JP2022079072A - Ferritic stainless steel sheet and method for manufacturing the same - Google Patents
Ferritic stainless steel sheet and method for manufacturing the same Download PDFInfo
- Publication number
- JP2022079072A JP2022079072A JP2020190026A JP2020190026A JP2022079072A JP 2022079072 A JP2022079072 A JP 2022079072A JP 2020190026 A JP2020190026 A JP 2020190026A JP 2020190026 A JP2020190026 A JP 2020190026A JP 2022079072 A JP2022079072 A JP 2022079072A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- stainless steel
- hot
- rolled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000013078 crystal Substances 0.000 claims abstract description 40
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 22
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 239000002356 single layer Substances 0.000 claims abstract description 4
- 238000005097 cold rolling Methods 0.000 claims description 56
- 229910000831 Steel Inorganic materials 0.000 claims description 31
- 239000010959 steel Substances 0.000 claims description 31
- 239000010935 stainless steel Substances 0.000 claims description 21
- 238000005098 hot rolling Methods 0.000 claims description 20
- 238000000137 annealing Methods 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000010960 cold rolled steel Substances 0.000 claims description 5
- 238000000465 moulding Methods 0.000 abstract description 34
- 235000013339 cereals Nutrition 0.000 description 28
- 238000001953 recrystallisation Methods 0.000 description 24
- 238000005096 rolling process Methods 0.000 description 22
- 230000000694 effects Effects 0.000 description 21
- 239000000047 product Substances 0.000 description 11
- 230000010354 integration Effects 0.000 description 10
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 238000005498 polishing Methods 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000001887 electron backscatter diffraction Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 241000612118 Samolus valerandi Species 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、成形加工した際の成形性及び成形後の研磨性に優れるフェライト系ステンレス鋼薄板とその製造方法に関する。特に、成形加工後に鋼板の表面凹凸を除去するための研磨を要する用途に好適である。 The present invention relates to a ferrite-based stainless steel sheet steel sheet having excellent formability during molding and polishing after molding, and a method for producing the same. In particular, it is suitable for applications that require polishing to remove surface irregularities of steel sheets after molding.
オーステナイト系ステンレス鋼の代表鋼種であるSUS304(18Cr-8Ni)は耐食性、加工性、美麗性等に優れることから家電、厨房品、建材等広く用いられている。ただし、高価かつ価格変動の激しいNiを多量に添加しているため、鋼板の価格が高いとされている。一方、フェライト系ステンレス鋼はNiを含有しない、又は含有量が極めて少ないため、コストパフォーマンスに優れる材料として需要が増加している。 SUS304 (18Cr-8Ni), which is a representative steel grade of austenitic stainless steel, is widely used in home appliances, kitchen products, building materials, etc. because of its excellent corrosion resistance, workability, and beauty. However, it is said that the price of steel sheet is high because a large amount of Ni, which is expensive and the price fluctuates sharply, is added. On the other hand, since ferritic stainless steel does not contain Ni or has an extremely low content, demand is increasing as a material having excellent cost performance.
成形用途として使用する場合、オーステナイト系ステンレス鋼は加工硬化しやすく張り出し性に優れる。また、オーステナイト系ステンレス鋼は細粒組織を比較的作りやすいため、結晶粒度番号が約10の細粒鋼板が製造されている。このため、成形加工後の表面凹凸(肌荒れ)は小さく、ほとんど問題になっていない。オーステナイト系ステンレス鋼では上述のように、成形性と成形後の耐表面凹凸特性が両立している。 When used for molding purposes, austenitic stainless steel is easy to work harden and has excellent overhangability. Further, since austenitic stainless steel is relatively easy to form a fine grain structure, a fine grain steel sheet having a crystal grain size number of about 10 is manufactured. Therefore, the surface unevenness (rough skin) after the molding process is small, and there is almost no problem. As described above, the austenitic stainless steel has both formability and surface unevenness resistance after forming.
一方、フェライト系ステンレス鋼を成形用途として使用する場合、問題となるのが成形性と成形後の表面凹凸である。フェライト系ステンレス鋼の張り出し性は低く、大きく変化させることができない。ただし、結晶方位(集合組織)を変化させて深絞り性を制御することができるため、フェライト系ステンレス鋼では深絞りを主体とした成形手法を用いる場合が多い。 On the other hand, when ferritic stainless steel is used for molding, the problems are formability and surface unevenness after molding. The overhangability of ferritic stainless steel is low and cannot be changed significantly. However, since it is possible to control the deep drawing property by changing the crystal orientation (aggregation structure), in many cases, a forming method mainly for deep drawing is used for ferritic stainless steel.
深絞り成形特性の指標としてr値(ランクフォード値)が用いられる。フェライト系ステンレス鋼板のr値向上手法としては、CやNを低減してTiやNb等の安定化元素を添加することや、結晶粒成長させること等が一般的に知られており、高r値のフェライト系ステンレス鋼板が製造されている。 The r value (Rankford value) is used as an index of the deep drawing characteristics. As a method for improving the r value of a ferritic stainless steel sheet, it is generally known to reduce C and N and add stabilizing elements such as Ti and Nb, and to grow crystal grains. Ferritic stainless steel sheets of value are manufactured.
ところが、フェライト系ステンレス鋼板はオーステナイト系ステンレス鋼板と比較して粗粒になりやすい。その要因として、再結晶粒径が大きくなりやすいことに加えTiやNbの添加により結晶粒成長しやすくなることが挙げられる。加えて、粒成長により高r値を担保している場合は、細粒鋼を得るために粒成長させなければr値の低下を招く。 However, ferritic stainless steel sheets tend to have coarser grains than austenitic stainless steel sheets. The reason for this is that the recrystallized grain size tends to increase and the addition of Ti or Nb facilitates the growth of crystal grains. In addition, when the high r value is guaranteed by the grain growth, the r value is lowered unless the grain is grown in order to obtain fine grain steel.
以上のように、フェライト系ステンレス鋼板では、深絞り成形性と成形後の耐加工肌荒れ性の両立は困難である。 As described above, it is difficult for a ferritic stainless steel sheet to have both deep drawability and rough surface resistance after molding.
家電製品の筺体、又は器物のように比較的厳しい成形性が要求される場合、フェライト系ステンレス鋼では、SUS430LXのような高純度フェライト系ステンレス鋼が用いられることが多い。成形後の強度を担保するために用いられるステンレス鋼板の板厚は大半の場合は0.6mm以上であり、また、前述のように結晶粒径が大きいために成形後の肌荒れが大きい。そのため、通常、研磨による凹凸の除去が行われている。 When relatively strict formability is required such as a housing of a home electric appliance or an instrument, a high-purity ferritic stainless steel such as SUS430LX is often used as the ferritic stainless steel. In most cases, the thickness of the stainless steel sheet used to ensure the strength after molding is 0.6 mm or more, and as described above, since the crystal grain size is large, the rough skin after molding is large. Therefore, the unevenness is usually removed by polishing.
特許文献1には、高純度フェライト系ステンレス鋼の肌荒れを軽減しつつ深絞り成形性を向上する手法、具体的には、Ti及び/又はNbを含有したフェライト系ステンレス鋼の最終焼鈍工程における結晶粒成長によりr値を向上する方法が開示されている。しかし、得られている結晶粒度番号は7以下と粗粒であり、加工肌荒れが発生しやすい。 Patent Document 1 describes a method for improving deep drawability while reducing rough skin of high-purity ferritic stainless steel, specifically, crystals in the final annealing step of ferritic stainless steel containing Ti and / or Nb. A method for improving the r value by grain growth is disclosed. However, the obtained crystal grain size number is as coarse as 7 or less, and rough processing is likely to occur.
特許文献2には、Ti及び/又はNbを含有したフェライト系ステンレス鋼であり、結晶粒度番号が9.0超のフェライト単相組織よりなり、板厚1/2位置と板厚1/10位置の圧延面に平行な面における結晶方位のランダム強度比を制御することにより、成形加工した際の成形性並びに成形後の表面特性に優れるフェライト系ステンレス鋼板に関する技術が開示されている。この技術は、冷間圧延率は93%以上の高圧下率の製造方法によって行われる。 Patent Document 2 describes a ferritic stainless steel containing Ti and / or Nb, which has a ferritic single-phase structure having a crystal grain size number of more than 9.0, and has a plate thickness of 1/2 position and a plate thickness of 1/10 position. Disclosed is a technique relating to a ferritic stainless steel sheet having excellent formability during molding and surface characteristics after molding by controlling a random strength ratio of crystal orientations in a plane parallel to the rolled surface. This technique is carried out by a manufacturing method having a high-pressure rolling ratio of 93% or more in a cold rolling ratio.
フェライト系ステンレス鋼板の成形加工を考えた場合、所定の厳しい形状に成形ができ、成形後の表面性状を満足しうる鋼板は存在しないのが現状である。このためフェライト系ステンレス鋼板の場合は成形後の研磨工程において研磨時間がかかり、研磨にて生じた粉塵が多く発生するなどの問題がある。 Considering the molding process of ferritic stainless steel sheets, there is currently no steel sheet that can be formed into a predetermined strict shape and can satisfy the surface texture after forming. For this reason, in the case of a ferritic stainless steel sheet, there is a problem that polishing time is required in the polishing process after molding, and a large amount of dust generated by polishing is generated.
本発明は、上記に鑑み、成形加工性及び成形加工後の表面特性に優れたフェライト系ステンレス鋼板とその製造方法を提供することを課題とする。 In view of the above, it is an object of the present invention to provide a ferritic stainless steel sheet having excellent moldability and surface characteristics after molding and a method for producing the same.
本発明者らは、フェライト系ステンレス鋼板の最終焼鈍における再結晶過程を丹念に調査した。その結果、再結晶の最終段階において、未再結晶のまま残存する{100}<011>に近い方位を有する圧延組織が周囲の再結晶粒に蚕食されて再結晶が完了するまでの間に、周囲の再結晶粒が粒成長することで再結晶粒径が大きくなることを知見した。 The present inventors have carefully investigated the recrystallization process in the final annealing of ferritic stainless steel sheets. As a result, in the final stage of recrystallization, the rolled structure having an orientation close to {100} <011>, which remains unrecrystallized, is eroded by the surrounding recrystallized grains until the recrystallization is completed. It was found that the recrystallized grain size increases as the surrounding recrystallized grains grow.
次に、冷延後の段階における{100}<011>方位粒を低減させ、かつ、再結晶しやすくするための製造条件を探索した。その結果、冷間圧延を一方向のみに行うのではなく斜め方向の圧延と組み合わせることで{100}<011>方位粒が低減し、かつ、再結晶しやすくなること、さらに再結晶後にr値が劇的に向上することを知見した。 Next, the production conditions for reducing the {100} <011> oriented grains in the stage after cold rolling and facilitating recrystallization were searched for. As a result, by combining cold rolling with rolling in the diagonal direction instead of rolling in only one direction, {100} <011> azimuth grains are reduced and recrystallization is easy, and the r value after recrystallization. Was found to improve dramatically.
冷間圧延の一部を斜め方向に施すことで、再結晶完了までに周囲の再結晶粒が成長することなく細粒のまま再結晶組織を得ることができ、{111}方位粒主体の高r値の金属組織を製造することが可能となり、深絞り成形性及び耐加工肌荒れ性の両立が可能となる。 By applying a part of cold rolling in an oblique direction, it is possible to obtain a recrystallized structure as fine grains without the growth of surrounding recrystallized grains by the time the recrystallization is completed. It is possible to manufacture a metal structure having an r value, and it is possible to achieve both deep draw formability and processing rough skin resistance.
また、鋼板表面部の組織を細粒組織とすることにより、加工後の肌荒れを軽減することができる。また、同時に、{111}方位の集積度を高めつつ他方位の集積度を低下することにより、深絞り加工性の指標であるr値を高める。特に{111}とともに集積しやすい{411}<148>への集積度を低下させることで高r値が得られ、厳しい深絞り加工が可能となる。 Further, by making the structure of the surface of the steel sheet a fine grain structure, it is possible to reduce rough skin after processing. At the same time, the r value, which is an index of deep drawing workability, is increased by increasing the degree of integration in the {111} direction and decreasing the degree of integration in the other position. In particular, by reducing the degree of integration in {411} <148>, which tends to accumulate together with {111}, a high r value can be obtained, and strict deep drawing can be performed.
上記組織を得るために、冷間圧延時に複数の方向への圧延を組み合わせる。理想的には本来の圧延方向に対して0°方向と45°方向を同程度の圧下率として組み合わせることで、冷延焼鈍時の再結晶に不利な冷延集合組織である{100}<011>への冷延中の集積を抑制して、焼鈍後の{111}以外の方位への集積を抑制することが可能となる。 In order to obtain the above structure, rolling in multiple directions is combined during cold rolling. Ideally, by combining the 0 ° direction and the 45 ° direction as the same reduction ratio with respect to the original rolling direction, it is a cold-rolled texture that is disadvantageous for recrystallization during cold-rolled annealing {100} <011. > Accumulation during cold rolling can be suppressed, and accumulation in directions other than {111} after annealing can be suppressed.
本発明は上記の知見に基づきなされたものであって、その要旨は以下のとおりである。 The present invention has been made based on the above findings, and the gist thereof is as follows.
(1)質量%で、Cr:11.0%以上、30.0%以下、C:0.001%以上、0.030%以下、Si:0.01%以上、2.00%以下、Mn:0.01%以上、2.00%以下、P:0.005%以上、0.100%以下、S:0.010%以下、Al:2.00%以下、及びN:0.030%以下、を含み、さらに、Ti:0.50%以下、及びNb:1.00%以下の1種又は2種を含み、残部がFe及び不純物であり、金属組織が、JIS G 0551に従って測定される結晶粒度番号が9.0以上のフェライト単層組織であり、板厚1/2位置の圧延面に平行な面における結晶方位のランダム強度比が、I{111}<112>≧9、I{111}<110>≧6、I{411}<148>≦1であることを特徴とするフェライト系ステンレス鋼板。ここで、I{hkl}<uvw>は{hkl}<uvw>方位のランダム強度比を示す。 (1) In terms of mass%, Cr: 11.0% or more, 30.0% or less, C: 0.001% or more, 0.030% or less, Si: 0.01% or more, 2.00% or less, Mn : 0.01% or more, 2.00% or less, P: 0.005% or more, 0.100% or less, S: 0.010% or less, Al: 2.00% or less, and N: 0.030% The following is included, and one or two of Ti: 0.50% or less and Nb: 1.00% or less are contained, the balance is Fe and impurities, and the metallographic structure is measured according to JIS G 0551. It is a ferrite single layer structure with a crystal grain size number of 9.0 or more, and the random intensity ratio of the crystal orientation on the plane parallel to the rolled surface at the plate thickness 1/2 position is I {111} <112> ≧ 9, I. A ferrite-based stainless steel plate characterized in that {111} <110> ≧ 6 and I {411} <148> ≦ 1. Here, I {hkl} <uvw> indicates the random intensity ratio of the {hkl} <uvw> orientation.
(2)質量%で、さらに、下記A群~C群の1群又は2群以上を含有することを特徴とする前記(1)のフェライト系ステンレス鋼板。
A群:
Sn:0.50%以下、
Ni:1.00%以下、
Cu:1.00%以下、
Mo:2.00%以下、
W:1.00%以下、
Co:0.50%以下、
V:0.50%以下、
Zr:0.50%以下、及び
Sb:0.50%以下
の1種又は2種以上
B群:
B:0.0025%以下、
Ca:0.0050%以下、
Mg:0.0050%以下
の1種又は2種以上
C群:
Y:0.20%以下、
Hf:0.20%以下、
REM:0.10%以下
の1種又は2種以上
(2) The ferrite-based stainless steel sheet of the above (1), which is characterized by containing 1 group or 2 or more groups of the following groups A to C in mass%.
Group A:
Sn: 0.50% or less,
Ni: 1.00% or less,
Cu: 1.00% or less,
Mo: 2.00% or less,
W: 1.00% or less,
Co: 0.50% or less,
V: 0.50% or less,
Zr: 0.50% or less, and Sb: 0.50% or less, 1 type or 2 or more types B group:
B: 0.0025% or less,
Ca: 0.0050% or less,
Mg: 1 type or 2 types or more of 0.0050% or less Group C:
Y: 0.20% or less,
Hf: 0.20% or less,
REM: 1 type or 2 types or more of 0.10% or less
(3)平均r値が1.5以上であることを特徴とする前記(1)又は(2)のフェライト系ステンレス鋼板。 (3) The ferrite-based stainless steel sheet according to (1) or (2) above, wherein the average r value is 1.5 or more.
(4)家電製品の筺体、又は器物であることを特徴とする前記(1)~(3)のいずれかのフェライト系ステンレス鋼板。 (4) The ferrite-based stainless steel sheet according to any one of (1) to (3) above, which is a housing or an instrument of a home electric appliance.
(5)前記(1)~(3)のいずれかのフェライト系ステンレス鋼板を製造する方法であって、前記(1)又は(2)の成分を有する鋼スラブを熱間圧延して熱延鋼板とする熱間圧延工程と、前記熱延鋼板を冷間圧延して冷延鋼板とする冷間圧延工程と、前記冷延鋼板を熱処理して熱処理鋼板とする熱処理工程とを備え、前記冷間圧延工程において、冷延率RTを50%以上90%以下とし、前記冷間圧延の一部に、前記熱間圧延の方向に対して20°以上70°以下の角度で斜め方向に冷延率RC20%以上での冷間圧延を含むことを特徴とするフェライト系ステンレス鋼板の製造方法。 (5) A method for producing a ferrite-based stainless steel plate according to any one of the above (1) to (3), wherein a steel slab having the component of the above (1) or (2) is hot-rolled and hot-rolled steel plate. A cold rolling step of cold-rolling the hot-rolled steel plate to obtain a cold-rolled steel plate, and a heat treatment step of heat-treating the cold-rolled steel plate to obtain a heat-treated steel plate are provided. In the rolling process, the cold rolling ratio RT is set to 50% or more and 90% or less, and the cold rolling ratio is diagonally applied to a part of the cold rolling at an angle of 20 ° or more and 70 ° or less with respect to the direction of the hot rolling. A method for manufacturing a ferrite-based stainless steel plate, which comprises cold rolling at RC 20% or more.
(6)前記冷間圧延の一部に、さらに、前記熱間圧延の方向と同じ方向に冷延率RL20%以上での冷間圧延を含むことを特徴とする前記(5)のフェライト系ステンレス鋼板の製造方法。 (6) The ferrite-based stainless steel according to (5), wherein a part of the cold rolling further includes cold rolling in the same direction as the hot rolling with a cold rolling ratio of RL 20% or more. Steel plate manufacturing method.
(7)前記熱間圧延工程と前記冷間圧延工程の間に、さらに、前記熱延鋼板を焼鈍する熱延板焼鈍工程を備えることを特徴とする前記(6)のフェライト系ステンレス鋼板の製造方法。 (7) Manufacture of the ferrite-based stainless steel sheet according to (6), which comprises a hot-rolled sheet annealing step for annealing the hot-rolled steel sheet between the hot-rolled step and the cold-rolled step. Method.
本発明によれば、成形加工性及び成形加工後の表面特性に優れたフェライト系ステンレス鋼板を得ることができる。 According to the present invention, it is possible to obtain a ferritic stainless steel sheet having excellent moldability and surface characteristics after molding.
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。 Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".
(I)化学成分 (I) Chemical composition
本発明のフェライト系ステンレス鋼板は、以下の化学成分を有する。化学成分の限定理由を以下に説明する。 The ferritic stainless steel sheet of the present invention has the following chemical components. The reasons for limiting the chemical composition will be described below.
Cr:11.0%以上、30.0%以下 Cr: 11.0% or more and 30.0% or less
Crは、ステンレス鋼の基本特性である耐食性を向上する元素である。11.0%未満では十分な耐食性は得られないため下限は11.0%とする。一方、過度な添加はσ相当の金属間化合物の生成を促進して製造時の割れや成形性低下を助長するため上限は30.0%とする。安定製造性(歩留り、圧延疵等)点から14.0~25.0%が好ましい。より好ましくは16.0~20.0%である。 Cr is an element that improves corrosion resistance, which is a basic characteristic of stainless steel. If it is less than 11.0%, sufficient corrosion resistance cannot be obtained, so the lower limit is 11.0%. On the other hand, excessive addition promotes the formation of an intermetallic compound equivalent to σ and promotes cracking during production and deterioration of moldability, so the upper limit is set to 30.0%. From the viewpoint of stable manufacturability (yield, rolling defects, etc.), 14.0 to 25.0% is preferable. More preferably, it is 16.0 to 20.0%.
C:0.001%以上、0.030%以下 C: 0.001% or more, 0.030% or less
Cは、本発明において重要な成形性(r値)を低下させる元素であるため少ない方が好ましく、上限を0.030%とする。ただし、過度な低減は精錬コストの上昇を招くため下限は0.001%とする。精錬コスト及び成形性の両者を考慮した場合0.002~0.018%が好ましい。 Since C is an element that lowers the formability (r value), which is important in the present invention, it is preferably less, and the upper limit is 0.030%. However, the lower limit is set to 0.001% because excessive reduction causes an increase in refining cost. Considering both refining cost and moldability, 0.002 to 0.018% is preferable.
Si:0.01%以上、2.00%以下 Si: 0.01% or more, 2.00% or less
Siは、耐酸化性向上元素であるが過剰な添加は成形性の低下を招くため2.0%を上限とする。成形性の点から低い方が好ましいが、含有量を過度に低下させると原料コストの増加を招くため0.01%を下限とする。製造性の観点から好ましい範囲は0.05~0.30%である。 Si is an element for improving oxidation resistance, but its upper limit is 2.0% because excessive addition causes deterioration of moldability. A lower value is preferable from the viewpoint of moldability, but if the content is excessively lowered, the raw material cost will increase, so 0.01% is set as the lower limit. From the viewpoint of manufacturability, the preferable range is 0.05 to 0.30%.
Mn:0.01%以上、2.00%以下 Mn: 0.01% or more, 2.00% or less
MnはSi同様に多量の添加は成形性の低下を招くため上限を2.00%とする。成形性の点から低い方が好ましいが、過度の低下は原料コストの増加を招くため0.01%を下限とする。製造性の観点から好ましい範囲は0.05~0.30%である。 As with Si, adding a large amount of Mn causes deterioration of moldability, so the upper limit is set to 2.00%. A lower value is preferable from the viewpoint of formability, but an excessive decrease causes an increase in raw material cost, so the lower limit is 0.01%. From the viewpoint of manufacturability, the preferable range is 0.05 to 0.30%.
P:0.005%以上0.100%以下 P: 0.005% or more and 0.100% or less
Pは、成形性(r値及び製品伸び)を低下させる元素であるため低い方が好ましく、上限を0.100%とする。ただし、リン化物析出のr値向上効果を活用するため下限は0.005%とする。過度な低減は原料コストの上昇をもたらすことに加え、成形性と製造コストの両者を考慮した場合、好ましい範囲は0.010~0.070%、より好ましくは0.020~0.050%である。 Since P is an element that lowers moldability (r value and product elongation), it is preferably low, and the upper limit is 0.100%. However, the lower limit is set to 0.005% in order to utilize the effect of improving the r value of phosphide precipitation. Excessive reduction leads to an increase in raw material cost, and when both formability and manufacturing cost are taken into consideration, the preferable range is 0.010 to 0.070%, more preferably 0.020 to 0.050%. be.
S:0.010%以下 S: 0.010% or less
Sは不可避的不純物元素であり、製造時の割れを助長するため低い方が好ましく、上限を0.010%とする。S量は低いほど好ましく0.003%以下が好ましい。下限は0である。ただし、過度の低下は精錬コストの上昇を招くため0.001%を下限としてもよい。製造性とコストの点から、好ましい範囲は0.001~0.002%である。 S is an unavoidable impurity element, and it is preferably low because it promotes cracking during production, and the upper limit is 0.010%. The lower the amount of S, the more preferably 0.003% or less. The lower limit is 0. However, since an excessive decrease causes an increase in refining cost, 0.001% may be the lower limit. From the viewpoint of manufacturability and cost, the preferable range is 0.001 to 0.002%.
Al:2.00%以下 Al: 2.00% or less
Alは、耐食性及び耐酸化性を高めるのに有効な元素である。過度な添加は成形性の低下を招くばかりでなく合金コストの上昇や製造性を阻害することに繋がるため、上限は2.00%とする。Alの含有は必須ではなく、下限は0である。耐食性及び耐酸化性向上の効果を得るために好ましい含有量の下限は0.01%とする。 Al is an element effective for enhancing corrosion resistance and oxidation resistance. The upper limit is set to 2.00% because excessive addition not only causes a decrease in moldability but also leads to an increase in alloy cost and an impediment to manufacturability. The content of Al is not essential and the lower limit is 0. In order to obtain the effects of improving corrosion resistance and oxidation resistance, the lower limit of the preferable content is 0.01%.
N:0.030%以下 N: 0.030% or less
Nは、Cと同様に成形性(r値)を低下させる元素であり、上限を0.030%とする。N量は少ないほど好ましく、下限は0である。ただし、過度な低減は精錬コストの上昇に繋がるため、0.002%を下限としてもよい。成形性と製造性の点から好ましい範囲は0.005~0.015%である。 Like C, N is an element that lowers formability (r value), and the upper limit is 0.030%. The smaller the amount of N, the more preferable, and the lower limit is 0. However, since excessive reduction leads to an increase in refining cost, 0.002% may be the lower limit. The preferable range is 0.005 to 0.015% from the viewpoint of moldability and manufacturability.
さらに、Ti及びNbの1種又は2種を下記の範囲で含有させる。 Further, one or two kinds of Ti and Nb are contained in the following range.
Ti:0.50%以下
Tiは、C,Nを析出物として固定する高純度化を通じてr値及び製品伸びの向上をもたらす。これらの効果は微量の含有でも得られるが、効果を効果的に得るためには、下限を0.03%とすることが好ましい。一方、過度な添加は合金コストの上昇や再結晶温度上昇に伴う製造性の低下を招くため、上限は0.50%とする。成形性及び製造性の点から、好ましい範囲は0.05~0.40%である。さらに、Tiの効果を積極的に活用する好適な範囲は0.10~0.30%である。
Ti: 0.50% or less Ti brings improvement in r value and product elongation through high purification in which C and N are fixed as precipitates. Although these effects can be obtained even with a small amount of content, the lower limit is preferably 0.03% in order to effectively obtain the effects. On the other hand, excessive addition causes an increase in alloy cost and a decrease in manufacturability due to an increase in recrystallization temperature, so the upper limit is set to 0.50%. From the viewpoint of moldability and manufacturability, the preferable range is 0.05 to 0.40%. Further, a suitable range for positively utilizing the effect of Ti is 0.10 to 0.30%.
Nb:1.00%以下
Nbも、Ti同様にC,Nを固定する安定化元素の作用による鋼の高純度化を通じてr値及び製品伸びの向上をもたらす。これら効果を得るため、添加する場合は下限を0.03%とすることが好ましい。一方、過度な添加は合金コストの上昇や再結晶温度上昇に伴う製造性の低下に繋がるため、上限は1.00%とする。合金コストや製造性の点から、好ましい範囲は0.03~0.50%である。さらに、Nbの効果を積極的に活用する好適な範囲は0.04~0.30%である。さらに好ましくは0.06~0.10%である。
Nb: 1.00% or less Nb also brings about improvement in r value and product elongation through high purification of steel by the action of stabilizing elements that fix C and N like Ti. In order to obtain these effects, it is preferable to set the lower limit to 0.03% when adding. On the other hand, excessive addition leads to an increase in alloy cost and a decrease in manufacturability due to an increase in recrystallization temperature, so the upper limit is set to 1.00%. From the viewpoint of alloy cost and manufacturability, the preferable range is 0.03 to 0.50%. Further, a suitable range for positively utilizing the effect of Nb is 0.04 to 0.30%. More preferably, it is 0.06 to 0.10%.
上記の基本組成に加えて下記の元素を選択的に添加してもよい。 In addition to the above basic composition, the following elements may be selectively added.
A群元素:
Sn:0.50%以下、
Ni:1.00%以下、
Cu:1.00%以下、
Mo:2.00%以下、
W:1.00%以下、
Co:0.50%以下、
V:0.50%以下、
Zr:0.50%以下、
Sb:0.50%以下
Group A elements:
Sn: 0.50% or less,
Ni: 1.00% or less,
Cu: 1.00% or less,
Mo: 2.00% or less,
W: 1.00% or less,
Co: 0.50% or less,
V: 0.50% or less,
Zr: 0.50% or less,
Sb: 0.50% or less
Sn、Ni、Cu、Mo、W、Co、V、Zr、及びSbは、耐食性及び耐酸化性を高めるのに有効な元素であり、1種又は2種以上を必要に応じて添加する。ただし、過度な添加は成形性の低下を招くばかりでなく合金コストの上昇や製造性を阻害することに繋がるため、Ni、Cu、Wの上限は1.00%、Moの上限は2.00%とする。Sn、Co、V、Zrの上限は0.50%とする。耐食性及び耐酸化性向上の効果は少量の含有でも得られる。特に、Sn及びSbの場合、効果を確実に得るためには、0.005%以上含有させるのが好ましい。Ni、Cu、Mo、W、Co、V、Zrの場合、好ましい含有量の下限は0.05%である。 Sn, Ni, Cu, Mo, W, Co, V, Zr, and Sb are effective elements for enhancing corrosion resistance and oxidation resistance, and one or more are added as necessary. However, excessive addition not only lowers the formability but also increases the alloy cost and impairs the manufacturability. Therefore, the upper limit of Ni, Cu and W is 1.00%, and the upper limit of Mo is 2.00. %. The upper limit of Sn, Co, V, and Zr is 0.50%. The effect of improving corrosion resistance and oxidation resistance can be obtained even with a small amount of content. In particular, in the case of Sn and Sb, it is preferable to contain 0.005% or more in order to surely obtain the effect. In the case of Ni, Cu, Mo, W, Co, V and Zr, the lower limit of the preferable content is 0.05%.
B群元素:
B:0.0025%以下、
Ca:0.0050%以下、
Mg:0.0050%以下
Group B elements:
B: 0.0025% or less,
Ca: 0.0050% or less,
Mg: 0.0050% or less
B、Ca、及びMgは熱間加工性や二次加工性を向上させる元素であり、1種又は2種以上を必要に応じて添加する。ただし、過度な添加は製造性を阻害することに繋がるため、Bの上限は0.0025%、Ca及びMgの上限は0.0050%とする。熱間加工性や二次加工性を向上させる効果は少量の含有でも得られるが、Bの場合、効果を確実に得るためには0.0001%以上含有させることが好ましい。製造性と熱間加工性を考慮した場合、Bのより好ましい範囲は0.0003~0.0012%であり、Ca及びMgの好ましい範囲は0.0002~0.0010%である。 B, Ca, and Mg are elements that improve hot workability and secondary workability, and one kind or two or more kinds are added as necessary. However, since excessive addition leads to inhibition of manufacturability, the upper limit of B is 0.0025% and the upper limit of Ca and Mg is 0.0050%. The effect of improving hot workability and secondary workability can be obtained even with a small amount of content, but in the case of B, it is preferable to contain 0.0001% or more in order to surely obtain the effect. Considering manufacturability and hot workability, the more preferable range of B is 0.0003 to 0.0012%, and the preferable range of Ca and Mg is 0.0002 to 0.0010%.
C群元素:
Y:0.20%以下、
Hf:0.20%以下、
REM:0.10%以下
Group C elements:
Y: 0.20% or less,
Hf: 0.20% or less,
REM: 0.10% or less
Y、Hf、及びREMは、熱間加工性や鋼の清浄度を向上及び耐酸化性改善に対して有効な元素であり、1種又は2種以上を必要に応じて添加してもよい。添加する場合、Y及びHfの上限は0.20%、REMの上限は0.10%とする。熱間加工性や鋼の清浄度を向上させる効果は少量の含有でも得られるが、好ましい下限は0.001%とする。ここで、REMは原子番号57~71に帰属する元素であり、例えば、La、Ce、Pr、Nd等である。 Y, Hf, and REM are elements effective for improving hot workability, cleanliness of steel, and improving oxidation resistance, and one kind or two or more kinds may be added as needed. When added, the upper limit of Y and Hf is 0.20%, and the upper limit of REM is 0.10%. The effect of improving hot workability and cleanliness of steel can be obtained even with a small amount of the content, but the preferable lower limit is 0.001%. Here, REM is an element belonging to atomic numbers 57 to 71, and is, for example, La, Ce, Pr, Nd, or the like.
以上説明した各元素の他にも、本発明の効果を損なわない範囲で含有させることができる。Bi、Pb、Se、H、Ta等は可能な限り低減することが好ましいが、本発明の効果に影響を及ぼさない範囲で、必要に応じて、Bi≦100ppm、Pb≦100ppm、Se≦100ppm、H≦100ppm、Ta≦500ppmの1種以上を含有してもよい。 In addition to the elements described above, they can be contained within a range that does not impair the effects of the present invention. It is preferable to reduce Bi, Pb, Se, H, Ta and the like as much as possible, but Bi ≦ 100 ppm, Pb ≦ 100 ppm, Se ≦ 100 ppm, as necessary, as long as the effect of the present invention is not affected. It may contain one or more of H ≦ 100 ppm and Ta ≦ 500 ppm.
(II)金属組織 (II) Metallographic structure
金属組織について説明する。 The metallographic structure will be described.
本発明のフェライト系ステンレス鋼板は、金属組織が、JIS G 0551に従って測定される結晶粒度番号が9.0以上のフェライト単層組織である。 The ferritic stainless steel sheet of the present invention has a ferritic single layer structure in which the metal structure is measured according to JIS G 0551 and has a crystal grain size number of 9.0 or more.
成形後の加工肌荒れは結晶粒度番号が大きいほど生じにくいため、結晶粒度番号を9.0以上とする。肌荒れをさらに抑制するためには9.5以上が好ましく、さらに好ましくは10.0以上である。 Since the roughened processed surface after molding is less likely to occur as the crystal grain size number is larger, the crystal grain size number is set to 9.0 or more. In order to further suppress rough skin, it is preferably 9.5 or more, and more preferably 10.0 or more.
結晶粒度番号の測定方法は、JIS G 0551(2013)の線分法で求める。粒度番号:9は結晶粒内を横切る1結晶粒あたりの平均線分長14.1μmに相当し、粒度番号:10は結晶粒内を横切る1結晶粒あたりの平均線分長10.0μmに相当する。結晶粒度測定は試験片断面の光学顕微鏡組織写真を用い、1試料につき横切る結晶粒数を500以上として行う。エッチング液は王水又は逆王水がよいが、結晶粒界が判断できるのであれば他の溶液でも構わない。また、隣接する結晶粒の方位関係によっては粒界が鮮明に見えない場合があるため、濃くエッチングするのが好ましい。また、結晶粒界測定に当たって双晶粒界は測定しないこととする。 The method for measuring the crystal grain size number is determined by the line segment method of JIS G 0551 (2013). The particle size number: 9 corresponds to the average line segment length of 14.1 μm per crystal grain crossing the inside of the crystal grain, and the particle size number: 10 corresponds to the average line segment length of 10.0 μm per crystal grain crossing the inside of the crystal grain. do. The crystal grain size is measured by using an optical microscope microstructure photograph of the cross section of the test piece, and the number of crystal grains crossed per sample is 500 or more. The etching solution may be aqua regia or reverse aqua regia, but other solutions may be used as long as the grain boundaries can be determined. Further, since the grain boundaries may not be clearly visible depending on the orientation relationship of the adjacent crystal grains, it is preferable to perform deep etching. In addition, the twin grain boundaries are not measured when measuring the grain boundaries.
金属組織がフェライト単相組織とは、オーステナイト相やマルテンサイト組織を含まないことを意味する。これらの相を含むと、結晶粒径を細かくすることが比較的容易であることに加えてオーステナイト相はTRIP効果により高成形性を示すが、原料コストが高くなることに加えて、製造時に耳割れ等の歩留り低下が起こりやすくなる。 The ferrite single-phase structure of the metal structure means that it does not contain an austenite phase or a martensite structure. Including these phases, the austenite phase exhibits high formability due to the TRIP effect in addition to the fact that it is relatively easy to make the crystal grain size finer, but in addition to the high raw material cost, the ear at the time of manufacture. Yield reduction such as cracking is likely to occur.
組織がフェライト単相であるか否かは、EBSD(Electron BackScatter Diffraction)測定で調べることができる。本発明では、断面のEBSD測定によるオーステナイト相の判定に加え、加速電圧15kV、焦点距離19mmの条件でEBSDパターンを採取した場合のIQ値が3000よりも低い領域をマルテンサイト相として、オーステナイト及びマルテンサイトの面積率が全体の1/100以下であれば、フェライト単相であると判断する。 Whether or not the structure is ferrite single phase can be examined by EBSD (Electron BackScatter Diffraction) measurement. In the present invention, in addition to the determination of the austenite phase by EBSD measurement of the cross section, the region where the IQ value is lower than 3000 when the EBSD pattern is collected under the conditions of an acceleration voltage of 15 kV and a focal distance of 19 mm is set as a martensite phase, and austenite and martensite are used. If the area ratio of the site is 1/100 or less of the whole, it is judged to be a ferrite single phase.
(III)集合組織 (III) Aggregate organization
集合組織について説明する。 The collective organization will be described.
本発明のフェライト系ステンレス鋼板においては、板厚1/2位置の圧延面に平行な面における結晶方位のランダム強度比を下記の範囲に制御することにより、加工性を向上させることができる。 In the ferrite-based stainless steel sheet of the present invention, the workability can be improved by controlling the random intensity ratio of the crystal orientation in the plane parallel to the rolled plane at the plate thickness 1/2 position within the following range.
I{111}<112>≧9
I{111}<110>≧6
I{411}<148>≦1
I {111} <112> ≧ 9
I {111} <110> ≧ 6
I {411} <148> ≦ 1
{111}<112>方位は、高純度鋼の再結晶方位として生成し、成形性を向上する方位であることが知られている。深絞りを中心とした成形加工を行う際には高めることが求められる。十分な冷延率を確保した場合に最もランダム強度比が強くなりやすい方位であるため、ランダム強度比を15以上とする。{111}<112>のランダム強度比が高いほど成形性には有利にはたらくため、好ましくは18以上、さらに好ましくは20以上とする。 The {111} <112> orientation is known to be a orientation that is generated as a recrystallization orientation of high-purity steel and improves formability. It is required to increase when performing molding processing centered on deep drawing. Since the random intensity ratio is most likely to be strong when a sufficient cold rolling ratio is secured, the random intensity ratio is set to 15 or more. The higher the random strength ratio of {111} <112>, the more advantageous the formability, so it is preferably 18 or more, more preferably 20 or more.
{111}<110>方位も{111}<112>方位と同様に高純度鋼の再結晶方位として生成し、成形性を向上させる方位である。{111}<110>方位は{111}<112>方位と比較して集積度は上がりにくい方位である。{111}<112>の集積度(ランダム強度比)が高く、{111}<110>の集積度が低い場合はr値の異方性が大きくなり、深絞りによる成形加工を行った際に耳の高さが大きくなり歩留り低下につながる。そのため、{111}<110>方位の集積度も高いことが望ましく、{111}<110>のランダム強度比を10以上とする。好ましくは12以上、さらに好ましくは14以上とする。 Similar to the {111} <112> orientation, the {111} <110> orientation is also generated as a recrystallization orientation of high-purity steel to improve formability. The {111} <110> direction is a direction in which the degree of integration is less likely to increase as compared with the {111} <112> direction. When the degree of integration (random intensity ratio) of {111} <112> is high and the degree of integration of {111} <110> is low, the anisotropy of the r value becomes large, and when molding by deep drawing is performed. The height of the ears increases, leading to a decrease in yield. Therefore, it is desirable that the degree of integration of the {111} <110> orientation is high, and the random intensity ratio of {111} <110> is set to 10 or more. It is preferably 12 or more, and more preferably 14 or more.
{411}<148>方位は、成形性には好ましくない方位であるため、そのランダム強度比を1以下とする。好ましくは0.7以下、さらに好ましくは0.5以下である。{411}<148>は再結晶方位として生成しやすく、これまではその集積度の低減を十分に行うことができず、高い成形性を得ることができていなかった。 Since the {411} <148> orientation is not preferable for moldability, its random intensity ratio is set to 1 or less. It is preferably 0.7 or less, more preferably 0.5 or less. {411} <148> is easily generated as a recrystallization orientation, and until now, the degree of integration could not be sufficiently reduced, and high formability could not be obtained.
本発明では、上述の成形性を向上する{111}<112>及び{111}<110>方位の集積度をともに高め、かつ、{411}<148>方位の集積度を低下させる理想的な結晶方位制御を確立し、これらのランダム強度比を同時に満足させることに特徴がある。 In the present invention, it is ideal to increase the degree of integration of the {111} <112> and {111} <110> orientations that improve the above-mentioned formability, and to decrease the degree of integration of the {411} <148> orientations. It is characterized by establishing crystal orientation control and simultaneously satisfying these random intensity ratios.
また、{411}<148>への集積を抑制することで、成形性向上に有利な{111}方位への集積度を高めることができる。 Further, by suppressing the accumulation in the {411} <148>, the degree of accumulation in the {111} orientation, which is advantageous for improving the moldability, can be increased.
結晶方位のランダム強度比は、以下の方法で測定する。 The random intensity ratio of the crystal orientation is measured by the following method.
鋼板の圧延面に平行な面について板厚tの1/2t位置のX線回折を実施する。1/2t位置は鋼材の平均的な集合組織を示すことが多く、成形性の指標となりうる。得られたデータを用いて非特許文献1に記載のBungeの手法を用いて3次元方位解析を実施する。結晶方位分布図より、該当方位におけるランダム強度比を読み取る。 X-ray diffraction at the 1 / 2t position of the plate thickness t is performed on the surface parallel to the rolled surface of the steel sheet. The 1 / 2t position often indicates the average texture of the steel material and can be an index of formability. Using the obtained data, a three-dimensional orientation analysis is performed using the Bunge method described in Non-Patent Document 1. From the crystal orientation distribution map, read the random intensity ratio in the corresponding orientation.
(IV)r値 (IV) r-value
r値について説明する。 The r value will be described.
本発明のフェライト系ステンレス鋼板は、平均r値(ランクフォード値)を1.5以上とすることが好ましい。平均r値を1.5以上とすることで、フェライト系ステンレス鋼板の成形性を向上させ、厳しい加工を行うことができると同時に、成形時の荷重を低下させ、金型の消耗を抑えることができる。平均r値はより好ましくは1.7以上である。 The ferrite-based stainless steel sheet of the present invention preferably has an average r value (Rankford value) of 1.5 or more. By setting the average r value to 1.5 or more, the formability of the ferritic stainless steel sheet can be improved and strict processing can be performed, and at the same time, the load during molding can be reduced and the consumption of the mold can be suppressed. can. The average r value is more preferably 1.7 or more.
平均r値は、JIS Z 2254(2008年)の塑性ひずみ比試験方法により測定し、JIS Z 2254(2008年)に従い、下記式(1)によって求めることができる。 The average r value is measured by the plastic strain ratio test method of JIS Z 2254 (2008), and can be obtained by the following formula (1) according to JIS Z 2254 (2008).
平均r値=(r0+2r45+r90)/4 ・・・ 式(1) Average r value = (r 0 + 2r 45 + r 90 ) / 4 ... Equation (1)
ただし、式(1)中のr0は圧延方向のr値、r90は圧延直角方向のr値、r45は圧延45度方向のr値を示す。 However, in equation (1), r 0 indicates the r value in the rolling direction, r 90 indicates the r value in the rolling perpendicular direction, and r 45 indicates the r value in the rolling 45 degree direction.
次に本発明のフェライト系ステンレス鋼板の製造方法を説明する。 Next, a method for manufacturing the ferritic stainless steel sheet of the present invention will be described.
(I)熱間圧延工程 (I) Hot rolling process
前述した成分を有するステンレス鋼スラブを、加熱後に粗圧延及び仕上圧延からなる熱間圧延を実施し、熱延鋼板とする。スラブ加熱温度は、加熱温度が高すぎるとTi炭硫化物(Ti4C2S2)が加熱中に溶解し、固溶炭素の増加や、熱間圧延過程で再析出することで再結晶が遅れるといった現象が生じる。これらの現象は、製品板の再結晶集合組織の発達を抑制し、加工性を劣化させる。また、結晶粒が著しく肥大化し、粗大展伸粒が熱間圧延工程で形成され、製品板の加工性が劣化する。また、過度な温度低下は、表面疵発生の原因となり、疵部からの発銹による耐食性劣化をもたらす。このため、スラブ加熱温度は、1100~1250℃が好ましい。さらに、圧延ロール焼き付きによる生産性低下などを考慮すると、スラブ加熱温度は、1130~1230℃が好ましい。 After heating the stainless steel slab having the above-mentioned components, hot rolling consisting of rough rolling and finish rolling is carried out to obtain a hot-rolled steel sheet. As for the slab heating temperature, if the heating temperature is too high, Ti charcoal sulfide (Ti 4 C 2 S 2 ) melts during heating, and recrystallization occurs due to an increase in solid-dissolved carbon and reprecipitation during the hot rolling process. A phenomenon such as delay occurs. These phenomena suppress the development of the recrystallized texture of the product board and deteriorate the workability. In addition, the crystal grains are remarkably enlarged, coarse wrought grains are formed in the hot rolling process, and the workability of the product plate is deteriorated. In addition, an excessive decrease in temperature causes surface scratches, resulting in deterioration of corrosion resistance due to rusting from the scratched portion. Therefore, the slab heating temperature is preferably 1100 to 1250 ° C. Further, considering the decrease in productivity due to the seizure of the rolled roll, the slab heating temperature is preferably 1130 to 1230 ° C.
(II)熱延板焼鈍工程 (II) Hot-rolled plate annealing process
熱間圧延に続いて、再結晶を目的とした熱延板焼鈍を実施してもよい。熱延板焼鈍は必須ではない。 Following hot rolling, hot-rolled sheet annealing for the purpose of recrystallization may be carried out. Annealing of hot rolled plates is not essential.
熱延板焼鈍を実施することで、製品のリジングと呼ばれる成形時に生じる表面欠陥を軽減できる。熱延板焼鈍は再結晶温度をTとしてT~T+50℃の範囲で行うことが好ましい。温度が低すぎると再結晶不良が生じ、リジング低減効果が十分に得られず、高すぎると結晶粒が肥大化してしまい、冷延焼鈍後に所定の結晶方位のランダム強度比を向上できず製品板の加工性が劣化する。ただし、後述のように冷間圧延を実施することで従来法よりもリジングを軽減することが可能であるため、熱延板焼鈍は省略しても構わない。 By performing hot-rolled sheet annealing, surface defects that occur during molding, which is called product rigging, can be reduced. The hot-rolled sheet annealing is preferably performed in the range of T to T + 50 ° C. with the recrystallization temperature as T. If the temperature is too low, recrystallization defects will occur and the rigging reduction effect will not be sufficiently obtained. If the temperature is too high, the crystal grains will be enlarged and the random intensity ratio of the predetermined crystal orientation cannot be improved after cold rolling annealing. The workability of the product deteriorates. However, since it is possible to reduce rigging as compared with the conventional method by performing cold rolling as described later, hot-rolled sheet annealing may be omitted.
熱延板焼鈍の後、熱延板焼鈍を省略する場合は熱間圧延の後に、表面スケールが形成され、後工程にて表面疵等の問題が生じる場合、必要に応じて酸洗等による脱スケール処理を施してもよい。 After hot-rolled sheet annealing, if hot-rolled sheet annealing is omitted, surface scale is formed after hot rolling, and if problems such as surface defects occur in the post-process, removal by pickling, etc., if necessary. It may be scaled.
(III)冷間圧延工程 (III) Cold rolling process
冷延率RT:50~90% Cold rolling rate RT: 50-90%
必要に応じて実施する脱スケール処理に続いて、冷間圧延を実施する。冷延率RTが低すぎると金属組織の粗大化に加え、{111}方位のランダム強度比の低下を招くため、冷延率RTは50%を下限とする。好ましくは55%以上、さらに好ましくは60%以上である。また、冷延率RTが高すぎるとかえって成形性を低下させるため、90%を上限とする。好ましくは87%以下、さらに好ましくは85%以下とする。 Cold rolling is carried out following the descaling treatment carried out as necessary. If the cold rolling ratio RT is too low, the metal structure is coarsened and the random intensity ratio in the {111} direction is lowered. Therefore, the cold rolling ratio RT is set to 50% as the lower limit. It is preferably 55% or more, more preferably 60% or more. Further, if the cold rolling ratio RT is too high, the moldability is rather lowered, so the upper limit is 90%. It is preferably 87% or less, more preferably 85% or less.
斜め圧延の角度:20~70°
斜め圧延のトータル冷延率RC:20%以上
Diagonal rolling angle: 20-70 °
Total cold rolling ratio for diagonal rolling RC: 20% or more
本発明の冷間圧延においては、熱間圧延方向のみへの冷間圧延ではなく、上記の条件で斜め方向への圧延を行うことに特徴がある。これにより、{111}<112>及び{111}<110>方位のランダム強度比が向上して{411}<148>方位のランダム強度比が低下し、かつ、細粒化を両立できる。 The cold rolling of the present invention is characterized in that it is not cold-rolled only in the hot-rolling direction but is rolled in the diagonal direction under the above conditions. As a result, the random intensity ratio of the {111} <112> and {111} <110> orientations is improved, the random intensity ratio of the {411} <148> orientations is lowered, and the granulation can be achieved at the same time.
斜め方向への冷間圧延を組み合わせることで{111}<112>及び{111}<110>方位のランダム強度比が向上して{411}<148>方位のランダム強度比が低下し、かつ、細粒化を両立できる要因については次のように考えられる。 By combining cold rolling in the diagonal direction, the random intensity ratio of the {111} <112> and {111} <110> orientations is improved, the random intensity ratio of the {411} <148> orientation is decreased, and the random intensity ratio is decreased. The factors that can achieve both fine graining are considered as follows.
冷間圧延時には{001}<110>や{112}<110>、{111}<110>などの冷延優先方位に集積することが知られている。この中でも特に{001}<110>方位は冷間圧延の歪が蓄積しにくいため再結晶の終盤まで残存し、再結晶完了の律速になることが知られている。冷間圧延の方向を変更することで、{001}<110>方位を、たとえば{100}<001>などの、冷間圧延の歪が蓄積しやすく再結晶しやすい方位に変更することができ、再結晶完了を早めるために細粒組織が得られる。さらに、{100}<001>の圧延方位は再結晶後に{411}<148>などの成形性に不利な方位に再結晶しやすいことが知られており、{411}<148>方位が減少したため成形性に有利な{111}方位粒の割合が増加すると考えられる。 It is known that during cold rolling, it accumulates in cold rolling priority directions such as {001} <110>, {112} <110>, and {111} <110>. Among these, it is known that the {001} <110> direction does not easily accumulate the strain of cold rolling, so that it remains until the end of recrystallization and becomes the rate-determining factor for the completion of recrystallization. By changing the direction of cold rolling, the {001} <110> orientation can be changed to an orientation such as {100} <001> where strain of cold rolling is likely to accumulate and recrystallization is likely to occur. A fine-grained structure is obtained to expedite the completion of recrystallization. Further, it is known that the rolling orientation of {100} <001> is likely to be recrystallized in an orientation disadvantageous to formability such as {411} <148> after recrystallization, and the {411} <148> orientation is reduced. Therefore, it is considered that the proportion of {111} oriented grains, which is advantageous for formability, increases.
冷間圧延の方向は、前工程の熱間圧延の方向に対して20~70°の角度の方向への斜めの圧延を、冷延率RCで20%以上行う。斜め方向への圧延の角度が20°より小さいと、{411}<148>のランダム強度比を低下する効果、{111}方位のランダム強度比を向上させる効果及び結晶粒微細化の効果が得られず、成形性の向上及び加工肌荒れ抑制を実現することができないため、斜め方向への圧延の角度は20°を下限とする。同様に70°以上でも成形性向上かつ結晶粒微細化できないため、70°を上限とする。また、斜め方向への冷延率RCが20%より小さい場合も同様に成形性向上かつ結晶粒微細化できないため冷延率RCの下限を20%とする。 As for the direction of cold rolling, diagonal rolling in a direction of an angle of 20 to 70 ° with respect to the direction of hot rolling in the previous step is performed at a cold rolling ratio RC of 20% or more. When the rolling angle in the diagonal direction is smaller than 20 °, the effect of lowering the random intensity ratio of {411} <148>, the effect of improving the random intensity ratio of the {111} orientation, and the effect of grain refinement are obtained. Therefore, the lower limit of the rolling angle in the diagonal direction is 20 ° because it is not possible to improve the formability and suppress the roughening of the processed surface. Similarly, even if the temperature is 70 ° or higher, the moldability is improved and the crystal grains cannot be refined. Therefore, the upper limit is 70 °. Further, when the cold rolling ratio RC in the diagonal direction is smaller than 20%, the lower limit of the cold rolling ratio RC is set to 20% because the moldability is similarly improved and the crystal grains cannot be refined.
熱間圧延方向へのトータル冷延率RL:20%以上 Total cold rolling ratio RL in the hot rolling direction: 20% or more
本発明における斜め圧延の効果は、単に斜めに圧延することではなく、複数の方向への圧延を組み合わせることによって得られる。したがって、熱延板焼鈍を実施した鋼板の場合、斜め方向への冷延率RCでの冷間圧延に加えて、熱間圧延方向への冷延率RLでの冷間圧延を20%以上行う。 The effect of diagonal rolling in the present invention is obtained by combining rolling in a plurality of directions, not simply by rolling diagonally. Therefore, in the case of a steel sheet that has been annealed by hot rolling, in addition to cold rolling at a cold rolling ratio RC in the diagonal direction, cold rolling at a cold rolling ratio RL in the hot rolling direction is performed by 20% or more. ..
ただし、熱延板焼鈍を省略する場合は、熱間圧延方向と斜め方向への冷間圧延の組み合わせにより、狙いの効果を得ることができるため、熱間圧延方向への冷間圧延を省略してもよい。 However, when hot-rolled sheet annealing is omitted, the desired effect can be obtained by combining cold rolling in the hot rolling direction and diagonally, so cold rolling in the hot rolling direction is omitted. You may.
(IV)熱処理工程(仕上げ焼鈍工程) (IV) Heat treatment process (finish annealing process)
以上のような冷間圧延で得られた冷延鋼板に、再結晶を目的とした熱処理を施し熱処理鋼板を得る。熱処理温度は、再結晶温度をTとしたときT~T+30℃の範囲で行うことが好ましい。温度が低すぎると未再結晶組織となり成形性を劣化させ、高すぎると結晶粒成長により加工肌荒れが大きくなる。 The cold-rolled steel sheet obtained by cold rolling as described above is heat-treated for the purpose of recrystallization to obtain a heat-treated steel sheet. The heat treatment temperature is preferably in the range of T to T + 30 ° C. when the recrystallization temperature is T. If the temperature is too low, the structure becomes unrecrystallized and the moldability is deteriorated. If the temperature is too high, the grain growth causes the processed skin to become rough.
次に本発明の実施例を示す。 Next, an embodiment of the present invention will be shown.
表1~2に示すステンレス鋼を溶製し、熱間圧延にて表3~4に記載の板厚に圧延し、板厚1.0mmまで冷間圧延した後、冷延板焼鈍を施して製品板を製造した。なお、一部の熱延板は熱延板焼鈍を980℃で2分施した後に冷間圧延、冷延板焼鈍を施した。各工程条件は表2のように変化させた。 The stainless steels shown in Tables 1 and 2 are melted, rolled to the plate thickness shown in Tables 3 to 4 by hot rolling, cold rolled to a plate thickness of 1.0 mm, and then annealed by cold rolling. Manufactured a product board. Some hot-rolled plates were annealed at 980 ° C. for 2 minutes, then cold-rolled and cold-rolled. Each process condition was changed as shown in Table 2.
製造されたステンレス鋼板に対して、以下の評価を行った。 The following evaluations were made on the manufactured stainless steel sheets.
<結晶粒度番号> <Crystal particle size number>
結晶粒度番号は、JIS G 0551(2013)の線分法で求めた。成形後の肌荒れが軽度である9.0以上を合格とした。 The crystal particle size number was determined by the line segment method of JIS G 0551 (2013). The pass was 9.0 or higher, which is mild after molding.
<ランダム強度比> <Random intensity ratio>
ランダム強度比は、鋼板の圧延面に平行な面について板厚tの1/2t位置のX線回折を実施し、得られたデータを用いて非特許文献1に記載のBungeの手法を用いて3次元方位解析により求めた。絞り比2.4以上の深絞り成形が可能となるI{111}<112>≧9、I{111}<110>≧6、I{411}<148>≦1を合格とした。 The random intensity ratio was determined by performing X-ray diffraction at a position 1 / 2t of the plate thickness t on a surface parallel to the rolled surface of the steel sheet, and using the obtained data, using the Bunge method described in Non-Patent Document 1. It was obtained by three-dimensional orientation analysis. I {111} <112> ≧ 9, I {111} <110> ≧ 6, and I {411} <148> ≦ 1, which enable deep drawing with a drawing ratio of 2.4 or more, were accepted.
<平均r値> <Average r-value>
平均r値は、JIS Z 2254(2008年)の塑性ひずみ比試験方法により測定し、JIS Z 2254(2008年)に従い、式(1)により求めた。 The average r value was measured by the plastic strain ratio test method of JIS Z 2254 (2008), and was calculated by the formula (1) according to JIS Z 2254 (2008).
平均r値=(r0+2r45+r90)/4 ・・・ 式(1) Average r value = (r 0 + 2r 45 + r 90 ) / 4 ... Equation (1)
絞り比2.4以上の深絞り成形が可能な目安とされる1.50以上を合格とし、1.50未満を不合格とした。 Passed 1.50 or more, which is a guideline for deep drawing with a drawing ratio of 2.4 or more, and rejected less than 1.50.
<成形性>
製品板よりφ120mmの試験片を切り出し、直径よりも高さの大きい円筒を1回の工程で成形可能となる絞り比2.4でカップ成形試験を実施した。なお、今回実施した条件はポンチ径が50mm、ポンチ肩Rが5R、クリアランスが片側1.2mm、鋼板とポンチ間の潤滑は防錆油Z3を塗布後にPTFE(ポリテトラフルオロエチレン)シートを貼り付けた。
<Formability>
A test piece having a diameter of 120 mm was cut out from the product plate, and a cup forming test was carried out with a drawing ratio of 2.4, which enables the forming of a cylinder having a height larger than the diameter in one step. The conditions implemented this time are: punch diameter is 50 mm, punch shoulder R is 5R, clearance is 1.2 mm on one side, and for lubrication between the steel plate and punch, rust preventive oil Z3 is applied and then a PTFE (polytetrafluoroethylene) sheet is attached. rice field.
絞り比2.4のカップ成形試験を完了できた試料について成形性を「〇」、成形途中で破断した試料について成形性を「×」と評価した。 The moldability of the sample for which the cup forming test with the drawing ratio of 2.4 was completed was evaluated as “◯”, and the formability of the sample broken during molding was evaluated as “x”.
<成形後肌荒れ> <Rough skin after molding>
絞り比2.4で成形ができた試料についてはカップ成形後の肌荒れを算術平均粗さRaにて評価した。 For the sample that could be molded with a drawing ratio of 2.4, the rough skin after cup molding was evaluated by the arithmetic mean roughness Ra.
カップの縦壁部内側のカップ底部から高さ15mm~20mmの位置において、高さ方向に平行に5mm長さについて接触式の表面粗さ測定機を用いてJIS B 0601に記載の表面粗さ測定を行い、算術平均粗さRaを算出した。 Surface roughness measurement according to JIS B 0601 using a contact-type surface roughness measuring machine for a length of 5 mm parallel to the height at a position 15 mm to 20 mm from the bottom of the cup inside the vertical wall of the cup. Was performed, and the arithmetic average roughness Ra was calculated.
成形後の肌荒れが軽度であり80番手程度の粗研磨による凹凸の除去が不要となる算術平均粗さRa≦1.2の場合に成形後肌荒れを合格とし、粗研磨による凹凸除去が必須となるRa>1.2の場合に不合格とした。 Rough skin after molding is mild and it is not necessary to remove unevenness by rough polishing of about 80 count. When the arithmetic average roughness Ra ≤ 1.2, the rough skin after molding is passed and the removal of unevenness by rough polishing is indispensable. When Ra> 1.2, it was rejected.
評価結果を、表5に示す。 The evaluation results are shown in Table 5.
本発明によれば、冷延方向及び冷延率を適正に実施することでランダム強度比を制御し、成形性及び成形後の耐研磨性に優れたフェライト系ステンレス鋼板を得ることができる。表5に示すとおり、発明例では、絞り比2.4で破断することなく成形加工を完了することが可能であり、かつ、Ra≦1.2μmであり加工肌荒れは抑制された。 According to the present invention, a ferritic stainless steel sheet having excellent formability and polishing resistance after molding can be obtained by controlling the random strength ratio by appropriately performing the cold rolling direction and the cold rolling ratio. As shown in Table 5, in the example of the invention, the molding process could be completed without breaking at a drawing ratio of 2.4, and Ra ≦ 1.2 μm, so that the roughened surface was suppressed.
表5に示す比較例である符号c1,c4,c5,c9では結晶粒度及びランダム強度比、平均r値は請求範囲内にあるが、c1はCr、c4はSi、c5はMn、c9はAlの含有量がそれぞれ過剰であり、高強度化かつ低延性化したことにより、成形途中で破断して成形加工を完了することができなかった。また符号c14では平均r値は高くカップ成形を行うことはできたが結晶粒度番号が大きく、成形後の加工肌荒れが大きかった。 In reference numerals c1, c4, c5, and c9, which are comparative examples shown in Table 5, the crystal grain size, random intensity ratio, and average r value are within the claimed range, but c1 is Cr, c4 is Si, c5 is Mn, and c9 is Al. The content of each was excessive, and the strength and ductility were increased, so that the molding process could not be completed due to breakage during molding. Further, with reference numeral c14, the average r value was high and cup molding could be performed, but the crystal grain size number was large and the processed surface roughness after molding was large.
本発明によれば、従来のステンレス鋼板の製造方法に対し、圧延の一部を斜め方向に実施するのみで、従来よりも格段に優れる特性が得られるため、産業上の利用可能性は大きい。また、製品の形態は問わず、切り板でもコイルでも構わない。特に、家電製品の筺体、又は器物のように比較的厳しい成形性が要求される用途に好適である。 According to the present invention, as compared with the conventional method for manufacturing a stainless steel sheet, only a part of rolling is carried out in an oblique direction, and characteristics remarkably superior to those in the conventional method can be obtained, so that the industrial applicability is great. Further, regardless of the form of the product, a cutting plate or a coil may be used. In particular, it is suitable for applications that require relatively strict formability, such as housings for home appliances or equipment.
Claims (7)
Cr:11.0%以上、30.0%以下、
C :0.001%以上、0.030%以下、
Si:0.01%以上、2.00%以下、
Mn:0.01%以上、2.00%以下、
P :0.005%以上、0.100%以下、
S :0.010%以下、
Al:2.00%以下、及び
N :0.030%以下、
を含み、
さらに、
Ti:0.50%以下、及び
Nb:1.00%以下
の1種又は2種を含み、残部がFe及び不純物であり、
金属組織が、JIS G 0551に従って測定される結晶粒度番号が9.0以上のフェライト単層組織であり、
板厚1/2位置の圧延面に平行な面における結晶方位のランダム強度比が、
I{111}<112>≧9、
I{111}<110>≧6、
I{411}<148>≦1
であることを特徴とするフェライト系ステンレス鋼板。
ここで、I{hkl}<uvw>は{hkl}<uvw>方位のランダム強度比を示す。 By mass%,
Cr: 11.0% or more, 30.0% or less,
C: 0.001% or more, 0.030% or less,
Si: 0.01% or more, 2.00% or less,
Mn: 0.01% or more, 2.00% or less,
P: 0.005% or more, 0.100% or less,
S: 0.010% or less,
Al: 2.00% or less, and N: 0.030% or less,
Including
moreover,
Ti: 0.50% or less and Nb: 1.00% or less are contained, and the balance is Fe and impurities.
The metal structure is a ferrite single layer structure having a crystal grain size number of 9.0 or more as measured according to JIS G 0551.
The random intensity ratio of the crystal orientation in the plane parallel to the rolled plane at the plate thickness 1/2 position is
I {111} <112> ≧ 9,
I {111} <110> ≧ 6,
I {411} <148> ≦ 1
Ferritic stainless steel sheet characterized by being.
Here, I {hkl} <uvw> indicates the random intensity ratio of the {hkl} <uvw> orientation.
A群:
Sn:0.50%以下、
Ni:1.00%以下、
Cu:1.00%以下、
Mo:2.00%以下、
W:1.00%以下、
Co:0.50%以下、
V:0.50%以下、
Zr:0.50%以下、及び
Sb:0.50%以下
の1種又は2種以上
B群:
B:0.0025%以下、
Ca:0.0050%以下、
Mg:0.0050%以下
の1種又は2種以上
C群:
Y:0.20%以下、
Hf:0.20%以下、
REM:0.10%以下
の1種又は2種以上 The ferritic stainless steel sheet according to claim 1, further comprising one group or two or more groups of the following groups A to C in mass%.
Group A:
Sn: 0.50% or less,
Ni: 1.00% or less,
Cu: 1.00% or less,
Mo: 2.00% or less,
W: 1.00% or less,
Co: 0.50% or less,
V: 0.50% or less,
Zr: 0.50% or less, and Sb: 0.50% or less, 1 type or 2 or more types B group:
B: 0.0025% or less,
Ca: 0.0050% or less,
Mg: 1 type or 2 types or more of 0.0050% or less Group C:
Y: 0.20% or less,
Hf: 0.20% or less,
REM: 1 type or 2 types or more of 0.10% or less
請求項1又は2に記載の成分を有する鋼スラブを熱間圧延して熱延鋼板とする熱間圧延工程と、
前記熱延鋼板を冷間圧延して冷延鋼板とする冷間圧延工程と、
前記冷延鋼板を熱処理して熱処理鋼板とする熱処理工程と
を備え、
前記冷間圧延工程において、冷延率RTを50%以上90%以下とし、前記冷間圧延の一部に、前記熱間圧延の方向に対して20°以上70°以下の角度で斜め方向に冷延率RC20%以上での冷間圧延を含む
ことを特徴とするフェライト系ステンレス鋼板の製造方法。 The method for manufacturing a ferritic stainless steel sheet according to any one of claims 1 to 3.
A hot-rolling step of hot-rolling a steel slab having the component according to claim 1 or 2 to obtain a hot-rolled steel sheet,
A cold rolling process in which the hot-rolled steel sheet is cold-rolled to obtain a cold-rolled steel sheet,
It is provided with a heat treatment step of heat-treating the cold-rolled steel sheet to obtain a heat-treated steel sheet.
In the cold rolling step, the cold rolling ratio RT is set to 50% or more and 90% or less, and a part of the cold rolling is obliquely oriented at an angle of 20 ° or more and 70 ° or less with respect to the direction of the hot rolling. A method for manufacturing a ferrite-based stainless steel sheet, which comprises cold rolling at a cold rolling ratio of RC 20% or more.
ことを特徴とする請求項5に記載のフェライト系ステンレス鋼板の製造方法。 The ferrite-based stainless steel sheet according to claim 5, wherein a part of the cold rolling further includes cold rolling in the same direction as the hot rolling direction with a cold rolling ratio of RL 20% or more. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020190026A JP7580254B2 (en) | 2020-11-16 | Ferritic stainless steel sheet and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020190026A JP7580254B2 (en) | 2020-11-16 | Ferritic stainless steel sheet and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022079072A true JP2022079072A (en) | 2022-05-26 |
JP7580254B2 JP7580254B2 (en) | 2024-11-11 |
Family
ID=
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024128565A1 (en) * | 2022-12-16 | 2024-06-20 | 주식회사 포스코 | Ferritic stainless steel and manufacturing method therefor |
WO2024203317A1 (en) * | 2023-03-30 | 2024-10-03 | 日鉄ステンレス株式会社 | Ferritic stainless steel sheet |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024128565A1 (en) * | 2022-12-16 | 2024-06-20 | 주식회사 포스코 | Ferritic stainless steel and manufacturing method therefor |
WO2024203317A1 (en) * | 2023-03-30 | 2024-10-03 | 日鉄ステンレス株式会社 | Ferritic stainless steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6358407B2 (en) | Steel plate and plated steel plate | |
JP5056985B2 (en) | Austenitic stainless steel sheet and manufacturing method thereof | |
CN101680066B (en) | Ferritic stainless steel sheet having excellent corrosion resistance against sulfuric acid, and method for production thereof | |
JP6906688B2 (en) | Ferritic stainless steel sheet and its manufacturing method | |
WO2013099136A1 (en) | High-strength hot-rolled steel sheet and manufacturing method therefor | |
KR101941067B1 (en) | Material for cold-rolled stainless steel sheet | |
WO2017170611A1 (en) | Nb-containing ferritic stainless steel sheet and manufacturing method therefor | |
JP5930144B1 (en) | Steel plate for squeezed can and method for manufacturing the same | |
JP6809325B2 (en) | Duplex stainless steel shaped steel and its manufacturing method | |
JP6738928B1 (en) | Ferritic stainless steel sheet and method of manufacturing the same | |
JP6617182B1 (en) | Ferritic stainless steel sheet | |
JP6836969B2 (en) | Ferritic stainless steel sheet | |
JP7304715B2 (en) | Ferritic stainless steel plate | |
JP2001271143A (en) | Ferritic stainless steel excellent in ridging resistance and its production method | |
JP2022079072A (en) | Ferritic stainless steel sheet and method for manufacturing the same | |
JP7580254B2 (en) | Ferritic stainless steel sheet and its manufacturing method | |
KR101316907B1 (en) | Ferritic stainless steel and method for manufacturing the same | |
KR102515016B1 (en) | Ferritic stainless steel plate | |
JP2004217996A (en) | Ferritic stainless steel sheet superior in formability, and manufacturing method therefor | |
JP2024140802A (en) | Ferritic stainless steel hot rolled sheet | |
JP2024058836A (en) | Ferritic stainless steel sheet excellent in corrosion resistance and workability | |
CN118742663A (en) | Austenitic stainless steel and method for producing austenitic stainless steel | |
JP2023147324A (en) | Ferritic stainless steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230714 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240702 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240726 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20241001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20241029 |