[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3466481B2 - Giant magnetostrictive material - Google Patents

Giant magnetostrictive material

Info

Publication number
JP3466481B2
JP3466481B2 JP21757098A JP21757098A JP3466481B2 JP 3466481 B2 JP3466481 B2 JP 3466481B2 JP 21757098 A JP21757098 A JP 21757098A JP 21757098 A JP21757098 A JP 21757098A JP 3466481 B2 JP3466481 B2 JP 3466481B2
Authority
JP
Japan
Prior art keywords
magnetostriction
magnetostrictive material
giant magnetostrictive
magnetostrictive
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21757098A
Other languages
Japanese (ja)
Other versions
JP2000054086A (en
Inventor
和明 深道
麻哉 藤田
英樹 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP21757098A priority Critical patent/JP3466481B2/en
Publication of JP2000054086A publication Critical patent/JP2000054086A/en
Application granted granted Critical
Publication of JP3466481B2 publication Critical patent/JP3466481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁歪が大きく、磁
気−機械変位変換デバイス等に用いられる磁歪素子用と
して好適な超磁歪材料に関する。
TECHNICAL FIELD The present invention relates to a giant magnetostrictive material which has a large magnetostriction and is suitable for a magnetostrictive element used in a magnetic-mechanical displacement conversion device or the like.

【0002】[0002]

【従来の技術】磁性体に外部磁界を印加した際生じる歪
である磁歪の応用として、磁歪フィルタ、磁歪センサ、
超音波遅延線、磁歪振動子等がある。従来はNi基合
金、Fe−Co合金、フェライト、ラーベス型金属間化
合物(Tb,Dy,Sm)Fe等が用いられている。
2. Description of the Related Art Magnetostrictive filters, magnetostrictive sensors,
There are ultrasonic delay lines, magnetostrictive oscillators, etc. Conventional Ni-based alloys, Fe-Co alloy, ferrite, Laves-type intermetallic compound (Tb, Dy, Sm) Fe 2 or the like is used.

【0003】近年、計測工学の進歩及び精密機械分野の
発展に伴い、ミクロンオーダーの微小変位制御に不可欠
の変位駆動部の開発が必要とされている。この変位駆動
部の駆動機構の一つとして、磁歪物質を用いた磁気−機
械変換デバイスが有力である。しかしながら、従来の磁
歪材料では変位の絶対量が十分でなく、ミクロンオーダ
ーの精密変位制御駆動部材料としては絶対駆動変位量の
みならず、精密制御の点からも満足し得るものではなか
った。
In recent years, along with the progress of measurement engineering and the development of precision machinery field, it is necessary to develop a displacement driving unit which is indispensable for micro displacement control on a micron order. A magnetic-mechanical conversion device using a magnetostrictive substance is effective as one of the driving mechanisms of the displacement driving unit. However, the conventional magnetostrictive material does not have a sufficient absolute amount of displacement, and as a micron-order precision displacement control drive material, it is not satisfactory not only in terms of absolute drive displacement but also in precision control.

【0004】通常、超磁歪材料と呼ばれているものは、
ReFeであらわされるラーベス型金属間化合物のう
ち、TbFe(λs=1753×10―6)やSmF
(λs=−1560×10―6)〔Clark(1
974):超磁歪材料、日刊工業新聞社刊〕があり、最
も大きな飽和磁歪値を持っている。また、磁歪の大きさ
だけをみれば、200K以下の低温においてDyやTb
の単結晶で大きな磁歪(λs〜±4000×10―6
が得られている。
What is usually called a giant magnetostrictive material is
Among the Laves type intermetallic compounds represented by ReFe 2 , TbFe 2 (λs = 1753 × 10 −6 ) and SmF
e 2 (λs = −1560 × 10 −6 ) [Clark (1
974): Giant magnetostrictive material, published by Nikkan Kogyo Shimbun], and has the largest saturation magnetostriction value. In addition, if only the magnitude of magnetostriction is observed, Dy and Tb at low temperatures of 200 K or less
Magnetostriction (λs ~ ± 4000 × 10 -6 )
Has been obtained.

【0005】[0005]

【発明が解決しようとする課題】従来の磁歪材料は、磁
歪が大きくても液体窒素温度以下であったり、実際の磁
歪が小さい問題や、磁歪が異方性であるために、印加磁
界をかける方向が限定され、デバイスの構造に制約を受
ける問題があり、これらを解決する高性能の磁歪材料が
期待されている。
In the conventional magnetostrictive material, an applied magnetic field is applied because the temperature is below the liquid nitrogen temperature even if the magnetostriction is large, the actual magnetostriction is small, and the magnetostriction is anisotropic. There is a problem that the direction is limited and the structure of the device is restricted, and a high-performance magnetostrictive material that solves these problems is expected.

【0006】本発明はこの様な問題点を考慮してなされ
たもので、室温近傍で従来までの磁歪効果を越えるよう
な大きな磁歪を有し、かつ等方的な磁歪を有する超磁歪
材料を提供することを目的とする。
The present invention has been made in consideration of these problems, and provides a giant magnetostrictive material having a large magnetostriction that exceeds the conventional magnetostriction effect at room temperature and has isotropic magnetostriction. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、下記各項より
なる。 ()一般式La1―ZRE(Fe1―X13 (ただし、AはAl,Si,Ga,Ge,Snのうち少
なくとも1種の元素、REはLaを除く希土類元素のう
ち少なくとも1種の元素、x,zは原子比で0.05≦
x≦0.2、0<z≦0.1)で示される組成からなる
ことを特徴とする超磁歪材料。
The present invention comprises the following items. ( 1 ) General formula La 1-Z RE Z (Fe 1-X AX ) 13 (where A is at least one element of Al, Si, Ga, Ge and Sn, and RE is a rare earth element other than La). Of these, at least one element, x and z are in atomic ratio of 0.05 ≦.
A giant magnetostrictive material having a composition represented by x ≦ 0.2, 0 <z ≦ 0.1).

【0008】()La1―ZRE(Fe1―X
X―YTM13 (ただし、AはAl,Si,Ga,Ge,Snのうち少
なくとも1種の元素、TMは遷移金属元素のうち少なく
とも1種の元素、REはLaを除く希土類元素のうち少
なくとも1種の元素、x,y,zは原子比で0.05≦
x≦0.2、0<y<0.1、0<z≦0.1)で示さ
れる組成からなることを特徴とする超磁歪材料。
( 2 ) La 1-Z RE Z (Fe 1-X A
X-Y TM Y) 13 (however, A is Al, Si, Ga, Ge, at least one element of Sn, TM is at least one element of transition metal elements, RE is a rare earth element other than La At least one of these elements, x, y, and z, is in atomic ratio of 0.05 ≦.
A giant magnetostrictive material having a composition represented by x ≦ 0.2, 0 <y <0.1, 0 <z ≦ 0.1).

【0009】()REがY,Ce,Pr,Nd,P
m,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luのうちの少なくとも1種の元素である前
記()又は()記載の超磁歪材料。
( 3 ) RE is Y, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
The giant magnetostrictive material according to ( 1 ) or ( 2 ) above, which is at least one element selected from m, Yb, and Lu.

【0010】まず、La(Fe1―X13に関し
て、Laは20面体を構成するFe1―XによりB
CC的に取り込まれており、A=Siとした場合、Si
量(x)を変えることで磁気転移温度Tc,TN及び磁
化Msが変化することは知られている。〔K.H.J.
Buschow等、Journal of Magne
tism and Magnetic Materia
ls 36(1983)190−296〕本発明者らは
この材料について詳細な検討を進めた結果、Feの置換
元素であるAの元素をSi,Al,Ga,Ge,Znの
少なくとも1種とし、そのxの量を変化(0.05≦x
≦0.2)させることで、xが小さい組成で、低温では
あるが、反強磁性から強磁性へのメタ磁性転移を起こす
ことを見出した。図1はその1例であるLa(Fe0.
88Si0.12)13についてのテストデータを示
す。すなわち、図1によればメタ磁性転移が210K,
2T以上で生じている。
First, regarding La (Fe 1-X A X ) 13 , La is B 1 by Fe 1-X A X constituting an icosahedron.
It is taken in as CC, and if A = Si, then Si
It is known that the magnetic transition temperatures Tc, TN and the magnetization Ms are changed by changing the amount (x). [K. H. J.
Buschow et al., Journal of Magne
tism and Magnetic Material
ls 36 (1983) 190-296] As a result of detailed investigations on this material, the present inventors have determined that the element A, which is a substituting element for Fe, is at least one of Si, Al, Ga, Ge, and Zn. Change the amount of x (0.05 ≦ x
≦ 0.2), it was found that a composition with small x causes a metamagnetic transition from antiferromagnetism to ferromagnetism at a low temperature. FIG. 1 shows an example of La (Fe0.
88Si0.12) 13 test data is shown. That is, according to FIG. 1, the metamagnetic transition is 210 K,
It occurs at 2T or more.

【0011】この傾向はAとして他の元素であるAl,
Ga,Ge,Znの場合でもほぼ同じであった。さらに
詳細に組成を検討したところ、図2に示すようにメタ磁
性転移により飽和磁歪(λs)が5000×10―6
越えるものが得られることが判った。ここでメタ磁性転
移とは、反強磁性もしくは常磁性状態に磁界を印加する
ことで、強磁性体に変化する現象である。図2に示すと
おり、La(Fe0.88Si0.1213は205
Kで5000×10―6に達するλsが得られており、
又、La(Fe0.86Si0.1413では220
Kで3000×10―6を越えるλsが得られている。
比較としてTbFe、Fe1.005(Rh0.85
Pd0.150.995は室温で2500×10―6
程度のλsである。
This tendency indicates that A is another element, Al,
It was almost the same in the case of Ga, Ge and Zn. Further detailed study of the composition revealed that, as shown in FIG. 2, the one having a saturation magnetostriction (λs) of more than 5000 × 10 −6 can be obtained by the metamagnetic transition. Here, the metamagnetic transition is a phenomenon in which a ferromagnetic substance is changed by applying a magnetic field to the antiferromagnetic or paramagnetic state. As shown in FIG. 2, La (Fe 0.88 Si 0.12 ) 13 is 205
Λs of up to 5000 × 10 −6 has been obtained in K,
Also, La (Fe 0.86 Si 0.14 ) 13 has 220
A λs of more than 3000 × 10 −6 is obtained for K.
For comparison, TbFe 2 , Fe 1.005 (Rh 0.85
Pd 0.15 ) 0.995 is 2500 × 10 −6 at room temperature.
It is about λs.

【0012】しかも、従来の磁歪材料が磁界方向に対し
磁歪の大きさが平行と直角では伸縮が逆(符号が正負
逆)と異方的であるのに対し、本発明の材料は磁界を印
加することで全ての方向に対して伸びる、言い換えれば
磁界をかけることで体積が増えることとなり、従来の材
料とは全く異なる磁歪効果がある。しかしながら、Fe
に対するSi置換では室温(RT)で大きな磁歪を得る
ことができない。そこで、メタ磁性転移温度Tcを室温
近傍にするために添加元素に置換を検討したのである。
Moreover, while the conventional magnetostrictive material is anisotropic in that the expansion and contraction are opposite (signs are opposite to each other) when the magnitude of the magnetostriction is parallel to and perpendicular to the magnetic field direction, the material of the present invention applies a magnetic field. By doing so, it extends in all directions, in other words, by applying a magnetic field, the volume increases, and there is a magnetostriction effect that is completely different from conventional materials. However, Fe
However, a large magnetostriction cannot be obtained at room temperature (RT) by replacing Si with. Therefore, in order to bring the metamagnetic transition temperature Tc to near room temperature, substitution with an additional element was examined.

【0013】上記材料におけるFeとAの比は、Aが増
加するに従い磁気転移温度は上昇し、ほぼ室温近傍にな
る。それと同時に飽和磁化は小さくなる。図3にLa
(Fe1―XSi13についての試験結果を示す。
他のA元素についてもほぼ同様の結果を示した。総じ
て、xが0.05未満であるとNaZn13型の結晶構
造を維持することができず、磁歪を発現するメタ磁性転
移がなくなる。一方、xが0.3を越えると強磁性状態
が安定となり、同様に磁歪を発現するメタ磁性転移は認
められなくなる。
With respect to the ratio of Fe to A in the above material , the magnetic transition temperature rises as A increases, and becomes close to room temperature. At the same time, the saturation magnetization becomes smaller. La in FIG.
The test results for (Fe 1-X Si X ) 13 are shown.
Similar results were obtained for the other A elements. In general, when x is less than 0.05, the NaZn 13 type crystal structure cannot be maintained, and the metamagnetic transition that exhibits magnetostriction disappears. On the other hand, when x exceeds 0.3, the ferromagnetic state becomes stable, and the metamagnetic transition that similarly exhibits magnetostriction is not observed.

【0014】さらにAの一部をTM(Co,Ni,C
u)に置換すると、そのTMの量が変ることで磁性を担
うFeの3d電子の数が変り、磁気転移温度Tcおよび
磁化(Ms)の強さを変える効果がある。このときの
Mの組成(y)は0≦y<0.1の範囲で変えることが
好適で、yが0.1以上となるとFeの磁性そのものに
影響を及ぼすために磁歪を発現するメタ磁性転移が生じ
なくなり不適である。特にTMがCoの場合、置換元素
Coの組成が変ることで磁性を担うFeの3d電子の数
が変り、磁気転移温度Tc,TNおよび磁化の強さを変
える効果がある。このときCoの組成(y)は、0<y
≦0.08の範囲で変えることが好適で、yが0.08
を超えると、Feの磁性そのものに影響を及ぼすために
磁歪を発現するメタ磁性転移が生じなくなり不適であ
る。好ましくはCoの組成は、0.04≦y≦0.06
が磁気転移温度Tcを上昇させ、室温近傍での磁歪効果
を得ることで効果的である。
Further, a part of A is TM (Co, Ni, C
When it is replaced with u) , the number of 3d electrons of Fe, which is responsible for magnetism, is changed by changing the amount of TM , and it has an effect of changing the magnetic transition temperature Tc and the strength of the magnetization (Ms). T at this time
It is preferable to change the composition (y) of M within the range of 0 ≦ y <0.1. When y is 0.1 or more, the magnetic property of Fe is affected, so that a metamagnetic transition that exhibits magnetostriction occurs. It is not suitable because it disappears. In particular, when TM is Co, the number of 3d electrons of Fe, which is responsible for magnetism, is changed by changing the composition of the substitutional element Co, which has the effect of changing the magnetic transition temperatures Tc, TN and the strength of magnetization. At this time, the composition (y) of Co is 0 <y
It is preferable to change within the range of ≦ 0.08, and y is 0.08
If it exceeds, the magnetism of Fe itself is affected, so that the metamagnetic transition expressing magnetostriction does not occur, which is not suitable. Preferably, the composition of Co is 0.04 ≦ y ≦ 0.06.
Is effective in increasing the magnetic transition temperature Tc and obtaining the magnetostriction effect near room temperature.

【0015】そして、本発明の請求項1、2において、
Laの一部を他の希土類元素RE(Nd,Gdなど)で
置換することで、飽和磁界を小さくする効果を見出し
。置換量(z)の上限は0.1である。zが0.1を
超えるとNaZn13型の化合物構造をとるよりも、R
Fe17が安定となり、NaZn13構造によるメ
タ磁性転移が生じなくなり、結果として巨大磁歪が得ら
れない。本発明では10原子%以下の不可避的不純物を
含んでも差支えない。
Then, in claims 1 and 2 of the present invention ,
By substituting a part of La with another rare earth element RE (Nd, Gd, etc.), the effect of reducing the saturation magnetic field was found.
It was The upper limit of the substitution amount (z) is 0.1. When z exceeds 0.1, R rather than NaZn 13 type compound structure is formed.
E 2 Fe 17 becomes stable, metamagnetic transition due to the NaZn 13 structure does not occur, and as a result, giant magnetostriction cannot be obtained. In the present invention, inclusion of inevitable impurities of 10 atomic% or less is acceptable.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施例について述
べる。表1に示した組成の材料をアーク溶解にて作製し
た後、真空中、1050℃で168時間熱処理した試料
をダイヤモンドカッターで切り出した。磁化特性、熱磁
特性はSQUID(カンタムデザイン社製)を用い、磁
歪は超電導磁石中、4.2Kから室温まで静電容量法を
用いて測定した。磁化、熱磁測定用試料および磁歪測定
用の試料形状は2mm×2mm×2mmに切出して用い
た。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. After the materials having the compositions shown in Table 1 were prepared by arc melting, a sample heat-treated at 1050 ° C. for 168 hours in vacuum was cut out with a diamond cutter. SQUID (manufactured by Quantum Design Co., Ltd.) was used for magnetization characteristics and thermomagnetic characteristics, and magnetostriction was measured in a superconducting magnet from 4.2 K to room temperature using a capacitance method. Samples for magnetization, thermomagnetism measurement, and magnetostriction measurement were cut out into 2 mm × 2 mm × 2 mm and used.

【0017】その結果、表1に示すような組成において
室温近傍で、この場合(250−350K)でメタ磁性
転移温度を持つ、言い換えれば非常に大きな磁歪特性を
示す。加えて実施例の場合は飽和磁界を小さくする効果
がある。
As a result, the composition shown in Table 1 has a metamagnetic transition temperature at room temperature (250-350 K), that is, a very large magnetostriction characteristic in the vicinity of room temperature. In addition, the embodiment has the effect of reducing the saturation magnetic field.

【0018】 表1 試料組成 Tc,(K)飽和磁界(T)磁
歪特性(×10―6) La0.9Nd0.1(Fe0.88Si0.12
13195 7 5000 (実施
例) La0.9Gd0.1(Fe0.88Si0.12
13195 8 5000 (実施
例) La(Fe0.88Si0.1213195 1
0 5000 La(Fe0.86Co0.02Si0.1213
30 10 5000 La(Fe0.84Co0.04Si0.1213
70 10 4500 La(Fe0.82Co0.06Si0.1213
10 10 4500 La(Fe0.80Co0.08Si0.1213
40 10 4000 La(Fe0.88Co0.03Si0.0913
40 10 5000 La(Fe0.88Co0.05Si0.0713
70 10 3500 La(Fe0.88Co0.04Si0.0813
40 10 4500 La(Fe0.875Co0.04Si0.085
13245 10 4300 La(Fe0.87Co0.04Si0.0913
50 10 4200 La(Fe0.875Al0.12513200 1
0 2500 La(Fe0.86Ni0.02Si0.1213
10 10 2000 La(Fe0.84Ni0.06Si0.1213
30 10 2000 比較例〔超磁歪材料:A,Eクラーク、江田弘(日刊工
業新聞社刊)〕 組成 温度(K)磁歪特性(×1
―6) TbFe(結晶) RT 1753 TbFe(アモルファス) RT 308 SmFeRT −1560 TbFe(鋳造) RT 13
1 TbFe17RT −14 Tb(単結晶) 220 約2000 Dy(単結晶) 100 約3500 Ni RT −33 Co RT −52 Fe RT −9 60%Co−40%Fe RT 68 CoFeRT −110
Table 1 Sample composition Tc, (K) Saturation magnetic field (T) Magnetostrictive property (× 10 −6 ) La 0.9 Nd 0.1 (Fe 0.88 Si 0.12 )
13 195 7 5000 (Implementation
Example) La 0.9 Gd 0.1 (Fe 0.88 Si 0.12 )
13 195 8 5000 (Implementation
Example) La (Fe 0.88 Si 0.12 ) 13 195 1
0 5000 La (Fe 0.86 Co 0.02 Si 0.12 ) 13 2
30 10 5000 La (Fe 0.84 Co 0.04 Si 0.12 ) 13 2
70 10 4500 La (Fe 0.82 Co 0.06 Si 0.12 ) 13 3
10 10 4500 La (Fe 0.80 Co 0.08 Si 0.12 ) 13 3
40 10 4000 La (Fe 0.88 Co 0.03 Si 0.09 ) 13 2
40 10 5000 La (Fe 0.88 Co 0.05 Si 0.07 ) 13 2
70 10 3500 La (Fe 0.88 Co 0.04 Si 0.08 ) 13 2
40 10 4500 La (Fe 0.875 Co 0.04 Si 0.085 )
13 245 10 4300 La (Fe 0.87 Co 0.04 Si 0.09 ) 13 2
50 10 4200 La (Fe 0.875 Al 0.125 ) 13 2001
0 2500 La (Fe 0.86 Ni 0.02 Si 0.12 ) 13 2
10 10 2000 La (Fe 0.84 Ni 0.06 Si 0.12 ) 13 2
30 10 2000 Comparative Example [Giant Magnetostrictive Material: A, E Clark, Hiroshi Eda (published by Nikkan Kogyo Shimbun)] Composition Temperature (K) Magnetostrictive Property (× 1
0 -6) TbFe 2 (crystal) RT 1753 TbFe 2 (amorphous) RT 308 SmFe 2 RT -1560 Tb 2 Fe 2 ( casting) RT 13
1 Tb 2 Fe 17 RT -14 Tb (single crystal) 220 about 2000 Dy (single crystal) 100 about 3500 Ni RT-33 Co RT -52 Fe RT -9 60% Co-40% Fe RT 68 CoFe 2 O 4 RT -110

【0019】[0019]

【発明の効果】以上説明したとおり本発明の超磁歪材料
は従来の磁歪材料の特性に比べて、等方的で極めて大き
な磁歪特性を室温近傍で有する。これにより、ミクロン
オーダーの微小変位制御駆動部、強力音波発生用振動
子、センサ等の構成材料としてきわめて優れた特性を有
するものである。
As described above, the giant magnetostrictive material of the present invention has an isotropic and extremely large magnetostrictive characteristic near room temperature as compared with the characteristic of the conventional magnetostrictive material. As a result, it has extremely excellent characteristics as a constituent material of a micro displacement control drive unit, a strong sound wave generating oscillator, a sensor, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】La(Fe0.88Si0.1213の各温
度での磁化曲線を示す。
FIG. 1 shows magnetization curves of La (Fe 0.88 Si 0.12 ) 13 at various temperatures.

【図2】各種磁歪材料の磁歪の磁界依存性を示す。FIG. 2 shows the magnetic field dependence of magnetostriction of various magnetostrictive materials.

【図3】La(Fe1―XSi13のSi量に対す
るTc,Msの関係を示すグラフである。
FIG. 3 is a graph showing the relationship between Tc and Ms with respect to the amount of Si in La (Fe 1-X Si X ) 13 .

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−145761(JP,A) 特開 昭53−64798(JP,A) 特開 昭58−3294(JP,A) 特開 平7−118786(JP,A) 特開 平8−293634(JP,A) 特開 平5−148594(JP,A) 特開 平1−236665(JP,A) 特開 平3−183738(JP,A) 特開 平6−145838(JP,A) 特開2002−69596(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 303 H01L 41/20 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-59-145761 (JP, A) JP-A-53-64798 (JP, A) JP-A-58-3294 (JP, A) JP-A-7- 118786 (JP, A) JP 8-293634 (JP, A) JP 5-148594 (JP, A) JP 1-236665 (JP, A) JP 3-183738 (JP, A) JP-A-6-145838 (JP, A) JP-A-2002-69596 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00 303 H01L 41/20

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式La1―ZRE(Fe1―X
13 (ただし、AはAl,Si,Ga,Ge,Snのうち少
なくとも1種の元素、REはLaを除く希土類元素のう
ち少なくとも1種の元素、x,zは原子比で0.05≦
x≦0.2、0<z≦0.1)で示される組成からなる
ことを特徴とする超磁歪材料。
1. A general formula La 1-Z RE Z (Fe 1-X A
X ) 13 (where A is at least one element of Al, Si, Ga, Ge, and Sn, RE is at least one element of rare earth elements other than La, and x and z are 0.05 in atomic ratio). ≤
A giant magnetostrictive material having a composition represented by x ≦ 0.2, 0 <z ≦ 0.1).
【請求項2】 La1―ZRE(Fe1―XX―Y
TM13 (ただし、AはAl,Si,Ga,Ge,Snのうち少
なくとも1種の元素、TMは遷移金属元素のうち少なく
とも1種の元素、REはLaを除く希土類元素のうち少
なくとも1種の元素、x,y,zは原子比で0.05≦
x≦0.2、0<y<0.1、0<z≦0.1)で示さ
れる組成からなることを特徴とする超磁歪材料。
2. La 1-Z RE Z (Fe 1-X A XY)
TM Y ) 13 (where A is at least one element of Al, Si, Ga, Ge, and Sn, TM is at least one element of transition metal elements, and RE is at least one of rare earth elements other than La). The atomic elements of the seed elements, x, y, and z are 0.05 ≦
A giant magnetostrictive material having a composition represented by x ≦ 0.2, 0 <y <0.1, 0 <z ≦ 0.1).
【請求項3】 REがY,Ce,Pr,Nd,Pm,S
m,Eu,Gd,Tb,Dy,Ho,Er,Tm,Y
b,Luのうちの少なくとも1種の元素である請求項1
又は2記載の超磁歪材料。
3. RE is Y, Ce, Pr, Nd, Pm, S
m, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
2. At least one element selected from b and Lu.
Alternatively, the giant magnetostrictive material according to item 2.
JP21757098A 1998-07-31 1998-07-31 Giant magnetostrictive material Expired - Fee Related JP3466481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21757098A JP3466481B2 (en) 1998-07-31 1998-07-31 Giant magnetostrictive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21757098A JP3466481B2 (en) 1998-07-31 1998-07-31 Giant magnetostrictive material

Publications (2)

Publication Number Publication Date
JP2000054086A JP2000054086A (en) 2000-02-22
JP3466481B2 true JP3466481B2 (en) 2003-11-10

Family

ID=16706349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21757098A Expired - Fee Related JP3466481B2 (en) 1998-07-31 1998-07-31 Giant magnetostrictive material

Country Status (1)

Country Link
JP (1) JP3466481B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3630164B2 (en) * 2002-08-21 2005-03-16 株式会社Neomax Magnetic alloy material and method for producing the same
US7186303B2 (en) 2002-08-21 2007-03-06 Neomax Co., Ltd. Magnetic alloy material and method of making the magnetic alloy material
JP3947066B2 (en) * 2002-09-05 2007-07-18 株式会社Neomax Magnetic alloy material
EP1554411B1 (en) 2002-10-25 2013-05-08 Showa Denko K.K. Production method of an alloy containing rare earth element
JP2005036302A (en) * 2002-10-25 2005-02-10 Showa Denko Kk Method of producing rare earth-containing alloy, rare earth-containing alloy, method of producing rare earth-containing alloy powder, rare earth-containing alloy powder, method of producing rare earth-containing alloy sintered compact, rare earth-containing alloy sintered compact, magnetostriction element, and magnetic refrigeration working substance
US7578892B2 (en) 2005-03-31 2009-08-25 Hitachi Metals, Ltd. Magnetic alloy material and method of making the magnetic alloy material
JP2010516042A (en) 2007-02-12 2010-05-13 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Magnetic heat exchange structure and manufacturing method thereof
WO2008099234A1 (en) * 2007-02-12 2008-08-21 Vacuumschmelze Gmbh & Co. Kg. Article for magnetic heat exchange and method of manufacturing the same
JP2010525291A (en) 2007-12-27 2010-07-22 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Composite structure having magnetocalorically active material and method for producing the same
GB2463931B (en) * 2008-10-01 2011-01-12 Vacuumschmelze Gmbh & Co Kg Method for producing a magnetic article
CN102282632B (en) 2008-10-01 2015-02-11 真空熔焠有限两合公司 Article comprising at least one magnetocalorically active phase and method of working an article comprising at least one magnetocalorically active phase
GB2475985B (en) 2009-05-06 2012-03-21 Vacuumschmelze Gmbh & Co Kg Article for magnetic heat exchange and method of fabricating an article for magnetic heat exchange
CN101882493B (en) * 2009-05-08 2015-09-09 包头稀土研究院 Magnetic alloy material and manufacture method thereof and magnetic refrigerating system
GB2482880B (en) 2010-08-18 2014-01-29 Vacuumschmelze Gmbh & Co Kg An article for magnetic heat exchange and a method of fabricating a working component for magnetic heat exchange
GB2482884B (en) * 2010-08-18 2014-04-30 Vacuumschmelze Gmbh & Co Kg Working component for magnetic heat exchange and method of producing a working component for magnetic refrigeration
JP6941483B2 (en) * 2017-06-07 2021-09-29 日本高周波鋼業株式会社 Magnetostrictive member and its manufacturing method

Also Published As

Publication number Publication date
JP2000054086A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
JP3466481B2 (en) Giant magnetostrictive material
Hathaway et al. Magnetostrictive materials
JP4471249B2 (en) Magnetic material
Zhao et al. Coercivity mechanisms in nanostructured permanent magnets
Clark Magnetostrictive RFe2 intermetallic compounds
JP2002069596A5 (en)
Levin et al. Reversible spin-flop and irreversible metamagneticlike transitions induced by a magnetic field in the layered Gd 5 Ge 4 antiferromagnet
US20030010405A1 (en) Magnetostrictive devices and methods using high magnetostriction, high strength fega alloys
EP0361969B1 (en) Super-magnetostrictive alloy
Wang et al. Characterization of polycrystalline Fe 2 B compound with high saturation magnetization
Dai et al. Magnetism, elasticity, and magnetostriction of FeCoGa alloys
JP2970809B2 (en) Rare earth permanent magnet
JP3452210B2 (en) Manufacturing method of magnetostrictive material
Hu et al. Anisotropy compensation and magnetostrictive properties in Tbx Dy1− x (Fe0. 9Mn0. 1) 1.93 Laves compounds: Experimental and theoretical analysis
US5565830A (en) Rare earth-cobalt supermagnetostrictive alloy
Du et al. Magnetostriction in twin-free single crystals Tb y Dy 1− y Fe 2 with the addition of aluminum or manganese
US8308874B1 (en) Magnetostrictive materials, devices and methods using high magnetostriction, high strength FeGa and FeBe alloys
Yan et al. Soft/hard exchange-coupled layered structures with modulated exchange coupling
US6451131B1 (en) Terbium-dysprosium-iron magnetostrictive materials and devices using these materials
JP2848643B2 (en) Giant magnetostrictive alloy and actuator for micro displacement control
JP3354183B2 (en) Magnetostrictive material and magnetostrictive actuator using the same
Clark et al. Magnetization, Young’s moduli, and magnetostriction of rare‐earth–iron eutectic alloys with R= Tb0. 6Dy0. 4
JP2877365B2 (en) Giant magnetostrictive alloy and actuator for micro displacement control
JPH0551704A (en) Ultra-magnetostrictive alloy
Ono et al. Magnetostrictive properties of a new type of Tb–Dy–Fe–Zn Laves phase compound

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees