JP6941483B2 - Magnetostrictive member and its manufacturing method - Google Patents
Magnetostrictive member and its manufacturing method Download PDFInfo
- Publication number
- JP6941483B2 JP6941483B2 JP2017112814A JP2017112814A JP6941483B2 JP 6941483 B2 JP6941483 B2 JP 6941483B2 JP 2017112814 A JP2017112814 A JP 2017112814A JP 2017112814 A JP2017112814 A JP 2017112814A JP 6941483 B2 JP6941483 B2 JP 6941483B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- magnetostrictive
- magnetostrictive member
- crystal
- magnetic strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000013078 crystal Substances 0.000 claims description 65
- 239000000956 alloy Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 22
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 20
- 229910000831 Steel Inorganic materials 0.000 claims description 20
- 239000010959 steel Substances 0.000 claims description 20
- 229910045601 alloy Inorganic materials 0.000 claims description 16
- 238000005520 cutting process Methods 0.000 claims description 15
- 238000003754 machining Methods 0.000 claims description 13
- 238000007711 solidification Methods 0.000 claims description 12
- 230000008023 solidification Effects 0.000 claims description 12
- 238000005498 polishing Methods 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 238000011282 treatment Methods 0.000 claims description 4
- 238000007517 polishing process Methods 0.000 claims description 2
- 238000009499 grossing Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 21
- 229910000807 Ga alloy Inorganic materials 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010248 power generation Methods 0.000 description 4
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000003028 elevating effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- -1 rare earth transition metal Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910002549 Fe–Cu Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000009700 powder processing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004857 zone melting Methods 0.000 description 1
Images
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、コンプレッサー等の産業機械の稼働モニターの電源、照明,家電品や自動車等のリモコンスイッチ等の電源の振動発電に用いられる磁歪部材、または超音波モーターや変位制御リニアアクチュエータ等の駆動素子に用いられる磁歪部材、あるいは音響素子等の振動子に用いられる磁歪部材、およびその製造方法に関する。 The present invention relates to a magnetostrictive member used for vibration power generation of a power source for an operation monitor of an industrial machine such as a compressor, lighting, a power source such as a remote control switch for home appliances and automobiles, or a driving element such as an ultrasonic motor or a displacement control linear actuator. The present invention relates to a magnetostrictive member used in the above, a magnetostrictive member used for a vibrator such as an acoustic element, and a method for manufacturing the same.
超磁歪材料として、特公平6−2635号公報、特表2002−531701号公報及び特公平7−100839号公報等に示されるTb−Dy−Feに代表される希土類遷移金属磁歪材料が知られている。この種の磁歪材料の磁歪量は1000ppmを超え、磁性材料として知られているパーメンジュール(Fe50%−Co50%合金)の磁歪量(30ppm)や、磁歪合金アルフェル(Fe87%−Al13%)の磁歪量(70ppm)と比べると桁違いに大きい。 As the super-magnetostrictive material, a rare earth transition metal magnetostrictive material represented by Tb-Dy-Fe shown in Japanese Patent Publication No. 6-2635, Japanese Patent Publication No. 2002-531701 and Japanese Patent Publication No. 7-100839 is known. There is. The magnetostrictive amount of this type of magnetostrictive material exceeds 1000 ppm, and the magnetostrictive amount (30 ppm) of permendur (Fe50% -Co50% alloy) known as a magnetic material and the magnetostrictive alloy Alfel (Fe87% -Al13%) It is an order of magnitude larger than the amount of magnetostriction (70 ppm).
しかし、この超磁歪材料は高価な希少金属の希土類遷移金属を原料としているため磁歪材料そのものが非常に高価であり、また、その組織はラーベス型金属間化合物であるため非常に脆く、必要な形状に加工することが難しい。そのため適用分野が限られており、この超磁歪材料を用いたデバイスやアクチュエータ等はあまり普及していない。 However, since this magnetostrictive material is made from an expensive rare earth transition metal, the magnetostrictive material itself is very expensive, and its structure is a Laves-type intermetallic compound, so it is very brittle and has a required shape. Difficult to process. Therefore, the fields of application are limited, and devices and actuators using this magnetostrictive material are not widely used.
これに対してTb−Dy−Fe系材料ほど磁歪量は大きくないものの、100〜300ppm程度の大きな磁歪量を示し、機械加工が可能なFe−Ga系合金の活用が検討されている。振動発電に用いる材料としては磁歪量が100〜300ppm程度あれば実用化でき、また、精密アクチュエータや振動子としての性能も十分であるため、Fe−Ga系合金は好都合である。 On the other hand, although the amount of magnetostriction is not as large as that of Tb-Dy-Fe-based materials, the use of Fe-Ga-based alloys which show a large amount of magnetostriction of about 100 to 300 ppm and can be machined is being studied. As a material used for vibration power generation, a Fe-Ga alloy is convenient because it can be put into practical use if the amount of magnetostriction is about 100 to 300 ppm, and its performance as a precision actuator or a vibrator is sufficient.
また、Tb−Dy−Fe系材料あるいはFe−Ga系合金などの磁歪材料は、結晶の特定方位に大きな磁気歪みを現出させるため、磁歪部材の磁歪を必要とする方向と結晶の磁気歪みが最大となる方位を一致させた単結晶の部材が最適である。 Further, a magnetostrictive material such as a Tb-Dy-Fe-based material or a Fe-Ga-based alloy causes a large magnetostriction to appear in a specific direction of the crystal. A single crystal member with the same maximum orientation is optimal.
単結晶の製造方法としてブリッジマン法や引き上げ法、ゾーンメルティング法等があるが、これらの単結晶製造法は極めて生産性が低いため、粉末冶金法(特許第3452210号公報)や急冷凝固法による合金薄帯の製造方法(特許第4053328号公報)や、液体急冷凝固法により製造した薄片や、粉末状の原料を加圧焼結して製造する方法(特許第4814085号公報)などが提案されている。また、特表2012−500333号公報に示されるように、熱間加工や冷間加工を組み合わせて薄膜を製造する方法も提案されている。 There are a bridgeman method, a pulling method, a zone melting method, etc. as a method for producing a single crystal, but since these single crystal production methods have extremely low productivity, a powder metallurgy method (Japanese Patent No. 3452210) and a quenching solidification method are used. Proposed a method for producing an alloy strip by Has been done. Further, as shown in Japanese Patent Publication No. 2012-500333, a method for producing a thin film by combining hot working and cold working has also been proposed.
これらの種々製造方法により製造される部材の内部はいずれも多結晶となり、部材内の全ての結晶方位を磁気歪みが最大となる方位に一致させることは不可能で、単結晶の部材より磁歪特性が劣るという問題があった。また、急冷凝固法による合金薄帯の製造方法や熱間加工と冷間加工を組み合わせて薄膜を製造する方法では薄帯や薄膜しか製造できず、部材の適用範囲が限られてしまうという問題があった。 The insides of the members manufactured by these various manufacturing methods are all polycrystalline, and it is impossible to match all the crystal orientations in the members with the orientations that maximize the magnetostriction, and the magnetostrictive characteristics are higher than those of single crystal members. There was a problem that it was inferior. In addition, there is a problem that only thin bands and thin films can be manufactured by the method of manufacturing alloy strips by the rapid cooling and solidification method or the method of manufacturing thin films by combining hot working and cold working, and the applicable range of members is limited. there were.
また、粉末冶金法や液体急冷凝固法により製造した薄片や粉末状の原料を加圧焼結して部材を製造する方法では、アトマイズ設備や急冷凝固設備や加圧焼結設備などの特殊な設備が必要であるためコストがかかる。また、粉末の処理過程では、異物や不純物の混入による磁歪特性の劣化を防止するための特別な環境が必要であるため、それもコストアップの要因となっていた。 In addition, in the method of manufacturing parts by pressurizing and sintering flakes and powdered raw materials produced by the powder metallurgy method and the liquid quenching and solidifying method, special equipment such as atomizing equipment, quenching and solidifying equipment, and pressure sintering equipment are used. It is costly because it requires. Further, in the powder processing process, a special environment is required to prevent the deterioration of the magnetostrictive characteristics due to the mixing of foreign substances and impurities, which is also a factor of cost increase.
これらの問題点を解決する方法として、特開2016−138028号公報において、従来の単結晶製造方法よりも安価で、振動発電に用いることができる高性能で信頼性が高く汎用性の高い磁歪部材及びその製造方法が開示されている。しかし、一方向凝固法で製造した鋼塊を短冊状に切り出し、切り出した短冊状材料を結晶粒界で個々の単結晶に分離した後、放電加工によって磁歪部材を切り出しているため、個々の単結晶から磁歪部材を取り出す歩留まり率が悪かった。また、磁歪部材の原材料であるGaは希少価値が高く高価であるため、より安価に磁歪部材を製造する余地が残されていた。 As a method for solving these problems, in Japanese Patent Application Laid-Open No. 2016-138028, a magnetostrictive member which is cheaper than the conventional single crystal manufacturing method and can be used for vibration power generation, has high performance, reliability, and versatility. And its manufacturing method are disclosed. However, since the ingot produced by the one-way solidification method is cut into strips, the cut strips are separated into individual single crystals at the grain boundaries, and then the magnetostrictive member is cut out by discharge processing, each single crystal is cut out. The yield rate of extracting the magnetostrictive member from the crystal was poor. Further, since Ga, which is a raw material of the magnetostrictive member, has a high rarity value and is expensive, there is room for manufacturing the magnetostrictive member at a lower cost.
本発明は、上記のような従来の問題点を解決するために成されたもので、従来の単結晶製造方法により製造された磁歪部材よりも安価であるとともに容易に製造することができ、種々の振動から電気エネルギーを取り出す振動発電の電源や、モーターや変位制御アクチュエータ等の駆動素子に用いることができる高性能で高い信頼性を有する汎用性の高い磁歪部材を提供することを目的とする。また、従来の磁歪部材よりも磁歪特性のばらつきが少ない磁歪部材を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned conventional problems, and is cheaper than the magnetostrictive member manufactured by the conventional single crystal manufacturing method and can be easily manufactured. It is an object of the present invention to provide a high-performance, highly reliable, and highly versatile magnetostrictive member that can be used as a power source for vibration power generation that extracts electric energy from the vibration of a motor or a drive element such as a displacement control actuator. Another object of the present invention is to provide a magnetostrictive member having less variation in magnetostrictive characteristics than a conventional magnetostrictive member.
上記の目的を達成するため、本願の請求項1に記載の発明は、一方向凝固法により形成され長手方向に結晶の<100>方位を有する1個の粗大な結晶粒で構成された鋼塊のFe−Ga−Cu合金の単結晶、または複数個の粗大な結晶粒で構成された鋼塊の結晶粒界で個々の単結晶に分離することで形成されたFe−Ga−Cu合金の単結晶から、磁歪部材の磁歪を必要とする方向に前記合金の結晶の<100>方位を揃えた位置で、放電加工による切り出しで形成された磁歪部材であって、前記Fe−Ga−Cu合金は質量%でGa:17.5〜23.5%、Cu:0.04〜2.4%を含有し、残部がFe及び不可避的不純物からなることを特徴とする。
In order to achieve the above object, the invention according to
また、上記の目的を達成するため、本願の請求項2に記載の発明は、前記放電加工による切り出しで形成された磁歪部材の表面が、前記磁歪部材にひずみを導入しない研磨処理によって前記放電加工の際に生じた微小な凹凸が取り除かれた平滑面であることを特徴とする。
Further, in order to achieve the above object, in the invention according to
また、上記の目的を達成するため、本願の請求項3に記載の発明は、質量%でGa:17.5〜23.5%、Cu:0.04〜2.4%を含有し残部がFe及び不可避的不純物からなるFe−Ga−Cu合金を溶融温度以上の炉内に一定時間保持した後、炉内から一定の速度で溶融合金を炉外に引き出して前記溶融合金を一方向凝固させる工程と、前記一方向凝固させる工程終了後に、前記一方向凝固させる工程で得られた凝固した鋼塊が複数個の粗大な結晶粒で構成されている場合には結晶粒界で個々の単結晶に分離する工程と、前記一方向凝固させる工程または前記個々の単結晶に分離する工程で得られた単結晶を、放電加工によって磁歪部材の磁歪を必要とする方向に結晶の<100>方位を揃えて切り出す工程とからなることを特徴とする。
Further, in order to achieve the above object, the invention according to
また、上記の目的を達成するため、本願の請求項4に記載の発明は、前記放電加工によって切り出す工程により得られた磁歪部材の表面に、前記磁歪部材にひずみを導入しない研磨処理を施すことにより、前記放電加工の際に生じた微小な凹凸を取り除いて前記表面を平滑面とする工程を有することを特徴とする。 Further, in order to achieve the above object, in the invention according to claim 4 of the present application, the surface of the magnetostrictive member obtained by the step of cutting out by the electric discharge machining is subjected to a polishing treatment that does not introduce strain into the magnetostrictive member. The present invention is characterized by having a step of removing minute irregularities generated during the electric discharge machining to make the surface smooth.
また、上記目的を達成するため、本願の請求項5に記載の発明は、前記一定の速度を20mm/時以下としたことを特徴とする。
Further, in order to achieve the above object, the invention according to
このように本発明に係る磁歪部材は、簡単で安価な溶解−鋳造設備で一方向凝固鋼塊を製造する工程と、製造された一方向凝固鋼塊を個々の単結晶に分離する工程と、分離した単結晶から放電加工で必要な寸法、形状に磁歪部材を切り出す工程により製造されるため、非常に安価にそして容易に製造することができる。また、上記工程により製造された磁歪部材は、高性能で高い信頼性を有するとともに汎用性が高く、磁歪特性のばらつきが少ないという特徴を有する。 As described above, the magnetic strain member according to the present invention includes a step of manufacturing a unidirectional solidified steel ingot with a simple and inexpensive melting-casting facility, and a step of separating the manufactured unidirectional solidified steel ingot into individual single crystals. Since it is manufactured by a process of cutting out a magnetic strain member from the separated single crystal to the size and shape required for electric discharge machining, it can be manufactured very inexpensively and easily. Further, the magnetostrictive member manufactured by the above steps is characterized by high performance, high reliability, high versatility, and little variation in magnetostrictive characteristics.
以下、本発明を図面に示す実施例により詳細に説明するが、本発明はこれに限定されるものではない。図1はFe−Ga−Cu合金を溶解し、溶解した磁歪合金を一方向凝固させるための装置で、図中1は管状炉である。2は管状炉1の中心部に垂直に配置された炉心管で、この炉心管2の外側はこの炉心管2の周囲を囲むように、電気抵抗器からなるヒーター3および断熱材4がそれぞれ設置されている。
Hereinafter, the present invention will be described in detail with reference to Examples shown in the drawings, but the present invention is not limited thereto. FIG. 1 is a device for melting a Fe-Ga-Cu alloy and unidirectionally solidifying the melted magnetostrictive alloy, and FIG. 1 in the figure is a tube furnace.
5は炉心管2内に配設したルツボで、ルツボ支持台6の上に載置されており、そのルツボ支持台6は昇降装置7によりルツボ支持ロッド8を介して上下方向に昇降する構成としている。9は炉心管2の内外に挿入された電熱対、10は真空排気管であり、その真空排気管10の一端側は図示しない真空ポンプと、他端側は炉心管2とそれぞれ連通しており、前記の真空ポンプで炉心管2内を真空状態もしくは種々のガスによる雰囲気状態にすることができる。
そこで、図1に示す管状炉1にあって、炉心管2内に設置したルツボ5内に磁歪合金材料Aを入れ、管状炉1内に設置されたヒーター3でルツボ5内の磁歪合金材料Aをその溶融温度以上に加熱し溶融状態とする(図1のI参照)。そして、溶融状態となった磁歪合金材料Aaを、炉内温度を一定に保持した管状炉1内に一定時間保持する。この場合、管状炉1内の温度は一定に保持すればよく、特に温度を複雑にコントロールする必要はない。
Therefore, in the
溶融状態となった磁歪合金材料Aaを管状炉1内に一定時間保持した後、昇降装置7によりルツボ支持台6を降下させ、ルツボ支持台6の上に載置したルツボ5及びそのルツボ5内の溶融状態となっている磁歪合金材料Aaを徐々に管状炉1内から管状炉1外へ引き出す(図1のII参照)。
After holding the molten magnetic strain alloy material Aa in the
磁歪合金材料Aaを徐々に管状炉1内から管状炉1外へ、昇降装置7により下方へ引き出すことにより、ルツボ5内の磁歪合金材料Aaはルツボ5の下部から上部に向け一方向凝固することになり、磁気歪みが最大となる結晶の<100>方位の方向に結晶成長が起こり、鋼塊Bの長手方向に結晶の<100>方位を持った柱状晶(単結晶D)が得られる。
By gradually pulling out the magnetostrictive alloy material Aa from the inside of the
また、溶融状態の磁歪合金材料Aaを十分に遅い速度で炉内から炉外に引き出すことにより、磁歪合金材料Aaは非常に遅い速度で凝固するため粗大な結晶粒を得ることができる。十分粗大な結晶粒を得るには、材料の降下速度を20mm/時以下とすることが望ましい。なお、材料の降下速度は稼働中は一定で良い。 Further, by pulling out the magnetostrictive alloy material Aa in the molten state from the inside of the furnace to the outside of the furnace at a sufficiently slow speed, the magnetostrictive alloy material Aa solidifies at a very slow speed, so that coarse crystal grains can be obtained. In order to obtain sufficiently coarse crystal grains, it is desirable that the descent rate of the material is 20 mm / hour or less. The material descent speed may be constant during operation.
本発明では、単結晶の製造装置のような炉内に温度勾配を設けることや、結晶の成長に合わせて材料移動をコントロールする高精度な位置制御機構と制御機器、あるいは結晶の成長方位を制御する種子結晶を材料の凝固初期に溶湯表面部に接触させる操作や、核成長を制限するための特殊な形状のルツボの使用など、従来のような単結晶を製造するために必要な繊細な制御とそのための機構が必要なく、製造機構を簡単で安価な設備とすることができる。 In the present invention, a temperature gradient is provided in a furnace such as a single crystal manufacturing apparatus, a highly accurate position control mechanism and control device for controlling material movement according to crystal growth, or a crystal growth direction is controlled. The delicate control required to produce a conventional single crystal, such as the operation of bringing the seed crystal into contact with the surface of the molten metal in the early stage of solidification of the material and the use of a specially shaped lube to limit nuclear growth. And the mechanism for that is not required, and the manufacturing mechanism can be a simple and inexpensive facility.
図2(I)ないし(V)は、上記一方向凝固させる装置で凝固させたFe−Ga−Cu磁歪合金材料Aの鋼塊Bの表面を研磨した後の外観の状態を示した写真であり、鋼塊Bは結晶粒界Cに沿って2つの鋼塊B1,B2に分離した状態となっている。図2(I)は一方の鋼塊B1の正面写真、(II)は鋼塊B1の背面写真、(III)は鋼塊B1の平面写真、(IV)は鋼塊B1の底面写真である。また、図2(V)は、他方の鋼塊B2の正面写真である。 FIGS. 2 (I) to 2 (V) are photographs showing the appearance of the steel ingot B of the Fe-Ga-Cu magnetostrictive alloy material A solidified by the unidirectional solidifying device after polishing the surface. , The ingot B is in a state of being separated into two ingots B1 and B2 along the grain boundary C. FIG. 2 (I) is a front photograph of one of the ingots B1, (II) is a rear view photograph of the ingot B1, (III) is a plan photograph of the ingot B1, and (IV) is a bottom photograph of the ingot B1. Further, FIG. 2 (V) is a front view of the other steel ingot B2.
図2(I)ないし(V)に示すように、鋼塊B1,B2は、複数個の大きな単結晶Dで形成されている。尚、鋼塊B1,B2の表面及び破面に見える線Cは個々の単結晶Dの境界、すなわち結晶粒界である。 As shown in FIGS. 2 (I) to 2 (V), the steel ingots B1 and B2 are formed of a plurality of large single crystals D. The lines C visible on the surfaces and fracture surfaces of the steel ingots B1 and B2 are the boundaries of the individual single crystals D, that is, the grain boundaries.
このように、Fe−Ga合金にCuを添加したFe−Ga−Cu合金は、Fe−Ga合金よりも粒界結合力が非常に弱くなっていることが分かった。これは、Fe−Cu系合金は、二相分離し偏析が強く発生するため、一方向凝固のような凝固が非常にゆっくり進行する凝固過程においては、結晶粒界CにCuが偏析して粒界を脆弱にしているためと考えられる。 As described above, it was found that the Fe-Ga-Cu alloy obtained by adding Cu to the Fe-Ga alloy has a much weaker grain boundary bonding force than the Fe-Ga alloy. This is because Fe-Cu alloys are separated into two phases and segregation is strongly generated. Therefore, in a solidification process in which solidification proceeds very slowly such as unidirectional solidification, Cu segregates at the grain boundaries C and grains. This is probably because it makes the world vulnerable.
そのため、上記特許文献8に記載されているように鋼塊Bから必要な大きさに短冊状に切り出さなくても、結晶粒界Cで簡単に個々の単結晶Dに分離することができる。そして、分離した個々の単結晶Dから放電加工によって磁歪を必要とする方向と単結晶Dの<100>方位を揃えて切り出すことで、本発明に係る磁歪部材が得られる。
Therefore, as described in
尚、本実施例においては、鋼塊Bが複数個の粗大な結晶粒で構成されているが、鋼塊Bが1個の粗大な結晶粒(単結晶D)で構成されている場合には、上記のように分離する必要はなく、鋼塊B(単結晶D)から放電加工によって磁歪を必要とする方向と単結晶Dの<100>方位を揃えて切り出すことで、本発明に係る磁歪部材が得られる。 In this embodiment, the ingot B is composed of a plurality of coarse crystal grains, but when the ingot B is composed of one coarse crystal grain (single crystal D). It is not necessary to separate as described above, and the magnetostriction according to the present invention is obtained by cutting out from the steel ingot B (single crystal D) by aligning the direction requiring magnetostriction with the <100> orientation of the single crystal D. A member is obtained.
よって、本発明に係る磁歪部材の製造工程においては、上記特許文献8に記載されているような鋼塊Bを短冊状に切り出す工程を省略することができるため、従来よりも容易に磁歪部材を製造することができる。また、鋼塊Bを短冊状に切り出す上記工程を省略できることで、個々の単結晶Dを不必要に分断する必要がなくなるとともに、最も歩留まりの良い形状に磁歪部材を切り出すことができるため、歩留まりロスを軽減することができ、従来よりも安価に磁歪部材を製造することができる。
Therefore, in the manufacturing process of the magnetostrictive member according to the present invention, the step of cutting out the steel ingot B into a strip shape as described in
また、以下の実施例で示すように、Fe−Ga合金にCuを添加したFe−Ga−Cu合金からなる本発明に係る磁歪部材は、そのFe−Ga−Cu合金よりもGa比率が高いFe−Ga合金からなる磁歪部材とほぼ同等の磁歪量を得ることができる。従って、Ga比率が低いFe−Ga合金であっても、Cuを添加することで十分な磁歪量を得ることができるため、従来よりも安価に磁歪部材を製造することができる。 Further, as shown in the following examples, the magnetostrictive member according to the present invention made of the Fe-Ga-Cu alloy obtained by adding Cu to the Fe-Ga alloy has a higher Ga ratio than the Fe-Ga-Cu alloy. It is possible to obtain a magnetostrictive amount that is almost the same as that of a magnetostrictive member made of a −Ga alloy. Therefore, even if the Fe-Ga alloy has a low Ga ratio, a sufficient amount of magnetostriction can be obtained by adding Cu, so that the magnetostrictive member can be manufactured at a lower cost than before.
また、Cuが殆ど含まれていないFe−Ga合金では、構成成分が同じ磁歪部材間において磁歪量に大きな差が生じるのに対し、Fe−Ga−Cu合金では、構成成分が同じ磁歪部材間において磁歪量のばらつきが少なく磁歪特性が安定している。そのため、Fe−Ga−Cu合金からは、Fe−Ga合金からよりも信頼性の高い磁歪部材を得ることができる。 Further, in the Fe-Ga alloy containing almost no Cu, there is a large difference in the amount of magnetostriction between the magnetostrictive members having the same constituent components, whereas in the Fe-Ga-Cu alloy, the magnetostrictive members having the same constituent components have a large difference. There is little variation in the amount of magnetostriction and the magnetostrictive characteristics are stable. Therefore, from the Fe-Ga-Cu alloy, a magnetostrictive member having higher reliability than that from the Fe-Ga alloy can be obtained.
以下、実施例としてFe−Ga−Cu合金からなる本発明に係る磁歪部材、従来材として現在唯一入手可能な米国で市販されているFe−Ga合金からなる磁歪部材、及び比較例としてCuが不可避的不純物レベルで含まれるFe−Ga合金からなる磁歪部材の測定結果を表1に示す。表1に示す数値は、実施例と従来材と比較例の磁歪部材(試験片)をそれぞれソレノイドコイル内に設置し、ソレノイドコイルに電流を流してコイル内に磁場を発生させ、磁歪部材に発生する磁歪量をひずみゲージにて測定したときの数値である。 Hereinafter, as an example, a magnetostrictive member according to the present invention made of a Fe-Ga-Cu alloy, a magnetostrictive member made of a Fe-Ga alloy commercially available in the United States, which is currently the only conventional material available, and Cu as a comparative example are inevitable. Table 1 shows the measurement results of the magnetostrictive member made of Fe-Ga alloy contained at the target impurity level. The numerical values shown in Table 1 indicate that the magnetostrictive members (test pieces) of the example, the conventional material, and the comparative example are installed in the solenoid coil, and a current is passed through the solenoid coil to generate a magnetic field in the coil, which is generated in the magnetostrictive member. It is a numerical value when the amount of magnetostriction to be applied is measured with a strain gauge.
測定に用いた磁歪部材(試験片)は、放電加工によって幅6mm×厚さ0.5mm×長さ16mmの寸法に切り出した。従来材1の磁歪部材は柱状晶の多結晶体から、実施例および比較例に係る磁歪部材は単結晶からそれぞれ切り出したものである。また、上記切り出しの際、磁歪を必要とする磁歪部材の長手方向に単結晶の<100>方位を揃えて切り出した。そして、磁歪部材の長手方向を磁力線の方向と合わせて長手方向の磁歪量を測定した。
The magnetostrictive member (test piece) used for the measurement was cut out into dimensions of
従来材1、比較例2及び比較例3に係る磁歪部材は、同一の鋼塊から切り出しているにもかかわらず、磁歪部材(試験片)間で磁歪量に大きな差が生じている。一方、Cu比率が0.04質量%以上である実施例1ないし実施例3に係る磁歪部材は、いずれも従来材1に係る磁歪特性の良い磁歪部材の磁歪量とほぼ同等の磁歪量を示し、磁歪部材間による差も殆どない。このように、Fe−Ga合金にCuを添加してCu比率が0.04質量%以上のFe−Ga−Cu合金とすることで、磁歪部材間の磁歪量の大きなバラツキ防止の効果が得られるとともに、信頼性の高い磁歪部材を得ることができる。
Although the magnetostrictive members according to the
また、Cu比率が0.04質量%以上のFe−Ga−Cu合金からなる実施例1ないし実施例5に係る磁歪部材は、Ga比率が異なるにもかかわらず、ほぼ同等の磁歪量を示した。すなわち、Ga比率が多少相違するFe−Ga合金であっても、Cuを添加してCu比率が0.04質量%以上のFe−Ga−Cu合金とすることで、高いレベル(磁歪量が240ppm前後)で安定した磁歪特性を有する磁歪部材を得ることができる。 Further, the magnetostrictive members according to Examples 1 to 5 made of Fe-Ga-Cu alloy having a Cu ratio of 0.04% by mass or more showed almost the same amount of magnetostriction even though the Ga ratio was different. .. That is, even if the Fe-Ga alloy has a slightly different Ga ratio, by adding Cu to obtain a Fe-Ga-Cu alloy having a Cu ratio of 0.04% by mass or more, a high level (magnetostriction amount of 240 ppm) is obtained. It is possible to obtain a magnetostrictive member having stable magnetostrictive characteristics (before and after).
一方、Cuを過剰に添加すると、Cu単相またはCu化合物相がFe−Ga合金基地内に異物として島状に分散して析出するため磁歪特性を悪化させることとなるが、本発明に係る磁歪部材のCu比率を2.4質量%まで増加させても、磁歪特性を悪化させる析出物相は観察されなかった。そのため、本発明に係る磁歪部材のCu比率は2.4質量%以下であることが望ましい。 On the other hand, if Cu is excessively added, the Cu single phase or the Cu compound phase is dispersed and precipitated as foreign matter in the Fe-Ga alloy matrix in an island shape, which deteriorates the magnetostrictive property. Even if the Cu ratio of the member was increased to 2.4% by mass, no precipitate phase was observed that deteriorated the magnetostrictive characteristics. Therefore, it is desirable that the Cu ratio of the magnetostrictive member according to the present invention is 2.4% by mass or less.
実施例2に係る磁歪部材のGa比率は、従来材1に係る磁歪部材のGa比率よりもかなり少ない17.7質量%であるが、Cuを添加することで従来材1に係る磁歪部材と同等の磁歪量が生じている。従って、Fe−Ga合金のGa比率を減らしても、Cuを添加してCu比率が0.04質量%以上のFe−Ga−Cu合金とすることで十分な磁歪量を得ることができるため、希少価値が高く高価なGaの含有量を大幅に減らすことが可能となり、従来よりも安価に高性能な磁歪部材を製造することができる。
The Ga ratio of the magnetostrictive member according to the second embodiment is 17.7% by mass, which is considerably smaller than the Ga ratio of the magnetostrictive member according to the
尚、発明者らの研究によれば、本発明に係る磁歪部材のFe−Ga−Cu合金のGa比率の上限が23.5質量%までであれば、良好な磁歪特性が得られることが分かっている。Gaは高価であるため、それ以上の含有比率とすることは費用体効果の観点から得策ではない。 According to the research by the inventors, it is found that good magnetostrictive characteristics can be obtained when the upper limit of the Ga ratio of the Fe-Ga-Cu alloy of the magnetostrictive member according to the present invention is up to 23.5% by mass. ing. Since Ga is expensive, it is not a good idea to increase the content ratio from the viewpoint of cost effectiveness.
尚、上記放電加工によって磁歪部材を切り出した後、その磁歪部材にひずみを導入しないように細心の注意を払いながら加工面に研磨処理を施す。具体的には、電解研磨、化学研磨または湿式のエメリー紙とバフによる研磨等であるが、これらに限定されるものではない。そして、それらの研磨処理により、放電加工の際に生じた微小凹凸をなめらかに取り除く。上記のような研磨処理は、磁歪部材の表面の結晶方位に乱れを生じさせることがないため、磁歪特性の低下を防止しながら磁歪部材の表面を研磨することができる。 After the magnetostrictive member is cut out by the electric discharge machining, the machined surface is polished while paying close attention so as not to introduce strain into the magnetostrictive member. Specifically, it includes, but is not limited to, electrolytic polishing, chemical polishing, or polishing with wet emery paper and buff. Then, by these polishing treatments, minute irregularities generated during electric discharge machining are smoothly removed. Since the polishing treatment as described above does not cause disturbance in the crystal orientation of the surface of the magnetostrictive member, the surface of the magnetostrictive member can be polished while preventing deterioration of the magnetostrictive characteristics.
1 管状炉
2 炉心管
3 ヒーター
4 断熱材
5 ルツボ
6 ルツボ支持台
7 昇降装置
8 ルツボ支持ロッド
9 電熱対
10 真空排気管
A 磁歪合金材料
Aa 溶融状態の磁歪合金材料
B 鋼塊
C 結晶粒界
D 単結晶
1
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017112814A JP6941483B2 (en) | 2017-06-07 | 2017-06-07 | Magnetostrictive member and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017112814A JP6941483B2 (en) | 2017-06-07 | 2017-06-07 | Magnetostrictive member and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018203585A JP2018203585A (en) | 2018-12-27 |
JP6941483B2 true JP6941483B2 (en) | 2021-09-29 |
Family
ID=64955113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017112814A Active JP6941483B2 (en) | 2017-06-07 | 2017-06-07 | Magnetostrictive member and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6941483B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020035887A (en) * | 2018-08-30 | 2020-03-05 | パナソニックIpマネジメント株式会社 | Magnetostrictive element and magnetostrictive vibration power generation device using the same |
WO2021100467A1 (en) * | 2019-11-18 | 2021-05-27 | 住友金属鉱山株式会社 | Magnetostrictive member and method for producing magnetostrictive member |
CN111250746B (en) * | 2020-01-24 | 2021-07-06 | 北京理工大学 | Method and device for electromagnetic sound multi-field composite auxiliary drilling of tiny deep hole |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3466481B2 (en) * | 1998-07-31 | 2003-11-10 | 和明 深道 | Giant magnetostrictive material |
JP2005347418A (en) * | 2004-06-01 | 2005-12-15 | Alps Electric Co Ltd | Magnetic detector element |
US20090039714A1 (en) * | 2005-03-03 | 2009-02-12 | Pinai Mungsantisuk | Magnetostrictive FeGa Alloys |
JP6606638B2 (en) * | 2014-07-14 | 2019-11-20 | 株式会社福田結晶技術研究所 | Method and apparatus for growing Fe-Ga based alloy single crystal |
JP6122882B2 (en) * | 2015-01-29 | 2017-04-26 | 日本高周波鋼業株式会社 | Magnetostrictive member and manufacturing method thereof |
-
2017
- 2017-06-07 JP JP2017112814A patent/JP6941483B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018203585A (en) | 2018-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6122882B2 (en) | Magnetostrictive member and manufacturing method thereof | |
JP7020595B2 (en) | Pure copper plate | |
JP6941483B2 (en) | Magnetostrictive member and its manufacturing method | |
WO2021177469A1 (en) | Pure copper plate | |
JP6984799B1 (en) | Pure copper plate, copper / ceramic joint, insulated circuit board | |
JP6293803B2 (en) | Magnetic phase transformation material, method for producing magnetic phase transformation material and use of magnetic phase transformation material | |
CN100436044C (en) | A sort of Fe-Ga magnetostriction alloy wire and preparation method | |
WO2021177461A1 (en) | Pure copper plate, copper/ceramic joined body, and insulated circuit substrate | |
JPS62109946A (en) | Production of magnetostriction rod from rare earth element/iron alloy | |
US5336337A (en) | Magnetrostrictive materials and methods of making such materials | |
CN103469001B (en) | A kind of copper base ultra-fine wire and preparation method thereof | |
CN105316527B (en) | A kind of nickel manganese gallium super-elastic shape memory alloy wire and preparation method thereof | |
JP7072146B2 (en) | Single crystal growth method for iron gallium alloy | |
NL1039568B1 (en) | Magnetic Shielding Material for Superconducting Magnet. | |
JPH02250922A (en) | Production of rare earth element-transition element -b magnet | |
JP5211314B2 (en) | Cr-Cu alloy plate, heat radiating plate for electronic device using the same, and heat radiating component for electronic device | |
JPH01246342A (en) | Supermagnetostrictive material and its manufacture | |
CN116240422A (en) | Super-large columnar crystal Cu-Al-Mn shape memory alloy and preparation method thereof | |
EP1270756A1 (en) | Supermagnetostrictive alloy and method for preparation thereof | |
CN113046619A (en) | Large-expansion-amount rare earth giant magnetostrictive material and preparation method thereof | |
TW200521258A (en) | Method of producing a sputtering target | |
JPH04297545A (en) | Production of ultra-magnetostrictive material | |
JPH0918061A (en) | Manufacture of thermoelectric conversion material | |
JPH0661081A (en) | Forming method of permanent magnet | |
JPH03202439A (en) | Manufacture of magnetostrictive rod constituted of rare earth-iron alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210323 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210521 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210810 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6941483 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |