[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6829522B2 - Self-aligning roller bearing - Google Patents

Self-aligning roller bearing Download PDF

Info

Publication number
JP6829522B2
JP6829522B2 JP2014207489A JP2014207489A JP6829522B2 JP 6829522 B2 JP6829522 B2 JP 6829522B2 JP 2014207489 A JP2014207489 A JP 2014207489A JP 2014207489 A JP2014207489 A JP 2014207489A JP 6829522 B2 JP6829522 B2 JP 6829522B2
Authority
JP
Japan
Prior art keywords
roller
guide wheel
dimension
guide
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014207489A
Other languages
Japanese (ja)
Other versions
JP2016075376A (en
Inventor
崇人 倉地
崇人 倉地
英夫 福添
英夫 福添
阿部 大輔
大輔 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014207489A priority Critical patent/JP6829522B2/en
Publication of JP2016075376A publication Critical patent/JP2016075376A/en
Priority to JP2020030859A priority patent/JP6927347B2/en
Application granted granted Critical
Publication of JP6829522B2 publication Critical patent/JP6829522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Description

本発明は、自動調心ころ軸受に関する。 The present invention relates to self-aligning roller bearings.

従来より、産業機械等に用いられる自動調心ころ軸受は、図4に示すように、外周面に複列の軌道面101a,101aを有する内輪101と、内周面に内輪101の軌道面101aに対向する球面状の軌道面102aを有する外輪102と、内輪101及び外輪102の複列の軌道面101a,102a間に転動自在に配置される複数のころ103とを備えている。 Conventionally, as shown in FIG. 4, self-aligning roller bearings used in industrial machinery and the like have an inner ring 101 having a double row of raceway surfaces 101a and 101a on the outer peripheral surface and a raceway surface 101a of the inner ring 101 on the inner peripheral surface. It includes an outer ring 102 having a spherical raceway surface 102a facing the inner ring 101, and a plurality of rollers 103 rotatably arranged between the raceway surfaces 101a and 102a in a double row of the inner ring 101 and the outer ring 102.

このような自動調心ころ軸受100では、多くの場合、複列のころ103がスキューすることなく転動できるように、ころ103の軸方向の端面を案内する案内輪105がころ103,103の列間に配置されている。すなわち、この案内輪105は、内輪101の摺動面101bに摺動可能に接する摺動面105aを有する。また、案内輪105は、ころ103,103のそれぞれの軸方向の端面103a,103aに挟まれるようにして摺動可能に接する側面105bを有する。 In such a self-aligning roller bearing 100, in many cases, the guide wheels 105 that guide the axial end faces of the rollers 103 are the rollers 103, 103 so that the double-row rollers 103 can roll without skewing. Arranged between columns. That is, the guide ring 105 has a sliding surface 105a that is slidably in contact with the sliding surface 101b of the inner ring 101. Further, the guide wheel 105 has a side surface 105b that is slidably contacted with the end faces 103a and 103a in the axial direction of the rollers 103 and 103, respectively.

このような自動調心ころ軸受においては、案内輪の摩耗を防止する目的で、ころのスキューを抑制し、軌道輪とのすべり摩擦を低滅させて低発熱化を実現したり、案内輪ところとの間に油膜を形成させる等の構成が採用されることが多い。この種の自動調心ころ軸受の例としては、特許文献1,2に開示されたものがある。
例えば、特許文献1には、「ころの軸方向の端面とだらし部との境界」を丸めて案内輪ところとの局部摩耗の防止を図る構成が開示されている。
また、特許文献2には、案内輪の低発熱化による摩耗低減を目的として、案内輪ところとの接触面積を小さくして油膜を形成し易くし、案内輪の側面ところの軸方向の端面とが点接触となる構成をなす自動調心ころ軸受が開示されている。
In such self-aligning roller bearings, in order to prevent wear of the guide wheels, skew of the rollers is suppressed, sliding friction with the raceway wheels is reduced, and heat generation is reduced. In many cases, a configuration such as forming an oil film between the and is adopted. Examples of this type of self-aligning roller bearing are those disclosed in Patent Documents 1 and 2.
For example, Patent Document 1 discloses a configuration in which "the boundary between the end face in the axial direction of the roller and the sloping portion" is rounded to prevent local wear between the guide wheel and the portion.
Further, in Patent Document 2, for the purpose of reducing wear due to low heat generation of the guide wheel, the contact area with the guide wheel is reduced to facilitate the formation of an oil film, and the end face in the axial direction of the side surface of the guide wheel is described. A self-aligning roller bearing having a configuration in which is in point contact is disclosed.

特開2007−100934号公報JP-A-2007-100934 特許第3789698号公報Japanese Patent No. 3789698

しかしながら、特許文献1に記載された技術は、「ころの軸方向の端面とだらし部との境界」を丸めているので、案内輪との接触点が限定されず、上記案内隙間の精度が悪くなるため、製造上、案内隙間が過大となった場合は、スキュー角が大きくなり、低発熱化できなくなるおそれがあった。
さらに、特許文献2に記載された技術は、「案内輪の傾斜面」と「ころの軸方向の端面とだらし部との境界」とを点接触させているが、この手段として「案内輪の傾斜面」と「ころの軸方向の端面」に角度(開き角)を持たせている。ここで、この開き角を大きくしすぎると、ころがスキューした場合に案内輪と接触しにくくなり、スキュー角が大きくなるため、低発熱化できなくなるおそれがある。
本発明は上記課題に着目してなされたものであり、案内輪の異常摩耗を防止しつつ、ころのスキューを効果的に抑制した低発熱性に優れた自動調心ころ軸受を提供することを目的とする。
However, since the technique described in Patent Document 1 rounds the "boundary between the end face in the axial direction of the roller and the sloping portion", the contact point with the guide wheel is not limited, and the accuracy of the guide gap is poor. Therefore, if the guide gap is excessive in manufacturing, the skew angle becomes large, and there is a risk that the heat generation cannot be reduced.
Further, in the technique described in Patent Document 2, the "inclined surface of the guide wheel" and the "boundary between the axial end surface of the roller and the sloping portion" are brought into point contact with each other. An angle (opening angle) is given to the "inclined surface" and the "end surface in the axial direction of the roller". Here, if this opening angle is made too large, it becomes difficult to come into contact with the guide wheel when the rollers are skewed, and the skew angle becomes large, so that there is a risk that heat generation cannot be reduced.
The present invention has been made by paying attention to the above problems, and to provide a self-aligning roller bearing having excellent low heat generation that effectively suppresses roller skew while preventing abnormal wear of the guide wheel. The purpose.

上記課題を解決するための自動調心ころ軸受のある態様は、外周面に複列の軌道面を有する内輪と、内周面に前記軌道面に対向する球面状の軌道面を有する外輪と、前記複列の軌道面と球面状の軌道面との間に転動自在に配置される複数のころと、前記ころの列間に配置されて、前記ころを案内する案内輪とを有し、
前記案内輪の側面と前記ころの軸方向の端面とが離間して案内隙間を形成し、かつその案内隙間の寸法が前記ころの最大径寸法の1.0%以下であり、
前記ころの軸方向の端面において全周に亘って面取りされた面取り部のころの端面側にだらし部が設けられ、前記案内輪の前記側面の径方向の内側に傾斜面が設けられ、前記傾斜面の径方向の内側に面取り部が設けられ、
前記案内輪の側面が、前記ころから前記内輪に加えられる力の向きに対して前記ころの軸方向の端面から離間するように開き角θで前記外輪側に開いて傾斜させた傾斜面を有し、
前記ころがスキューした場合、前記傾斜面と、前記ころの軸方向の端面と前記だらし部との境界とが点接触し、前記開き角θが0.5°〜4°であり、
だらし径X(前記ころの径方向に沿う、前記ころの軸方向の端面と前記だらし部との境界間の直径寸法が下記式(1)〜(3)を満たす。
Some aspects of self-aligning roller bearings for solving the above problems include an inner ring having a double row of raceway surfaces on the outer peripheral surface, and an outer ring having a spherical raceway surface facing the raceway surface on the inner peripheral surface. It has a plurality of rollers rotatably arranged between the double row of raceway surfaces and a spherical raceway surface, and a guide ring arranged between the rows of the rollers to guide the rollers.
The side surface of the guide wheel and the axial end surface of the roller are separated to form a guide gap, and the dimension of the guide gap is 1.0% or less of the maximum diameter of the roller.
A chamfered portion is provided on the end surface side of the roller, which is chamfered over the entire circumference of the axial end surface of the roller, and an inclined surface is provided inside the side surface of the guide wheel in the radial direction. A chamfer is provided on the inside in the radial direction of the surface.
The side surface of the guide ring has an inclined surface that is opened and inclined toward the outer ring side at an opening angle θ so as to be separated from the end surface in the axial direction of the roller with respect to the direction of the force applied from the roller to the inner ring. And
When the roller is skewed, the inclined surface, the axial end surface of the roller, and the boundary between the sloping portion are in point contact, and the opening angle θ is 0.5 ° to 4 °.
Scruffy diameter X (along the radial direction of the roller, the diameter between the boundary between the scruffy portion and the axial end face of the roller) satisfies the following formulas (1) to (3).

下記式(1)〜(3)において、Zeは、「ころの頭部中心(ころの中心軸と案内輪側のころの軸方向の端面との交点)」の径方向寸法、Dmoは、内輪の軌道径寸法、Daは、ころ最大径寸法、L0は、ころの芯寄り寸法(「ころの最大径」から、案内輪と接触する側の「ころの軸方向の端面」までのころの軸方向に沿った寸法)、Zmは、「案内輪の傾斜面と面取り部との境界」の径方向寸法、δは、日本工業規格JIS B 0104−1991「転がり軸受用語」に「呼び接触角」で定義される接触角、Dcoは、内輪の外径寸法、dmiは、案内輪の内径寸法、Rmは、案内輪の面取り部の面取り寸法、βは、案内輪の軸受中心軸に直交する面に対する前記傾斜面の傾斜角度である。
X<2(Ze−Zm)/cosδ・・・・・・・・・・・・・・・・・・式(1)
Ze=(Dmo+Da/2)×cosδ+L0sinδ・・・・・・・・式(2)
Zm=Dco/2+(dmi−Dco)/2+Rm(1−sinβ)・・・式(3)
In the following formulas (1) to (3), Ze is the radial dimension of the "center of the roller head (the intersection of the center axis of the roller and the axial end face of the roller on the guide wheel side)", and Dmo is the inner ring. Orbital diameter dimension of, Da is the roller maximum diameter dimension, L0 is the roller center dimension (roller shaft from the "roller maximum diameter" to the "roller axial end face" on the side in contact with the guide wheel. Dimension along the direction), Zm is the radial dimension of the "boundary between the inclined surface of the guide wheel and the chamfered part", and δ is the "nominal contact angle" in the Japanese Industrial Standard JIS B 0104-991 "Rolling bearing terminology". The contact angle defined by, Dco is the outer diameter dimension of the inner ring, dmi is the inner diameter dimension of the guide wheel, Rm is the chamfered dimension of the chamfered portion of the guide wheel, and β is the plane orthogonal to the bearing central axis of the guide wheel. It is an inclination angle of the inclined surface with respect to.
X <2 (Ze-Zm) / cosδ ... Equation (1)
Ze = (Dmo + Da / 2) × cosδ + L0sinδ ・ ・ ・ ・ ・ ・ ・ ・ Equation (2)
Zm = Dco / 2 + (dmi-Dco) / 2 + Rm (1-sinβ) ... Equation (3)

本発明によれば、案内輪の異常摩耗を防止しつつ、ころのスキューを効果的に抑制した低発熱性に優れた自動調心ころ軸受を提供することができる。 According to the present invention, it is possible to provide a self-aligning roller bearing having excellent low heat generation, which effectively suppresses roller skew while preventing abnormal wear of the guide wheel.

本発明の自動調心ころ軸受の実施形態における構成を示す断面図である。It is sectional drawing which shows the structure in embodiment of the self-aligning roller bearing of this invention. 図1の要部拡大図である。It is an enlarged view of the main part of FIG. 図2(b)の要部拡大図である。It is an enlarged view of the main part of FIG. 2B. 自動調心ころ軸受の従来の構成を示す断面図である。It is sectional drawing which shows the conventional structure of the self-aligning roller bearing.

以下、本発明に係る自動調心ころ軸受の実施形態について図面を参照して説明する。
(第1実施形態)
図1は、本発明に係る自動調心ころ軸受の第1実施形態における構成を示す断面図である。また、図2(a)は、図1の要部拡大図であり、図2(b)は図2(a)の要部拡大図である。なお、図2(a),(b)は、説明の理解のため、若干誇張して示している。
本実施形態の自動調心ころ軸受1は、図1に示すように、外周面に複列の軌道面2aを有する内輪2と、内周面に内輪2の軌道面2aに対向する球状の軌道面3aを有する外輪3と、複列の軌道面2a,3a間に転動自在に配置される複数のころ4とを備えている。
Hereinafter, embodiments of the self-aligning roller bearing according to the present invention will be described with reference to the drawings.
(First Embodiment)
FIG. 1 is a cross-sectional view showing a configuration of a self-aligning roller bearing according to the present invention in the first embodiment. 2 (a) is an enlarged view of a main part of FIG. 1, and FIG. 2 (b) is an enlarged view of a main part of FIG. 2 (a). Note that FIGS. 2 (a) and 2 (b) are slightly exaggerated for the sake of understanding the explanation.
As shown in FIG. 1, the self-aligning roller bearing 1 of the present embodiment has an inner ring 2 having a double row of raceway surfaces 2a on the outer peripheral surface and a spherical raceway on the inner peripheral surface facing the raceway surface 2a of the inner ring 2. It includes an outer ring 3 having a surface 3a, and a plurality of rollers 4 rotatably arranged between the raceway surfaces 2a and 3a in a double row.

この自動調心ころ軸受1のころ4は、保持器5により、ころ列毎に転動自在に保持されている。また、内輪2の外周面における軸方向中央部2bと保持器5の内周面との間には、円環状の案内輪6が配置されている。
案内輪6は、その内周面(摺動面)6aが内輪2の外周面における軸方向中央部2bと摺接するとともに、その外周面6fが保持器5の内周面の一部と摺接するようになっている。そして、案内輪6の側面6bところ4の軸方向の端部との間に潤滑油が保持されて流体膜が形成されている。
The rollers 4 of the self-aligning roller bearing 1 are rotatably held for each roller row by the cage 5. Further, an annular guide ring 6 is arranged between the axial central portion 2b on the outer peripheral surface of the inner ring 2 and the inner peripheral surface of the cage 5.
The inner peripheral surface (sliding surface) 6a of the guide ring 6 is in sliding contact with the axially central portion 2b on the outer peripheral surface of the inner ring 2, and the outer peripheral surface 6f is in sliding contact with a part of the inner peripheral surface of the cage 5. It has become like. Then, the lubricating oil is held between the side surface 6b of the guide wheel 6 and the axial end of 4, and a fluid film is formed.

[案内隙間]
本実施形態の自動調心ころ軸受1は、当該自動調心ころ軸受の負荷圏(内輪2,外輪3,ころ4に隙間がない状態)における「案内輪6の傾斜面6c」と「ころ4の軸方向の端面4a」とのころ4の軸方向に沿った隙間(以下、案内隙間ということがある)の寸法sを正とし、且つその寸法sの上限をころ4の最大径寸法Da(図1参照)の1.0%以下としている。この案内隙間の寸法sは、図3に示すように、「ころ4の境界4ac」における「ころ4から内輪2に加えられる力の向きを示す直線L(図1,2参照)」に直交する方向に沿うころ4と案内輪6との距離である。具体的には、案内隙間の寸法sは、「ころ4の境界4ac」と、その境界4acの「対向部6e」との寸法を指す。ここで、「境界4ac」は、「ころ4の軸方向の端面4a」と後述する「だらし部4c」との境界を指す。また、「直線M」は、「ころ4から内輪2に加えられる力の向きを示す直線L(図1,2参照)」に直交する直線を指す。また、「対向部6e」は、境界4acを通る直線Mと、案内輪6の傾斜面6cとの交点を指す。
[Guide gap]
The self-aligning roller bearing 1 of the present embodiment has "inclined surface 6c of the guide wheel 6" and "roller 4" in the load area of the self-aligning roller bearing (in a state where there is no gap between the inner ring 2, the outer ring 3, and the roller 4). The dimension s of the gap along the axial direction of the roller 4 (hereinafter, may be referred to as a guide gap) with the end face 4a in the axial direction of the roller 4 is positive, and the upper limit of the dimension s is the maximum diameter dimension Da of the roller 4. It is set to 1.0% or less of (see FIG. 1). As shown in FIG. 3, the dimension s of the guide gap is orthogonal to the "straight line L (see FIGS. 1 and 2) indicating the direction of the force applied from the roller 4 to the inner ring 2" at the "boundary 4ac of the roller 4". It is the distance between the roller 4 and the guide wheel 6 along the direction. Specifically, the dimension s of the guide gap refers to the dimension of the "boundary 4ac of the roller 4" and the "opposing portion 6e" of the boundary 4ac. Here, the "boundary 4ac" refers to the boundary between the "axial end face 4a of the roller 4" and the "sloppy portion 4c" described later. Further, the "straight line M" refers to a straight line orthogonal to the "straight line L indicating the direction of the force applied from the roller 4 to the inner ring 2 (see FIGS. 1 and 2)". Further, the “opposing portion 6e” refers to the intersection of the straight line M passing through the boundary 4ac and the inclined surface 6c of the guide wheel 6.

このように、上記案内隙間の寸法sを正とし、予圧が掛からないように構成することによって、案内輪6の異常摩耗が発生しにくく、ころ4がスキューした場合には、ころ4が案内輪6に接触して幾何的にころ4のスキューを抑制し、低発熱性を実現することができる。
ここで、案内隙間の寸法sが過大であると、ころ4のスキュー角が大きくなり(すべり摩擦が大きくなり)、発熱量が大きくなることが懸念される。そこで、本実施形態では、上記案内隙間の寸法の上限値を上記のように設定することで、ころ4がスキューした場合でもスキュー角を小さく抑制できる構成とした。
In this way, by setting the dimension s of the guide gap to be positive and configuring it so that preload is not applied, abnormal wear of the guide wheel 6 is unlikely to occur, and when the roller 4 is skewed, the roller 4 is the guide wheel. In contact with 6, the skew of the roller 4 can be geometrically suppressed, and low heat generation can be realized.
Here, if the dimension s of the guide gap is excessive, there is a concern that the skew angle of the roller 4 will be large (sliding friction will be large) and the amount of heat generated will be large. Therefore, in the present embodiment, by setting the upper limit value of the dimension of the guide gap as described above, the skew angle can be suppressed to be small even when the roller 4 is skewed.

[だらし部]
また、自動調心ころ軸受1のころ4の軸方向の端面4aにおいて面取りされた面取り部4bには、だらし部4cが設けられている。このだらし部4cは、面取り部4bの径方向の曲率変化よりも少ない、又はゼロの状態で面取り部4bに寸法dで削られた形状を指す。寸法dは、ころ4の境界4acが案内輪6の傾斜面6cに当たる大きさとすることが好ましい。なお、寸法dは、ころ4の中心軸に直交する方向に測定するものである。
このように、本実施形態では、ころ4にだらし加工を施して「ころ4の軸方向の端面4aとだらし部4cとの境界4ac」を設け、案内輪6との接触点を精度良く限定でき、上記案内隙間の寸法が過大となることを防止できる。したがって、ころ4がスキューした場合でもスキュー角を小さく抑制することが可能であり、低発熱化を実現することができる。
[Sloppy part]
Further, the chamfered portion 4b chamfered on the axial end surface 4a of the roller 4 of the self-aligning roller bearing 1 is provided with a sloppy portion 4c. The sloppy portion 4c refers to a shape cut by the chamfered portion 4b by dimension d in a state where the change in curvature in the radial direction of the chamfered portion 4b is less than or zero. The dimension d is preferably set so that the boundary 4ac of the rollers 4 hits the inclined surface 6c of the guide wheel 6. The dimension d is measured in a direction orthogonal to the central axis of the roller 4.
As described above, in the present embodiment, the roller 4 is subjected to a slacking process to provide a "boundary 4ac between the axial end surface 4a of the roller 4 and the sloping portion 4c", and the contact point with the guide wheel 6 can be accurately limited. , It is possible to prevent the size of the guide gap from becoming excessive. Therefore, even when the roller 4 is skewed, the skew angle can be suppressed to be small, and low heat generation can be realized.

[だらし部の加工方法]
なお、だらし部4cの加工方法としては、旋削加工、研削加工やハードターニング等があるが、本発明の効果を損なわない精度が保たれた加工方法であれば、特に限定されるものではない。
[Processing method for sloppy parts]
The processing method of the slack portion 4c includes turning processing, grinding processing, hard turning, and the like, but is not particularly limited as long as it is a processing method that maintains accuracy without impairing the effects of the present invention.

[だらし寸法]
ここで、「境界4ac」の自動調心ころ軸受1の径方向の位置は、「案内輪6の傾斜面6cと面取り部6dとの境界6cd」の自動調心ころ軸受1の径方向の位置よりも大きく設定される。このようにすることによって、案内輪6が何れかに偏った場合においても境界部4ac,6cd同士の接触による案内輪6の異常摩耗を防止することができる。
[Sloppy dimensions]
Here, the radial position of the self-aligning roller bearing 1 at the "boundary 4ac" is the radial position of the self-aligning roller bearing 1 at the "boundary 6cd between the inclined surface 6c of the guide wheel 6 and the chamfered portion 6d". Is set larger than. By doing so, even when the guide wheel 6 is biased to any one side, abnormal wear of the guide wheel 6 due to contact between the boundary portions 4ac and 6cd can be prevented.

境界部4ac,6cdの位置関係については、具体的には、ころ4の径方向に沿った、ころ4の軸方向の端面4aとだらし部4cとの境界4ac,4ac間の寸法(以下、だらし寸法ということがある。)が下記式(1)〜(3)を満たす。
X<2(Ze−Zm)/cosδ・・・・・・・・・・・・・・・・・・式(1)
Ze=(Dmo+Da/2)×cosδ+Losinδ・・・・・・・・式(2)
Zm=Dco/2+(dmi−Dco)/2+Rm(1−sinβ)・・・式(3)
Regarding the positional relationship between the boundary portions 4ac and 6cd, specifically, the dimensions between the boundary portions 4ac and 4ac between the axial end surface 4a of the roller 4 and the slack portion 4c along the radial direction of the roller 4 (hereinafter, sloppy). (Sometimes referred to as dimensions) satisfies the following equations (1) to (3).
X <2 (Ze-Zm) / cosδ ... Equation (1)
Ze = (Dmo + Da / 2) × cosδ + Losinδ ・ ・ ・ ・ ・ ・ ・ ・ Equation (2)
Zm = Dco / 2 + (dmi-Dco) / 2 + Rm (1-sinβ) ... Equation (3)

なお、上記式(1)において、「X」は、「だらし径」を示し、ころ4の軸方向の端面4aとだらし部4cとの境界4ac,4ac間のころ4から内輪2に加えられる力の向きを示す直線Lに沿う寸法を示す。また、「Ze」は、「ころ4の頭部中心(ころ4の中心軸と案内輪6側のころ4の軸方向の端面4aとの交点)」の自動調心ころ軸受の回転軸S0(図1参照)からの径方向に沿った寸法を示す(上記式(2)の「Ze」も同じ)。また、「Zm」は、「案内輪6の傾斜面6cと面取り部6dとの境界6cd」の自動調心ころ軸受の回転軸S0からの径方向に沿った寸法を示す(上記式(3)の「Zm」も同じ)。また、「β」は、案内輪6の軸受中心軸に直交する面S2に対する傾斜角度を示す。 In the above equation (1), "X" indicates "sloppy diameter", and the force applied to the inner ring 2 from the roller 4 between the boundary 4ac and 4ac between the axial end surface 4a of the roller 4 and the slack portion 4c. The dimension along the straight line L indicating the direction of is shown. Further, "Ze" is the rotation axis S0 of the self-aligning roller bearing of "the center of the head of the roller 4 (the intersection of the central axis of the roller 4 and the end surface 4a of the roller 4 on the guide wheel 6 side in the axial direction)". The dimensions along the radial direction from (see FIG. 1) are shown (the same applies to "Ze" in the above formula (2)). Further, "Zm" indicates the dimension of the "boundary 6cd between the inclined surface 6c of the guide wheel 6 and the chamfered portion 6d" along the radial direction from the rotation axis S0 of the self-aligning roller bearing (the above equation (3)). "Zm" is the same). Further, “β” indicates an inclination angle of the guide wheel 6 with respect to the plane S2 orthogonal to the bearing center axis.

また、上記式(2)において、「Dmo」は、内輪2の軌道径の寸法を示す。また、「Da」は、ころ4の最大径の寸法を示す。また、「δ」は、日本工業規格JIS B 0104−1991「転がり軸受用語」に記載の接触角「呼び接触角」で定義されるものであり、軸受中心軸に直交する面S2と、ころ4から内輪2に加えられる力の向きを示す直線Lとによって形成される角度δを意味する。また、「L」は、ころ4の芯寄り寸法(「ころ4の最大径Da」から、案内輪6と接触する側の「ころ4の軸方向の端面4a」までのころ4の軸方向に沿った寸法)を示す。
また、上記式(3)において、「Dco」は、内輪2の外径寸法を示す。また、「dmi」は、案内輪6の内径寸法を示す。また、「Rm」は、案内輪6の面取り部6dの面取り寸法を示す。
Further, in the above formula (2), "Dmo" indicates the dimension of the track diameter of the inner ring 2. Further, "Da" indicates the dimension of the maximum diameter of the roller 4. Further, "δ" is defined by the contact angle "nominal contact angle" described in Japanese Industrial Standards JIS B 0104-991 "Rolling bearing terminology", and the plane S2 orthogonal to the bearing central axis and the roller 4 It means an angle δ formed by a straight line L indicating the direction of the force applied to the inner ring 2. Further, "L 0 " is the axial direction of the roller 4 from the center-oriented dimension of the roller 4 (from the "maximum diameter Da of the roller 4" to the "axial end surface 4a of the roller 4" on the side in contact with the guide wheel 6. Dimension along with) is shown.
Further, in the above formula (3), "Dco" indicates the outer diameter dimension of the inner ring 2. Further, "dmi" indicates the inner diameter dimension of the guide wheel 6. Further, "Rm" indicates the chamfered dimension of the chamfered portion 6d of the guide wheel 6.

(他の実施形態)
自動調心ころ軸受の他の実施形態として、「ころ4の軸方向の端面4a」と「案内輪6の傾斜面6c」との間に角度(開き角)を設け、この角度を規定することが好ましい。
[開き角]
自動調心ころ軸受1の案内輪6の側面6bには、ころ4から内輪2に加えられる力の向きを示す直線Lに対してころ4の軸方向の端面4aから離間するように開き角θで外輪側に開いて傾斜させた傾斜面6cが形成されている。この開き角θは、接触角δに対し、案内輪6の傾斜面6cを含む面S1と、ころ4から内輪2に加えられる力の向きを示す直線Lとによって形成される角度として定義される。
(Other embodiments)
As another embodiment of the self-aligning roller bearing, an angle (opening angle) is provided between "the axial end surface 4a of the roller 4" and "the inclined surface 6c of the guide wheel 6", and this angle is specified. Is preferable.
[Opening angle]
The side surface 6b of the guide ring 6 of the self-aligning roller bearing 1 has an opening angle θ so as to be separated from the axial end surface 4a of the roller 4 with respect to the straight line L indicating the direction of the force applied from the roller 4 to the inner ring 2. An inclined surface 6c that is opened and inclined toward the outer ring side is formed. This opening angle θ is defined as an angle formed by a surface S1 including the inclined surface 6c of the guide ring 6 and a straight line L indicating the direction of the force applied from the roller 4 to the inner ring 2 with respect to the contact angle δ. ..

開き角θは、0.5°〜4.0°であることが好ましい。開き角θが0.5°よりも小さいと、ころ4の軸方向の端面4aと、「案内輪6の並行部6gと傾斜面6cとの境界6cg」とがころ4のスキューのときに当たりやすくなってしまい、境界6cgが損傷しやすくなる。また、製造精度によっては「ころ4の軸方向の端面4a」と「案内輪6の傾斜面6c」とが面接触となり、潤滑不足により案内輪6が摩耗し易くなることがある。また、開き角θが4.0°を超えると、ころ4がスキューした場合に案内輪6と接触しにくく、ころ4のスキュー角が大きくなり易い(すべり摩擦が大きくなる)ため、好ましくない。なお、開き角θは1.5°がより好ましい。 The opening angle θ is preferably 0.5 ° to 4.0 °. When the opening angle θ is smaller than 0.5 °, the axial end surface 4a of the roller 4 and the “boundary 6cg between the parallel portion 6g of the guide wheel 6 and the inclined surface 6c” are likely to hit when the roller 4 is skewed. The boundary 6 cg is easily damaged. Further, depending on the manufacturing accuracy, the "axial end surface 4a of the roller 4" and the "inclined surface 6c of the guide wheel 6" may come into surface contact, and the guide wheel 6 may be easily worn due to insufficient lubrication. Further, if the opening angle θ exceeds 4.0 °, it is difficult for the roller 4 to come into contact with the guide wheel 6 when the roller 4 is skewed, and the skew angle of the roller 4 tends to be large (sliding friction becomes large), which is not preferable. The opening angle θ is more preferably 1.5 °.

このように、「ころ4の軸方向の端面4a」と「案内輪6の傾斜面6c」との間に角度(開き角)を設けることによって、「案内輪6の傾斜面6c」と「ころ4の軸方向の端面4aとだらし部4cとの境界4ac」とを点接触させることができる。よって、ころ4がスキューした場合でもスキュー角を小さく抑制でき、さらには、上記案内隙間を精度良く管理することができる。 In this way, by providing an angle (opening angle) between the "axial end surface 4a of the roller 4" and the "inclined surface 6c of the guide wheel 6", the "inclined surface 6c of the guide wheel 6" and the "roller" are provided. The axial end surface 4a of 4 and the boundary 4ac between the sloping portion 4c can be brought into point contact with each other. Therefore, even when the roller 4 is skewed, the skew angle can be suppressed to be small, and the guide gap can be managed with high accuracy.

以上説明したように、本実施形態の自動調心ころ軸受1は、「案内輪6の傾斜面6c」と「ころ4の軸方向の端面4a」とのころ4の軸方向の隙間(案内隙間)の寸法を正の値とし、かつその隙間寸法の上限をころ4の最大径の1.0%以下としている。そのため、案内輪6の異常摩耗を防止しつつ、ころ4がスキューした場合には、案内輪6の側面6bと接触して幾何的にスキューを防止し、ころ4のスキュー角を小さく抑制することができ、結果として低発熱性に優れた自動調心ころ軸受を提供することができる。 As described above, in the self-aligning roller bearing 1 of the present embodiment, there is an axial gap (guide gap) between the "inclined surface 6c of the guide wheel 6" and the "axial end surface 4a of the roller 4" of the roller 4. ) Is a positive value, and the upper limit of the gap size is 1.0% or less of the maximum diameter of the roller 4. Therefore, while preventing abnormal wear of the guide wheel 6, when the roller 4 skews, it contacts the side surface 6b of the guide wheel 6 to geometrically prevent the skew, and the skew angle of the roller 4 is suppressed to be small. As a result, it is possible to provide a self-aligning roller bearing having excellent low heat generation.

また、本実施形態の自動調心ころ軸受1は、「ころ4の軸方向の端面4a」にだらし加工を施し、「ころ4の軸方向の端面4aとだらし部4cとの境界4ac」を設けることによって、「案内輪6の傾斜面6c」との接触点を限定し、上記案内隙間を精度良く管理できる。
以上、本発明に係る自動調心ころ軸受について説明したが、本発明に係る自動調心ころ軸受は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能である。
Further, in the self-aligning roller bearing 1 of the present embodiment, the "axial end surface 4a of the roller 4" is subjected to a slanting process to provide a "boundary 4ac between the axial end surface 4a of the roller 4 and the sluggish portion 4c". As a result, the contact point with the "inclined surface 6c of the guide wheel 6" can be limited, and the guide gap can be managed with high accuracy.
Although the self-aligning roller bearing according to the present invention has been described above, the self-aligning roller bearing according to the present invention is not limited to the above embodiment, and various modifications are made as long as the gist of the present invention is not deviated. Is possible.

1 自動調心ころ軸受
2 内輪
3 外輪
4 ころ
4a (軸方向の)端面
4b 面取り部
4c だらし部
4ac (端面とだらし部との)境界
5 保持器
6 案内輪
6a 摺動面
6b 側面
6c 傾斜面
6d 面取り部
6cd (傾斜面と面取り部との)境界
6g 並行部
6cg 境界
1 Self-aligning roller bearing 2 Inner ring 3 Outer ring 4 Roller 4a (Axial) end face 4b Chamfering part 4c Sloppy part 4ac (End face and sloppy part) boundary 5 Cage 6 Guide wheel 6a Sliding surface 6b Side surface 6c Inclined surface 6d Chamfered part 6cd Boundary (between inclined surface and chamfered part) 6g Parallel part 6cg Boundary

Claims (1)

外周面に複列の軌道面を有する内輪と、内周面に前記軌道面に対向する球面状の軌道面を有する外輪と、前記複列の軌道面と前記球面状の軌道面との間に転動自在に配置される複数のころと、前記ころの列間に配置されて、前記ころを案内する案内輪とを有し、
前記案内輪の側面と前記ころの軸方向の端面とが離間して案内隙間を形成し、かつその案内隙間の寸法が前記ころの最大径寸法の1.0%以下であり、
前記ころの軸方向の端面において全周に亘って面取りされた面取り部のころの端面側にだらし部が設けられ、前記案内輪の前記側面の径方向の内側に傾斜面が設けられ、前記傾斜面の径方向の内側に面取り部が設けられ、
前記案内輪の側面が、前記ころから前記内輪に加えられる力の向きに対して前記ころの軸方向の端面から離間するように開き角θで前記外輪側に開いて傾斜させた前記傾斜面を有し、
前記ころがスキューした場合、前記傾斜面と、前記ころの軸方向の端面と前記だらし部との境界とが点接触し、前記開き角θが0.5°〜4°であり、
だらし径X(前記ころの径方向に沿う、前記ころの軸方向の端面と前記だらし部との境界間の直径寸法)が下記式(1)〜(3)を満たす自動調心ころ軸受。
ここで、下記式(1)〜(3)において、Zeは、「ころの頭部中心(ころの中心軸と案内輪側のころの軸方向の端面との交点)」の径方向寸法、Dmoは、内輪の軌道径寸法、Daは、ころ最大径寸法、L0は、ころの芯寄り寸法、Zmは、「案内輪の傾斜面と面取り部との境界」の径方向寸法、δは、日本工業規格JIS B 0104−1991「転がり軸受用語」に「呼び接触角」で定義される接触角、Dcoは、内輪の外径寸法、dmiは、案内輪の内径寸法、Rmは、案内輪の面取り部の円弧の面取りの曲率半径、βは、案内輪の軸受中心軸に直交する面に対する前記傾斜面の傾斜角度である。
X<2(Ze−Zm)/cosδ・・・・・・・・・・・・・・・・・・式(1)
Ze=(Dmo+Da/2)×cosδ+L0sinδ・・・・・・・・式(2)
Zm=Dco/2+(dmi−Dco)/2+Rm(1−sinβ)・・・式(3)
An inner ring having a double row of raceway surfaces on the outer peripheral surface, an outer ring having a spherical raceway surface facing the raceway surface on the inner peripheral surface, and between the double row raceway surface and the spherical raceway surface. It has a plurality of rollers that are rotatably arranged and a guide wheel that is arranged between the rows of the rollers and guides the rollers.
The side surface of the guide wheel and the axial end surface of the roller are separated to form a guide gap, and the dimension of the guide gap is 1.0% or less of the maximum diameter of the roller.
A chamfered portion is provided on the end surface side of the roller, which is chamfered over the entire circumference of the axial end surface of the roller, and an inclined surface is provided inside the side surface of the guide wheel in the radial direction. A chamfer is provided on the inside in the radial direction of the surface.
The inclined surface in which the side surface of the guide ring is opened and inclined toward the outer ring side at an opening angle θ so as to be separated from the end surface in the axial direction of the roller with respect to the direction of the force applied from the roller to the inner ring. Have and
When the roller is skewed, the inclined surface, the axial end surface of the roller, and the boundary between the sloping portion are in point contact, and the opening angle θ is 0.5 ° to 4 °.
A self-aligning roller bearing in which the slack diameter X (diameter dimension between the end face in the axial direction of the roller and the boundary between the slack portion along the radial direction of the roller) satisfies the following equations (1) to (3).
Here, in the following equations (1) to (3), Ze is the radial dimension of the "center of the roller head (the intersection of the center axis of the roller and the axial end face of the roller on the guide wheel side)", Dmo. Is the track diameter dimension of the inner ring, Da is the maximum roller diameter dimension, L0 is the roller center-side dimension, Zm is the radial dimension of the "boundary between the inclined surface of the guide wheel and the chamfered part", and δ is Japan. The contact angle defined by the "nominal contact angle" in the industrial standard JIS B 0104-991 "Rolling bearing terminology", Dco is the outer diameter of the inner ring, dmi is the inner diameter of the guide wheel, and Rm is the chamfer of the guide wheel. The radius of curvature of the chamfer of the arc of the portion, β, is the inclination angle of the inclined surface with respect to the surface orthogonal to the bearing central axis of the guide wheel.
X <2 (Ze-Zm) / cosδ ... Equation (1)
Ze = (Dmo + Da / 2) × cosδ + L0sinδ ・ ・ ・ ・ ・ ・ ・ ・ Equation (2)
Zm = Dco / 2 + (dmi-Dco) / 2 + Rm (1-sinβ) ... Equation (3)
JP2014207489A 2014-10-08 2014-10-08 Self-aligning roller bearing Active JP6829522B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014207489A JP6829522B2 (en) 2014-10-08 2014-10-08 Self-aligning roller bearing
JP2020030859A JP6927347B2 (en) 2014-10-08 2020-02-26 Self-aligning roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014207489A JP6829522B2 (en) 2014-10-08 2014-10-08 Self-aligning roller bearing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020030859A Division JP6927347B2 (en) 2014-10-08 2020-02-26 Self-aligning roller bearing

Publications (2)

Publication Number Publication Date
JP2016075376A JP2016075376A (en) 2016-05-12
JP6829522B2 true JP6829522B2 (en) 2021-02-10

Family

ID=55951168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014207489A Active JP6829522B2 (en) 2014-10-08 2014-10-08 Self-aligning roller bearing

Country Status (1)

Country Link
JP (1) JP6829522B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6927347B2 (en) * 2014-10-08 2021-08-25 日本精工株式会社 Self-aligning roller bearing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065052A (en) * 1998-08-17 2000-03-03 Nippon Seiko Kk Automatic aligning roller bearing
JP2004251323A (en) * 2003-02-18 2004-09-09 Ntn Corp Cylindrical roller bearing
JP2007315450A (en) * 2006-05-24 2007-12-06 Nachi Fujikoshi Corp Low temperature rise type self-aligning rolling bearing
JP2009074679A (en) * 2007-08-30 2009-04-09 Nsk Ltd Self-aligning roller bearing
DE102009052954A1 (en) * 2009-11-12 2011-05-19 Schaeffler Technologies Gmbh & Co. Kg Spherical roller bearing comprises outer ring, inner ring, and number of spherical rollers, which are arranged between outer ring and inner ring
JP2014167329A (en) * 2013-02-28 2014-09-11 Nsk Ltd Self-aligning roller bearing

Also Published As

Publication number Publication date
JP2016075376A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
US9683605B2 (en) Tapered roller bearing
US10527091B2 (en) Self-aligning roller bearing
JP2012017770A (en) Self-aligning roller bearing
JP2013079706A (en) Rolling bearing
JP2017089845A (en) Rolling bearing
WO2013080824A1 (en) Roller bearing
US10514063B2 (en) Rolling bearing
JP2013174283A (en) Solid-type needle roller bearing
JP6829522B2 (en) Self-aligning roller bearing
JP2012202453A (en) Self-aligning roller bearing
JP6927347B2 (en) Self-aligning roller bearing
JP2011094716A (en) Thrust roller bearing
JP2015102144A (en) Self-aligning roller bearing
JP2016023707A (en) Self-aligning roller bearing
JP6602459B2 (en) Double row cylindrical roller bearing
JP2013234690A (en) Self-aligning roller bearing and rotating equipment
WO2014171405A1 (en) Tapered roller bearing
JP6790535B2 (en) Rolling bearing
JP2016114157A (en) Roller bearing with aligning ring
JP2017078480A (en) Self-aligning roller bearing
JP5218231B2 (en) Roller bearing cage, inner ring assembly, outer ring assembly and rolling bearing provided with the cage
WO2016194981A1 (en) Tapered roller bearing
JP2013015201A (en) Conical bearing
JP4397794B2 (en) Double row spherical roller bearings with guide wheels
JP2014194249A (en) Self-aligning roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200226

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200305

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200317

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200403

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200407

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200512

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201013

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20201030

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201119

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201208

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210112

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6829522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150