル変換器200は、外部同期型のものであってもよい。この場合には、入力サンプリングクロックCLKinよりも周波数の高いクロック信号が逐次比較制御部270に入力され、逐次比較制御部270は、そのクロック信号に同期して動作する。
反転部281は、正側制御信号DACpのビットのそれぞれを反転するものである。この反転部281は、反転処理後の制御信号を正側制御信号xDACpとしてデジタルアナログ変換部260に供給する。
反転部283は、負側制御信号DACnのビットのそれぞれを反転するものである。この反転部283は、反転処理後の制御信号を負側制御信号xDACnとしてデジタルアナログ変換部260に供給する。
なお、アナログデジタル変換器200は、差動信号をAD変換しているが、シングルエンド信号をAD変換してもよい。この場合には、例えば、入力電圧が正側サンプリングホールド回路210に入力され、固定電圧が負側サンプリングホールド回路250に入力される。
また、正側サンプリングホールド回路210および負側サンプリングホールド回路250以外の回路は、特許請求の範囲に記載の変換部の一例である。
[正側サンプリングホールド回路の構成例]
図3は、第1の実施の形態における正側サンプリングホールド回路210の一構成例を示す回路図である。この正側サンプリングホールド回路210は、デューティ比制御回路220、ブートストラップ回路230、N型トランジスタ241、コンデンサ242およびアンプ243を備える。また、ブートストラップ回路230は、電源側スイッチ231、コンデンサ234、接地側スイッチ235およびゲート側スイッチ238を備える。なお、負側サンプリングホールド回路250の構成は、正側サンプリングホールド回路210と同様である。
デューティ比制御回路220は、入力サンプリングクロックCLKinのデューティ比を変更するものである。例えば、周期に対するハイレベルの期間の比率をデューティ比とすると、デューティ比制御回路220は、デューティ比を小さく(すなわち、ハイレベルの期間を短く)する。デューティ比制御回路220は、デューティ比を小さくした入力サンプリングクロックCLKinを出力サンプリングクロックCLKoutとしてブートストラップ回路230に供給する。なお、デューティ比制御回路220は、特許請求の範囲に記載のデューティ比制御部の一例である。
電源側スイッチ231は、出力サンプリングクロックCLKoutに応じてコンデンサ234の電源側端子の接続先を切り替えるものである。この電源側スイッチ231は、出力サンプリングクロックCLKoutがローレベルの場合に、コンデンサ234の電源側端子を、電源電圧Vddの電源端子に接続する。一方、出力サンプリングクロックCLKoutがハイレベルの場合に電源側スイッチ231は、コンデンサ234の電源側端子を、N型トランジスタ241のゲートとゲート側スイッチ238とに接続する。
接地側スイッチ235は、出力サンプリングクロックCLKoutに応じてコンデンサ234の接地側端子の接続先を切り替えるものである。この接地側スイッチ235は、出力サンプリングクロックCLKoutがローレベルの場合に、コンデンサ234の接地側端子を接地端子に接続する。一方、出力サンプリングクロックCLKoutがハイレベルの場合に接地側スイッチ235は、コンデンサ234の接地側端子を、N型トランジスタ241のソースとアナログ信号供給部120とに接続する。ここで、電源端子と接地端子との間の電源電圧Vddは、N型トランジスタ241の閾値電圧よりも高いものとする。
ゲート側スイッチ238は、出力サンプリングクロックCLKoutに応じてN型トランジスタ241のゲートと接地端子との間の経路を開閉するものである。このゲート側スイッチ238の一端は、電源側スイッチ231とN型トランジスタ241のゲートとに接続され、他端は接地端子に接続される。そして、ゲート側スイッチ238は、出力サンプリングクロックCLKoutがハイレベルの場合に開状態に移行し、ローレベルの場合に閉状態に移行する。
N型トランジスタ241は、ソースに入力された入力電圧Vinをドレインから出力するものである。N型トランジスタ241として、例えば、MOS(Metal-Oxide-Semiconductor)トランジスタが用いられる。N型トランジスタ241のソースは、アナログ信号供給部120および接地側スイッチ235に接続され、ゲートは電源側スイッチ231およびゲート側スイッチ238に接続される。また、N型トランジスタ241のドレインは、コンデンサ242およびアンプ243に接続される。なお、N型トランジスタ241は、特許請求の範囲に記載のトランジスタの一例である。
コンデンサ242は、N型トランジスタ241でサンプリングされた信号を保持するものである。アンプ243は、コンデンサ242の保持電圧を増幅して正側出力電圧Voutpとしてデジタルアナログ変換部260に出力するものである。なお、コンデンサ242は、特許請求の範囲に記載の保持部の一例である。
上述の構成により、出力サンプリングクロックCLKoutがローレベルの場合に電源側スイッチ231および接地側スイッチ235は、コンデンサ234の両端を電源端子および接地端子に接続して電源電圧Vddで充電する。また、ゲート側スイッチ238は、N型トランジスタ241のゲートに接地端子を接続してN型トランジスタ241をオフ状態に制御する。
一方、出力サンプリングクロックCLKoutがハイレベルの場合に電源側スイッチ231および接地側スイッチ235は、コンデンサ234の両端をN型トランジスタ241のゲートおよびソースに接続する。これにより、ソースの電圧(正側入力電圧Vinp)に、コンデンサの充電電圧Vddを加算した電圧がN型トランジスタ241のゲートに印加される。すなわち、N型トランジスタ241のゲート−ソース間に、コンデンサの充電電圧(Vdd)が印加される。
ここで、ブートストラップ回路230を設けず、N型トランジスタ241のゲートに電源端子を直接接続した比較例の回路を想定する。この比較例では、N型トランジスタ241のゲート−ソース間電圧Vgsが、ソースの電圧(Vinp)により変動する。一般に、MOSトランジスタでは、ゲート−ソース間電圧Vgsの変動に起因してMOSトランジスタのオン抵抗が変化してしまう。このオン抵抗の変化により、ソースに入力されたアナログ信号のレベルが、ドレインから出力されたアナログ信号のレベルに比例しなくなり、AD変換の精度が低下する。この不正確なAD変換の影響は、デジタル信号の軌跡において歪みとして現れる。
これに対して、正側サンプリングホールド回路210では、ブートストラップ回路230を設けている。このブートストラップ回路230は、出力サンプリングクロックCLKoutがハイレベルの期間に亘って、N型トランジスタ241のゲート−ソース間にコンデンサ234を挿入してゲート−ソース間電圧Vgsを一定に維持する。したがって、ブートストラップ回路230を設けることにより、アナログデジタル変換器200は、AD変換を正確に行うことができる。
ただし、前述したように、出力サンプリングクロックCLKoutのハイレベルの期間が長いと、接地側スイッチ235やゲート側スイッチ238で生じるリーク電流ILEAKによりコンデンサ234の充電電圧が低下するおそれがある。特に、微細なプロセス世代においては、このリーク電流ILEAKの影響が顕著となる。また、入力サンプリングクロックCLKinの周波数が低いほどハイレベルの期間が長くなるため、このリーク電流ILEAKの影響が顕著となる。近年は、低消費電力化の要求が高まっていることから、システムの消費電力を低下させる目的で、入力サンプリングクロックCLKinの周波数を下げることがよく行われる。このため、リーク電流ILEAKによる影響、すなわちコンデンサ234の充電電圧の低下を抑制する必要がある。
上述の観点から、出力サンプリングクロックCLKoutのハイレベルの期間は短い(すなわち、デューティ比が小さい)ことが望ましい。例えば、デューティ比は、1/2より小さいことが望ましい。
そこで、デューティ比制御回路220は、出力サンプリングクロックCLKoutのハイレベルの期間を、所定時間(例えば、クロック周期の半分)よりも短くしている。これにより、リーク電流ILEAKによるコンデンサ234の充電電圧の低下を抑制して、N型トランジスタ241のゲート−ソース間電圧を一定に維持することができる。
なお、N型トランジスタ241の代わりに、P型トランジスタを設けてもよい。この場合にはゲート側スイッチ238の一端に電源端子を接続し、電源側スイッチ231と接地側スイッチ234との位置を入れ替えればよい。また、正側サンプリングホールド回路210は、入力サンプリングクロックCLKinがハイレベルのときにサンプリングしているが、ローレベルのときにサンプリングしてもよい。この場合において、電源側スイッチ231および接地側スイッチ235は、入力サンプリングクロックCLKinがハイレベルのときにコンデンサ234を充電すればよい。
[スイッチの構成例]
図4は、第1の実施の形態における電源側スイッチ231および接地側スイッチ235の一構成例を示す回路図である。電源側スイッチ231は、P型トランジスタ232およびN型トランジスタ233を備える。また、接地側スイッチ235は、P型トランジスタ236およびN型トランジスタ237を備える。P型トランジスタ232、N型トランジスタ233、P型トランジスタ236およびN型トランジスタ237として、例えば、MOSトランジスタが用いられる。
P型トランジスタ232および236は、出力サンプリングクロックCLKoutがローレベルの場合にコンデンサ234の両端に電源端子および接地端子を接続して電源電圧Vddにより充電する。なお、P型トランジスタ232および236は特許請求の範囲に記載の充電制御部の一例である。また、P型トランジスタ232および236は、電源端子および接地端子にコンデンサ234を接続しているが、端子間電圧がN型トランジスタ241の閾値電圧を超える2つの端子であれば、電源端子および接地端子以外の端子に接続することができる。
N型トランジスタ233および237は、出力サンプリングクロックCLKoutがハイレベルの場合に、コンデンサ234の両端をN型トランジスタ241のソースおよびゲートに接続して、ゲート−ソース間にコンデンサ234の充電電圧を印加する。なお、N型トランジスタ233および237は、特許請求の範囲に記載のトランジスタ駆動部の一例である。
図5は、第1の実施の形態におけるブートストラップ回路230の動作の一例を示す図である。出力サンプリングクロックCLKoutがローレベルの場合にブートストラップ回路230は、N型トランジスタ241をオフ状態にし、電源電圧Vddによりコンデンサ234を充電する。一方、出力サンプリングクロックCLKoutがハイレベルの場合にブートストラップ回路230は、アナログ信号にコンデンサの充電電圧(Vdd)を加算した電圧をN型トランジスタ241のゲートに出力してN型トランジスタ241をオン状態にする。N型トランジスタ241のソースにはアナログ信号が入力されているため、N型トランジスタ241のゲート−ソース間の電圧Vgsは、アナログ信号に関わらず、一定の電圧(Vdd)に維持される。
[デューティ比制御回路の構成例]
図6は、第1の実施の形態におけるデューティ比制御回路220の一構成例を示す回路図である。このデューティ比制御回路220は、インバータ221、スイッチ222、コンデンサ223、抵抗224、アンプ225およびスイッチ226を備える。
インバータ221は、入力サンプリングクロックCLKinを反転するものである。このインバータ221は、反転した信号を反転信号CLKinvとしてスイッチ222に供給する。なお、インバータ221は、特許請求の範囲に記載の反転部の一例である。
スイッチ222は、反転信号CLKinvに応じて経路を開閉するものである。このスイッチ222の一端は電源端子に接続され、他端は、コンデンサ223、抵抗224およびアンプ225に接続される。スイッチ222は、反転信号CLKinvがハイレベルの場合に閉状態に移行し、ローレベルの場合に開状態に移行する。
コンデンサ223および抵抗224は、RC回路を構成する。このRC回路は、反転信号を遅延させ遅延信号CLKdelayとして出力するものである。遅延時間は、RC回路における時定数(=R×C)により決定される。ここで、Rは抵抗224の抵抗であり、Cは、コンデンサ223の容量である。なお、これらのコンデンサ223および抵抗224を含む回路は、特許請求の範囲に記載の遅延部の一例である。
アンプ225は、遅延信号CLKdelayを増幅するものである。このアンプ225は、増幅した遅延信号CLKdelayをスイッチ226に供給する。
スイッチ226は、入力サンプリングクロックCLKinがハイレベルの場合に遅延信号CLKdelayを選択して出力クロック信号CLKoutとして出力するものである。一方、入力サンプリングクロックCLKinがローレベルの場合にスイッチ226は、ローレベルを出力クロック信号CLKoutとして出力する。なお、スイッチ226は、特許請求の範囲に記載の選択部の一例である。
図7は、第1の実施の形態におけるデューティ比制御回路220の動作の一例を示すタイミングチャートである。インバータ221は、入力サンプリングクロックCLKinを反転し、反転信号CLKinvとして出力する。例えば、入力サンプリングクロックCLKinがタイミングT1で立ち上り、タイミングT3で立ち下がった場合に、反転信号CLKinvは、タイミングT1で立り下り、タイミングT3で立ち上がる。
また、コンデンサ223および抵抗224は、反転信号を遅延させ遅延信号CLKdelayとして出力する。遅延時間をtdとすると、遅延信号CLKdelayは、タイミングT1からtdが経過したタイミングT2で立ち下がる。
そして、スイッチ226は、入力サンプリングクロックCLKinがハイレベルの場合に遅延信号CLKdelayを選択して出力サンプリングクロックCLKoutとして出力する。例えば、タイミングT1からT3の間において、遅延信号CLKdelayが選択される。この遅延信号CLKdelayはタイミングT2に立ち下がるため、出力クロック信号CLKoutがハイレベルの期間は、タイミングT1からT2までとなる。このタイミングT1からT2の期間は、入力サンプリングクロックCLKinの周期内のハイレベルの期間よりも短い。このように、反転した信号を遅延させて、反転前の信号(CLKin)がハイレベルの際に、その遅延信号を選択すれば、デューティ比を小さくすることができる。
ここで、デューティ比の変更は、分周器と論理ゲートとにより実現することもできる。例えば、分周器は、出力サンプリングクロックCLKoutを一定の分周比mで分周する。mは、整数であり、例えば、「2」が設定される。また、論理ゲートは、例えば、出力サンプリングクロックCLKoutがハイレベルの期間に亘って、分周されたクロックを選択する。これにより、デューティ比を小さくすることができる。
しかしながら、分周器を用いる構成では、その分周器を、出力サンプリングクロックCLKoutのm倍の周波数で駆動する必要がある。このため、分周器を設けない構成と比較して消費電力が増大してしまう。前述のように、消費電力の低減を目的としてサンプリングクロックの周波数を下げる場合には、分周器の追加により、この目的と背反する結果となってしまう。
これに対して、デューティ比制御回路220では分周器を用いないため、出力サンプリングクロックCLKoutより周波数の高いクロックを生成する必要がない。このため、分周器を用いる構成と比較して消費電力を低減することができる。
[デジタルアナログ変換部の構成例]
図8は、第1の実施の形態におけるデジタルアナログ変換部260の一構成例を示す回路図である。このデジタルアナログ変換部260は、正側スイッチ261、正側コンデンサ262、負側コンデンサ263および負側スイッチ264を備える。
デジタル信号DoutのデータサイズをNビットとすると、正側コンデンサ262および負側コンデンサ263は、N個ずつ設けられる。また、正側スイッチ261および負側スイッチ264は、N−1個ずつ設けられる。また、正側コンデンサ262のそれぞれの容量は異なり、負側コンデンサ263のそれぞれの容量も異なる。
n(nは、1乃至N−1の整数)番目の正側スイッチ261には、正側制御信号xDACpのnビット目が入力される。また、n番目の正側スイッチ261にn番目の正側コンデンサ262が接続される。この正側スイッチ261は、対応するビットの値に応じて、参照電圧Vrefと接地電圧とのいずれかを対応する正側コンデンサ262の一端に印加する。
1乃至N−1番目の正側コンデンサ262の一端は対応する正側スイッチ261に接続され、他端は、正側サンプリングホールド回路210およびコンパレータ282に共通に接続される。また、N番目の正側コンデンサ262の一端は接地端子に接続され、他端は正側サンプリングホールド回路210およびコンパレータ282に接続される。
n番目の負側スイッチ264には、負側制御信号xDACnのnビット目が入力される。また、n番目の負側スイッチ264にn番目の負側コンデンサ263が接続される。この負側スイッチ264は、対応するビットの値に応じて、参照電圧Vrefと接地電圧とのいずれかを対応する負側コンデンサ263の一端に印加する。
1乃至N−1番目の負側コンデンサ263の一端は対応する負側スイッチ264に接続され、他端は、負側サンプリングホールド回路250およびコンパレータ282に共通に接続される。また、N番目の負側コンデンサ263の一端は接地端子に接続され、他端は負側サンプリングホールド回路250およびコンパレータ282に接続される。
上述の構成により、デジタルアナログ変換部260は、正側制御信号xDACpおよび負側制御信号xDACnに従って、正側出力電圧Voutpおよび負側出力電圧Voutnを増減する。
[逐次比較制御部の構成例]
図9は、第1の実施の形態における逐次比較制御部270の一構成例を示すブロック図である。この逐次比較制御部270は、NAND(否定論理積)ゲート271と、イネーブル制御部272と、シフトレジスタ273と、DAC制御部274と、OR(論理和)ゲート275と、フリップフロップ276および277を備える。フリップフロップ276および277として、例えば、D型のフリップフロップが用いられる。
NANDゲート271は、比較結果COMPpおよびCOMPnの否定論理積を演算するものである。このNANDゲート271は、その否定論理積をイネーブル制御部272およびORゲート275に出力する。
イネーブル制御部272は、NANDゲート271の出力値に基づいて、イネーブル信号ENを生成するものである。例えば、イネーブル制御部272は、NANDゲート271の出力がハイレベルになったときから一定期間においてイネーブル信号ENにイネーブルを設定し、それ以外の期間においてディセーブルを設定する。イネーブル制御部272は、そのイネーブル信号ENをシフトレジスタ273、DAC制御部274およびORゲート275に供給する。
シフトレジスタ273は、回路内において特定の値のビットをシフトさせるレジスタである。デジタル信号DoutのデータサイズをNビットとすると、シフトレジスタ273は、Nビットのデータを保持する。このNビットのいずれかが「1」に、残りは「0」に設定される。シフトレジスタ273は、入力サンプリングクロックCLKinがローレベルの期間においてNANDゲート271からの信号に同期して「1」のビットをシフトさせる。「1」のビットの位置は、デジタル信号Doutのうち生成すべきビットを示す。また、シフトレジスタ273は、保持しているNビットをDAC制御部274に供給する。このNビットのうち最終ビットは、ORゲート275にも供給される。
DAC制御部274は、比較結果COMPpおよびCOMPnに基づいて、正側制御信号DACpおよび負側制御信号DACnを生成するものである。例えば、DAC制御部274は、正側出力電圧Voutpと負側出力電圧Voutnとが等しくなるように、正側制御信号DACpまたは負側制御信号DACnにより正側出力電圧Voutpまたは負側出力電圧Voutnを増減させる。また、DAC制御部274は、N個の比較結果COMPpおよびCOMPnからNビットのデジタル信号Doutを生成してフリップフロップ276にビットのそれぞれを順に保持させる。
ORゲート275は、入力サンプリングクロックCLKinとNANDゲート271の出力値とシフトレジスタ273からのビットとの論理和を演算するものである。このORゲート275は、その論理和の信号を制御クロックCLKCOMPとしてコンパレータ282に出力する。
フリップフロップ276および277は、デジタル信号Doutにおけるビットを順に保持するものである。フリップフロップ277は、保持したビットをデジタル信号処理部130に出力する。
[アナログデジタル変換器の動作例]
図10は、第1の実施の形態におけるアナログデジタル変換器200の動作の一例を示すタイミングチャートである。デューティ比制御回路220は、入力サンプリングクロックCLKinのデューティ比を小さくし、出力サンプリングクロックCLKoutとして出力する。入力サンプリングクロックCLKinは、例えば、周期内のタイミングT1からT3までの期間に亘ってハイレベルであるものとする。この場合に、出力サンプリングクロックCLKoutは、タイミングT1から、タイミングT3前のタイミングT2までの期間に亘ってハイレベルに制御される。
また、ブートストラップ回路230は、出力サンプリングクロックCLKoutがハイレベルの期間においてアナログ信号(Vin)にコンデンサ234の充電電圧(Vdd)を加算した電圧をN型トランジスタ241のゲートに印加する。これにより、N型トランジスタ241のゲート電圧Vgateは、アナログ信号に追従して変化する。
また、正側サンプリングホールド回路210は、出力サンプリングクロックCLKoutがハイレベルの期間においてオン状態に移行してサンプリングを行う。また、正側サンプリングホールド回路210は、出力サンプリングクロックCLKoutがローレベルの期間においてオフ状態に移行して、サンプリングした信号をホールドする。
また、逐次比較制御部270は、出力サンプリングクロックCLKoutがローレベルになると逐次比較制御によりAD変換を開始し、AD変換が終了すると停止する。
図11は、比較例におけるアナログデジタル変換器200の動作の一例を示すタイミングチャートである。この比較例には、デューティ比制御回路220が配置されないものとする。
比較例のブートストラップ回路230は、入力サンプリングクロックCLKinがハイレベルの期間においてアナログ信号(Vin)にコンデンサ234の充電電圧(Vdd)を加算した電圧をN型トランジスタ241のゲートに印加する。ハイレベルの期間の開始時点からしばらくは、N型トランジスタ241のゲート電圧Vgateは、アナログ信号に追従して変化する。しかし、途中からゲート電圧Vgateが、アナログ信号に対して低下し始めて、信号の軌跡がひずんでしまう。これは、接地側スイッチ235やゲート側スイッチ238で生じるリーク電流ILEAKによりコンデンサ234の充電電圧が低下し、N型トランジスタ241のゲート−ソース間電圧が低下するためである。
これに対して、デューティ比制御回路220を設けた場合には、ハイレベルの期間が短くなるため、図10に例示したようにN型トランジスタ241のゲート電圧Vgateをアナログ信号(Vin)に追従して変化させることができる。これにより、アナログデジタル変換器200は、AD変換を正確に行うことができる。
図12は、第1の実施の形態におけるアナログデジタル変換器200の動作の一例を示すフローチャートである。この動作は、アナログデジタル変換器200に対し、スイッチ操作などによりAD変換が指示されたときに開始する。
デューティ比制御回路220は、入力サンプリングクロックCLKinのデューティ比を変更して出力サンプリングクロックCLKoutを生成する。(ステップS901)。
また、アナログデジタル変換器200は、出力サンプリングクロックCLKoutがハイレベルであるか否かを判断する(ステップS902)。出力サンプリングクロックCLKoutがハイレベルの場合に(ステップS902:Yes)、ブートストラップ回路230は、コンデンサ234の充電電圧によりN型トランジスタ241を駆動する。これにより、アナログ信号のサンプリングが行われる(ステップS903)。
一方、出力サンプリングクロックCLKoutがローレベルの場合に(ステップS902:No)、ブートストラップ回路230は、コンデンサ234を充電する。また、アナログデジタル変換器200は、サンプリングした信号をホールドし、AD変換を行う(ステップS904)。ステップS903またはS904の後にアナログデジタル変換器200は、ステップS902以降を繰り返し実行する。
このように、本技術の第1の実施の形態によれば、アナログデジタル変換器200は、N型トランジスタ241のゲートとソースとにコンデンサを接続する時間を短くするため、コンデンサの放電によるゲート−ソース間電圧の低下を抑制することができる。これにより、N型トランジスタ241の駆動電圧(ゲート−ソース間電圧)を一定に維持して、AD変換を正確に行うことができる。
<2.第2の実施の形態>
上述の第1の実施の形態では、正側サンプリングホールド回路210にデューティ比制御回路220を配置していたが、信号の取込みを行う回路であれば、サンプリングホールド回路以外の回路にデューティ比制御回路220を配置してもよい。例えば、アナログ信号を取り込んでフィルタリングするスイッチドキャパシタフィルタにデューティ比制御回路220を配置することもできる。この第2の実施の形態のアナログデジタル変換器200は、スイッチドキャパシタフィルタにデューティ比制御回路220を配置した点において第1の実施の形態と異なる。
図13は、第2の実施の形態における電子回路100の一構成例を示すブロック図である。この第2の実施の形態の電子回路100は、スイッチングクロック供給部140およびスイッチドキャパシタフィルタ150をさらに備える点において第1の実施の形態と異なる。
スイッチングクロック供給部140は、所定の周波数の周期信号をスイッチングクロックCLKin1として生成し、信号線149を介してスイッチドキャパシタフィルタ150に供給するものである。
スイッチドキャパシタフィルタ150は、アナログ信号供給部120からのアナログ信号を入力スイッチングクロックCLKin1に同期して取り込んでフィルタリングするものである。このスイッチドキャパシタフィルタ150により、所定の周波数帯域(例えば、所定の遮断周波数より高い帯域)の信号が抽出される。このスイッチドキャパシタフィルタ150は、フィルタリング後のアナログ信号を信号線159を介してアナログデジタル変換器200に供給する。
サンプリングクロック供給部110は、入力サンプリングクロックCLKin2を供給し、アナログデジタル変換器200は、その入力サンプリングクロックCLKin2に同期してAD変換を行う。
図14は、第2の実施の形態におけるスイッチドキャパシタフィルタ150の一構成例を示す回路図である。このスイッチドキャパシタフィルタ150は、デューティ比制御回路151と、ブートストラップ回路152と、N型トランジスタ153と、コンデンサ155、スイッチ154、156および157と、アンプ158とを備える。
デューティ比制御回路151は、入力スイッチングクロックCLKin1のデューティ比を変更するものである。このデューティ比制御回路は、デューティ比を変更したクロックを出力スイッチングクロックCLKout1としてブートストラップ回路152と、スイッチ154、155および157とに出力する。ブートストラップ回路152は、N型トランジスタ153のゲートおよびソースに接続される。これらのデューティ比制御回路151およびブートストラップ回路152の構成は、第1の実施の形態のデューティ比制御回路220およびブートストラップ回路230と同様である。
N型トランジスタ153は、ソースに入力された入力電圧Vinをドレインから出力するものである。N型トランジスタ153として、例えば、MOSトランジスタが用いられる。
スイッチ154、156および157は、出力スイッチングクロックCLKout1に同期して経路を開閉するものである。スイッチ154の一端は、N型トランジスタ153およびコンデンサ155に接続され、他端は接地端子に接続される。スイッチ156の一端は、スイッチ157およびコンデンサ155に接続され、他端は接地端子に接続される。スイッチ157の一端は、コンデンサ155およびスイッチ156に接続され、他端はアンプ158に接続される。なお、コンデンサ155は、特許請求の範囲に記載のキャパシタの一例である。
スイッチ154および157は、出力スイッチングクロックCLKout1がハイレベルの場合に閉状態に移行し、ローレベルの場合に開状態に移行する。また、スイッチ156は、出力スイッチングクロックCLKout1がローレベルの場合に閉状態に移行し、ハイレベルの場合に開状態に移行する。
上述のスイッチ154および156により、出力スイッチングクロックCLKout1に応じてコンデンサ155が充放電される。これにより、スイッチドキャパシタフィルタ150は、所定の周波数帯域の信号を抽出することができる。なお、スイッチ154および156は、特許請求の範囲に記載の充放電制御部の一例である。
アンプ158は、コンデンサ155からのアナログ信号を増幅してアナログデジタル変換器200に供給するものである。
このように、本技術の第2の実施の形態によれば、スイッチドキャパシタフィルタ150は、N型トランジスタ153のゲートとソースとにコンデンサを接続する時間を短くするため、コンデンサの放電によるゲート−ソース間電圧の低下を抑制することができる。これにより、N型トランジスタ153の駆動電圧(ゲート−ソース間電圧)を一定に維持して、フィルタリングした信号の信号品質を向上させることができる。
なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
なお、本技術は以下のような構成もとることができる。
(1)所定の入力周期信号のデューティ比を変更して出力周期信号として出力するデューティ比制御部と、
ソースに入力された入力信号をドレインから出力信号として出力するトランジスタと、
コンデンサと、
前記出力周期信号が特定のレベルでない場合には前記コンデンサに所定電圧を充電する充電制御部と、
前記出力周期信号が前記特定のレベルである場合には前記充電された所定電圧を前記トランジスタのゲートおよびソースの間に印加するトランジスタ駆動部と
を具備する電子回路。
(2)前記デューティ比制御回路は、前記所定の入力周期信号が前記特定のレベルである期間を所定時間より短くする
前記(1)記載の電子回路。
(3)前記デューティ比制御回路は、
前記所定の入力周期信号を反転して反転信号として出力する反転部と、
前記反転信号を遅延させて遅延信号として出力する遅延部と、
前記所定の入力周期信号が前記特定のレベルである場合には前記遅延信号を選択して前記出力周期信号として出力する選択部と
を備える前記(2)記載の電子回路。
(4)前記充電制御部は、前記出力周期信号が前記特定のレベルでない場合には端子間電圧が前記所定電圧である2つの端子に前記コンデンサの両端を接続し、
前記トランジスタ駆動部は、前記出力周期信号が前記特定のレベルである場合には前記コンデンサの両端を前記ゲートおよび前記ソースに接続する
前記(1)から(3)のいずれかに記載の電子回路。
(5)前記出力信号を保持する保持部をさらに具備する
前記(1)から(4)のいずれかに記載の電子回路。
(6)前記保持された出力信号をデジタル信号に変換する変換部をさらに具備する
前記(5)記載の電子回路。
(7)前記出力信号を保持するキャパシタと、
前記出力周期信号に応じて前記キャパシタを充放電する充放電制御部と
を具備する前記(1)から(4)のいずれかに記載の電子回路。
(8)所定の入力周期信号のデューティ比を変更して出力周期信号として出力するデューティ比制手順と、
前記出力周期信号が特定のレベルでない場合には前記コンデンサに所定電圧を充電する充電制御手順と、
前記出力周期信号が前記特定のレベルである場合には前記充電された所定電圧をトランジスタのゲートおよびソースの間に印加するトランジスタ駆動手順と
を具備する電子回路の制御方法。
100 電子回路
110 サンプリングクロック供給部
120 アナログ信号供給部
130 デジタル信号処理部
140 スイッチングクロック供給部
150 スイッチドキャパシタフィルタ
151、220 デューティ比制御回路
152、230 ブートストラップ回路
153、233、237、241 N型トランジスタ
154、156、157、222、226 スイッチ
155、223 コンデンサ
158、225、243 アンプ
200 アナログデジタル変換器
210 正側サンプリングホールド回路
221 インバータ
224 抵抗
231 電源側スイッチ
232、236 P型トランジスタ
234、242 コンデンサ
235 接地側スイッチ
238 ゲート側スイッチ
250 負側サンプリングホールド回路
260 デジタルアナログ変換部
261 正側スイッチ
262 正側コンデンサ
263 負側コンデンサ
264 負側スイッチ
270 逐次比較制御部
271 NAND(否定論理積)ゲート
272 イネーブル制御部
273 シフトレジスタ
274 DAC制御部
275 OR(論理和)ゲート
276、277 フリップフロップ
281、283 反転部
282 コンパレータ

Claims (7)

  1. ソースに入力された入力信号をドレインから出力信号として出力するトランジスタと、
    コンデンサと、
    出力周期信号が特定のレベルでない場合には端子間電圧が所定電圧である2つの端子に前記コンデンサの両端を接続する充電制御部と、
    前記出力周期信号が前記特定のレベルである場合には前記コンデンサの両端を前記トランジスタのゲートおよびソースに接続するトランジスタ駆動部と、
    所定の入力周期信号のデューティ比を変更して前記出力周期信号として前記充電制御部および前記トランジスタ駆動部に出力するデューティ比制御回路
    を具備する電子回路。
  2. 前記デューティ比制御回路は、前記所定の入力周期信号が前記特定のレベルである期間を所定時間より短くする
    請求項1記載の電子回路。
  3. 前記デューティ比制御回路は、
    前記所定の入力周期信号を反転して反転信号として出力する反転部と、
    前記反転信号を遅延させて遅延信号として出力する遅延部と、
    前記所定の入力周期信号が前記特定のレベルである場合には前記遅延信号を選択して前記出力周期信号として出力する選択部と
    を備える請求項2記載の電子回路。
  4. 前記出力信号を保持する保持部をさらに具備する
    請求項1記載の電子回路。
  5. 前記保持された出力信号をデジタル信号に変換する変換部をさらに具備する
    請求項4記載の電子回路。
  6. 前記出力信号を保持するキャパシタと、
    前記出力周期信号に応じて前記キャパシタを充放電する充放電制御部と
    を具備する請求項1記載の電子回路。
  7. 所定の入力周期信号のデューティ比を変更して出力周期信号として出力するデューティ比制御手順と、
    前記出力周期信号が特定のレベルでない場合には端子間電圧が所定電圧である2つの端子にコンデンサの両端を接続する充電制御手順と、
    前記出力周期信号が前記特定のレベルである場合には前記コンデンサの両端をトランジスタのゲートおよびソースに接続するトランジスタ駆動手順と
    を具備する電子回路の制御方法。
JP2018506785A 2016-03-22 2016-12-28 電子回路、および、電子回路の制御方法 Active JP6947164B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016057242 2016-03-22
JP2016057242 2016-03-22
PCT/JP2016/089074 WO2017163528A1 (ja) 2016-03-22 2016-12-28 電子回路、および、電子回路の制御方法

Publications (2)

Publication Number Publication Date
JPWO2017163528A1 JPWO2017163528A1 (ja) 2019-01-24
JP6947164B2 true JP6947164B2 (ja) 2021-10-13

Family

ID=59901113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018506785A Active JP6947164B2 (ja) 2016-03-22 2016-12-28 電子回路、および、電子回路の制御方法

Country Status (3)

Country Link
US (1) US10630278B2 (ja)
JP (1) JP6947164B2 (ja)
WO (1) WO2017163528A1 (ja)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6052000A (en) * 1997-04-30 2000-04-18 Texas Instruments Incorporated MOS sample and hold circuit
JP2004228988A (ja) * 2003-01-23 2004-08-12 Renesas Technology Corp ブートストラップ回路
TW200427224A (en) * 2003-05-21 2004-12-01 Myson Century Inc Clock multiplier
JP4321266B2 (ja) 2003-10-16 2009-08-26 ソニー株式会社 インバータ回路および表示装置
JP4128545B2 (ja) * 2004-05-20 2008-07-30 富士通株式会社 サンプリングスイッチ
TWI313540B (en) * 2005-03-10 2009-08-11 Novatek Microelectronics Corp Sample-and-hold circuits
JP5125569B2 (ja) 2008-02-08 2013-01-23 ソニー株式会社 ブートストラップ回路
WO2012137728A1 (ja) 2011-04-08 2012-10-11 シャープ株式会社 走査信号線駆動回路およびそれを備えた表示装置
US8674863B2 (en) * 2011-06-07 2014-03-18 Microchip Technology Incorporated Distributed bootstrap switch
US8558586B1 (en) 2012-08-30 2013-10-15 Infineon Technologies Ag Circuit arrangement for driving transistors in bridge circuits
EP2977989B1 (en) * 2014-07-25 2019-05-08 IMEC vzw Sample-and-hold circuit for an interleaved analog-to-digital converter
JP6564378B2 (ja) * 2014-08-12 2019-08-21 ソニーセミコンダクタソリューションズ株式会社 アナログデジタル変換器、電子装置、および、アナログデジタル変換器の制御方法
ITUB20159405A1 (it) * 2015-12-23 2017-06-23 St Microelectronics Srl Circuito e metodo di generazione di un segnale di clock con regolazione del duty cycle

Also Published As

Publication number Publication date
WO2017163528A1 (ja) 2017-09-28
JPWO2017163528A1 (ja) 2019-01-24
US20190058466A1 (en) 2019-02-21
US10630278B2 (en) 2020-04-21

Similar Documents

Publication Publication Date Title
CN107807511B (zh) 校正设备和方法、校正设备制造方法和集成电路构造方法
US6967611B2 (en) Optimized reference voltage generation using switched capacitor scaling for data converters
US6992509B2 (en) Switched-capacitor sample/hold having reduced amplifier slew-rate and settling time requirements
KR101293845B1 (ko) 지연 회로
US10461725B2 (en) Voltage comparator, voltage comparison method of the same, and reset method of the same
US11095300B2 (en) Reduced noise dynamic comparator for a successive approximation register analog-to-digital converter
CN103762986A (zh) 采样保持开关电路
CN110235372B (zh) 一种具有降低回扫噪声的双倍数据速率时间内插量化器
US7403151B2 (en) Switch control circuit, ΔΣ modulation circuit, and ΔΣ modulation AD converter
US8130131B2 (en) Interpolating A/D converter
US9729162B1 (en) Flexible signal chain processing circuits and method
CN111384951B (zh) 自举采样开关电路、采样保持电路及模数转换器
US10148281B1 (en) Analog-to-digital converter and wireless communication device
JP4498398B2 (ja) 比較器及びこれを用いたアナログ−デジタル変換器
JP6947164B2 (ja) 電子回路、および、電子回路の制御方法
US10374607B2 (en) Voltage conversion circuit and electronic device
TWI777464B (zh) 訊號轉換裝置與訊號轉換方法
CN108075756B (zh) 一种开关电容电路及其控制方法
Onn et al. Design and Simulation of 1 0-Bit SAR ADC Using 18nm FinFET Technology
JP4588144B2 (ja) サンプルホールド回路
JP2002261608A (ja) A/d変換回路
Cornelissens et al. A Novel Bootstrapped Switch Design, Applied in a 400 MHz Clocked ΔΣ ADC
KR101691976B1 (ko) 지연 고정 루프를 이용한 오프셋 보정 장치
JP5223715B2 (ja) レベル判定装置の判定方法
Chauhan et al. Input Referred Offset Reduction in Very High Speed Differential Receivers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210830

R151 Written notification of patent or utility model registration

Ref document number: 6947164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151