JP6836969B2 - Ferritic stainless steel sheet - Google Patents
Ferritic stainless steel sheet Download PDFInfo
- Publication number
- JP6836969B2 JP6836969B2 JP2017150066A JP2017150066A JP6836969B2 JP 6836969 B2 JP6836969 B2 JP 6836969B2 JP 2017150066 A JP2017150066 A JP 2017150066A JP 2017150066 A JP2017150066 A JP 2017150066A JP 6836969 B2 JP6836969 B2 JP 6836969B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- stainless steel
- orientation
- steel sheet
- molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 56
- 239000013078 crystal Substances 0.000 claims description 61
- 239000010935 stainless steel Substances 0.000 claims description 23
- 229910000859 α-Fe Inorganic materials 0.000 claims description 21
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- 238000000465 moulding Methods 0.000 description 38
- 238000000137 annealing Methods 0.000 description 22
- 229910000831 Steel Inorganic materials 0.000 description 17
- 239000010959 steel Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 238000001953 recrystallisation Methods 0.000 description 14
- 238000005097 cold rolling Methods 0.000 description 13
- 238000005096 rolling process Methods 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 4
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 241000612118 Samolus valerandi Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、フェライト系ステンレス鋼板に関し、特に、成形加工した際の成形性並びに成形後の表面特性に優れるフェライト系ステンレス鋼板に関する。 The present invention relates to a ferritic stainless steel sheet, and more particularly to a ferritic stainless steel sheet having excellent formability during molding and surface characteristics after molding.
代表鋼種であるSUS304(18Cr−8Ni)をはじめとしたオーステナイト系ステンレス鋼は、耐食性、加工性、美麗性等に優れることから家電、厨房品、建材等広く用いられている。但し、オーステナイト系ステンレス鋼は高価かつ価格変動の激しいNiを多量に添加しているため鋼板の価格が高いとされており、経済性の観点からはより安価なものが望まれている。
一方、フェライト系ステンレス鋼はNiを含有しない、もしくは含有量が極めて少ないため、コストパフォーマンスに優れる材料として、ここ近年で需要が増加している。しかしながら、フェライト系ステンレス鋼を成形用途として使用する場合、問題となるのが成形限界と、成形後に表面凹凸が形成されることによる表面特性の劣化である。
Austenitic stainless steels such as SUS304 (18Cr-8Ni), which is a representative steel type, are widely used in home appliances, kitchen products, building materials, etc. because they are excellent in corrosion resistance, workability, and beauty. However, it is said that the price of austenitic stainless steel is high because a large amount of Ni, which is expensive and the price fluctuates sharply, is added, and a cheaper one is desired from the viewpoint of economy.
On the other hand, since ferritic stainless steel does not contain Ni or has an extremely low content, the demand for it as a material having excellent cost performance has been increasing in recent years. However, when ferrite-based stainless steel is used for molding, problems are the molding limit and the deterioration of surface characteristics due to the formation of surface irregularities after molding.
まず成形限界について比較すると、オーステナイト系ステンレス鋼の場合は張り出し性に優れるが、フェライト系ステンレス鋼の張り出し性は低く、大きく変形させることが出来ない。しかし鋼中の結晶方位(集合組織)を調整することで深絞り性を制御することが出来るため、フェライト系ステンレス鋼を成形用途として用いる場合では、深絞りを主体とした成形手法を用いる場合が多い。 First, when comparing the molding limits, the austenitic stainless steel has excellent overhanging property, but the ferritic stainless steel has low overhanging property and cannot be significantly deformed. However, since the deep drawing property can be controlled by adjusting the crystal orientation (organization) in the steel, when ferritic stainless steel is used for molding purposes, a molding method mainly for deep drawing may be used. There are many.
次に、成形加工後の表面特性(表面凹凸)について述べる。ここで「表面凹凸」とは、加工や成形を行った後に鋼板表面に生じる微細な凹凸(肌荒れ)を指し、この微細な凹凸は結晶粒に対応しており、結晶粒径が大きいほど表面凹凸も顕著になる。
オーステナイト系ステンレス鋼の場合、加工硬化特性に優れており細粒組織が比較的作りやすいため結晶粒度番号が約10程度の鋼板が製造されている。このため成形加工後の表面凹凸(肌荒れ)は小さく、ほとんど問題とならない。一方、フェライト系ステンレス鋼の結晶粒度はSUS430で9程度、SUS430LXで7程度とオーステナイト系ステンレス鋼に比べて小さい。ここで粒度番号が小さい、ということは結晶粒径が大きいことを示している。
フェライト系ステンレス鋼が粗粒になりやすい一因としては、フェライト系ステンレス鋼では再結晶粒径が大きくなりやすく、特にSUS430LXのように、C,Nを低減させて加工性、成形性の向上を図った高純フェライト系ステンレス鋼では粒成長しやすいため、オーステナイト系ステンレス鋼に比べ結晶粒度が大きくなる傾向にある。
Next, the surface characteristics (surface unevenness) after the molding process will be described. Here, "surface unevenness" refers to fine irregularities (rough skin) that occur on the surface of the steel sheet after processing or molding, and these fine irregularities correspond to crystal grains, and the larger the crystal grain size, the more the surface irregularities. Will also be noticeable.
In the case of austenitic stainless steel, a steel sheet having a crystal grain size number of about 10 is manufactured because it has excellent work hardening characteristics and a fine grain structure is relatively easy to form. Therefore, the surface unevenness (rough skin) after the molding process is small, and there is almost no problem. On the other hand, the crystal grain size of ferritic stainless steel is about 9 for SUS430 and about 7 for SUS430LX, which are smaller than those of austenitic stainless steel. Here, the fact that the particle size number is small indicates that the crystal particle size is large.
One of the reasons why ferritic stainless steels tend to have coarse grains is that ferritic stainless steels tend to have a large recrystallized grain size, and in particular, like SUS430LX, C and N are reduced to improve workability and formability. Since the high-pure ferritic stainless steels we have planned tend to grow grains easily, the crystal grain size tends to be larger than that of austenitic stainless steels.
家電製品の筺体あるいは器物のように比較的厳しい成形性が要求される場合、フェライト系ステンレス鋼ではSUS430LXのような高純フェライト系ステンレス鋼が用いられることが多い。また、成形後の強度を担保するために用いられるステンレス鋼板の板厚は大半の場合は0.6mm以上であることが一般的であるが、前述のように結晶粒径が大きいために成形後の肌荒れが大きく、成形後に研磨によって表面凹凸の除去が通常行われている。 When relatively strict formability is required, such as in the housing or equipment of home appliances, high-pure ferritic stainless steel such as SUS430LX is often used as the ferrite stainless steel. In most cases, the thickness of the stainless steel sheet used to ensure the strength after molding is 0.6 mm or more, but as described above, the crystal grain size is large, so that after molding. The rough skin is large, and surface irregularities are usually removed by polishing after molding.
上述した背景から、高純度フェライト系ステンレス鋼の肌荒れを軽減する手法が開示されている。 From the above background, a method for reducing rough skin of high-purity ferritic stainless steel has been disclosed.
特許文献1には、高純度のフェライト系ステンレス鋼を用いて析出粒子のサイズ及び結晶粒径を制御して、加工肌荒れを低減させかつ成形性を向上させたフェライト系ステンレス鋼及びその製造方法が開示されている。しかし特許文献1記載の方法では、結晶粒径が小さい鋼板が得られているものの成形した際の深絞り性は十分ではなく、また結晶粒径が小さいにもかかわらず成形後の肌荒れが発生しやすい問題があった。 Patent Document 1 describes a ferritic stainless steel in which the size and grain size of precipitated particles are controlled by using a high-purity ferritic stainless steel to reduce rough processing and improve formability, and a method for producing the same. It is disclosed. However, in the method described in Patent Document 1, although a steel sheet having a small grain size is obtained, the deep drawing property at the time of molding is not sufficient, and even though the crystal grain size is small, rough skin occurs after molding. There was an easy problem.
特許文献2には、TiとNbを含有したフェライト系ステンレス鋼において低温で熱間圧延を実施し、かつ高い冷間圧延率を取ることで細粒とし、成形時の耐肌荒れ性に優れたステンレス鋼を製造する技術を開示している。こうした技術によって特許文献2に記載のステンレス鋼板の結晶粒度番号は9.5と細粒組織が得られているものの、カップ絞り成形をした後の耐肌荒れ性は必ずしも十分ではない。 Patent Document 2 describes a stainless steel containing Ti and Nb, which is hot-rolled at a low temperature and has a high cold-rolling ratio to make fine particles, and has excellent rough skin resistance during molding. It discloses the technology for manufacturing steel. Although the grain size number of the stainless steel sheet described in Patent Document 2 is 9.5 and a fine grain structure is obtained by such a technique, the rough skin resistance after cup drawing molding is not always sufficient.
特許文献3には、Nb及び/またはTiを含有する成分を有する鋼の最終冷延前の結晶粒径を制御することで深絞り性、リジング性および耐肌荒れ性を向上させたフェライト系ステンレス鋼が開示されている。しかし、最終製品の結晶粒径は15μm(結晶粒度番号で8.8)であり、耐肌荒れ性が不十分である。 Patent Document 3 describes a ferritic stainless steel in which deep drawing property, rigging property and rough skin resistance are improved by controlling the grain size of a steel having a component containing Nb and / or Ti before final cold spreading. Is disclosed. However, the crystal grain size of the final product is 15 μm (the crystal grain size number is 8.8), and the rough skin resistance is insufficient.
また従来では、高純度フェライト系ステンレス鋼の表面凹凸を軽減するために、フェライト系ステンレス鋼板を製造する際に冷延回数を増やして結晶粒径を細かくすることで、表面凹凸の低減を図る方法も検討されてきた。しかし実際には、製品板上に表面凹凸が生成する場合があり、その原因は必ずしも明確ではなく、鋼板表面の高品質化を安定して維持できる技術が望まれている。 Further, conventionally, in order to reduce the surface unevenness of high-purity ferritic stainless steel, a method of reducing the surface unevenness by increasing the number of cold spreadings and making the crystal grain size finer when manufacturing the ferrite-based stainless steel sheet. Has also been considered. However, in reality, surface irregularities may be generated on the product plate, and the cause is not always clear, and a technique capable of stably maintaining high quality of the steel sheet surface is desired.
以上のように、フェライト系ステンレス鋼の成形加工を考えた場合、所定の形状に成形が出来、かつ成形後の表面特性を満足しうることは非常に困難であるのが現状である。このため、現状、成形性を確保させたフェライト系ステンレス鋼の場合は、成形後に生じた表面凹凸を除去するために研磨工程を行う必要があるが、研磨時間がかかり製造コストがかさむ上、研磨にて生じた粉じんが多く発生するなどの環境面の問題もあった。 As described above, when considering the molding process of ferritic stainless steel, it is very difficult to be able to form a predetermined shape and to satisfy the surface characteristics after molding. For this reason, at present, in the case of ferritic stainless steel with ensured moldability, it is necessary to perform a polishing process in order to remove surface irregularities generated after molding, but polishing takes time, increases manufacturing cost, and polishes. There was also an environmental problem such as a large amount of dust generated in.
本発明は、上記問題に鑑みなされたものであり、成形加工性及び成形加工後の表面特性に優れたフェライト系ステンレス鋼板を提供するものである。 The present invention has been made in view of the above problems, and provides a ferritic stainless steel sheet having excellent moldability and surface characteristics after molding.
本発明の要旨は、以下のとおりである。
[1]質量%にて、Cr:11.0%以上25.0%以下、C:0.001%以上0.010%以下、Si:0.01%以上1.0%以下、Mn:0.01%以上1.0%以下、P:0.10%以下、S:0.01%以下、N:0.002%以上0.020%以下を含み、さらにTi:1.0%以下、およびNb:1.0%以下の1種または2種を含み、かつ残部がFeおよび不純物からなり、結晶粒度番号が9.0超のフェライト単相組織よりなり、板厚1/2位置と板厚1/10位置の圧延面に平行な面における結晶方位のランダム強度比が、I{554}<225>≧7.0、I{411}<148>≧0.9、I{211}<011>≧1.0であることを特徴とするフェライト系ステンレス鋼板。
(なおI{hkl}<uvw>は{hkl}<uvw>方位のランダム強度比を示す)
[2]質量%にて、Cr:11.0%以上25.0%以下、C:0.001%以上0.010%以下、Si:0.01%以上1.0%以下、Mn:0.01%以上1.0%以下、
P:0.10%以下、S:0.0061%以下、およびN:0.002%以上0.020%以下を含み、さらにTi:1.0%以下、およびNb:1.0%以下の1種または2種を含み、また更に、B:0.0001%以上0.0025%以下、Sn:0.005%以上0.50%以下、Ni:1.0%以下、Cu:1.0%以下、Mo:2.0%以下、Al:1.0%以下、W:1.0%以下、Co:0.50%以下、V:0.50%以下、Zr:0.50%以下、Ca:0.0050%以下、Mg:0.0050%以下、Y:0.10%以下、Hf:0.20%以下、REM:0.10%以下、Sb:0.50%以下の1種または2種以上含有し、かつ残部がFeおよび不純物からなり、結晶粒度番号が9.0超のフェライト単相組織よりなり、板厚1/2位置と板厚1/10位置の圧延面に平行な面における結晶方位のランダム強度比が、I {554}<225> ≧7.0、
I {411}<148> ≧0.9、I {211}<011> ≧1.0であることを特徴とするフェライト系ステンレス鋼板。
[3]質量%にて、S:0.0030%以下、Mo:1.1%以下とすることを特徴とする上記[2]に記載のフェライト系ステンレス鋼板。
The gist of the present invention is as follows.
[1] In terms of mass%, Cr: 11.0% or more and 25.0% or less, C: 0.001% or more and 0.010% or less, Si: 0.01% or more and 1.0% or less, Mn: 0 .01% or more and 1.0% or less, P: 0.10% or less, S: 0.01% or less, N: 0.002% or more and 0.020% or less, and Ti: 1.0% or less, And Nb: 1 or 2 types of 1.0% or less, the balance is composed of Fe and impurities, and is composed of a ferrite single-phase structure with a crystal grain size number of more than 9.0, with a plate thickness of 1/2 position and a plate. The random intensity ratio of the crystal orientation on the plane parallel to the rolled plane at the thickness 1/10 is I {554} <225> ≧ 7.0, I {411} <148> ≧ 0.9, I {211} < A ferrite-based stainless steel plate having 011> ≧ 1.0.
(Note that I {hkl} <uvw> indicates the random intensity ratio of the {hkl} <uvw> orientation)
[2] In terms of mass%, Cr: 11.0% or more and 25.0% or less, C: 0.001% or more and 0.010% or less, Si: 0.01% or more and 1.0% or less, Mn: 0 0.01% or more and 1.0% or less,
P: 0.10% or less, S: 0.0061% or less, and N: 0.002% or more and 0.020% or less, and Ti: 1.0% or less, and Nb: 1.0% or less. 1 or 2 types are included, and further, B: 0.0001% or more and 0.0025% or less, Sn: 0.005% or more and 0.50% or less, Ni: 1.0% or less, Cu: 1.0 % Or less, Mo: 2.0% or less, Al: 1.0% or less, W: 1.0% or less, Co: 0.50% or less, V: 0.50% or less, Zr: 0.50% or less , Ca: 0.0050% or less, Mg: 0.0050% or less, Y: 0.10% or less, Hf: 0.20% or less, REM: 0.10% or less, Sb: 0.50% or less 1 It contains seeds or two or more kinds , and the balance is composed of Fe and impurities, and has a ferrite single-phase structure with a crystal grain size number of more than 9.0. The random intensity ratio of crystal orientations in parallel planes is I {554} <225> ≧ 7.0,
I {411} <148> ≧ 0.9, I {211} <011> ≧ 1.0 Der Rukoto you wherein ferrites stainless steel.
[3] The ferrite-based stainless steel sheet according to the above [2], wherein S: 0.0030% or less and Mo: 1.1% or less in mass%.
本発明によれば、成形加工性及び成形加工後の表面特性に優れたフェライト系ステンレス鋼板を提供することができる。 According to the present invention, it is possible to provide a ferritic stainless steel sheet having excellent moldability and surface characteristics after molding.
以下、本発明のフェライト系ステンレス鋼板の一実施形態について説明する。
本実施形態に係るフェライト系ステンレス鋼板は、質量%にて、Cr:11.0%以上25.0%以下、C:0.001%以上0.010%以下、Si:0.01%以上1.0%以下、Mn:0.01%以上1.0%以下、P:0.10%以下、S:0.01%以下、N:0.002%以上0.020%以下を含み、さらにTi:1.0%以下、およびNb:1.0%以下の1種または2種を含み、かつ残部がFeおよび不純物からなり、結晶粒度番号が9.0超のフェライト単相組織よりなり、板厚1/2位置と板厚1/10位置の圧延面に平行な面における結晶方位のランダム強度比が、I{554}<225>≧7.0、I{411}<148>≧0.9、I{211}<011>≧1.0である。
以下、各要件について詳しく説明する。
Hereinafter, an embodiment of the ferritic stainless steel sheet of the present invention will be described.
The ferritic stainless steel plate according to the present embodiment has Cr: 11.0% or more and 25.0% or less, C: 0.001% or more and 0.010% or less, Si: 0.01% or more and 1 in mass%. .0% or less, Mn: 0.01% or more and 1.0% or less, P: 0.10% or less, S: 0.01% or less, N: 0.002% or more and 0.020% or less, and further It contains one or two types of Ti: 1.0% or less and Nb: 1.0% or less, and the balance consists of Fe and impurities, and consists of a ferritic single-phase structure with a crystal grain size number of more than 9.0. The random intensity ratio of the crystal orientations on the plane parallel to the rolled surface at the plate thickness 1/2 position and the plate thickness 1/10 position is I {554} <225> ≧ 7.0, I {411} <148> ≧ 0. 9.9, I {211} <011> ≧ 1.0.
Each requirement will be described in detail below.
まず、成分の限定理由を以下に説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。 First, the reasons for limiting the components will be described below. The "%" indication of the content of each element means "mass%".
Crは、ステンレス鋼の基本特性である耐食性を向上する元素である。11.0%未満では十分な耐食性は得られないため下限は11.0%以上とする。一方、過度な添加はσ相(Fe−Crの金属間化合物)相当の金属間化合物の生成を促進して製造時の割れを助長するため上限は25.0%以下とする。安定製造性(歩留まり、圧延疵等)の点から14.0%以上、22.0%以下が望ましい。更に望ましくは16.0%以上、20.0%以下がよい。 Cr is an element that improves corrosion resistance, which is a basic property of stainless steel. If it is less than 11.0%, sufficient corrosion resistance cannot be obtained, so the lower limit is set to 11.0% or more. On the other hand, excessive addition promotes the formation of an intermetallic compound equivalent to the σ phase (an intermetallic compound of Fe-Cr) and promotes cracking during production, so the upper limit is set to 25.0% or less. From the viewpoint of stable manufacturability (yield, rolling defects, etc.), 14.0% or more and 22.0% or less are desirable. More preferably, it is 16.0% or more and 20.0% or less.
Cは、本実施形態において重要な成形性(r値)を低下させる元素であるため少ない方が好ましく、上限を0.010%以下とする。但し、過度な低減は精錬コストの上昇を招くため下限は0.001%以上とする。精錬コスト及び成形性の両者を考慮した場合0.002%以上、0.008%以下が好ましく、0.002%以上、0.006%以下がさらに好ましい。 Since C is an element that lowers the moldability (r value), which is important in the present embodiment, it is preferably less, and the upper limit is 0.010% or less. However, since excessive reduction causes an increase in refining cost, the lower limit is set to 0.001% or more. Considering both refining cost and moldability, 0.002% or more and 0.008% or less are preferable, and 0.002% or more and 0.006% or less are more preferable.
Siは、耐酸化性向上元素であるが過剰な添加は成形性の低下を招くため1.0%以下を上限とする。成形性の点からSi含有量は低い方が好ましいが、過度の低下は原料コストの増加を招くため0.01%以上を下限とする。製造性の観点から望ましい範囲は0.05%以上、0.60%以下であり、さらに望ましくは0.05%以上、0.30%以下である。 Si is an element for improving oxidation resistance, but excessive addition causes deterioration of moldability, so the upper limit is 1.0% or less. From the viewpoint of moldability, it is preferable that the Si content is low, but an excessive decrease causes an increase in raw material cost, so the lower limit is 0.01% or more. From the viewpoint of manufacturability, the desirable ranges are 0.05% or more and 0.60% or less, and more preferably 0.05% or more and 0.30% or less.
MnもSi同様に、多量の添加は成形性の低下を招くため上限を1.0%以下とする。成形性の点からMn含有量が低い方が好ましいが、過度の低下は原料コストの増加を招くため0.01%以上を下限とする。製造性の観点から望ましい範囲は0.05%以上、0.40%以下であり、さらに望ましくは0.05%以上、0.30%以下である。 As with Si, the upper limit of Mn is set to 1.0% or less because the addition of a large amount causes deterioration of moldability. From the viewpoint of moldability, it is preferable that the Mn content is low, but an excessive decrease causes an increase in raw material cost, so the lower limit is 0.01% or more. From the viewpoint of manufacturability, the desirable ranges are 0.05% or more and 0.40% or less, and more preferably 0.05% or more and 0.30% or less.
Pは、成形性(r値及び製品伸び)を低下させる元素であるため低い方が好ましく、上限を0.10%以下と制限する。但し、過度な低減は原料コストの上昇をもたらすため下限は0.005%以上とすることが好ましい。成形性と製造コストの両者を考慮した場合、好ましい範囲は0.007%以上、0.030%以下、更に望ましくは0.010%以上、0.025%以下である。 Since P is an element that lowers moldability (r value and product elongation), it is preferably low, and the upper limit is limited to 0.10% or less. However, since excessive reduction brings about an increase in raw material cost, the lower limit is preferably 0.005% or more. Considering both moldability and manufacturing cost, the preferable range is 0.007% or more and 0.030% or less, and more preferably 0.010% or more and 0.025% or less.
Sは不可避的不純物元素であり、製造時の割れを助長するため低い方が好ましく、上限を0.01%以下と制限する。S量は低いほど好ましく0.0030%以下が望ましい。一方、過度の低下は精錬コストの上昇を招くため下限は0.0003%以上とすることが望ましい。製造性とコストの点から、好ましい範囲は0.0004%以上、0.002%以下である。 S is an unavoidable impurity element, and it is preferably low because it promotes cracking during production, and the upper limit is limited to 0.01% or less. The lower the amount of S, the more preferably 0.0030% or less. On the other hand, it is desirable that the lower limit is 0.0003% or more because an excessive decrease causes an increase in refining cost. From the viewpoint of manufacturability and cost, the preferable ranges are 0.0004% or more and 0.002% or less.
Nは、Cと同様に成形性(r値)を低下させる元素であり、上限を0.020%以下とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.002%以上とする。成形性と製造性の点から好ましい範囲は0.005%以上、0.015%以下である。 Like C, N is an element that lowers moldability (r value), and the upper limit is 0.020% or less. However, since excessive reduction leads to an increase in refining cost, the lower limit is set to 0.002% or more. From the viewpoint of moldability and manufacturability, the preferable ranges are 0.005% or more and 0.015% or less.
TiおよびNbの1種または2種を下記のように含有する。
Tiは、C,Nと結合し、TiC、TiN等の析出物としてC,Nを固定する(高純度化)ことによって成形性(r値)及び製品伸びの向上をもたらす。これらの効果を得るために下限は0.01%以上とすることが好ましい。一方、過度な添加は合金コストの上昇や再結晶温度上昇に伴う製造性の低下を招くため、上限は1.0%以下とする。成形性及び製造性の点から、好ましい範囲は0.05%以上、0.50%以下である。更に、Tiの上記効果を積極的に活用する好適な範囲は0.10%以上、0.30%以下である。
It contains one or two of Ti and Nb as follows.
Ti binds to C and N and fixes C and N as precipitates of TiC, TiN and the like (purification), thereby improving moldability (r value) and product elongation. In order to obtain these effects, the lower limit is preferably 0.01% or more. On the other hand, excessive addition causes an increase in alloy cost and a decrease in manufacturability due to an increase in recrystallization temperature, so the upper limit is set to 1.0% or less. From the viewpoint of moldability and manufacturability, the preferable range is 0.05% or more and 0.50% or less. Further, the preferable range for positively utilizing the above-mentioned effect of Ti is 0.10% or more and 0.30% or less.
Nbも、Ti同様にC,Nを固定する安定化元素であって、この作用による鋼の高純度化を通じて成形性(r値)及び製品伸びの向上をもたらす。これら効果を得るために下限は0.01%以上とすることが好ましい。一方、過度な添加は合金コストの上昇や再結晶温度上昇に伴う製造性の低下を招くため、上限は1.0%以下とする。合金コストや製造性の点から、好ましい範囲は0.02%以上、0.30%以下である。更に、Nbの上記効果を積極的に活用する好適な範囲は0.04%以上、0.15%以下である。より更に望ましくは0.06%以上、0.10%以下である。 Nb is also a stabilizing element that fixes C and N like Ti, and brings about improvement in formability (r value) and product elongation through high purification of steel by this action. In order to obtain these effects, the lower limit is preferably 0.01% or more. On the other hand, excessive addition causes an increase in alloy cost and a decrease in manufacturability due to an increase in recrystallization temperature, so the upper limit is set to 1.0% or less. From the viewpoint of alloy cost and manufacturability, the preferable ranges are 0.02% or more and 0.30% or less. Further, the preferable range for positively utilizing the above-mentioned effect of Nb is 0.04% or more and 0.15% or less. Even more preferably, it is 0.06% or more and 0.10% or less.
本実施形態のフェライト系ステンレス鋼板は、上記の基本組成に加えて下記の元素群のうち1種または2種以上を選択的に含有させてもよい。 The ferrite-based stainless steel sheet of the present embodiment may selectively contain one or more of the following element groups in addition to the above basic composition.
Bは二次加工性を向上させる元素である。その効果を発揮するには0.0001%以上が必要であるためこれを下限とする。一方、過度の添加は製造性、特に鋳造性の劣化を招くため0.0025%以下を上限とする。好ましい範囲は0.0002〜0.0020%であり、さらに好ましくは0.0003〜0.0012%である。 B is an element that improves the secondary processability. Since 0.0001% or more is required to exert the effect, this is set as the lower limit. On the other hand, excessive addition causes deterioration of manufacturability, particularly castability, so the upper limit is 0.0025% or less. The preferred range is 0.0002 to 0.0020%, more preferably 0.0003 to 0.0012%.
Snは耐食性を向上させる効果を有する元素であるため室温での腐食環境に応じて添加してもよい。その効果は0.005%以上で発揮されるためこれを下限とする。一方、多量の添加は製造性の劣化を招くため、0.50%以下を上限とする。製造性を考慮して好ましい範囲は0.01〜0.20%、さらに好ましくは0.02〜0.10%である。 Since Sn is an element having an effect of improving corrosion resistance, it may be added depending on the corrosive environment at room temperature. Since the effect is exhibited at 0.005% or more, this is set as the lower limit. On the other hand, since a large amount of addition causes deterioration of manufacturability, the upper limit is 0.50% or less. In consideration of manufacturability, the preferred range is 0.01 to 0.20%, more preferably 0.02 to 0.10%.
Ni、Cu、Mo、Al、W、Co、V、Zrは、耐食性あるいは耐酸化性を高めるのに有効な元素であり、必要に応じて添加する。但し、これらの元素の過度な添加は成形性の低下を招くばかりでなく合金コストの上昇や製造性を阻害することに繋がるおそれがある。そのため、Ni、Cu、Al、Wの上限は1.0%以下とする。Moは製造性の低下をもたらすため上限は2.0%以下とする。Co、V、Zrの上限は0.50%以下とする。いずれの元素もより好ましい含有量の下限は0.10%以上とする。 Ni, Cu, Mo, Al, W, Co, V, and Zr are elements effective for enhancing corrosion resistance or oxidation resistance, and are added as necessary. However, excessive addition of these elements may not only reduce the moldability but also increase the alloy cost and hinder the manufacturability. Therefore, the upper limit of Ni, Cu, Al, and W is 1.0% or less. Since Mo causes a decrease in manufacturability, the upper limit is set to 2.0% or less. The upper limit of Co, V, and Zr is 0.50% or less. The lower limit of the more preferable content of each element is 0.10% or more.
Ca、Mgは、熱間加工性や2次加工性を向上させる元素であり、必要に応じて添加する。但し、これら元素の過度な添加は製造性を阻害することに繋がるため、Ca、Mgの上限は0.0050%以下とする。好ましい下限は0.0001%以上とする。製造性と熱間加工性を考慮した場合、好ましい範囲はCa、Mgともに、0.0002〜0.0020%であり、さらに好ましい範囲は0.0002〜0.0010%である。 Ca and Mg are elements that improve hot workability and secondary workability, and are added as necessary. However, since excessive addition of these elements leads to inhibition of manufacturability, the upper limit of Ca and Mg is set to 0.0050% or less. The preferable lower limit is 0.0001% or more. Considering the manufacturability and hot workability, the preferable range is 0.0002 to 0.0020% for both Ca and Mg, and the more preferable range is 0.0002 to 0.0010%.
Y、Hf、REMは、熱間加工性や鋼の清浄度を向上ならびに耐酸化性改善に対して有効な元素であり、必要に応じて添加してもよい。添加する場合、上限はY、REMはそれぞれ0.10%以下、Hfは0.20%以下とする。好ましい下限はY、Hf、REMともに0.001%以上とする。ここで、本実施形態における「REM」は原子番号57〜71に帰属する元素(ランタノイド)を指し、例えば、Ce、Pr、Nd等である。 Y, Hf, and REM are elements effective for improving hot workability, cleanliness of steel, and improving oxidation resistance, and may be added as necessary. When added, the upper limit is 0.10% or less for Y and REM, and 0.20% or less for Hf, respectively. The preferable lower limit is 0.001% or more for all of Y, Hf, and REM. Here, "REM" in the present embodiment refers to an element (lanthanoid) belonging to atomic numbers 57 to 71, and is, for example, Ce, Pr, Nd, or the like.
SbはSnと同様に耐食性向上効果を持つ元素であり、必要に応じて含有させてもよい。ただしSbの多量の添加は製造性の劣化を招くため、0.50%以下を上限とする。一方、耐食性向上の効果は0.005%以上で発揮されるためこれを下限とする。 Sb is an element having an effect of improving corrosion resistance like Sn, and may be contained if necessary. However, since the addition of a large amount of Sb causes deterioration of manufacturability, the upper limit is 0.50% or less. On the other hand, since the effect of improving corrosion resistance is exhibited at 0.005% or more, this is set as the lower limit.
本実施形態のフェライト系ステンレス鋼鈑は、上述してきた元素以外は、Fe及び不純物(不可避的不純物を含む)からなるが、以上説明した各元素の他にも、本発明の効果を損なわない範囲で含有させることが出来る。本実施形態では、例えばBi、Pb、Se、H、Ta等を含有させてもよいが、その場合は可能な限り低減することが好ましい。一方、これらの元素は、本発明の課題を解決する限度において、その含有割合が制御され、必要に応じて、Bi≦100ppm、Pb≦100ppm、Se≦100ppm、H≦100ppm、Ta≦500ppmの1種以上を含有してもよい。 The ferritic stainless steel plate of the present embodiment is composed of Fe and impurities (including unavoidable impurities) other than the elements described above, but in addition to the above-mentioned elements, the effect of the present invention is not impaired. Can be contained in. In the present embodiment, for example, Bi, Pb, Se, H, Ta and the like may be contained, but in that case, it is preferable to reduce as much as possible. On the other hand, the content ratio of these elements is controlled to the extent that the problem of the present invention is solved, and if necessary, 1 of Bi ≦ 100 ppm, Pb ≦ 100 ppm, Se ≦ 100 ppm, H ≦ 100 ppm, Ta ≦ 500 ppm. It may contain more than a seed.
次に金属組織について説明する。
本実施形態のフェライト系ステンレス鋼鈑は、結晶粒度番号が9.0超のフェライト単相組織からなる。
結晶粒度番号は9.0超とする。成形後の表面凹凸は結晶粒度番号が大きいほど、すなわちフェライト結晶粒の粒径が小さいほど生じにくいためこれを下限とする。表面凹凸をさらに抑制するためには9.5超が好ましく、更に望ましくは10.0超である。
結晶粒度番号の測定方法は、JIS G 0551(2013)の線分法で求めることができる。なお粒度番号:9は結晶粒内を横切る1結晶粒あたりの平均線分長14.1μmに相当し、粒度番号:10は結晶粒内を横切る1結晶粒あたりの平均線分長10.0μmに相当する。結晶粒度測定は試験片断面の光学顕微鏡組織写真より、1試料につき横切る結晶粒数を500以上とする。エッチング液は王水または逆王水がよいが、結晶粒界が判断できるのであれば他の溶液でも構わない。また隣接する結晶粒の方位関係によっては粒界が鮮明に見えない場合があるため、濃くエッチングするのが好ましい。また結晶粒界測定に当たって双晶粒界は測定しないこととする。
Next, the metal structure will be described.
The ferritic stainless steel plate of the present embodiment has a ferrite single-phase structure having a crystal grain size number of more than 9.0.
The crystal grain size number shall be over 9.0. Since the surface unevenness after molding is less likely to occur as the crystal grain size number is larger, that is, the smaller the grain size of the ferrite crystal grains is, this is set as the lower limit. In order to further suppress the surface unevenness, it is preferably more than 9.5, more preferably more than 10.0.
The method for measuring the crystal grain size number can be obtained by the line segment method of JIS G 0551 (2013). The particle size number: 9 corresponds to the average line segment length of 14.1 μm per crystal grain that crosses the inside of the crystal grain, and the particle size number: 10 corresponds to the average line segment length of 10.0 μm per crystal grain that crosses the inside of the crystal grain. Equivalent to. In the crystal grain size measurement, the number of crystal grains crossed per sample is 500 or more based on the optical microstructure photograph of the cross section of the test piece. The etching solution is preferably aqua regia or reverse aqua regia, but other solutions may be used as long as the grain boundaries can be determined. Further, depending on the orientation relationship of adjacent crystal grains, the grain boundaries may not be clearly visible, so it is preferable to perform deep etching. In addition, the twin grain boundaries are not measured when measuring the grain boundaries.
通常、結晶方位は成形性(r値)と良い相関があることは知られているが、本実施形態においては、本発明者らが得た新たな知見によって、集合組織を以下のように規定することとする。すなわち、結晶方位が成形後の表面凹凸に大きく影響を及ぼすという新たな知見に基づき。板厚1/2位置と板厚1/10位置それぞれにおいて、圧延面に平行な面における結晶方位のランダム強度比を下記のようにする。
I{554}<225>≧7.0
I{411}<148>≧0.9
I{211}<011>≧1.0
なおI{hkl}<uvw>は{hkl}<uvw>方位のランダム強度比を示す。
Normally, it is known that the crystal orientation has a good correlation with the formability (r value), but in the present embodiment, the texture is defined as follows based on the new findings obtained by the present inventors. I decided to. That is, based on the new finding that the crystal orientation has a great influence on the surface unevenness after molding. At each of the plate thickness 1/2 position and the plate thickness 1/10 position, the random intensity ratio of the crystal orientation in the plane parallel to the rolled surface is set as follows.
I {554} <225> ≧ 7.0
I {411} <148> ≧ 0.9
I {211} <011> ≧ 1.0
Note that I {hkl} <uvw> indicates the random intensity ratio of the {hkl} <uvw> orientation.
{554}<225>方位は高純度フェライト系ステンレス鋼の再結晶方位として生成し、成形性に良好な方位であることが知られている(非特許文献1)。そのため、絞りを中心とした成形加工を行う際には{554}<225>方位を高めることが求められる。一方、{411}<148>方位は冷間圧延率を高めると生成する(例えば非特許文献2)が、成形性には好ましくない方位である。また{211}<011>方位は圧延で形成される方位である(非特許文献3)が、再結晶時には蚕食される方位であるために再結晶完了後にはほとんど残存しない。したがって従来、成形性を確保するには{554}<225>方位の集積度(ランダム強度比)を上げて{411}<148>方位や{211}<011>方位の集積度を下げることが有効と考えられ、制御されてきた。 It is known that the {554} <225> orientation is formed as a recrystallization orientation of high-purity ferritic stainless steel and has good moldability (Non-Patent Document 1). Therefore, it is required to increase the {554} <225> orientation when performing the molding process centering on the drawing. On the other hand, the {411} <148> orientation is generated when the cold rolling ratio is increased (for example, Non-Patent Document 2), but it is not preferable for moldability. Further, the {211} <011> orientation is the orientation formed by rolling (Non-Patent Document 3), but since it is the orientation that is eclipsed at the time of recrystallization, it hardly remains after the completion of recrystallization. Therefore, conventionally, in order to ensure moldability, it is necessary to increase the degree of integration (random intensity ratio) of the {554} <225> orientation and decrease the degree of integration of the {411} <148> orientation and the {211} <011> orientation. It has been considered effective and controlled.
しかし本発明者らは、成形性に好ましい方位である{554}<225>方位の集積度を上げるだけでなく、成形性に好ましくない{411}<148>方位と再結晶後には残存しにくい{211}<011>の集積度を高め、結晶粒度(結晶粒径)と合わせて制御することで、成形後の表面凹凸(肌荒れ)を安定的に抑制できることを見出した。
すなわち本実施形態では、{554}<225>方位は鋼板を種々の形状に成形することを考慮し、ランダム強度比を7.0以上とする。上記のとおり、{554}<225>方位のランダム強度比は高い方が成形限界を高めるには好ましいため、8.0以上であることが望ましい。
{411}<148>方位は、表面凹凸の抑制に重要な方位であり、ランダム強度比を0.9以上とする。好ましくは1.0以上である。常法でフェライト系ステンレス鋼板を製造した場合には0.7未満となるのが一般的である。そのため、本実施形態では、{411}<148>方位を高めるために、後述するような製造方法の制御が必要となる。
{211}<011>方位の集積度は1.0以上とする。上記のとおり{211}<011>方位は再結晶完了後には残存しにくく、該方位も、常法でフェライト系ステンレス鋼板を製造した場合には0.8以下となるのが一般的である。そのため{411}<148>方位の制御と同様に、製造条件の工夫が必要となる。
However, the present inventors not only increase the degree of integration of the {554} <225> orientation, which is a preferable orientation for moldability, but also the {411} <148> orientation, which is not preferable for moldability, and are unlikely to remain after recrystallization. It has been found that by increasing the degree of integration of {211} <011> and controlling it in combination with the crystal grain size (crystal grain size), surface unevenness (rough skin) after molding can be stably suppressed.
That is, in the present embodiment, the {554} <225> orientation has a random strength ratio of 7.0 or more in consideration of forming the steel sheet into various shapes. As described above, it is preferable that the random intensity ratio of the {554} <225> orientation is higher in order to raise the molding limit, and therefore it is preferably 8.0 or more.
The {411} <148> orientation is an important orientation for suppressing surface irregularities, and the random intensity ratio is 0.9 or more. It is preferably 1.0 or more. When a ferrite-based stainless steel sheet is manufactured by a conventional method, it is generally less than 0.7. Therefore, in the present embodiment, in order to increase the {411} <148> orientation, it is necessary to control the manufacturing method as described later.
The degree of integration of the {211} <011> orientation is 1.0 or more. As described above, the {211} <011> orientation is unlikely to remain after the completion of recrystallization, and the orientation is generally 0.8 or less when the ferritic stainless steel sheet is manufactured by a conventional method. Therefore, it is necessary to devise the manufacturing conditions as well as the control of the {411} <148> direction.
結晶方位のランダム強度比の測定方法について述べる。
鋼板の圧延面に平行な面について板厚の1/2位置と板厚の1/10位置についてX線回折を実施する。1/2位置は鋼材の平均的な集合組織を示すことが多く、成形性の指標となりうる。また成形後の表面凹凸(肌荒れ)は表面で発生するため、表面近傍の結晶方位分布が重要となるので1/10位置も測定する。
得られたデータより3次元方位解析を実施する。解析手法としては広く知られている「Bunge」の手法を用いることができる。結晶方位分布図より、該当方位におけるランダム強度比を読み取る。EBSDによる局所的な方位解析を用いることも可能であるが、その際は結晶粒数が1000以上となるような領域を調査し、集合組織の平均的な情報が得られるように注意が必要となる。
A method for measuring the random intensity ratio of the crystal orientation will be described.
X-ray diffraction is performed on a surface parallel to the rolled surface of the steel sheet at a position of 1/2 of the plate thickness and a position of 1/10 of the plate thickness. The 1/2 position often indicates the average texture of the steel material and can be an index of formability. Further, since surface unevenness (rough skin) after molding occurs on the surface, the crystal orientation distribution near the surface is important, so the 1/10 position is also measured.
A three-dimensional orientation analysis is performed from the obtained data. As the analysis method, the widely known "Bunge" method can be used. From the crystal orientation distribution map, read the random intensity ratio in the corresponding orientation. It is also possible to use local orientation analysis by EBSD, but in that case, it is necessary to investigate the region where the number of crystal grains is 1000 or more and be careful so that average information on the texture can be obtained. Become.
上述の集合組織の規定により成形性と成形後の表面凹凸(肌荒れ)の両特性が向上する理由については鋭意調査中ではあるが、現時点では次のように推測される。
鋼材の成形の際は各結晶粒がそれぞれの結晶方位に対応した変形をする。そのときに活動するすべり系は結晶方位ごとに異なると考えられる。一般的にr値が高い方位とr値が低い方位は活動するすべり系(方向)が異なる。そのため、r値が高い方位である結晶粒と、r値が低い方位である結晶粒同士が鋼材表面で隣接した場合は、一方粒のすべりによって生じる表面変化(凹または凸)が、隣接する結晶粒の異なる表面変化(凸または凹)で打ち消し合い、結果、表面凹凸が抑制されると考えている。但し、鋼材表面において隣接する結晶粒方位の組み合わせは膨大にあるため、この機構解明には更なる検討が必要である。
The reason why both the moldability and the surface unevenness (rough skin) after molding are improved by the above-mentioned regulations of the texture is under intensive investigation, but at present, it is presumed as follows.
When forming a steel material, each crystal grain is deformed according to each crystal orientation. The slip system that is active at that time is considered to be different for each crystal orientation. Generally, the direction in which the r value is high and the direction in which the r value is low have different active slip systems (directions). Therefore, when a crystal grain having a high r value and a crystal grain having a low r value are adjacent to each other on the surface of the steel material, the surface change (concave or convex) caused by the slip of one grain is caused by the adjacent crystal. It is thought that the surface changes (convex or concave) of different grains cancel each other out, and as a result, the surface unevenness is suppressed. However, since there are a huge number of combinations of adjacent crystal grain orientations on the surface of steel materials, further studies are required to elucidate this mechanism.
本実施形態のフェライト系ステンレス鋼板の金属組織はフェライト単相組織よりなる。これはオーステナイト相やマルテンサイト組織を含まないことを意味している。オーステナイト相やマルテンサイト組織を含む場合は、結晶粒径を細かくすることが比較的容易であることに加えてオーステナイト相はTRIP効果により高成形性を示すが、原料コストが高くなることに加えて、製造時に耳割れ等の歩留まり低下が起こりやすくなるため、金属組織はフェライト単相組織とする。なお鋼中に炭窒化物等の析出物が存在するが、本発明の効果を大きく左右するものではないためこれらは考慮せず、上記は主相の組織について述べている。 The metal structure of the ferritic stainless steel sheet of the present embodiment has a ferrite single-phase structure. This means that it does not contain the austenite phase or the martensite structure. When an austenite phase or a martensite structure is contained, the crystal grain size can be made finer, and the austenite phase exhibits high moldability due to the TRIP effect, but in addition to the high raw material cost. The metal structure is a ferrite single-phase structure because the yield such as cracks in the ears is likely to decrease during manufacturing. Although precipitates such as carbonitride are present in the steel, they are not considered because they do not greatly affect the effect of the present invention, and the structure of the main phase is described above.
なお本実施形態のフェライト系ステンレス鋼板の板厚は特に限定しないが、強度確保の観点から0.5mm以上、好ましくは0.6mm以上であることが望ましい。板厚が薄い場合は成形後の部品において強度が不十分となる場合があるためである。製造対象となる部品のサイズや形状、耐荷重等を考慮して板厚を設計する必要がある。 The thickness of the ferrite-based stainless steel sheet of the present embodiment is not particularly limited, but is preferably 0.5 mm or more, preferably 0.6 mm or more, from the viewpoint of ensuring strength. This is because if the plate thickness is thin, the strength of the molded part may be insufficient. It is necessary to design the plate thickness in consideration of the size and shape of the parts to be manufactured, the load capacity, and the like.
次に、上述してきた本実施形態のフェライト系ステンレス鋼板の製造方法であるが、熱間圧延、冷間圧延及び各熱処理(焼鈍)を組み合わせることとし、必要に応じて、適宜、酸洗を行うこととする。すなわち、製造方法の一例として、例えば、製鋼−熱間圧延−熱延板焼鈍−冷間圧延−冷延板焼鈍の各工程からなる製法を採用できる。
本実施形態において重要な結晶粒径と結晶方位(集合組織)の両者を上記のとおりに満足するために制御すべきポイントは、熱間圧延後の熱処理条件、冷間圧延率、冷延後の熱処理条件であり、それ以外の工程、条件については特に制限はない。
Next, in the method for producing a ferritic stainless steel sheet of the present embodiment described above, hot rolling, cold rolling and each heat treatment (annealing) are combined, and pickling is appropriately performed as necessary. I will do it. That is, as an example of the manufacturing method, for example, a manufacturing method including each step of steelmaking-hot rolling-hot-rolled sheet annealing-cold rolling-cold-rolled sheet annealing can be adopted.
The points to be controlled in order to satisfy both the crystal grain size and the crystal orientation (organization), which are important in the present embodiment, as described above are the heat treatment conditions after hot rolling, the cold rolling ratio, and after cold rolling. It is a heat treatment condition, and there are no particular restrictions on other processes and conditions.
熱間圧延後の熱処理(熱延板焼鈍)においては、板厚や成分、熱間圧延の圧下率によって熱延板の再結晶温度T1(℃)が異なるが、最高到達温度をT1〜(T1+35)(℃)の範囲に制御する必要がある。熱延板焼鈍の最高到達温度がT1℃未満であると未再結晶粒が残存し、製品のリジング特性、成形性が不良となるためである。一方、最高到達温度がT1+35℃超であると粒成長により結晶粒が粗大化し、冷延および冷延板焼鈍後の結晶粒径が粗大化する、もしくは冷延および冷延板焼鈍後、肌荒れ性に重要な上記結晶方位が得られないためである。 In the heat treatment after hot rolling (annealing of hot rolled plate), the recrystallization temperature T 1 (° C) of the hot rolled plate differs depending on the plate thickness and composition, and the reduction rate of hot rolling, but the maximum temperature reached is T 1 to 1. It is necessary to control in the range of (T 1 +35) (° C.). This is because if the maximum temperature reached for hot-rolled sheet annealing is less than T 1 ° C., unrecrystallized grains remain and the rigging characteristics and moldability of the product become poor. On the other hand, when the maximum temperature reached exceeds T 1 + 35 ° C., the crystal grains become coarse due to grain growth, and the crystal grain size after cold-rolled and cold-rolled plate annealing becomes coarse, or after cold-rolled and cold-rolled plate annealing, This is because the above-mentioned crystal orientation, which is important for rough skin, cannot be obtained.
冷間圧延率は93%以上とする。冷間圧延率は常法では最大でも90%程度とすることが一般的であるが、本実施形態では、冷間圧延後の再結晶粒径を細かくするためには導入ひずみ量を多くする必要がある。再結晶はひずみが多く導入されている部分から始まる。すなわち、加工量が多い(圧延率が大きい)材料ほど、再結晶が始まる部分(核)が多いため再結晶粒径が小さくなる、また、加えて再結晶後に肌荒れ性に重要な、{554}<225>方位、{411}<148>方位、{211}<011>方位を上記範囲内に制御することも重要であり、これら方位を高めるためには、圧延率を大きくする必要がある。これらのことから、本実施形態においては、圧下率を93%以上とすることが重要である。なお、圧延率の上限については特に限定しないが、圧延機の能力の観点から、97%以下としてよい。
また、本実施形態の冷間圧延の他の圧延条件は適宜選択・設定してよい。
The cold rolling ratio shall be 93% or more. In the conventional method, the cold rolling ratio is generally set to about 90% at the maximum, but in the present embodiment, it is necessary to increase the introduced strain amount in order to make the recrystallized particle size after cold rolling finer. There is. Recrystallization starts from the part where a lot of strain is introduced. That is, the larger the amount of processing (the higher the rolling ratio), the smaller the recrystallization grain size because there are more parts (nuclei) where recrystallization starts, and in addition, it is important for rough skin after recrystallization, {554}. It is also important to control the <225> orientation, the {411} <148> orientation, and the {211} <011> orientation within the above range, and in order to increase these orientations, it is necessary to increase the rolling ratio. From these facts, in this embodiment, it is important that the reduction rate is 93% or more. The upper limit of the rolling ratio is not particularly limited, but may be 97% or less from the viewpoint of the capacity of the rolling mill.
In addition, other rolling conditions for cold rolling of the present embodiment may be appropriately selected and set.
冷間圧延後の熱処理(冷延板焼鈍、最終焼鈍)における最高到達温度は、冷延板の再結晶温度をT2(℃)とすると(T2−10)〜(T2+30)℃の範囲に制御する必要がある。冷延板焼鈍の最高到達温度が(T2−10)未満であると材料が硬質化して成形割れが生じやすくなり成形性が劣化するおそれがあるためである。一方、最高到達温度が(T2+30)超であると結晶粒径が大きくなり規定の結晶粒度番号が得られない、もしくは所定の結晶方位が得られず、成形後に肌荒れが生じるためである。 Heat treatment after cold rolling (cold-rolled sheet annealing, final annealing) maximum temperature is in, when the recrystallization temperature of the cold-rolled sheet and T 2 (℃) (T 2 -10) ~ (T 2 +30) of ° C. It is necessary to control the range. Peak temperature range (T 2 -10) is less than the material occurs easily molding cracks and hardening formability of the cold-rolled sheet annealing is due to the possibility of degradation. On the other hand, if the maximum temperature reached exceeds (T 2 +30), the crystal grain size becomes large and a specified crystal grain size number cannot be obtained, or a predetermined crystal orientation cannot be obtained, and rough skin occurs after molding.
本実施形態においては、冷間圧延の途中に中間焼鈍を入れてもよい。すなわち本実施形態の冷間圧延は、1回圧延でもよく、中間焼鈍を挟んだ2回以上の圧延でもよい。なお中間および最終焼鈍はバッチ式焼鈍でも連続式焼鈍でも構わない。また、各焼鈍は、必要であれば水素ガスあるいは窒素ガスなどの無酸化雰囲気で焼鈍する光輝焼鈍でもよいし、大気中で焼鈍しても構わない。 In the present embodiment, intermediate annealing may be performed during cold rolling. That is, the cold rolling of the present embodiment may be one-time rolling or two-time or more rolling with intermediate annealing sandwiched between them. The intermediate and final annealing may be batch annealing or continuous annealing. Further, each annealing may be bright annealing, which is annealed in a non-oxidizing atmosphere such as hydrogen gas or nitrogen gas, if necessary, or may be annealed in the atmosphere.
再結晶温度T1、T2は、熱延板あるいは冷延板を用いて温度を変えて熱処理した後の金属組織観察から決定することができる。 The recrystallization temperatures T 1 and T 2 can be determined from the observation of the metallographic structure after heat treatment at different temperatures using a hot-rolled plate or a cold-rolled plate.
以上説明した製造方法により、本実施形態に係るフェライト系ステンレス鋼板を得ることができる。 The ferrite-based stainless steel sheet according to the present embodiment can be obtained by the manufacturing method described above.
次に本発明の実施例を示すが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、以下の実施例で用いた条件に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
なお、下記にて示す表中の下線が、本発明の範囲から外れているものを示す。
Next, examples of the present invention will be shown. The conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is used in the following examples. It is not limited to the conditions. The present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
The underlined lines in the table below indicate those outside the scope of the present invention.
表1に示す成分組成のステンレス鋼を溶製してスラブに鋳造し、スラブを熱間圧延にて圧延した。その後、熱延板焼鈍、冷間圧延、冷延板焼鈍を施して0.6mm厚のステンレス鋼板(製品板)No.1〜No.28を製造した。各工程条件は表2のように変化させた。なお熱延板焼鈍、および冷延板焼鈍における焼鈍時間(保持時間)はそれぞれ、1〜60秒の範囲内とし、かつ本実施例においては中間焼鈍は省略した。 Stainless steel having the composition shown in Table 1 was melted and cast into a slab, and the slab was rolled by hot rolling. After that, hot-rolled sheet annealing, cold rolling, and cold-rolled sheet annealing were performed to obtain a 0.6 mm thick stainless steel sheet (product plate) No. 1-No. 28 was manufactured. Each process condition was changed as shown in Table 2. The annealing time (holding time) in the hot-rolled plate annealing and the cold-rolled plate annealing was within the range of 1 to 60 seconds, respectively, and the intermediate annealing was omitted in this example.
次に、得られたステンレス鋼板No.1〜No.28の結晶粒度番号(GSN)を、JIS G 0551(2013)に準拠して測定した。
またステンレス鋼板No.1〜No.28の板厚中心(1/2t位置)及び1/10t位置それぞれの集合組織を上述した手法であるX線回折により測定し、{554}<225>方位、{411}<148>方位、{211}<011>方位のランダム強度比I{554}<225>、I{411}<148>、I{211}<011>を求めた。
Next, the obtained stainless steel plate No. 1-No. The crystal grain size number (GSN) of 28 was measured according to JIS G 0551 (2013).
In addition, stainless steel plate No. 1-No. The textures of the 28 plate thickness centers (1 / 2t position) and 1 / 10t position were measured by X-ray diffraction, which is the method described above, and the {554} <225> orientation, {411} <148> orientation, { The random intensity ratios I {554} <225> , I {411} <148> , and I {211} <011> of the 211} <011> orientations were obtained.
さらに、ステンレス鋼板No.1〜No.28よりφ100mmの試料を切り出し、油圧成形試験機により限界絞り比2.0のカップ成形試験を行った。カップ成形後の表面肌荒れには限界絞り比が大きく影響するが、その他の成形条件は影響を及ぼさないことが分かっている。なお今回実施したカップ成形試験条件は、ポンチ径が50mm、ポンチ肩Rが5mm、ダイス径が53mm、ダイス肩Rが8mm、しわ押さえ圧が10トンであり、かつ試料とポンチ間の潤滑剤として、出光興産株式会社製の防錆油「ダフニーオイルコートZ3(登録商標)」を塗布し、その後、成形後の鋼板表面を保護するために潤滑シート「ニチアス株式会社製ナフロンテープTOMBO9001」を貼り付けた。 Furthermore, the stainless steel plate No. 1-No. A sample having a diameter of 100 mm was cut out from 28, and a cup forming test with a limit drawing ratio of 2.0 was performed by a hydraulic forming tester. It is known that the limit drawing ratio has a great influence on the surface roughness after cup molding, but other molding conditions have no influence. The cup forming test conditions carried out this time were a punch diameter of 50 mm, a punch shoulder R of 5 mm, a die diameter of 53 mm, a die shoulder R of 8 mm, a wrinkle pressing pressure of 10 tons, and as a lubricant between the sample and the punch. , Apply the rust preventive oil "Daphne Oil Coat Z3 (registered trademark)" manufactured by Idemitsu Kosan Co., Ltd., and then attach the lubricating sheet "Nachias Co., Ltd. Naflon Tape TOMBO9001" to protect the surface of the steel plate after molding. It was.
限界絞り比2.0で成形が出来た試料についてはカップ成形後の肌荒れを評価した。具体的には、カップ成形後の試料の縦壁部の高さ中央部において高さ方向に平行に5mm長さについて二次元接触式の表面粗さ測定機を用いて表面粗さ測定を行った。JIS B 0031(2003)に記述される算術平均粗さRaが2.0μmを基準とし、それ以下の場合を表面肌荒れ評価が良好(「○」)、Raが2.0μm超の場合を表面肌荒れ評価を不良(「×」)と判断した。
表2に、ステンレス鋼板No.1〜No.28の上記特性評価の結果を示す。なお、本発明例のステンレス鋼板は全てフェライト単相(オーステナイト相やマルテンサイト組織を含まない)だった。
For the samples that could be molded with the limit drawing ratio of 2.0, the rough skin after cup molding was evaluated. Specifically, the surface roughness was measured using a two-dimensional contact type surface roughness measuring machine for a length of 5 mm parallel to the height direction at the center of the height of the vertical wall portion of the sample after cup molding. .. The arithmetic average roughness Ra described in JIS B 0031 (2003) is based on 2.0 μm, and when it is less than that, the surface roughness evaluation is good (“○”), and when Ra is more than 2.0 μm, the surface roughness is rough. The evaluation was judged to be defective (“x”).
Table 2 shows the stainless steel sheet No. 1-No. The result of the above-mentioned characteristic evaluation of 28 is shown. The stainless steel sheets of the examples of the present invention were all ferrite single phases (excluding the austenite phase and the martensite structure).
表2に示すように、本発明例によると、結晶粒度番号および集合組織が制御され、耐肌荒れ性及び成形性に優れたフェライト系ステンレス鋼板を得ることが出来た。
なお、Raが2.0μm超の比較例の場合は、表面凹凸が顕著であり、最終的には研磨によって当該凹凸を除去することとなるため、製造コストの面でも評価が劣ることとなる。
As shown in Table 2, according to the example of the present invention, the crystal grain size number and the texture were controlled, and a ferritic stainless steel sheet having excellent rough skin resistance and moldability could be obtained.
In the case of the comparative example in which Ra exceeds 2.0 μm, the surface unevenness is remarkable, and the unevenness is finally removed by polishing, so that the evaluation is inferior in terms of manufacturing cost.
本発明によれば、成形加工性及び成形加工後の表面特性に優れたフェライト系ステンレス鋼板を提供することが可能である。さらに、本発明に係るフェライト系ステンレス鋼板は成形加工後の表面特性に優れているので、従来行われていた表面凹凸除去を目的とした成形加工後の研磨工程を省略することができるため、製造コストの面でも効果を十分に享受できる。 According to the present invention, it is possible to provide a ferritic stainless steel sheet having excellent molding processability and surface characteristics after molding. Further, since the ferritic stainless steel sheet according to the present invention has excellent surface characteristics after molding, the polishing step after molding for the purpose of removing surface irregularities, which has been conventionally performed, can be omitted. You can fully enjoy the effect in terms of cost.
Claims (3)
Cr:11.0%以上25.0%以下、
C:0.001%以上0.010%以下、
Si:0.01%以上1.0%以下、
Mn:0.01%以上1.0%以下、
P:0.10%以下、
S:0.01%以下、
N:0.002%以上0.020%以下を含み、
さらにTi:1.0%以下、およびNb:1.0%以下の1種または2種を含み、かつ残部がFeおよび不純物からなり、
結晶粒度番号が9.0超のフェライト単相組織よりなり、板厚1/2位置と板厚1/10位置の圧延面に平行な面における結晶方位のランダム強度比が、
I{554}<225>≧7.0、
I{411}<148>≧0.9、
I{211}<011>≧1.0
であることを特徴とするフェライト系ステンレス鋼板。
(なおI{hkl}<uvw>は{hkl}<uvw>方位のランダム強度比を示す) By mass%
Cr: 11.0% or more and 25.0% or less,
C: 0.001% or more and 0.010% or less,
Si: 0.01% or more and 1.0% or less,
Mn: 0.01% or more and 1.0% or less,
P: 0.10% or less,
S: 0.01% or less,
N: Including 0.002% or more and 0.020% or less
Further, it contains one or two kinds of Ti: 1.0% or less and Nb: 1.0% or less, and the balance is composed of Fe and impurities.
It consists of a ferrite single-phase structure with a crystal grain size number of more than 9.0, and the random intensity ratio of the crystal orientation on the plane parallel to the rolled surface at the plate thickness 1/2 position and the plate thickness 1/10 position is
I {554} <225> ≧ 7.0,
I {411} <148> ≧ 0.9,
I {211} <011> ≧ 1.0
Ferritic stainless steel sheet characterized by being.
(Note that I {hkl} <uvw> indicates the random intensity ratio of the {hkl} <uvw> orientation)
Cr:11.0%以上25.0%以下、
C:0.001%以上0.010%以下、
Si:0.01%以上1.0%以下、
Mn:0.01%以上1.0%以下、
P:0.10%以下、
S:0.0061%以下、および
N:0.002%以上0.020%以下を含み、
さらにTi:1.0%以下、およびNb:1.0%以下の1種または2種を含み、
また更に、
B:0.0001%以上0.0025%以下、Sn:0.005%以上0.50%以下、Ni:1.0%以下、Cu:1.0%以下、Mo:2.0%以下、Al:1.0%以下、W:1.0%以下、Co:0.50%以下、V:0.50%以下、Zr:0.50%以下、Ca:0.0050%以下、Mg:0.0050%以下、Y:0.10%以下、Hf:0.20%以下、REM:0.10%以下、Sb:0.50%以下の1種または2種以上含有し、かつ残部がFeおよび不純物からなり、
結晶粒度番号が9.0超のフェライト単相組織よりなり、板厚1/2位置と板厚1/10位置の圧延面に平行な面における結晶方位のランダム強度比が、
I {554}<225> ≧7.0、
I {411}<148> ≧0.9、
I {211}<011> ≧1.0
であることを特徴とするフェライト系ステンレス鋼板。
(なおI {hkl}<uvw> は{hkl}<uvw>方位のランダム強度比を示す) By mass%
Cr: 11.0% or more and 25.0% or less,
C: 0.001% or more and 0.010% or less,
Si: 0.01% or more and 1.0% or less,
Mn: 0.01% or more and 1.0% or less,
P: 0.10% or less,
S: 0.0061% or less, and
N: Including 0.002% or more and 0.020% or less
Further, one or two kinds of Ti: 1.0% or less and Nb: 1.0% or less are included.
Furthermore,
B: 0.0001% or more and 0.0025% or less, Sn: 0.005% or more and 0.50% or less, Ni: 1.0% or less, Cu: 1.0% or less, Mo: 2.0% or less, Al: 1.0% or less, W: 1.0% or less, Co: 0.50% or less, V: 0.50% or less, Zr: 0.50% or less, Ca: 0.0050% or less, Mg: Contains one or more of 0.0050% or less, Y: 0.10% or less, Hf: 0.20% or less, REM: 0.10% or less, Sb: 0.50% or less , and the balance is Consists of Fe and impurities
It consists of a ferrite single-phase structure with a crystal grain size number of more than 9.0, and the random intensity ratio of the crystal orientation on the plane parallel to the rolled surface at the plate thickness 1/2 position and the plate thickness 1/10 position is
I {554} <225> ≧ 7.0,
I {411} <148> ≧ 0.9,
I {211} <011> ≧ 1.0
Ferrites stainless steel you characterized der Rukoto.
(Note that I {hkl} <uvw> indicates the random intensity ratio of the {hkl} <uvw> orientation)
S:0.0030%以下、 S: 0.0030% or less,
Mo:1.1%以下 Mo: 1.1% or less
とすることを特徴とする請求項2に記載のフェライト系ステンレス鋼板。The ferrite-based stainless steel sheet according to claim 2, wherein the ferritic stainless steel sheet is characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017150066A JP6836969B2 (en) | 2017-08-02 | 2017-08-02 | Ferritic stainless steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017150066A JP6836969B2 (en) | 2017-08-02 | 2017-08-02 | Ferritic stainless steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019026913A JP2019026913A (en) | 2019-02-21 |
JP6836969B2 true JP6836969B2 (en) | 2021-03-03 |
Family
ID=65477816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017150066A Active JP6836969B2 (en) | 2017-08-02 | 2017-08-02 | Ferritic stainless steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6836969B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6738928B1 (en) * | 2019-03-29 | 2020-08-12 | 日鉄ステンレス株式会社 | Ferritic stainless steel sheet and method of manufacturing the same |
CN117144264B (en) * | 2023-10-31 | 2024-02-02 | 上海核工程研究设计院股份有限公司 | Ferrite heat-resistant alloy for light water reactor fuel assembly, manufacturing method and application |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52717A (en) * | 1975-06-24 | 1977-01-06 | Nippon Steel Corp | Process for production of coldrolled ferritic stainless steel plates w ith little ridging and surface roughening |
JP3601512B2 (en) * | 2000-12-22 | 2004-12-15 | Jfeスチール株式会社 | Ferritic stainless steel sheet for fuel tank and fuel pipe and method for producing the same |
JP4191069B2 (en) * | 2004-03-12 | 2008-12-03 | 日新製鋼株式会社 | Ferritic stainless steel sheet for drawing and ironing and manufacturing method |
JP5196807B2 (en) * | 2007-02-26 | 2013-05-15 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet excellent in formability with low roughness of processing surface and method for producing the same |
JP5655385B2 (en) * | 2010-06-10 | 2015-01-21 | Jfeスチール株式会社 | Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same |
JP5307170B2 (en) * | 2011-02-25 | 2013-10-02 | 新日鐵住金ステンレス株式会社 | Manufacturing method of ferritic stainless steel sheet with excellent formability with less rough processing |
-
2017
- 2017-08-02 JP JP2017150066A patent/JP6836969B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019026913A (en) | 2019-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5056985B2 (en) | Austenitic stainless steel sheet and manufacturing method thereof | |
JP6906688B2 (en) | Ferritic stainless steel sheet and its manufacturing method | |
CN107709592B (en) | Ferrite series stainless steel plate and its manufacturing method | |
JP5904310B1 (en) | Ferritic stainless steel and manufacturing method thereof | |
JP6836969B2 (en) | Ferritic stainless steel sheet | |
WO2018198834A1 (en) | Ferritic stainless steel sheet, and production method therefor | |
JP6489254B2 (en) | Material for stainless cold-rolled steel sheet and manufacturing method thereof | |
JP6411881B2 (en) | Ferritic stainless steel and manufacturing method thereof | |
JP6617182B1 (en) | Ferritic stainless steel sheet | |
JP6809325B2 (en) | Duplex stainless steel shaped steel and its manufacturing method | |
TW202233864A (en) | Martensite-based stainless steel material and method for producing same | |
JP6738928B1 (en) | Ferritic stainless steel sheet and method of manufacturing the same | |
KR101940427B1 (en) | Ferritic stainless steel sheet | |
JP7304715B2 (en) | Ferritic stainless steel plate | |
WO2018198835A1 (en) | Material for cold-rolled stainless steel sheet, and production method therefor | |
KR102515016B1 (en) | Ferritic stainless steel plate | |
JP7580254B2 (en) | Ferritic stainless steel sheet and its manufacturing method | |
TW202006155A (en) | Steel plate | |
JP2022079072A (en) | Ferritic stainless steel sheet and method for manufacturing the same | |
JP5338245B2 (en) | Stainless cold-rolled steel sheet with good strength-elongation balance and small ridging and method for producing the same | |
JP3923485B2 (en) | Manufacturing method of ferritic single-phase stainless steel with excellent deep drawability | |
JPH1112691A (en) | Ferritic stainless cold rolled steel sheet having excellent formability and its manufacture | |
JP2024058836A (en) | Ferritic stainless steel sheet excellent in corrosion resistance and workability | |
JP2024142991A (en) | Ferritic stainless steel sheet and its manufacturing method | |
WO2019132039A1 (en) | Clad steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200409 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6836969 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |