[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6940270B2 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
JP6940270B2
JP6940270B2 JP2016226693A JP2016226693A JP6940270B2 JP 6940270 B2 JP6940270 B2 JP 6940270B2 JP 2016226693 A JP2016226693 A JP 2016226693A JP 2016226693 A JP2016226693 A JP 2016226693A JP 6940270 B2 JP6940270 B2 JP 6940270B2
Authority
JP
Japan
Prior art keywords
frost
convex portion
heat exchanger
heat
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016226693A
Other languages
English (en)
Other versions
JP2018084354A (ja
Inventor
健史 矢嶌
健史 矢嶌
大久保 英敏
英敏 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAMAGAWA ACADEMY & UNIVERSITY
Tokyo Electric Power Co Holdings Inc
Original Assignee
TAMAGAWA ACADEMY & UNIVERSITY
Tokyo Electric Power Co Inc
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAMAGAWA ACADEMY & UNIVERSITY, Tokyo Electric Power Co Inc, Tokyo Electric Power Co Holdings Inc filed Critical TAMAGAWA ACADEMY & UNIVERSITY
Priority to JP2016226693A priority Critical patent/JP6940270B2/ja
Priority to KR1020170062369A priority patent/KR102454219B1/ko
Priority to US15/793,517 priority patent/US10605546B2/en
Publication of JP2018084354A publication Critical patent/JP2018084354A/ja
Application granted granted Critical
Publication of JP6940270B2 publication Critical patent/JP6940270B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • F24F1/0325Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/065Removing frost by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/008Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • F28G1/02Non-rotary, e.g. reciprocated, appliances having brushes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Defrosting Systems (AREA)

Description

本発明は、空気との熱交換を行う伝熱部材を備える熱交換器に関する。
従来から、空気と熱交換を行うヒートポンプ式の空調機や冷凍機が提供されている。このようなヒートポンプでは、例えば空調機であれば冬期には冷たい空気からさらに熱を吸収することになり、熱交換器に着霜を生じる。また冷凍機であれば目的の低温を生成するために氷点下まで熱交換器を冷却するため、やはり熱交換器には着霜を生じる。霜層は熱伝導率が低いために断熱材となり、ヒートポンプの動作効率が低下する原因となる。このため、着霜すると除霜する必要がある。
従来のヒートポンプの除霜運転は、着霜の程度を冷媒圧力等で検知すると、いったん動作を停止し、冷凍サイクルを逆に動作させ、ホットガスにより解氷している。また、冷媒を逆回転させることによって蒸発器を凝縮器として動作させることにより解氷している場合もある。特許文献1には、四方切替弁によって熱交換器の機能を逆転させるように冷媒の流れ方向を切り替えて除霜運転を行う冷凍サイクル装置が開示されている。
しかし、ヒートポンプの除霜運転に際して特許文献1のように冷媒を逆回しする場合には、本来の動作を間欠的に停止する必要があり、連続運転できないという問題がある。また、除霜のための熱を本来の動作の相手方から吸収することはできないため(例えば、暖房運転中の除霜運転で、室内空気の熱を吸収するわけにはいかない)、除霜するための熱量はもっぱらポンプ仕事に頼ることになる。このときのCOP(Coefficient Of Performance:成績係数)は1であるため、ヒートポンプの全体的なCOPが低下する要因となっている。
ところで、着霜は熱伝導率を低下させるという問題はあるものの、凝固熱を取得できるという点においては価値がある。暖房時のヒートポンプは、空気および湿分の顕熱のほか、湿分の凝縮熱及び凝固熱(いずれも潜熱)を使っている。発明者らが行った試験では、この潜熱は全交換熱量の最大40%を占めるという結果になった(相対湿度50〜80%時に0〜40%)。
このことから、仮に着霜を全く生じないとすると、ヒートポンプが得られる熱も不足してしまうと考えられる。したがって、霜を熱で解氷するのではなく、機械的(物理的)に着霜を除去することができれば、エネルギーの損失がなく、凝固熱を最大限有効に利用できる可能性がある。しかし凝固した氷の結晶は固く、機械的に除去することは容易ではないことは周知の通りである。
そこで発明者らは、着霜した霜を機械的に容易に除去することができる熱交換器を開発した(特許文献2)。特許文献2の熱交換器では、熱交換器のフィンの表面に微細な凸部および凹部を形成している。これにより、凸部の上面の平面部の上に垂直方向に霜結晶が成長し、凹部の上は間隙となる。この結果、フィンには、全体として櫛歯状の霜結晶が形成される。このような形状の霜結晶は構造的に弱いため、例えばブラシやスクレーパーなどを用いた械的な除去手段で容易に払い落とすことができる。したがって、特許文献2によれば、熱交換器において、凝固熱を利用しつつ、長時間の連続運転が可能となる。
特開2009−109063号公報 特許第5989961号
特許文献2の構成であると、上述したようにフィンには、全体として櫛歯状の霜結晶が形成される。このため、フィンの外周近傍の霜結晶はブラシ等によって容易に除去できるが、ブラシ等が届かない内側の領域には霜結晶が残ってしまう。このため、霜結晶をより効率的に除去することができるよう、更なる改善の余地があった。
本発明は、このような課題に鑑み、付着した霜をより効率的に除去することが可能な熱交換器を提供することを目的としている。
上記課題を解決するために、本発明にかかる熱交換器の代表的な構成は、空気との熱交換を行う伝熱部材を備える熱交換器であって、伝熱部材は、空気の進行方向の上流側の縁近傍に、縁と並行に形成された複数本の線状の凸部を有することを特徴とする。
上記構成では、熱交換器の伝熱部材には、空気の進行方向の上流側の縁に線状の凸部が形成されている。これにより、空気が熱交換器を通過する際、空気中の水分は線状の凸部で垂直方向に霜結晶が成長する。このような形状は構造的に弱いため、機械的な除去手段で容易に払い落とすことができる。
このとき、上記構成のように線状の凸部が伝熱部材の上流側の縁近傍に設けられていることにより、霜結晶は、伝熱部材全体ではなく、その上流側の縁近傍に形成される。すなわち霜結晶は、ブラシ等が届きやすい範囲に形成される。したがって、伝熱部材に付着した霜をブラシ等によって効率的に除去することが可能となる。
上記伝熱部材はフィンであり、複数本の線状の凸部は、フィンの空気の進行方向の上流側の縁近傍に該縁と並行に形成されているとよい。かかる構成によれば、伝熱部材がフィンであるとき、その上流側の縁近傍に複数本の線状の凸部を形成することにより、上述した効果を好適に得ることが可能である。
上記伝熱部材はフィンレスチューブであり、複数本の線状の凸部は、フィンレスチューブの少なくとも空気の進行方向の上流側の面に上下方向に延びて形成されているとよい。かかる構成のように、フィンではなくフィンレスチューブを備える熱交換器であっても、上流側の面に凸部を形成することにより、上記と同様の効果を得ることが可能である。
上記凸部は、伝熱部材の空気の進行方向の下流側の縁近傍にも形成されているとよい。かかる構成によれば、フィンの下流側においても空気中の水分が凸部において結晶化する。これにより、上流側で結晶化しきれなかった水分を下流側の凸部で結晶化させることができ、より効率的に凝固熱を空気から吸熱することができる。
上記凸部の数は、伝熱部材の下流側よりも上流側の方が多いとよい。空気中の水分が主に結晶化する上流側の凸部の数を多くすることにより、水分の結晶化を促進し、効率的に凝固熱を吸熱することができる。そして、下流側では、上流側を通過した空気に残っている水分が更に結晶化される。
当該熱交換器は、伝熱部材の下流側に、伝熱部材と間隔をあけて配置される後段伝熱部材を更に備えるとよい。これにより、空気との熱交換をより効率的に行うことが可能となる。
上記複数本の凸部は、空気の進行方向で間隔をあけて配置され、凸部の上面に幅が100μm以上500μm以下の平面部を有し、凸部の平面部の間隔が100μm以上1000μm以下であり、凸部の高さは50μm以上であるとよい。。
かかる構成のように、凸部の上面に平面部が設けられていることにより、凸部の上面における霜結晶の法線方向への成長を促進することができる。平面部の幅は、過冷却液滴の大きさより大きい100μm以上であることが好ましく、機械的除去のための剛性を考慮して500μm以下であることが好ましい。また隣接する凸部の間への着霜を抑制するために凸部の平面部の間隔は1000μm以下であることが好ましく、凸部の上の霜結晶同士が結合することを抑制するために凸部の平面部の間隔は100μm以上であることが好ましい。
更に凸部の高さは50μm以上であることが好ましい。凸部の高さは、すなわち複数の凸部の間の空間(以下、凹部と称する)の深さと一致する。凹部は熱伝達への寄与が少なく、霜結晶の分断に主な役割を有している。そして凹部への着霜を抑制するためには、凸部の高さが50μm以上であることが好ましいためである。
当該熱交換器は、凸部に当接して上下方向に移動可能なブラシを更に備えるとよい。これにより、フィンやフィンレスチューブ等の伝熱部材の凸部に付着した霜を好適に除去することができる。
上記ブラシは、上方から下方に向かって移動して上方に戻るとよい。かかる構成によれば、ブラシが上方から下方に移動する際に伝熱部材から剥離した霜が下方に落下する。したがって、除去した霜の周辺への飛散を防ぐことができ、霜を効率的に収集することが可能となる。またブラシの待機位置が上方になるため、ブラシが霜受け皿から水分を吸うおそれがない。
上記ブラシは、縦断面視において毛先が上下方向に広がった扇形をしているとよい。これにより、ブラシが下方および上方のいずれの方向に移動する際にも霜を奥側に押し込むことなく、好適に霜を除去することができる。
本発明によれば、付着した霜をより効率的に除去することが可能な熱交換器を提供することができる。
第1実施形態にかかる熱交換器の構成を説明する図である。 図1に示すフィンの平面図である。 図1に示すフィンの断面図である。 凸部および凹部の三面図と霜結晶の様子を模式的に示す図である。 機械的な除去手段としてのブラシを説明する図である。 霜結晶の形成および除去について説明する図である。 第1実施形態の熱交換器の変形例を説明する図である。 第1実施形態の熱交換器における自然対流下試験の試験結果を説明する図である。 第1実施形態の熱交換器における強制対流下試験の試験結果を説明する図である。 寸法関係に関する実験を説明する図である。 着霜の様子を説明する顕微鏡写真である。 実施例7の着霜の様子を説明する顕微鏡写真である。 熱流束について説明する図である。 第2実施形態にかかる熱交換器の構成を説明する図である。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
[第1実施形態]
図1は、第1実施形態にかかる熱交換器の構成を説明する図である。熱交換器100は空気(外気)と熱交換を行うものであって、不図示のファンなどによって気流が通過するフィンチューブ式の熱交換器である。チューブ102には、冷媒が不図示のポンプ、凝縮器、膨張弁を通って循環している。第1実施形態の熱交換器100は、空気との熱交換を行う伝熱部材としてフィン104を備える。フィン104は銅やアルミニウムなどの熱伝導率の高い金属によって形成され、チューブ102に拡管接合されており、表面積を増やすことによって空気との熱伝導率を高めている。
図2は、図1に示すフィン104の平面図である。図2に示すように、第1実施形態の熱交換器100の特徴として、伝熱部材の例としてのフィン104には、空気の進行方向の上流側の縁104a近傍に、縁104aと並行に複数本の線状の凸部106が形成されている。凸部106は、フィン104の上流側の縁104aと並行に上下方向に線状に延びている。凸部106はプレス加工を行うことにより好適に形成することが可能である。なお、フィン104には、縁よりも内側の領域に、上述したチューブ102が挿通される挿通孔103が形成されている。
図3は、図1のフィン104の断面図である。図3に示すように、本実施形態の熱交換器100では、複数の凸部106が、空気の進行方向で間隔をあけて配置されている。これにより、図3の拡大図に示すように、複数の凸部106の間にはそれぞれ凹部108が形成される。フィン104は薄板であるから、凹部108は反対側の面において凸部106を形成する。すなわち本実施形態では、フィン104の上流側の縁104a近傍には凸部106およびその間の凹部108からなる微細な波形状が形成されている。凸部106の上面には平面部106aが形成されている。
図4は、凸部106および凹部108の三面図と霜結晶120の様子を模式的に示す図である。上記のような凸部106と凹部108が形成されていることにより、ここに着霜するときには、凸部106の上面の平面部106aにもっぱら付着し、かつ、平面部106aの法線方向に結晶が成長する。したがって図2に示すように、霜結晶120は凸部106を延長したようなリブ形状の薄板が配列した構造となる。なお、仮に凸部106の上面が丸く形成されていると、霜結晶120も放射状に成長する。したがって、霜結晶120を上方に向かって成長させるために(薄板状に成長させるために)、凸部106の上面に平面部106aを形成することが重要である。
このような霜結晶120が形成されるメカニズム(理由)については、まだ未解明な部分も多い。推論も含めて説明すれば、まず空気中の湿分はフィン104に近づいたときに過冷却液滴となり、凸部106の平面部106aに付着する。その過冷却状態が解除されると、液滴の内部で氷の結晶化が開始される(なお、約−40度以下の低温になると、空気中で結晶化する)。結晶の上に次の過冷却液滴が付着すると、氷の結晶がエピタキシャル成長し、既存結晶の結晶構造を継承して新しい結晶が形成される。これにより結晶方向が揃った霜結晶120が形成され、平面部106aの法線方向に向かって成長すると考えられる。
なお霜が凸部106の上面に付着して凹部108の内部に付着しないのは、凸部106の上面に過冷却液滴が付着することによって空気が乾燥してしまって、凹部108の内部には湿分がほとんど到達しないためと考えられる。
上記のようにして形成された霜結晶120は、薄板であるから構造的に弱く、凸部106との接合面から折れやすいため、ブラシなどの機械的な除去手段によって容易に除去することができる。そこで図1に示すように、本実施形態にかかる熱交換器100では、ブラシ110を備えている。ブラシ110は、フィン104の凸部106に当接して配置され、上下方向に移動可能である。
このとき、特に第1実施形態の熱交換器100では、上述した凸部106および凹部108は、フィン104の全面ではなく上流側の縁104a近傍に形成されている。このため、霜結晶120は、フィン104全体ではなく上流側の縁104a近傍のみに形成される。したがって、凸部106に接触するように配置されたブラシ110を上下方向に移動させることにより、フィン104の上流側の縁104aの霜結晶120を好適に除去することができる。換言すれば、フィン104の上流側の縁104aはブラシ110が届きやすい領域である。したがって、そこにのみ霜結晶120が形成されることにより、ブラシ110を上下方向に移動させるだけで霜結晶120を除去することが可能となる。
図5は、機械的な除去手段としてのブラシ110を説明する図である。図3に示すように、本実施形態のブラシ110は、軸110aに毛112が付けられていて、毛112の毛先は縦断面視において上下方向に広がった扇形をしている。
仮に毛先が広がってない従来のブラシであると、ブラシが下方に移動する際には毛先が全体的に上方に向かって曲がってしまい、せっかく除去した霜結晶120がフィン104の奥側に向かって押し込まれてしまう可能性がある。そして、ブラシが上方に移動する際には毛先が全体的に下方に向かって曲がってしまい、やはり除去した霜結晶120がフィン104の奥側に向かって押し込まれてしまう可能性がある。
これに対し本実施形態では、ブラシ110の毛先が上下方向に広がった扇型となっている。ブラシが下方に向かって移動する際には、下側に向かった毛先によって霜結晶120が除去される。ブラシが上方に向かって移動する際には、上側に向かった毛先によって霜結晶120が除去される。したがって、ブラシ110が上方および下方のいずれの方向に移動する際にも、除去した霜結晶120をフィン104の奥側に押し込むことがなく、霜結晶120を効率的に除去することが可能である。
ブラシ110は、フィン104の上部を待機位置とすることが好ましい。そして、霜結晶120を除去する際には、ブラシ110を上方から下方に向かって移動させ、下方から上方に戻すことが好ましい。ブラシ110を往復させるとき、最初の移動においてより多くの霜が剥離される。したがって、まず上方から下方に向かって移動させることにより、除去した霜の周辺への飛散を防ぐことができ、霜を効率的に収集することが可能となる。
また本実施形態では、図1に示すようにフィン104の上流側の下部に霜受け皿130を設けている。これにより、上述したようにブラシ110を移動させることによって除去した霜結晶120は霜受け皿130に堆積する。したがって、除去した霜結晶120を好適に収集することができ、フィン104周囲の清掃の手間を軽減することができる。なお、ブラシ110の待機位置がフィン104の上部であるから、ブラシ110が霜受け皿130から水分を吸うおそれがない。
なお、本実施形態では機械的な除去手段としてブラシを例示したが、これに限定するものではない。機械的な除去手段の他の例としては、ブラシの他にスクレーパーを用いたり、フィンに振動や衝撃を与えたりすることでもよい。またブラシの形状においても、必ずしも扇状に限定するものではなく他の形状のブラシを採用することも可能である。更にブラシの動作についても上記動作に限定されず、ブラシを回転させながら霜結晶120を除去してもよい。換言すれば、回転ブラシを用いることも可能である。
なお空気が熱交換器100を通過するとき、上流側(一次側)で冷却と凝縮がおきて着霜し、熱交換器100の内部でさらに冷却され、下流側(二次側)では乾燥空気となっている。したがって着霜するのは主として上流側であるから、上流側のみにブラシ110を備えていれば足り、一方側にのみブラシ110を備えていることで装置構成の簡略化を図ることができる。
ただし結晶が成長するにつれて方向性には乱れが生じ、霜結晶120の個々の薄板は幅が太くなっていき、やがて隣接する薄板と結合してしまう。そうなると相互に補完しあって剛性が高くなってしまうために、ブラシ110では除去しにくくなってしまう。そこで、霜結晶120の成長速度に応じて、ある程度の頻度でブラシ110を稼働させることが好ましい。
更に第1実施形態では、図2に示すように、フィン104の上流側の縁104aだけではなく、フィン104(伝熱部材)の空気の進行方向の下流側の縁104bの近傍にも凸部106が形成されている。これにより、フィン104の下流側においても空気中の水分が凸部106において結晶化する。したがって、水分が結晶化する際の凝固熱を空気から吸熱することができる。
図6は、霜結晶120の形成および除去について説明する図である。図6(a)は、霜結晶120が形成されているフィン104を模式的に示した図であり、図6(b)は、霜結晶120を除去したフィン104を模式的に示した図である。平面部106aに液滴が付着すると、図6(a)に示すように、かかる平面部106a状に種結晶122が形成される。そして、この種結晶122上に枝結晶124が成長していくことにより上述した霜結晶120が形成される。
そして、上述したようにブラシ110による除去作業を行うと、図6(b)に示すように、枝結晶124が除去され、種結晶が106a上に残存する。これにより、残存した種結晶122を基としてかかる種結晶122上に枝結晶124が成長する。すなわち霜結晶120を除去した際に種結晶122が平面部106a上に残存することにより、枝結晶124の生成を促進することができる。これにより、水分が結晶化する際の凝固熱を空気から効率的に吸熱することが可能となる。
図7は、第1実施形態の熱交換器100の変形例を説明する図である。図2に示すフィン104では、上流側の縁104aおよび下流側の縁104bの両方の近傍に凸部106を形成していた。これに対し、図7(a)に示すフィン140aでは上流側の縁104a近傍のみに凸部106を形成している。気流が熱交換器100を通過する際、それに含まれる水分の大部分は上流側の縁104a近傍の凸部106において霜結晶として析出する。したがって、図7(a)に示すようにフィン140aの上流側の縁104a近傍のみに凸部106を設ける構成としても、上述した効果を十分に得ることが可能である。
図7(b)に示すフィン140bは、上流側の縁104aおよび下流側の縁104bの両方の近傍に凸部106が形成されているが、凸部106の数は下流側よりも上流側の方が多く設定されている。これにより、上流側の凸部106において空気から吸熱することができ、且つ下流側では、上流側を通過した空気に残っている水分が更に結晶化される。空気中の水分が主に結晶化する上流側の凸部106の数を多くすることにより、水分の結晶化を促進し、効率的に凝固熱を吸熱することができる。
図7(c)では、伝熱部材であるフィン104の下流側に、かかるフィン104と間隔をあけて後段伝熱部材である後段フィン150を配置している。後段フィン150においては乾燥した空気が流通するために着霜の量がきわめて少なく、熱伝達率の低下が小さい。これにより、空気との熱交換をより効率的に行うことが可能となる。
図8は、第1実施形態の熱交換器100における自然対流下試験の試験結果を説明する図である。自然対流下試験では、鉛直冷却面に第1実施形態の熱交換器のフィン104を貼付した実験体を作成した。実験条件は、冷却面の表面温度を約−120℃とし、周辺環境を温度21000℃、湿度0.012kg/kgとした。トレーサー粒子は、境界層内で発生する氷の粒子を用いた。
図8(a)に示すように、フィン104では、かかるフィン104に形成された凸部106上に霜結晶120が形成されていて、凹部108には着霜していないことが確認できる。このように、上記説明したようにフィン104の縁に凸部106を設けることにより、フィン104全体ではなく、凸部106に選択的に霜結晶を形成させることができる。これにより、凹部における熱伝達率の低下を防止すると共に、霜結晶120をブラシ110によって好適に除去することが可能となる。
図8(b)では、フィン104の凸部106近傍におけるトレーサー粒子の流れを観察した図である。図8(b)に示すように、フィン104の凸部106近傍では、複数の凸部106の頂点に沿うように空気が流れる。このとき、空気の一部が凹部108に入りこむことにより、凹部108では渦が発生する。そして、凹部108において渦状の空気とフィン104との熱交換が行われることにより、フィン104における熱交換効率の向上を図ることができる。
図9は、第1実施形態の熱交換器100における強制対流下試験の試験結果を説明する図である。図9(a)は実施例および比較例における総括熱伝達率の変化を示すグラフである。図9(b)は実施例および比較例における熱交換効率の値を示す図である。実施例は、第1実施形態の熱交換器100(縁に凸部106を設けたフィン104を備える熱交換器100)を用いている。比較例は、凸部を設けていない平坦な板状のフィンを備える熱交換器を用いている。なお、実験条件は、空気の温度を2℃、湿度を80%とし、面風速を1m/sとした。
図9(a)に示すように、総括熱伝達率は、経過時間に拘わらず、常に比較例よりも実施例のほうが高い値を示している。このことから、本発明によれば、空気との熱交換効率を向上する効果が得られることが理解できる。また図9(b)を参照しても、いずれの経過時間においても、比較例よりも実施例のほうが大幅に高い熱交換効率が得られていることが明らかである。
次に、上記のような霜結晶120を形成するために、凸部106と凹部108の寸法関係について説明する。まず結論から先に述べると、平面部106aの最小の幅が100μm以上500μm以下であることが好ましい。凸部106の平面部106aの間隔(すなわち凹部108の幅)の最小の幅が100μm以上1000μm以下であることが好ましい。最小の幅とは、凸部106および凹部108の長手方向の幅(リブまたは溝の長さ)ではなく、短手方向の幅を意味している。凸部の高さは50μm以上であることが好ましい。なお、凸部106の高さとは、言い換えると凹部108の深さである。
図10は、寸法関係に関する実験を説明する図である。試験片である銅板に、放電加工によって線状の溝である凹部108を6本形成することにより、下記寸法の凸部106および凹部を形成した。図10(a)に示すように、平面部106aの幅をW[μm]、平面部106aの間隔をL[μm]、凸部の高さをZ[μm]とする。そして図10(b)に示すように、実施例1〜3は平面部の間隔Lを250μmに固定し、平面部の幅Wをそれぞれ100μm、250μm、500μmとした。凸部の高さZは、枝番a〜eを付して、300μm〜700μmまで100μm刻みで変化させた。実施例4〜6は、平面部の幅Wを250μm、凸部の高さZを700μmに固定し、平面部の間隔Lをそれぞれ500μm、750μm、1000μmとした。また比較例として、無加工の銅板に対する着霜の様子を観察した。
図11は着霜の様子を説明する顕微鏡写真である。図11において基準面とは、実施例では凸部106の上面の平面部106aであり、比較例では銅板の表面である。図11に示す着霜の実験では、図4に示した試験片を−10℃まで冷却して、大気下で霜結晶の成長過程を撮影した。
図11(a)は平面部の幅Wを比較する図である。比較例では基準面に一様に着霜していることがわかる。一方、実施例1−e(幅Wが100μm)、実施例2−e(幅Wが250μm)では、凸部106の平面部106a上に着霜して法線方向に結晶成長し、凹部108にはほとんど着霜していないことがわかる。図示しないが実施例3(幅Wが500μm)でも、同様に平面部106aの表面に着霜し、平面部106aの法線方向に結晶が成長していた。これらのことから、平面部106aの幅が100μm以上500μm以下が好ましいことが確認できた。
平面部の幅Wが100μm未満の場合について説明する。空気中の湿分がフィン104に付着するとき、過冷却液滴として付着し、その過冷却状態が解除されると、液滴の内部で氷の結晶化が開始される。ここで平面部の幅Wが過冷却液滴の大きさよりも狭いと、凸部106の先端に球状に液滴が付着し、放射状に結晶が成長してしまう。すなわち平面部106aの法線方向に結晶を成長させるためには、過冷却液滴の直径よりも平面部の幅Wを大きくする必要がある。この過冷却液滴の大きさは、別途の実験を行ったところ、親水処理をしたもので72μm、撥水処理をしたもので28μmであった。そこで、若干のばらつきを考慮して、平面部の幅Wが100μm以上であればほぼ確実に平面部106aの法線方向に結晶成長させられると考えられる。
平面部の幅Wが500μmより大きい場合について考える。このとき結晶の成長方向は法線方向になるが、平面部106aと霜結晶120との接合面が大きくなる(結晶の根元の幅が太くなる)ため、機械的強度が増してしまい、機械的に除去することが困難になってしまう。したがってこの上限については除去手段との兼ね合いにもなるが、500μm以下であれば上記のブラシ110によっても容易に除去可能であった。
図11(b)は、平面部の間隔Lを比較する図である。実施例2−e(間隔Lが250μm)では凹部108の中にはほとんど着霜していないが、実施例6(間隔Lが1000μm)では凹部108の中にも若干着霜してしまっている。また図5(a)に示しているように、実施例1−e(間隔Lが100μm)の場合にも、凹部108の中にはほとんど着霜していない。
平面部の間隔Lが100μm未満の場合、凹部108の中への着霜は生じない。しかし、霜結晶120の薄板は結晶成長に伴って幅が太くなっていくため、隣接する霜の薄板が近すぎると早期に相互に結合して堅牢な構造を形成してしまう。そのため、平面部の間隔Lは100μm以上であることが好ましい。
平面部の間隔Lが1000μmより大きくなると、さらに凹部108の中への着霜が大きくなり、凹凸を形成していることの意義が失われてしまう。平面部の間隔Lが1000μmの場合も凹部108の中への着霜が見られるが、この状態でも上記のブラシ110による除去は可能であった。そのため、平面部の間隔Lは、1000μm以下が好ましいことが確認された。
繰り返しになるが、平面部の幅Wが100μm以上500μm以下、平面部の間隔Lが100μm以上1000μm以下という数値範囲の限界的意義は、この範囲であれば本発明を実施可能であることが確認できていることを意味している。換言すれば、この範囲をわずかでも超えたら実施不可能になることを意味するものではない。
図11(c)は凸部の高さZを比較する図である。実施例2−a(高さZが300μm)でも、実施例2−e(高さZが700μm)でも、凹部108の中には着霜せず、空隙が形成されていることがわかる(写真の黒い部分)。これらのことから、凸部の高さZが300μm以上であれば、平面部106aの上に霜結晶120が形成されることが確認された。なお凹部108がさらに深いことについては、熱的な制限はほとんどなく、凹部108を形成するための加工技術上の制限によってその高さZが決定されると考えられる。
図12は、実施例7の着霜の様子を説明する顕微鏡写真である。実施例7では、図10(a)に示す各パラメータを、平面部の幅W=100μm、平面部の間隔L=200μm、凸部の高さZ=50μmとしたフィンを用いている。図12から明らかなように、凸部の高さZを50μmとした場合においても、基準面すなわちフィンの凸部の平面部に霜結晶が形成している。したがって、凸部の高さZは、上述した300μmよりも低い50μmであっても十分に本発明の効果が得られることが理解できる。
図13は熱流束について説明する図である。図13は図10に示した比較例と実施例2−eの熱流束を測定した結果を示している。図13に示すグラフの横軸は冷却面温度[℃]、縦軸は熱流束[W/m]である。なお冷却面初期温度tw0=−190℃、空気温度ta=25℃、冷却面姿勢θ=90度、空気湿度xa=0.0119kg/kgである。
図13に示すように、熱流束については、無加工の銅板である比較例と実施例2−eとの間で、ほとんど差が見られなかった。このことから、凸部106および凹部108を形成しても熱交換器100としての能力の低下はないことが確認された。
上記説明したように、熱交換器100の表面に上記のような凸部106および凹部108を設けることにより、凸部106の上面の平面部106aの上に薄板が配列した櫛歯状の構造の霜結晶120を形成することができる。このような霜結晶120は構造的に弱く、機械的な除去手段で容易に払い落とすことができるため、凝固熱を利用しつつ、長時間の連続運転が可能な熱交換器を提供することができる。
本発明は、従来の熱による除霜(ヒートポンプにおける冷媒の逆回しや、散水による除霜)を必ずしも除外するものではなく、併用して利用可能である。例えば、熱による除霜を従来は20分に1回程度行っていたところを、本発明を併用することによって1時間に1回程度の頻度にすることができれば、十分に利益を得ることができる。
[第2実施形態]
図14は、第2実施形態にかかる熱交換器200の構成を説明する図である。図14(a)に示すように、第2実施形態の熱交換器200は、第1実施形態の熱交換器100のフィン104に替えて、伝熱部材の例としてのフィンレスチューブ210を備える。なお図14(a)ではフィンレスチューブ210を3つだけ描いているが、熱交換器200は多数のフィンレスチューブ210を備える。フィンレスチューブ210は、内部を冷媒が通過する冷媒流路212を有する。
本実施形態の特徴として、フィンレスチューブ210には、複数本の線状の凸部216が形成されている。これにより、伝熱部材としてフィン104ではなくフィンレスチューブ210を備える熱交換器200であっても同様の効果を得ることが可能である。
なお、図14(a)に示すフィンレスチューブ210では外側の面の全面に凸部216を形成しているが、これに限定するものではない。凸部216は、フィンレスチューブ210の外側の面のうち少なくとも、空気の進行方向の上流側の面に形成されていれば、第1実施形態の熱交換器100と同様の効果を得ることが可能である。
図14(b)は、第2実施形態の熱交換器200の変形例である。図14(b)に示す熱交換器200aは、伝熱部材であるフィンレスチューブ210の下流側に、かかるフィンレスチューブ210と間隔をあけて、後段伝熱部材の例としての後段フィン150が配置されている。このように、2つの伝熱部材を配置することにより、より効率的に空気から吸熱することが可能となる。
なお、図7(c)では伝熱部材の例としてフィン104を示し、後段伝熱部材の例として後段フィン150を示した。図14(b)では伝熱部材の例としてフィンレスチューブ210を示し、後段伝熱部材の例として後段フィン150を示した。しかし本発明はこれらの組み合わせに限定されない。すなわち、前段と後段はフィンチューブないしフィンレスチューブをいずれも適宜選択することができる。
また後段伝熱部材のフィンまたはフィンレスチューブには、上流側の縁に凸部106を形成してもよいし、凸部106を形成しなくてもよい。更に本実施形態では伝熱部材としてフィンおよびフィンレスチューブを例示したが、これにおいても限定されず、他の伝熱部材に本発明を適用することも可能である。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
本発明は、空気との熱交換を行う伝熱部材を備える熱交換器として利用可能である。
100…熱交換器、102…チューブ、103…挿通孔、104…フィン、104a…縁、104b…縁、106…凸部、106a…平面部、108…凹部、110…ブラシ、110a…軸、112…毛、112a…上側毛、112b…下側毛、120…霜結晶、122…種結晶、124…枝結晶、130…霜受け皿、140a…フィン、150…後段フィン、200…熱交換器、200a…熱交換器、210…フィンレスチューブ、212…冷媒流路、216…凸部

Claims (3)

  1. 空気との熱交換を行う伝熱部材を備える熱交換器であって、
    前記伝熱部材は薄板のフィンであり、
    前記フィンは、
    空気の進行方向の上流側の縁近傍に該縁と並行に形成された複数本の線状の凸部を有し、
    前記縁近傍よりも内側の領域に冷媒が循環するチューブが挿通される挿通孔を有していて、
    前記縁近傍よりも内側の領域には前記凸部を有しておらず、
    前記複数本の凸部は、空気の進行方向で間隔をあけて配置され、
    前記凸部の上面に幅が100μm以上500μm以下の平面部を有し、
    前記凸部の平面部の間隔が100μm以上1000μm以下であり、
    前記凸部の高さは50μm以上であることを特徴とする熱交換器。
  2. 前記凸部は、前記伝熱部材の空気の進行方向の下流側の縁近傍にも形成されていることを特徴とする請求項1に記載の熱交換器。
  3. 前記凸部の数は、前記伝熱部材の下流側よりも上流側の方が多いことを特徴とする請求項2に記載の熱交換器。
JP2016226693A 2016-11-22 2016-11-22 熱交換器 Active JP6940270B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016226693A JP6940270B2 (ja) 2016-11-22 2016-11-22 熱交換器
KR1020170062369A KR102454219B1 (ko) 2016-11-22 2017-05-19 열교환기
US15/793,517 US10605546B2 (en) 2016-11-22 2017-10-25 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016226693A JP6940270B2 (ja) 2016-11-22 2016-11-22 熱交換器

Publications (2)

Publication Number Publication Date
JP2018084354A JP2018084354A (ja) 2018-05-31
JP6940270B2 true JP6940270B2 (ja) 2021-09-22

Family

ID=62147570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016226693A Active JP6940270B2 (ja) 2016-11-22 2016-11-22 熱交換器

Country Status (3)

Country Link
US (1) US10605546B2 (ja)
JP (1) JP6940270B2 (ja)
KR (1) KR102454219B1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110094830A (zh) * 2019-04-02 2019-08-06 三菱重工金羚空调器有限公司 空调换热器自清洁方法
JP7224498B2 (ja) 2019-12-26 2023-02-17 三菱電機株式会社 熱交換器、室外機及び冷凍サイクル装置
CN113739502B (zh) * 2021-08-30 2024-10-01 江苏飒雪制冷设备工程有限公司 一种冷库制冷设备
CN118049802B (zh) * 2024-04-09 2024-06-18 昆明友邦制冷设备有限公司 一种制冷设备及其系统

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3145456A (en) * 1956-06-21 1964-08-25 Olin Mathieson Method of manufacturing finned structure
US3645330A (en) * 1970-02-05 1972-02-29 Mcquay Inc Fin for a reversible heat exchanger
US4275785A (en) * 1977-03-28 1981-06-30 Industrial Blast Coil Corporation Heat exchange tubing blade assembly
JPS5926237B2 (ja) * 1978-06-21 1984-06-25 株式会社日立製作所 熱交換器
JPS6015064A (ja) * 1983-07-06 1985-01-25 Hitachi Ltd 熱交換器
JPH0271096A (ja) * 1988-09-05 1990-03-09 Matsushita Refrig Co Ltd フィン付熱交換器
US5168923A (en) * 1991-11-07 1992-12-08 Carrier Corporation Method of manufacturing a heat exchanger plate fin and fin so manufactured
JP3342121B2 (ja) * 1993-08-26 2002-11-05 三菱重工業株式会社 プレートフィンアンドチューブ型熱交換器
DE4404357C2 (de) * 1994-02-11 1998-05-20 Wieland Werke Ag Wärmeaustauschrohr zum Kondensieren von Dampf
US5660230A (en) * 1995-09-27 1997-08-26 Inter-City Products Corporation (Usa) Heat exchanger fin with efficient material utilization
US5752567A (en) * 1996-12-04 1998-05-19 York International Corporation Heat exchanger fin structure
JPH10227589A (ja) * 1996-12-12 1998-08-25 Daikin Ind Ltd ワッフル型クロスフィン熱交換器
KR100220723B1 (ko) * 1996-12-30 1999-09-15 윤종용 공기조화기의 열교환기
JP2003161597A (ja) * 2001-11-28 2003-06-06 Matsushita Electric Ind Co Ltd 熱交換器の洗浄具およびその洗浄具によるエアコンの熱交換器の洗浄方法
JP4100257B2 (ja) * 2003-05-29 2008-06-11 株式会社デンソー 空調用熱交換器および車両用空調装置
US7044211B2 (en) * 2003-06-27 2006-05-16 Norsk Hydro A.S. Method of forming heat exchanger tubing and tubing formed thereby
KR100543599B1 (ko) * 2003-09-15 2006-01-20 엘지전자 주식회사 열교환기
JP2006153327A (ja) * 2004-11-26 2006-06-15 Daikin Ind Ltd 熱交換器
JP4952196B2 (ja) * 2005-12-07 2012-06-13 パナソニック株式会社 熱交換器
JP5172276B2 (ja) 2007-10-29 2013-03-27 日立アプライアンス株式会社 四方切換弁及びこれを用いた冷凍サイクル装置
JP5156773B2 (ja) * 2010-02-25 2013-03-06 株式会社小松製作所 コルゲートフィンおよびそれを備える熱交換器
JPWO2012014934A1 (ja) * 2010-07-27 2013-09-12 住友軽金属工業株式会社 空気調和機用サーペンタイン熱交換器
JP5312413B2 (ja) * 2010-08-09 2013-10-09 三菱電機株式会社 フィンチューブ熱交換器及びそれを用いた冷凍サイクル装置
JP5989961B2 (ja) * 2010-10-07 2016-09-07 東京電力ホールディングス株式会社 熱交換器
JP5397522B2 (ja) * 2012-10-18 2014-01-22 三菱電機株式会社 冷凍サイクル装置、冷凍・空調装置、給湯装置
KR102092587B1 (ko) * 2012-10-29 2020-03-24 삼성전자주식회사 열교환기
JP6391969B2 (ja) * 2014-03-31 2018-09-19 三菱重工サーマルシステムズ株式会社 熱交換器および空気調和機

Also Published As

Publication number Publication date
US20180142969A1 (en) 2018-05-24
US10605546B2 (en) 2020-03-31
KR102454219B1 (ko) 2022-10-14
JP2018084354A (ja) 2018-05-31
KR20180057487A (ko) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6940270B2 (ja) 熱交換器
JP5989961B2 (ja) 熱交換器
JP2006046694A (ja) 冷凍装置
JP6701371B2 (ja) 熱交換器及び冷凍サイクル装置
JP2019163909A (ja) フィンチューブ式熱交換器
JP7112053B2 (ja) 熱交換器及びそれを用いた冷凍サイクル装置
JP2014163633A (ja) 冷却器、および冷蔵庫
JP3790350B2 (ja) 熱交換器
JP2020133933A (ja) 除霜装置およびこれを備えた冷蔵庫
JP2004271113A (ja) 熱交換器
CN110864376A (zh) 一种自清洁翅片、换热器及空调器
JP7346812B2 (ja) 冷却装置
JP6449032B2 (ja) 冷却器及びその製造方法並びにその冷却器を備えた冷蔵庫
JP2009243769A (ja) 熱交換器
JPS5899667A (ja) 熱交換器
JP4151721B2 (ja) 熱交換器とこの熱交換器を有する冷凍装置を備えた機器
JP3860598B2 (ja) 熱交換器とこの熱交換器を有する冷凍装置を備えた機器
JP3872996B2 (ja) 熱交換器
JP6458347B2 (ja) 金属メッシュ付き熱交換器
JP2006046697A (ja) 冷凍装置
JP6921323B2 (ja) 熱交換器、熱交換器ユニット、及び冷凍サイクル装置
JP7279562B2 (ja) 冷却装置
JP2009250491A (ja) 冷蔵庫
JP2005308252A (ja) 熱交換器およびこれを備えた空気調和機の室外ユニット
JP2006242394A (ja) 空気調和装置の熱源ユニットおよびこれを備えた空気調和装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161216

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170221

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190917

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210902

R150 Certificate of patent or registration of utility model

Ref document number: 6940270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250