JP6808201B2 - Manufacturing method of weakly acidic hypochlorous acid water - Google Patents
Manufacturing method of weakly acidic hypochlorous acid water Download PDFInfo
- Publication number
- JP6808201B2 JP6808201B2 JP2019011318A JP2019011318A JP6808201B2 JP 6808201 B2 JP6808201 B2 JP 6808201B2 JP 2019011318 A JP2019011318 A JP 2019011318A JP 2019011318 A JP2019011318 A JP 2019011318A JP 6808201 B2 JP6808201 B2 JP 6808201B2
- Authority
- JP
- Japan
- Prior art keywords
- ion exchange
- aqueous solution
- exchange resin
- hypochlorous acid
- acidic ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002378 acidificating effect Effects 0.000 title claims description 116
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 title claims description 96
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 239000007864 aqueous solution Substances 0.000 claims description 106
- 239000003456 ion exchange resin Substances 0.000 claims description 91
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 91
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 90
- 239000007800 oxidant agent Substances 0.000 claims description 66
- 238000005342 ion exchange Methods 0.000 claims description 57
- 239000002994 raw material Substances 0.000 claims description 46
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 230000003647 oxidation Effects 0.000 claims description 25
- 238000007254 oxidation reaction Methods 0.000 claims description 25
- 229910021645 metal ion Inorganic materials 0.000 claims description 18
- 150000003839 salts Chemical class 0.000 claims description 18
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 15
- 150000002500 ions Chemical class 0.000 claims description 15
- 230000002829 reductive effect Effects 0.000 claims description 12
- 238000005406 washing Methods 0.000 claims description 12
- -1 hydrogen ions Chemical class 0.000 claims description 10
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000004155 Chlorine dioxide Substances 0.000 claims description 4
- 235000019398 chlorine dioxide Nutrition 0.000 claims description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 150000001451 organic peroxides Chemical class 0.000 claims description 3
- 238000000034 method Methods 0.000 description 64
- 239000000460 chlorine Substances 0.000 description 60
- 229910052801 chlorine Inorganic materials 0.000 description 58
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 57
- 239000000243 solution Substances 0.000 description 18
- 239000000126 substance Substances 0.000 description 18
- 230000001590 oxidative effect Effects 0.000 description 16
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Inorganic materials Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 15
- 238000005259 measurement Methods 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 238000010790 dilution Methods 0.000 description 11
- 239000012895 dilution Substances 0.000 description 11
- 239000002253 acid Substances 0.000 description 10
- 238000009826 distribution Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 238000006722 reduction reaction Methods 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 229910001415 sodium ion Inorganic materials 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 150000001768 cations Chemical class 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 239000012488 sample solution Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000001954 sterilising effect Effects 0.000 description 6
- 230000000844 anti-bacterial effect Effects 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 4
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical compound OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 description 4
- 229940005991 chloric acid Drugs 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229920001429 chelating resin Polymers 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 239000000645 desinfectant Substances 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000003206 sterilizing agent Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- KHOITXIGCFIULA-UHFFFAOYSA-N Alophen Chemical compound C1=CC(OC(=O)C)=CC=C1C(C=1N=CC=CC=1)C1=CC=C(OC(C)=O)C=C1 KHOITXIGCFIULA-UHFFFAOYSA-N 0.000 description 1
- 208000035404 Autolysis Diseases 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- ZKQDCIXGCQPQNV-UHFFFAOYSA-N Calcium hypochlorite Chemical compound [Ca+2].Cl[O-].Cl[O-] ZKQDCIXGCQPQNV-UHFFFAOYSA-N 0.000 description 1
- 206010057248 Cell death Diseases 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 229940051866 mouthwash Drugs 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- SATVIFGJTRRDQU-UHFFFAOYSA-N potassium hypochlorite Chemical compound [K+].Cl[O-] SATVIFGJTRRDQU-UHFFFAOYSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000028043 self proteolysis Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
本発明は、弱酸性次亜塩素酸水の製造方法に関する。 The present invention relates to a method for producing weakly acidic hypochlorous acid water.
水溶液中の次亜塩素酸は、pHによって存在形態が変化する。具体的には、pHが3〜6程度の弱酸性領域では殆どが分子型の次亜塩素酸(HClO)として存在し、pH9以上の塩基性領域では解離した次亜塩素酸イオン(OCl−)としての存在が優勢となり、また強酸性領域(たとえばpH3未満)ではpHの低下に伴い塩素分子(Cl2)の発生が優勢となる。これら存在形態の中で分子型次亜塩素酸(HClO)が極めて高い殺菌効果を有し、その殺菌効果はイオン型次亜塩素酸(OCl−)の約80倍であるとも言われている。このような高い殺菌効果を有する分子型次亜塩素酸を多く含むpH3〜6の弱酸性次亜塩素酸水溶液は、人体に対する安全性も比較的高いことから、医療、歯科、農業、食品加工等、様々分野における除菌剤又は殺菌剤として使用されている。そして、近年では、介護施設、教育施設、商業施設等の公共施設や、一般家庭における除菌や殺菌の用途に使用されるようになり、その消費量は年々増加している。 The form of hypochlorous acid in an aqueous solution changes depending on the pH. Specifically, most of them are present as molecular type hypochlorous acid (HClO) in a weakly acidic region having a pH of about 3 to 6, and dissociated hypochlorite ions (OCl − ) are present in a basic region having a pH of 9 or more. In the strongly acidic region (for example, less than pH 3), the generation of chlorine molecules (Cl 2 ) becomes predominant as the pH decreases. Among these existing forms, molecular hypochlorous acid (HClO) has an extremely high bactericidal effect, and it is said that the bactericidal effect is about 80 times that of ionic hypochlorous acid (OCl − ). A weakly acidic hypochlorous acid aqueous solution having a pH of 3 to 6 containing a large amount of molecular-type hypochlorous acid having such a high bactericidal effect has relatively high safety to the human body, and thus is used in medical, dental, agricultural, food processing, etc. , Used as a disinfectant or disinfectant in various fields. In recent years, it has come to be used for public facilities such as nursing care facilities, educational facilities, commercial facilities, and for sterilization and sterilization in general households, and its consumption is increasing year by year.
このような弱酸性次亜塩素酸水溶液を製造する方法としては、塩化ナトリウム水溶液を電気分解する電解法(特許文献1参照)、塩基性の次亜塩素酸塩水溶液に塩酸を加える塩酸法(特許文献2参照)及び次亜塩素酸塩水溶液からなる原料水溶液を酸性イオン交換樹脂で処理する方法(以下、単に「イオン交換法」ともいう。特許文献3、特許文献4)が知られている。 As a method for producing such a weakly acidic hypochlorite aqueous solution, an electrolysis method for electrolyzing an aqueous sodium chloride solution (see Patent Document 1) and a hydrochloric acid method for adding hydrochloric acid to a basic aqueous hypochlorite solution (Patent). (Refer to Document 2) and a method of treating a raw material aqueous solution composed of an aqueous hypochlorite solution with an acidic ion exchange resin (hereinafter, also simply referred to as “ion exchange method”; Patent Documents 3 and 4) are known.
これら方法の中でも前記イオン交換法は、電解装置のような特殊な装置を必要とせず、また危険な塩素ガスが発生しにくく、簡便且つ安全に弱酸性次亜塩素酸水溶液を製造するための方法として優れた方法である。 Among these methods, the ion exchange method does not require a special device such as an electrolyzer, does not easily generate dangerous chlorine gas, and is a method for easily and safely producing a weakly acidic hypochlorous acid aqueous solution. It is an excellent method.
イオン交換法は、上記したような優れた利点を有するものであるが、本発明者等の検討により、有効塩素の利用率の点で改善の余地があることが判明した。すなわち、イオン交換法には、酸性イオン交換樹脂と原料水溶液とを均一に混合して接触させる所謂バッチ法と、カラム内などに固定化された酸性イオン交換樹脂に原料水溶液を流通させて接触させる所謂流通法(カラム法ともいう。)があるが、何れの方法においても、生成した分子状次亜塩素酸の一部が製造中に分解してしまい、原料水溶液中に含まれる有効塩素をロスしていることが明らかとなった。具体的には、バッチ法においては、酸性イオン交換樹脂と原料水溶液とを混合・撹拌している最中に、有効塩素濃度の減少が見られ、流通法においては、その初期において(流通による接触を開始してからしばらくの間)流出してくる水溶中に含まれる有効塩素濃度が0であるか又は極めて低いものとなっていることが明らかとなった。 Although the ion exchange method has the above-mentioned excellent advantages, it has been found by the studies of the present inventors that there is room for improvement in terms of the utilization rate of effective chlorine. That is, the ion exchange method includes a so-called batch method in which an acidic ion exchange resin and a raw material aqueous solution are uniformly mixed and contacted, and a raw material aqueous solution is circulated and contacted with an acidic ion exchange resin immobilized in a column or the like. There is a so-called distribution method (also called column method), but in either method, a part of the produced molecular hypochlorous acid is decomposed during production, and the effective chlorine contained in the raw material aqueous solution is lost. It became clear that they were doing. Specifically, in the batch method, a decrease in the effective chlorine concentration was observed while mixing and stirring the acidic ion exchange resin and the raw material aqueous solution, and in the distribution method, at the initial stage (contact by distribution). It has been clarified that the concentration of effective chlorine contained in the flowing water (for a while after the start of) is 0 or extremely low.
そこで、本発明は、イオン交換法により弱酸性次亜塩素酸水溶液を製造するに際し、有効塩素のロスを低減し、より効率的に弱酸性次亜塩素酸水溶液を製造できる方法を提供することを目的とする。 Therefore, the present invention provides a method capable of reducing the loss of effective chlorine and more efficiently producing a weakly acidic hypochlorous acid aqueous solution when producing a weakly acidic hypochlorous acid aqueous solution by an ion exchange method. The purpose.
一般に、水溶液中の分子型次亜塩素酸は、pHが約3〜6の弱酸性領域であっても、自己分解(2HClO→2HCl+O2 及び/又は 3HClO→2HCl+HClO3)や、有機物と接触した際の急速な還元分解〔HClO→HCl+(O)〕により消失してしまうことが知られている。 In general, molecular-type hypochlorous acid in an aqueous solution undergoes autolysis (2HClO → 2HCl + O 2 and / or 3HClO → 2HCl + HClO 3 ) or when it comes into contact with an organic substance, even in a weakly acidic region with a pH of about 3 to 6. It is known that it disappears due to rapid reductive decomposition [HClO → HCl + (O)].
本発明者らは、このような知見に基づき前記有効塩素のロスは、酸性イオン交換樹脂の表面に、低濃度の分子型次亜塩素酸であってもこれを還元分解する様な強い活性点(以下、「表面還元性活性点」ともいう。)が存在することによるものではないかと考えた。そして、流通法においては流通開始後しばらくすると流出液中の有効塩素濃度は上昇して定常となるという事実から、前記活性点は分子型次亜塩素酸との接触により、徐々に消滅していると類推すると共に、当該類推を更に進めて、予め酸化剤で処理することにより前記課題を解決できるのではないかと考え、鋭意検討を行った。 Based on these findings, the present inventors have found that the loss of effective chlorine is a strong active point on the surface of the acidic ion exchange resin that reduces and decomposes even a low concentration of molecular hypochlorous acid. (Hereinafter, also referred to as "surface reducing active point") was considered to be due to the existence. In the distribution method, the active chlorine concentration in the effluent rises and becomes steady shortly after the start of distribution, so that the active site gradually disappears due to contact with molecular hypochlorous acid. In addition to the analogy, the analogy was further advanced, and it was considered that the above-mentioned problem could be solved by treating with an oxidizing agent in advance, and a diligent study was conducted.
その結果、酸性イオン交換樹脂1リットル当たり0.3mol当量以上1.0mol当量以下の酸化剤が還元されるまで、酸性イオン交換樹脂と酸化剤水溶液との接触を行うことで前記したような有効塩素のロスを低減できることを見出し、本発明を完成するに至った。 As a result, the effective chlorine as described above is obtained by contacting the acidic ion exchange resin with the oxidant aqueous solution until the oxidizing agent having 0.3 mol equivalent or more and 1.0 mol equivalent or less per liter of the acidic ion exchange resin is reduced. We have found that the loss of the above can be reduced, and have completed the present invention.
すなわち、本発明は、酸性イオン交換樹脂と、次亜塩素酸の金属塩の水溶液からなる原料水溶液と、を接触させて金属イオンと水素イオンとのイオン交換を行うことにより、分子状の次亜塩素酸を生成させるイオン交換工程を含んでなる弱酸性次亜塩素酸水溶液の製造方法であって、酸性イオン交換樹脂と、酸化性物質が溶解した酸化剤水溶液と、を酸性イオン交換樹脂1リットル当たり0.3mol当量以上1.0mol当量以下の酸化剤が還元されるまで、酸性イオン交換樹脂と酸化剤水溶液と接触させる酸化処理工程を有する前処理工程を更に含んでなり、前記イオン交換工程では、前記前処理工程を経た酸性イオン交換樹脂と、前記原料水溶液と、を接触させることを特徴とする、前記製造方法である。 That is, in the present invention, a molecular hypochlorous acid ion exchange resin and a raw material aqueous solution composed of an aqueous solution of a metal salt of hypochlorous acid are brought into contact with each other to perform ion exchange between metal ions and hydrogen ions. A method for producing a weakly acidic hypochlorous acid aqueous solution including an ion exchange step of generating chloric acid, which comprises 1 liter of an acidic ion exchange resin and an oxidant aqueous solution in which an oxidizing substance is dissolved. A pretreatment step including an oxidation treatment step of contacting the acidic ion exchange resin with the aqueous solution of the oxidizing agent is further included until the oxidizing agent having an equivalent amount of 0.3 mol or more and 1.0 mol equivalent or less is reduced. The production method is characterized in that the acidic ion exchange resin that has undergone the pretreatment step is brought into contact with the raw material aqueous solution.
上記方法においては、前記酸化性物質が、分子型次亜塩素酸、二酸化塩素、過酸化水素、オゾン、及び有機過酸化物よりなる群より選ばれる少なくとも1種の化合物である、であることが好ましく、前記酸性イオン交換樹脂は、弱酸性イオン交換樹脂であることが好ましい。さらに、前記前処理工程は、前記酸化処理工程で酸化された前記酸性イオン交換樹脂をイオン交換水又は純水で洗浄する洗浄工程を更に含むことが好ましい。 In the above method, the oxidizing substance is at least one compound selected from the group consisting of molecular hypochlorous acid, chlorine dioxide, hydrogen peroxide, ozone, and organic peroxides. Preferably, the acidic ion exchange resin is a weakly acidic ion exchange resin. Further, the pretreatment step preferably further includes a washing step of washing the acidic ion exchange resin oxidized in the oxidation treatment step with ion-exchanged water or pure water.
本発明の製造方法によれば、イオン交換法により弱酸性次亜塩素酸水溶液を製造するに際し、前記酸化剤水溶液で予め酸性イオン交換樹脂を処理することにより、酸性イオン交換樹脂と前記原料水溶液の接触時に起こる分子型次亜塩素酸のロスを抑制することができる。したがって、本発明の製造方法によれば、弱酸性次亜塩素酸水溶液をより効率よく製造することが可能となる。 According to the production method of the present invention, when producing a weakly acidic hypochlorous acid aqueous solution by an ion exchange method, the acidic ion exchange resin and the raw material aqueous solution are treated by treating the acidic ion exchange resin with the oxidizing agent aqueous solution in advance. It is possible to suppress the loss of molecular hypochlorous acid that occurs at the time of contact. Therefore, according to the production method of the present invention, a weakly acidic hypochlorous acid aqueous solution can be produced more efficiently.
前記前処理により分子型次亜塩素酸のロスが低減されるのは、恐らく、酸性イオン交換樹脂の表面に存在する、分子型次亜塩素酸の還元反応を引起すような活性点(表面還元性活性点)が、酸化剤処理により消滅したためであると思われる。 The reduction of the loss of molecular hypochlorous acid by the pretreatment is probably due to the active points (surface reduction) present on the surface of the acidic ion exchange resin that cause a reduction reaction of molecular hypochlorous acid. This is probably because the sexual activity point) disappeared by the oxidant treatment.
本発明の製造方法は、酸性イオン交換樹脂と、次亜塩素酸の金属塩の水溶液からなる原料水溶液と、を接触させて金属イオンと水素イオンとのイオン交換を行うことにより、分子状の次亜塩素酸を生成させるイオン交換工程を含んでなる弱酸性次亜塩素酸水溶液の製造方法であって、酸性イオン交換樹脂と、酸化性物質が溶解した酸化剤水溶液と、を、酸性イオン交換樹脂1リットル当たり0.3mol当量以上1.0mol当量以下の酸化剤が還元されるまで、酸性イオン交換樹脂と酸化剤水溶液と接触させる酸化処理工程を有する前処理工程を更に含んでなり、前記イオン交換工程では、前記前処理工程を経た酸性イオン交換樹脂と、前記原料水溶液と、を接触させることを特徴とする。 In the production method of the present invention, an acidic ion exchange resin and a raw material aqueous solution composed of an aqueous solution of a metal salt of hypochlorous acid are brought into contact with each other to perform ion exchange between metal ions and hydrogen ions. A method for producing a weakly acidic hypochlorous acid aqueous solution, which comprises an ion exchange step of generating chloric acid, wherein an acidic ion exchange resin and an oxidizing agent aqueous solution in which an oxidizing substance is dissolved are used as an acidic ion exchange resin. A pretreatment step having an oxidation treatment step of contacting the acidic ion exchange resin with the oxidizing agent aqueous solution is further included until the oxidizing agent having an equivalent amount of 0.3 mol or more and 1.0 mol equivalent or less per liter is reduced, and the ion exchange The step is characterized in that the acidic ion exchange resin that has undergone the pretreatment step is brought into contact with the raw material aqueous solution.
本発明の製造方法は、イオン工程を行う前に酸化剤水溶液を用いて酸性イオン交換樹脂を前処理する点に最大の特徴を有し、イオン工程自体は従来の方法と特に変わる点は無い。すなわち、本発明の製造方法の目的物である、分子状の次亜塩素酸が溶解した弱酸性の水溶液は、一般に弱酸性次亜塩素酸水溶液と呼ばれるものであり、イオン交換工程は、従来のイオン交換法と同様に、酸性イオン交換樹脂と、次亜塩素酸の金属塩の水溶液からなる原料水溶液と、を接触させて金属イオンと水素イオンとのイオン交換を行い、分子状の次亜塩素酸を生成させるものである。 The production method of the present invention has the greatest feature in that the acidic ion exchange resin is pretreated with an aqueous oxidizing agent before the ion step, and the ion step itself is not particularly different from the conventional method. That is, the weakly acidic aqueous solution in which the molecular hypochlorous acid is dissolved, which is the object of the production method of the present invention, is generally called a weakly acidic hypochlorous acid aqueous solution, and the ion exchange step is a conventional method. Similar to the ion exchange method, an acidic ion exchange resin and an aqueous solution of a raw material composed of an aqueous solution of a metal salt of hypochlorous acid are brought into contact with each other to exchange ions between metal ions and hydrogen ions to exchange molecular hypochlorite. It produces acids.
したがって、酸性イオン交換樹脂及び原料水溶液としては、従来のイオン交換法で使用できるものが特に制限なく使用でき、また、イオン交換工程も前処理を施した酸性イオン交換樹脂を使用する以外は従来のイオン交換法と同様に行うことができる。これらを含めて、以下に、本発明の製造方法について詳しく説明する。 Therefore, as the acidic ion exchange resin and the raw material aqueous solution, those that can be used in the conventional ion exchange method can be used without particular limitation, and the ion exchange step is also conventional except that the acid ion exchange resin that has been pretreated is used. It can be carried out in the same manner as the ion exchange method. Including these, the production method of the present invention will be described in detail below.
1.前処理工程
本発明の製造方法における前処理工程は、酸化処理工程を含むものであれば特に限定されないが、酸化剤として分子状の次亜塩素酸以外のものを用いた場合には、当該酸化剤が生成物中に混入することを避けるために、前記酸化処理工程後、当該工程に引き続き水洗(洗浄工程)を行うことが好ましい。以下、これら工程について説明する。
1. 1. Pretreatment Step The pretreatment step in the production method of the present invention is not particularly limited as long as it includes an oxidation treatment step, but when a substance other than molecular hypochlorous acid is used as the oxidizing agent, the oxidation thereof. In order to prevent the agent from being mixed in the product, it is preferable to carry out water washing (washing step) after the oxidation treatment step. Hereinafter, these steps will be described.
〔酸化処理工程〕
酸化処理工程では、酸性イオン交換樹脂と、酸化性物質が溶解した酸化剤水溶液と、を接触させる。当該接触により、恐らく、酸性イオン交換樹脂の表面還元性活性点が酸化されて消滅したことによると思われるが、イオン交換工程において生成した分子型次亜塩素酸の分解が抑制されて有効塩素ロスを低減することができる。
[Oxidation process]
In the oxidation treatment step, the acidic ion exchange resin and the oxidant aqueous solution in which the oxidizing substance is dissolved are brought into contact with each other. The contact probably caused the surface-reducing active points of the acidic ion exchange resin to be oxidized and disappeared, but the decomposition of the molecular hypochlorous acid generated in the ion exchange step was suppressed and the effective chlorine loss. Can be reduced.
酸化処理工程で使用する(処理される)酸性イオン交換樹脂としては、イオン交換基としてスルホン酸基(−SO3H)を有する強酸性イオン交換樹脂やカルボキシル基(−COOH)を有する弱酸性イオン交換樹脂が使用される。このようなイオン交換樹脂は、通常、アクリル酸、メタクリル酸、マレイン酸等を重合し、ジビニルベンゼンで三次元架橋した樹脂にイオン交換基として、スルホン酸基やカルボキシル基を導入した構造を有する。特に、イオン交換基としてカルボキシル基を有する弱酸性イオン交換樹脂は、緩衝作用を有し、大量に使用しても処理水溶液のpHを約5より低い値に低下させることがないので、処理中に塩素ガスを発生させる危険性がない。また、弱酸性イオン交換樹脂は、使用後に塩酸や硫酸水溶液などの薬剤で処理することにより、容易に再生することができる(イオン交換基を−COOHの形に戻すことができる)という特徴を有しており、安全性や取り扱いの良さから弱酸性イオン交換樹脂を使用することが好ましい。 Used in the oxidation treatment step as is (treated as) an acidic ion exchange resin, a weakly acidic ion having a sulfonic acid group (-SO 3 H) strongly acidic ion-exchange resin and a carboxyl group having a (-COOH) as an ion-exchange group Replacement resin is used. Such an ion exchange resin usually has a structure in which an sulfonic acid group or a carboxyl group is introduced as an ion exchange group into a resin obtained by polymerizing acrylic acid, methacrylic acid, maleic acid or the like and three-dimensionally cross-linking with divinylbenzene. In particular, a weakly acidic ion exchange resin having a carboxyl group as an ion exchange group has a buffering action and does not lower the pH of the treated aqueous solution to a value lower than about 5 even when used in a large amount. There is no danger of generating chlorine gas. Further, the weakly acidic ion exchange resin has a feature that it can be easily regenerated (the ion exchange group can be returned to the -COOH form) by treating it with a chemical such as hydrochloric acid or sulfuric acid aqueous solution after use. Therefore, it is preferable to use a weakly acidic ion exchange resin because of its safety and ease of handling.
酸化処理工程で使用する酸化剤水溶液は、酸化性物質が溶解した水溶液からなる。酸化剤水溶液が金属陽イオンを大量に含む場合には、当該金属陽イオンが酸性イオン交換樹脂のイオン交換基におけるH+とイオン交換してしまうため、イオン交換工程におけるイオン交換能が低下してしまう。したがって、酸化剤水溶液中における金属陽イオン濃度は、低ければ低いほどよく、全く含まないことが最も好ましい。しかし、使用する酸化性物質(酸化剤)によっては、金属塩や金属化合物以外の酸化剤を用いた場合でも水溶液とした場合に金属陽イオンが含まれてしまうことがある。このような場合には、前処理工程でイオン交換能を低下させず、より効率的な製造方法とするためには、金属陽イオンの総価数等量(eq)を、イオン交換樹脂の総イオン交換等量(eq)に対して1/5以下、好ましくは1/10以下、より好ましくは1/15以下とすることが好ましい。 The oxidant aqueous solution used in the oxidation treatment step consists of an aqueous solution in which an oxidizing substance is dissolved. When the oxidizing agent aqueous solution contains a large amount of metal cations, the metal cations exchange ions with H + in the ion exchange group of the acidic ion exchange resin, so that the ion exchange ability in the ion exchange step is lowered. I will end up. Therefore, the lower the metal cation concentration in the oxidant aqueous solution, the better, and it is most preferable that the metal cation concentration is completely absent. However, depending on the oxidizing substance (oxidizing agent) used, metal cations may be contained in an aqueous solution even when an oxidizing agent other than a metal salt or a metal compound is used. In such a case, in order to obtain a more efficient production method without lowering the ion exchange ability in the pretreatment step, the total valence of metal cations (eq) is set to the total amount of the ion exchange resin. It is preferably 1/5 or less, preferably 1/10 or less, and more preferably 1/15 or less with respect to the ion exchange equivalent (eq).
酸化剤水溶液に溶解する酸化性物質(酸化剤)は、水溶性を有し、酸化剤として機能する物質であって、構成元素として金属を含まない化合物が使用される。好適に使用できる酸化性物質を例示すれば、分子型次亜塩素酸、二酸化塩素、過酸化水素、オゾン、並びにメチルエチルケトンパーオキサイド及び過酸化ベンゾイル等の有機過酸化物を挙げることができる。これらの中でも、水洗工程で洗浄しきれず残ってしまったとしても、物性や安定性に影響がない無機化合物から成る酸化剤が好ましく、さらに目的物と同じ成分である次亜塩素酸であることが最も好ましい。 The oxidizing substance (oxidizing agent) dissolved in the aqueous solution of the oxidizing agent is a substance having water solubility and functioning as an oxidizing agent, and a compound containing no metal as a constituent element is used. Examples of oxidative substances that can be preferably used include molecular hypochlorous acid, chlorine dioxide, hydrogen peroxide, ozone, and organic peroxides such as methyl ethyl ketone peroxide and benzoyl peroxide. Among these, an oxidizing agent composed of an inorganic compound that does not affect the physical properties and stability even if it cannot be completely washed and remains in the washing step is preferable, and hypochlorous acid, which is the same component as the target product, is preferable. Most preferred.
酸化処理工程で使用する前記酸化性物質(酸化剤)の量は、前記酸性イオン交換樹脂1リットル当たり0.3mol当量以上であればよいが、十分な処理を行うために、特に0.35mol当量以上であることが好ましく、0.4mol当量以上であることが最も好ましい。また、その上限値は、前記接触条件を制御できる範囲であれば特に限定されるものではないが、過剰使用を防止するという観点から、同基準で2.0mol当量以下、特に1.5mol当量以下とすることが好ましい。 The amount of the oxidizing substance (oxidizing agent) used in the oxidation treatment step may be 0.3 mol equivalent or more per liter of the acidic ion exchange resin, but in particular, 0.35 mol equivalent is required for sufficient treatment. The above is preferable, and 0.4 mol equivalent or more is most preferable. The upper limit is not particularly limited as long as the contact conditions can be controlled, but from the viewpoint of preventing overuse, 2.0 mol equivalent or less, particularly 1.5 mol equivalent or less is based on the same standard. Is preferable.
ここで、mol当量とは、酸化性物質中に酸化数が変化する原子のモル数に、酸化数の変化量を乗じた値である。例えば次亜塩素酸の場合、次亜塩素酸が還元した時に酸化数が変化する原子は、塩素であり、塩素のモル数は、次亜塩素酸と同モルとなる。また、次亜塩素酸から塩素イオンに還元した時の塩素の酸化数の変化は、+1から−1に変化するため、変化量は2となる。したがって、次亜塩素酸のmol当量は次亜塩素酸のモル数に2を乗じた値となる。
前記酸化剤水溶液における前記酸化性物質(酸化剤)の濃度は、処理する酸性イオン交換樹脂の量や使用する酸化剤水溶液の量、更には使用する酸化性物質の溶解度等に応じて前記酸化性物質(酸化剤)の総量が上記範囲となるように適宜決定すればよい。
Here, the mol equivalent is a value obtained by multiplying the number of moles of atoms whose oxidation number changes in an oxidizing substance by the amount of change in the oxidation number. For example, in the case of hypochlorous acid, the atom whose oxidation number changes when hypochlorous acid is reduced is chlorine, and the number of moles of chlorine is the same as that of hypochlorous acid. Further, the change in the oxidation number of chlorine when the hypochlorous acid is reduced to chlorine ions changes from +1 to -1, so the amount of change is 2. Therefore, the mol equivalent of hypochlorous acid is the value obtained by multiplying the number of moles of hypochlorous acid by 2.
The concentration of the oxidizing substance (oxidizing agent) in the oxidizing agent aqueous solution depends on the amount of the acidic ion exchange resin to be treated, the amount of the oxidizing agent aqueous solution used, the solubility of the oxidizing substance used, and the like. It may be appropriately determined so that the total amount of the substance (oxidizing agent) is within the above range.
酸化剤水溶液と酸性イオン交換樹脂を接触させる方法としては、特に制限されるものではなく、例えば、酸性イオン交換樹脂と酸化性物質を同一容器内に入れ、均一な状態となるように混合・撹拌したりする方法(バッチ法)や、酸性イオン交換樹脂を充填したカラムに、酸化性物質を流す方法{カラム法(流通法ともいう。)}などが採用できる。 The method of contacting the oxidant aqueous solution and the acidic ion exchange resin is not particularly limited. For example, the acidic ion exchange resin and the oxidizing substance are placed in the same container and mixed and stirred so as to be in a uniform state. A method (batch method) or a method of flowing an oxidizing substance through a column filled with an acidic ion exchange resin {column method (also referred to as a distribution method)} can be adopted.
酸化処理工程では、所期の効果を得るために、前記酸化性物質が、酸性イオン交換樹脂1リットル当たり0.3mol当量以上1.0mol当量以下の量、還元されるまで、酸性イオン交換樹脂と酸化剤水溶液とを接触させる。上記下限値を下回る場合には、イオン交換工程における分子型次亜塩素酸の分解を十分に抑制できず、上限値を越える場合には、処理に要する時間が長くなるばかりでなく、酸性イオン交換樹脂が劣化し、却って効率が低下する。効果の観点から、酸性イオン交換樹脂1リットル当たりの酸化性物質の還元量(消費量)が、0.35mol当量以上0.9mol当量以下、特に0.4mol当量以上0.8mol当量以下となるように前記接触を行うことが好ましい。酸化性物質の還元量(消費量)は、開始後における酸化剤水溶液中の酸化性物質の濃度を分析することにより把握することができるが、予め実際に使用する酸性イオン交換樹脂及び酸化剤水溶液について、実際の接触条件(たとえば、バッチ処理法の場合は、両者の量、接触時間、及び接触温度等、流通処理法の場合は、両者の量、空間速度、接触温度等)での処理時間と酸化性物質の還元量(消費量)との関係を調べておき、所定の消費量となる時間処理するようにすればよい。酸化剤水溶液中の酸化性物質の濃度の測定は、例えば液体クロマトグラフィー、ガスクロマトグラフィー、イオンクロマトグラフィーなどの分析方法の中から酸化物質に応じて適宜選択して行うか、又は過酸化水素濃度計や有効塩素濃度計など、特定の酸化物質に特化した測定装置を用いて行うことができる。なお、酸化性物質が、分子型次亜塩素酸及び/又は二酸化塩素である場合には、有効塩素濃度の変化で消費量を評価してもよい。 In the oxidation treatment step, in order to obtain the desired effect, the oxidizing substance is used with the acidic ion exchange resin until it is reduced to an amount of 0.3 mol equivalent or more and 1.0 mol equivalent or less per liter of the acidic ion exchange resin. Contact with an aqueous oxidant. If it is below the above lower limit, the decomposition of molecular hypochlorous acid in the ion exchange step cannot be sufficiently suppressed, and if it exceeds the upper limit, not only the processing time will be longer, but also the acid ion exchange will be longer. The resin deteriorates, and the efficiency decreases. From the viewpoint of effect, the reduction amount (consumption amount) of the oxidizing substance per liter of the acidic ion exchange resin should be 0.35 mol equivalent or more and 0.9 mol equivalent or less, particularly 0.4 mol equivalent or more and 0.8 mol equivalent or less. It is preferable to make the contact with. The reduction amount (consumption amount) of the oxidative substance can be grasped by analyzing the concentration of the oxidant substance in the oxidant aqueous solution after the start, but the acidic ion exchange resin and the oxidant aqueous solution actually used in advance can be grasped. The processing time under the actual contact conditions (for example, in the case of the batch processing method, the amount of both, the contact time, and the contact temperature, etc., in the case of the distribution processing method, the amount of both, the space velocity, the contact temperature, etc.) The relationship between the amount of reduction (consumption amount) of the oxidizing substance and the amount of reduction (consumption amount) of the oxidizing substance may be investigated, and the treatment may be carried out for a time that reaches a predetermined consumption amount. The concentration of the oxidizing substance in the aqueous solution of the oxidizing agent is measured by appropriately selecting from analysis methods such as liquid chromatography, gas chromatography, and ion chromatography according to the oxidizing substance, or the concentration of hydrogen peroxide. This can be done using a measuring device specialized for a specific oxidizing substance, such as a meter or an effective chlorine concentration meter. When the oxidizing substance is molecular type hypochlorous acid and / or chlorine dioxide, the consumption amount may be evaluated by the change in the effective chlorine concentration.
〔洗浄工程〕
洗浄工程は、酸化剤として分子状の次亜塩素酸以外のものを用いた場合には、当該酸化剤が生成物中に混入することを避けるために、任意で行う処理であり、当該洗浄工程では、酸化処理工程後の前記酸性イオン交換樹脂を、イオン交換水及び/又は純水(蒸留水)で洗浄する。イオン交換水及び/又は純水(蒸留水)を使用するのは、酸化処理工程後の酸性イオン交換樹脂の交換容量を減少させないためであり、洗浄に使用するこれら水のイオン電導率は、3(mS/m)以下、特に2.5(mS/m)以下の水を使用することが好ましく、2(mS/m)以下の水を使用することが最も好ましい。
[Washing process]
The cleaning step is an optional process in order to prevent the oxidizing agent from being mixed in the product when a substance other than molecular hypochlorous acid is used as the oxidizing agent. Then, the acidic ion exchange resin after the oxidation treatment step is washed with ion exchange water and / or pure water (distilled water). Ion-exchanged water and / or pure water (distilled water) is used in order not to reduce the exchange capacity of the acidic ion exchange resin after the oxidation treatment step, and the ion conductivity of these waters used for cleaning is 3. It is preferable to use water of (mS / m) or less, particularly 2.5 (mS / m) or less, and most preferably water of 2 (mS / m) or less.
洗浄量や回数は特に制限はなく、酸化処理工程後に残存した余剰の酸化性物質および酸化性物質の還元によって生成した処理生成物が洗い流されていれば良い。酸化性物質や処理生成物が洗い流されているかを確認するための方法としては、ガスクロマトグラフィーや液体クロマトグラフィー、イオンクロマトグラフィー等の分析により確認する方法や、過酸化水素濃度計や有効塩素濃度計を用いた測定により確認する方法等が採用できる。ただし、毎回これら分析や測定による確認を行う必要はなく、予め予備実験を行い、十分な洗浄ができる条件を確認しておき、そのような条件を適用するようにしてもよい。 The amount and number of washings are not particularly limited, and it is sufficient that the excess oxidizing substances remaining after the oxidation treatment step and the treatment products produced by the reduction of the oxidizing substances are washed away. Methods for confirming whether oxidizing substances and treatment products have been washed away include methods for confirming by analysis such as gas chromatography, liquid chromatography, and ion chromatography, hydrogen peroxide concentration meters, and effective chlorine concentration. A method of confirming by measurement using a meter can be adopted. However, it is not necessary to confirm by these analyzes and measurements every time, and a preliminary experiment may be conducted in advance to confirm the conditions under which sufficient cleaning can be performed, and such conditions may be applied.
2.イオン交換工程
イオン交換工程では、前記前処理工程を経た酸性イオン交換樹脂と、次亜塩素酸の金属塩の水溶液からなる原料水溶液とを接触させ金属イオンと水素イオンとのイオン交換を行うことにより、分子状の次亜塩素酸を生成させる。当該イオン交換工程は、酸性イオン交換樹脂として前記前処理工程を施したものを使用する以外は、従来のイオン交換法と特に変わる点はなく、原料水溶液や、原料使用液と酸性イオン交換樹脂との接触方法などについても従来のイオン交換法で使用される原料水溶液や方法が特に制限なく採用できる。
2. 2. Ion exchange step In the ion exchange step, the acidic ion exchange resin that has undergone the pretreatment step is brought into contact with a raw material aqueous solution composed of an aqueous solution of a metal salt of hypochlorous acid to exchange ions between metal ions and hydrogen ions. , Produces molecular hypochlorous acid. The ion exchange step is not particularly different from the conventional ion exchange method except that the acid ion exchange resin subjected to the pretreatment step is used, and the raw material aqueous solution, the raw material used liquid and the acidic ion exchange resin are used. As for the contact method, the raw material aqueous solution and the method used in the conventional ion exchange method can be adopted without particular limitation.
すなわち、原料水溶液に含まれる次亜塩素酸の金属塩としては、次亜塩素酸ナトリウム(NaClO)、次亜塩素酸カリウム(KClO)、次亜塩素酸カルシウム(Ca(ClO)2)、次亜塩素酸バリウム(Ba(ClO)2)などが使用できる。また、原料水溶液は、これら次亜塩素酸の金属塩を水に溶解させて製造してもよいが、次亜塩素酸ナトリウム水溶液である場合には、NaOHとCl2を電気分解することで製造してもよい。また、試薬等として販売されている次亜塩素酸塩を水に溶解させて水溶液としてもよく、さらに、試薬等として販売されている次亜塩素酸塩水溶液をそのまま又は水で希釈して用いてもよい。溶媒水や希釈水としては、前記水洗工程で使用したような低イオン電導率のイオン交換水及び/又は蒸留水を使用することが好ましい。さらに、前記酸性イオン交換樹脂前処理工程を経た酸性イオン交換樹脂と、次亜塩素酸の金属塩の水溶液を接触させる方法としては、バッチ法や流通法(カラム法)などの公知の方法が特に制限なく採用できる。 That is, as the metal salt of hypochlorous acid contained in the raw material aqueous solution, sodium hypochlorite (NaClO), potassium hypochlorite (KClO), calcium hypochlorite (Ca (ClO) 2 ), hypochlorous acid Barium chlorite (Ba (ClO) 2 ) or the like can be used. Further, the raw material aqueous solution may be produced by dissolving these metal salts of hypochlorous acid in water, but in the case of a sodium hypochlorite aqueous solution, it is produced by electrolyzing NaOH and Cl 2. You may. Further, the hypochlorite solution sold as a reagent or the like may be dissolved in water to prepare an aqueous solution, and the hypochlorite aqueous solution sold as a reagent or the like may be used as it is or diluted with water. May be good. As the solvent water or the diluted water, it is preferable to use ion-exchanged water and / or distilled water having a low ion conductivity as used in the washing step. Further, as a method for bringing the acidic ion exchange resin that has undergone the acid ion exchange resin pretreatment step into contact with an aqueous solution of a metal salt of hypochlorous acid, known methods such as a batch method and a distribution method (column method) are particularly suitable. Can be adopted without restrictions.
以下、イオン交換法における好適な条件等について説明する。
まず、原料水溶液中の次亜塩素酸金属塩水溶液の濃度は、通常は、有効塩素濃度で表わして、10(ppm)〜50,000(ppm)の範囲であるが、接触方法により好適な範囲は若干異なる。すなわち、流通法(カラム法)の場合には、原料水溶液中に含まれる有効塩素濃度がたとえば100,000(ppm)と非常に高い場合には、イオン交換反応を終了させるために、理論段数を増やす必要性があるが、その場合、カラムの長さを長くすることとなり、その分生成したHClOが接触する時間が長くなる。前記酸化処理工程で酸性イオン交換樹脂の酸化されやすい部分を酸化したとしても、それ以上酸化されないわけではなく、酸化されるスピードが遅くなるが、少しずつ酸化されてしまう。したがって、長時間生成したHClOと接触した場合、不可逆的に起こる一定量の分解の影響を受けて、分子型次亜塩素酸の収率(溶液中に残存する分子型次亜塩素酸モル当量/原料水溶液中の次亜塩素酸金属塩モル当量に対応する)が低くなる傾向がある。このため、製造を効率的に行うという観点から、カラム法の場合における原料水溶液の濃度は、10(ppm)〜50,000(ppm)特に30(ppm)〜10,000(ppm)であることが好ましく、取り扱い易さ等を考慮すると50(ppm)〜5,000(ppm)であることが最も好ましい。
一方、バッチ法の場合には、原料水溶液中の有効塩素濃度がたとえば10(ppm)未満と低い場合には、カラム法と同様に、不可避的に起こる一定量の分解の影響を受けて、前記収率が低くなる傾向がある。また、前記有効塩素濃度がたとえば100,000(ppm)と非常に高い場合には、撹拌中の樹脂との接触頻度が多くなり、生成したHClOがより多く分解することによって前記収率が低下する傾向がある。このため、製造を効率的に行うという観点から原料水溶液の濃度は、500(ppm)〜50,000(ppm)、特に1,000(ppm)〜50,000(ppm)であることが好ましく、取り扱い易さ等を考慮すると5,000(ppm)〜30,000(ppm)であることが最も好ましい。
Hereinafter, suitable conditions and the like in the ion exchange method will be described.
First, the concentration of the hypochlorous acid metal salt aqueous solution in the raw material aqueous solution is usually in the range of 10 (ppm) to 50,000 (ppm) in terms of effective chlorine concentration, but is more suitable depending on the contact method. Is slightly different. That is, in the case of the distribution method (column method), when the concentration of effective chlorine contained in the raw material aqueous solution is very high, for example, 100,000 (ppm), the number of theoretical stages is increased in order to terminate the ion exchange reaction. It is necessary to increase the length, but in that case, the length of the column is increased, and the contact time of the produced HClO is increased accordingly. Even if the easily oxidizable portion of the acidic ion exchange resin is oxidized in the oxidation treatment step, it does not mean that it is not further oxidized, and the speed of oxidation is slowed down, but it is gradually oxidized. Therefore, the yield of molecular-type hypochlorous acid (molar equivalent of molecular-type hypochlorous acid remaining in the solution /) is affected by a certain amount of decomposition that occurs irreversibly when it comes into contact with HClO generated for a long time. (Corresponding to the molar equivalent of metal salt hypochlorous acid) in the raw material aqueous solution tends to be low. Therefore, from the viewpoint of efficient production, the concentration of the raw material aqueous solution in the case of the column method is 10 (ppm) to 50,000 (ppm), particularly 30 (ppm) to 10,000 (ppm). Is preferable, and 50 (ppm) to 5,000 (ppm) is most preferable in consideration of ease of handling and the like.
On the other hand, in the case of the batch method, when the effective chlorine concentration in the raw material aqueous solution is as low as less than 10 (ppm), for example, it is affected by a certain amount of decomposition that inevitably occurs as in the column method. Yields tend to be low. Further, when the effective chlorine concentration is very high, for example, 100,000 (ppm), the frequency of contact with the resin during stirring increases, and the produced HClO decomposes more, so that the yield decreases. Tend. Therefore, from the viewpoint of efficient production, the concentration of the raw material aqueous solution is preferably 500 (ppm) to 50,000 (ppm), particularly preferably 1,000 (ppm) to 50,000 (ppm). Considering ease of handling and the like, it is most preferably 5,000 (ppm) to 30,000 (ppm).
次に、接触させる酸性イオン交換樹脂の総量と原料水溶液の総量の比(混合比ともいう。)については、酸性イオン交換樹脂の総イオン交換等量が、次亜塩素酸の金属塩の金属イオンの総化学当量と同じかそれ以上となるようにすれば良い。ただし、酸性イオン交換樹脂のうち弱酸性イオン交換樹脂を使用した場合には、イオン交換反応が進むにつれ徐々にpHが低下していき、金属イオンの吸着と脱着が平衡に達する。また、金属イオンは、生成した弱酸性次亜塩素酸水の保存安定性を低下させる。したがって、生成する弱酸酸性次亜塩素酸水の保存安定性の観点から、弱酸性イオン交換樹脂を使用した場合の、イオン交換樹脂と次亜塩素酸の金属塩の水溶液の混合比は、弱酸性イオン交換樹脂の総イオン交換当量(EIE)と、原料水溶液中の金属イオンの総化学当量(EMI)との比(EMI/EIE)が0.01〜0.6、特に0.03〜0.55であることが好ましく、より高純度にすることにより保存安定性の向上を目指したり、弱酸性イオン交換樹脂の使用量を抑え、製造コストを低減したりという観点から、0.05〜0.5となるような量比とすることが好ましい。
なお、弱酸性イオン交換樹脂の総イオン交換当量(EIE)とは、イオン交換樹脂のもつすべての交換基が作用した場合のイオン交換能力を意味し、単位は当量(eq)である。例えば、総イオン交換容量が3.9(eq/L-樹脂)の弱酸性イオン交換樹脂100(ml)を使用した場合、イオン交換樹脂の総イオン交換当量は、EIE=0.39(eq)となる。また、原料水溶液の金属イオンの総化学当量(EMI)とは、原料である次亜塩素酸の金属塩の水溶液中に含まれる、金属イオンの価数の和を意味し、単位は当量(eq)で示される。例えば、原料である次亜塩素酸の金属塩の水溶液がNaClONaであり、有効塩素濃度が2000(ppm)で容量が1(L)の場合、原料水溶液の金属イオンの総化学当量は、EMI=0.028(eq)となる。
Next, regarding the ratio of the total amount of the acidic ion exchange resin to be brought into contact with the total amount of the raw material aqueous solution (also referred to as the mixing ratio), the total ion exchange equivalent of the acidic ion exchange resin is the metal ion of the metal salt of hypochlorite. It should be equal to or more than the total chemical equivalent of. However, when a weakly acidic ion exchange resin is used among the acidic ion exchange resins, the pH gradually decreases as the ion exchange reaction progresses, and the adsorption and desorption of metal ions reach equilibrium. In addition, metal ions reduce the storage stability of the generated weakly acidic hypochlorous acid water. Therefore, from the viewpoint of storage stability of the generated weakly acidic hypochlorous acid water, the mixing ratio of the ion exchange resin and the aqueous solution of the metal salt of hypochlorous acid when the weakly acidic ion exchange resin is used is weakly acidic. the total ion exchange equivalent of the ion exchange resin (E IE), the total chemical equivalents of the metal ions in the feed aqueous solution (E MI) and the ratio of (E MI / E IE) is 0.01 to 0.6, especially 0. It is preferably 03 to 0.55, and from the viewpoints of improving storage stability by increasing the purity, reducing the amount of weakly acidic ion exchange resin used, and reducing the manufacturing cost, 0. The amount ratio is preferably 05 to 0.5.
The total ion exchange equivalent ( EIE ) of the weakly acidic ion exchange resin means the ion exchange capacity when all the exchange groups of the ion exchange resin act, and the unit is the equivalent (eq). For example, when a weakly acidic ion exchange resin 100 (ml) having a total ion exchange capacity of 3.9 (eq / L-resin) is used, the total ion exchange equivalent of the ion exchange resin is EIE = 0.39 (eq). ). The total chemical equivalent ( EMI ) of the metal ions in the raw material aqueous solution means the sum of the valences of the metal ions contained in the aqueous solution of the metal salt of hypochlorous acid, which is the raw material, and the unit is equivalent (equivalent). It is indicated by eq). For example, an aqueous solution of a metal salt of hypochlorous acid, a starting material is the NaClONa, if the effective chlorine concentration of 2000 (ppm) capacity is 1 (L), the total chemical equivalents of the metal ion of the raw material aqueous solution, E MI = 0.028 (eq).
イオン交換工程における液温、すなわちイオン交換反応時の反応温度は、5℃以上40℃以下、特に10℃以上35℃以下であることが好ましい。液温がこのような範囲であれば取り扱いも容易で温度制御に要するコストも低く抑えることができるばかりでなく、製造される弱酸性次亜塩素酸水溶液中の金属イオンの低減や分子状次亜塩素酸の分解抑制が容易となる。具体的には、液温が5℃未満の場合には、イオン交換反応のスピードが遅くなり、十分なイオン交換を行うために必要な混合時間が120分を超えてしまい、金属イオン量を減少させることが困難となってしまう。一方、温度が40℃を越える場合には、原料である次亜塩素酸の金属塩の水溶液や生成した分子型次亜塩素酸の分解が促進されるとともに、分子型の次亜塩素酸の揮発も促進されることから、溶液の有効塩素濃度が大幅に低下してしまう。 The liquid temperature in the ion exchange step, that is, the reaction temperature during the ion exchange reaction is preferably 5 ° C. or higher and 40 ° C. or lower, particularly preferably 10 ° C. or higher and 35 ° C. or lower. If the liquid temperature is within such a range, it is easy to handle and the cost required for temperature control can be kept low, as well as the reduction of metal ions in the produced weakly acidic hypochlorous acid aqueous solution and the molecular hypochlorous acid. The decomposition of chloric acid can be easily suppressed. Specifically, when the liquid temperature is less than 5 ° C., the speed of the ion exchange reaction slows down, the mixing time required for sufficient ion exchange exceeds 120 minutes, and the amount of metal ions is reduced. It becomes difficult to make it. On the other hand, when the temperature exceeds 40 ° C., the decomposition of the aqueous solution of the metal salt of the raw material hypochlorous acid and the produced molecular hypochlorous acid is promoted, and the molecular type hypochlorous acid volatilizes. Is also promoted, so that the effective chlorine concentration of the solution is significantly reduced.
イオン交換工程におけるイオン交換反応時間は、金属イオンが十分に吸着できる時間であれば特に限定されるものではない。ただし、バッチ法において弱酸性イオン交換樹脂を使用した場合には、混合時間が120分を越えると、長時間イオン交換樹脂と接触することで、生成した分子型の次亜塩素酸が徐々に分解する。分解によって発生するHCl(強酸)は、弱酸性イオン交換樹脂に吸着している金属イオンを脱離する作用を有するため、溶液内の金属イオン量が増加し、保存安定性が低下してしまうため、混合時間は120分以内が好ましい。このような点に注意することにより、バッチ法でもpHが7以下で、有効塩素濃度(CEC)に対する金属イオンの総濃度(CMI)の比(CMI/CEC)が0.5以下となる弱酸性次亜塩素酸水を得ることができる。 The ion exchange reaction time in the ion exchange step is not particularly limited as long as the metal ions can be sufficiently adsorbed. However, when a weakly acidic ion exchange resin is used in the batch method, if the mixing time exceeds 120 minutes, the generated molecular type hypochlorous acid is gradually decomposed by contact with the ion exchange resin for a long time. To do. HCl (strong acid) generated by decomposition has the effect of desorbing metal ions adsorbed on the weakly acidic ion exchange resin, so the amount of metal ions in the solution increases and storage stability decreases. The mixing time is preferably 120 minutes or less. By note this point, a pH of 7 or less in a batch process, the ratio of the total concentration of the metal ion to the effective chlorine concentration (C EC) (C MI) (C MI / C EC) is 0.5 or less Weakly acidic hypochlorous acid water can be obtained.
本発明の方法で得られる弱酸性次亜塩素酸水は、除菌剤又は殺菌剤として有用であり、様々な除菌・殺菌用途で使用される。また、その使用態様は特に限定されず、例えば、噴霧器を用いて目的水溶液を噴霧することによって所定の空間を除菌又は殺菌してもよいし、パレットなどの容器に溜めた目的水溶液に除菌又は殺菌対象物である道具、器具、布等を浸漬して、これらを除菌又は殺菌してもよいし、目的水溶液をしみこませた布などにより、壁、床、机、椅子等を清拭してもよい。本発明の方法で得られる弱酸性次亜塩素酸水溶液は、殺菌力が高く、人体に対する安全性も比較的高い分子型次亜塩素酸を含み、且つその濃度も安定していることから、医療器具や機器の簡易的な除菌に適しており、また、口腔内の除菌用のうがい液としても使用可能である。 The weakly acidic hypochlorous acid water obtained by the method of the present invention is useful as a sterilizing agent or a sterilizing agent, and is used for various sterilizing and sterilizing applications. The usage mode is not particularly limited, and for example, a predetermined space may be sterilized or sterilized by spraying the target aqueous solution with a sprayer, or the target aqueous solution stored in a container such as a pallet is sterilized. Alternatively, tools, instruments, cloths, etc., which are objects to be sterilized, may be immersed to sterilize or sterilize them, or walls, floors, desks, chairs, etc. may be cleaned with a cloth impregnated with the target aqueous solution. You may. The weakly acidic hypochlorous acid aqueous solution obtained by the method of the present invention contains molecular hypochlorous acid having high bactericidal activity and relatively high safety to the human body, and its concentration is stable. It is suitable for simple sterilization of instruments and devices, and can also be used as a mouthwash for sterilization in the oral cavity.
得られた弱酸性次亜塩素酸水溶液は、そのままこれら用途に使用することもできる。しかし、得られた弱酸性次亜塩素酸水溶液を商品とした場合の輸送コストや保管スペース等を考慮すると、高い有効塩素濃度の目的水溶液からなる濃厚原液を、使用者が使用時に、使用態様に応じて好ましい有効塩素濃度となるように、水道水等の水で都度希釈して使用することが好ましい。前記したように、本発明の方法では、原料水溶液の有効塩素濃度が数千〜数万ppmのときの収率が高く、たとえば10,000(ppm)程度の有効塩素濃度を有する弱酸性次亜塩素酸水溶液を効率的に製造できるため、上記したような希釈して使用する際の濃厚原液の製造方法として有効である。ただし、有効塩素濃度が高すぎる場合には取り扱いに注意を要し、塩素系殺菌剤について専門的な知識を有さない一般人による使用を考える場合には、濃縮原液における有効塩素濃度は100(ppm)以上1,000(ppm)以下、特に300(ppm)以上800(ppm)以下であることが好ましい。 The obtained weakly acidic hypochlorous acid aqueous solution can be used as it is for these purposes. However, considering the transportation cost and storage space when the obtained weakly acidic hypochlorous acid aqueous solution is used as a commercial product, a concentrated undiluted solution consisting of a target aqueous solution having a high effective chlorine concentration can be used by the user when using it. It is preferable to dilute each time with water such as tap water so as to obtain a preferable effective chlorine concentration. As described above, in the method of the present invention, the yield is high when the effective chlorine concentration of the raw material aqueous solution is several thousand to tens of thousands ppm, for example, weakly acidic hypochlorous acid having an effective chlorine concentration of about 10,000 (ppm). Since the chloric acid aqueous solution can be efficiently produced, it is effective as a method for producing a concentrated stock solution when diluted and used as described above. However, if the effective chlorine concentration is too high, care must be taken in handling, and when considering use by the general public who does not have specialized knowledge about chlorine-based bactericides, the effective chlorine concentration in the concentrated stock solution is 100 (ppm). ) Or more and 1,000 (ppm) or less, particularly preferably 300 (ppm) or more and 800 (ppm) or less.
以下、本発明を具体的に説明するために、実施例および比較例を挙げて説明するが、本発明はこれらにより何等制限されるものではない。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples in order to specifically explain the present invention, but the present invention is not limited thereto.
先ず、実施例及び比較例で使用した、酸化性物質、次亜塩素の金属塩の水溶液、イオン交換樹脂等について説明する。
[酸化性物質]
・有効塩素濃度7500(ppm)の弱酸性次亜塩素酸水(金属陽イオン濃度:1719質量ppm、株式会社トクヤマデンタル社製)
・濃度30.0〜35.5%の過酸化水素水(富士フィルム和光純薬株式会社製)。
First, an oxidizing substance, an aqueous solution of a metal salt of hypochlorous acid, an ion exchange resin, and the like used in Examples and Comparative Examples will be described.
[Oxidizing substance]
-Weakly acidic hypochlorous acid water with an effective chlorine concentration of 7500 (ppm) (metal cation concentration: 1719 mass ppm, manufactured by Tokuyama Dental Co., Ltd.)
-Hydrogen peroxide solution with a concentration of 30.0 to 35.5% (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.).
[次亜塩素酸金属塩水溶液]
・有効塩素濃度12.0(wt%)のNaClO水溶液(ネオラックススーパー:供給元 島田商店)。
[Aqueous solution of hypochlorous acid metal salt]
-NaClO aqueous solution with an effective chlorine concentration of 12.0 (wt%) (Neolax Super: supplier Shimada Shoten).
[酸性イオン交換樹脂]
<強酸性イオン交換樹脂>
・アンバーライトIR120B(オルガノ株式会社製):総イオン交換容量2.0(eq/L)、以下、「IR120B」と略記する。
<弱酸性イオン交換樹脂>
・アンバーライトIRC−76(オルガノ株式会社製):総イオン交換容量3.9(eq/L)、以下、「IRC76」と略記する。
・ダイヤイオンWK401(三菱ケミカル株式会社製):総イオン交換容量4.4(eq/L)、以下、「WK401」と略記する。
・デュオライトC433LF(住化ケムテックス株式会社製):総イオン交換容量4.2(eq/L)、「433LF」と略記する。
[Acid ion exchange resin]
<Strong acid ion exchange resin>
-Amberlite IR120B (manufactured by Organo Corporation): Total ion exchange capacity 2.0 (eq / L), hereinafter abbreviated as "IR120B".
<Weakly acidic ion exchange resin>
-Amberlite IRC-76 (manufactured by Organo Corporation): Total ion exchange capacity 3.9 (eq / L), hereinafter abbreviated as "IRC76".
-Diaion WK401 (manufactured by Mitsubishi Chemical Corporation): Total ion exchange capacity 4.4 (eq / L), hereinafter abbreviated as "WK401".
-Duolite C433LF (manufactured by Sumika Chemtex Co., Ltd.): Total ion exchange capacity 4.2 (eq / L), abbreviated as "433LF".
実施例1〜11
(1)弱酸性次亜塩素水溶液の製造
(1−1)酸性イオン交換樹脂の前処理・酸化処理工程
(1−1−1)バッチ法:実施例1〜9
前記有効塩素濃度7500ppmの弱酸性次亜塩素酸水および濃度30.0〜35.5%の過酸化水素水を、それぞれイオン電導率が3(mS/m)以下のイオン交換水で希釈して有効塩素濃度および過酸化水素濃度が夫々表1に示す濃度となるようにして酸化剤水溶液を調製した。
Examples 1-11
(1) Production of weakly acidic hypochlorous acid aqueous solution (1-1) Pretreatment / oxidation treatment step of acidic ion exchange resin (1-1-1) Batch method: Examples 1 to 9
The weakly acidic hypochlorous acid water having an effective chlorine concentration of 7500 ppm and the hydrogen peroxide solution having a concentration of 30.0 to 35.5% are diluted with ion-exchanged water having an ion conductivity of 3 (mS / m) or less, respectively. An aqueous oxidizing agent solution was prepared so that the effective chlorine concentration and the hydrogen peroxide concentration were the concentrations shown in Table 1, respectively.
次に、酸性イオン交換樹脂を表2に示す体積量計りとり、夫々表2に示す量の前処理剤を添加し、表2に示す反応後の濃度となるまでテフロン(登録商標)フッ素樹脂製撹拌羽を用いて酸性イオン交換樹脂が均一に分散するように撹拌して混合を行った。撹拌終了後、樹脂が沈降するまで静置させ、デカンテーションにより上澄み液である前処理剤を除去した。 Next, the acidic ion exchange resin was weighed by volume as shown in Table 2, and the pretreatment agents in the amounts shown in Table 2 were added, respectively, and made of Teflon (registered trademark) fluororesin until the concentration after the reaction shown in Table 2 was reached. Mixing was performed by stirring using a stirring blade so that the acidic ion exchange resin was uniformly dispersed. After the stirring was completed, the resin was allowed to stand until it settled, and the pretreatment agent, which was the supernatant liquid, was removed by decantation.
(1−1−2)カラム法:実施例10
前記有効塩素濃度7500ppmの弱酸性次亜塩素酸水を、イオン電導率が3(mS/m)以下のイオン交換水で希釈して有効塩素濃度822ppmとなるようにして酸化剤水溶液(金属陽イオン濃度:188質量ppm)を調製した。次に、酸性イオン交換樹脂を100ml計りとり、カラムに充填した。前処理剤3000mlを流速2ml/秒で流した。
(1-1-2) Column method: Example 10
The weakly acidic hypochlorous acid water having an effective chlorine concentration of 7500 ppm is diluted with ion-exchanged water having an ion conductivity of 3 (mS / m) or less so that the effective chlorine concentration becomes 822 ppm, and the oxidizing agent aqueous solution (metal cation). Concentration: 188 mass ppm) was prepared. Next, 100 ml of the acidic ion exchange resin was weighed and filled in the column. 3000 ml of the pretreatment agent was flowed at a flow rate of 2 ml / sec.
(1−2)前処理・洗浄工程
(1−2−1)バッチ法:実施例1〜9
前記酸化剤水溶液を除去した酸性イオン交換樹脂に、イオン電導率が3(mS/m)以下のイオン交換水を表3に示す量を添加し、10秒間テフロンフッ素樹脂製撹拌羽を用いて酸性イオン交換樹脂が均一に分散するように撹拌した。撹拌終了後、樹脂が沈降するまで静置させ、デカンテーションにより上澄み液である洗浄液を除去した。有効塩素濃度および過酸化水素濃度を測定し、15ppm以下となるまで洗浄を繰り返した。
(1-2) Pretreatment / cleaning step (1-2-1) Batch method: Examples 1 to 9
To the acidic ion exchange resin from which the oxidizing agent aqueous solution has been removed, an amount of ion exchange water having an ion conductivity of 3 (mS / m) or less is added in an amount shown in Table 3, and the acid is acidified using a Teflon fluororesin stirring blade for 10 seconds. The mixture was stirred so that the ion exchange resin was uniformly dispersed. After the stirring was completed, the resin was allowed to stand until it settled, and the cleaning liquid, which was the supernatant liquid, was removed by decantation. The effective chlorine concentration and hydrogen peroxide concentration were measured, and washing was repeated until the concentration became 15 ppm or less.
(1−2−2)カラム法:実施例10
前記酸化処理後の酸性イオン交換樹脂を充填したカラムに、イオン電導率が3(mS/m)以下のイオン交換水2100mlを流速2ml/秒で流した。流したイオン交換水の最後の30mlを採取し、有効塩素濃度を測定し、10ppmであることを確認した。
(1-2-2) Column method: Example 10
2100 ml of ion-exchanged water having an ion conductivity of 3 (mS / m) or less was flowed through a column filled with the acid ion exchange resin after the oxidation treatment at a flow rate of 2 ml / sec. The last 30 ml of the flowed ion-exchanged water was collected, the effective chlorine concentration was measured, and it was confirmed to be 10 ppm.
(1−3)イオン交換工程
(1−3−1)バッチ法:実施例1〜9
前記12%NaClO水溶液をイオン電導率が3(mS/m)以下のイオン交換水で希釈して有効塩素濃度が夫々表4の有効塩素濃度となるよう調整して、原料水溶液を調製した。洗浄工程後の酸性イオン交換樹脂に、夫々表4に示す量の原料水溶液を添加し、表4に示す混合時間および温度でテフロンフッ素樹脂撹拌羽を用いて酸性イオン交換樹脂が均一に分散するように撹拌して混合を行った。撹拌中、混合液のpHをモニターし、pHが低下して3分間内のpHの変化が±0.3となった時点で撹拌を停止し、撹拌時間を混合時間とした。撹拌終了後、樹脂が沈降するまで静置させ、デカンテーションにより上澄み液である次亜塩素酸水溶液を、樹脂が入り込まないように#200の濾布を通してポリエチレン容器に回収した。
(1-3) Ion exchange step (1-3-1) Batch method: Examples 1 to 9
The 12% NaClO aqueous solution was diluted with ion-exchanged water having an ion conductivity of 3 (mS / m) or less to adjust the effective chlorine concentration to the effective chlorine concentration shown in Table 4, respectively, to prepare a raw material aqueous solution. Add the amount of the raw material aqueous solution shown in Table 4 to the acidic ion exchange resin after the cleaning step, and use the Teflon fluororesin stirring blade to uniformly disperse the acidic ion exchange resin at the mixing time and temperature shown in Table 4. Was stirred and mixed. During the stirring, the pH of the mixed solution was monitored, and when the pH decreased and the change in pH within 3 minutes became ± 0.3, the stirring was stopped and the stirring time was defined as the mixing time. After the stirring was completed, the mixture was allowed to stand until the resin settled, and the aqueous solution of hypochlorous acid, which was the supernatant, was collected in a polyethylene container through a # 200 filter cloth so as not to allow the resin to enter.
(1−3−2)カラム法:実施例10
前記12%NaClO水溶液をイオン電導率が3(mS/m)以下のイオン交換水で希釈して有効塩素濃度が855ppmとなるよう原料水溶液を調製した。洗浄後の酸性イオン交換樹脂を充填したカラムに、調製した原料水溶液1000mlを流速2ml/秒で流し、流出した弱酸性次亜塩素酸水をポリエチレン容器に回収した。
(1-3-2) Column method: Example 10
The 12% NaClO aqueous solution was diluted with ion-exchanged water having an ion conductivity of 3 (mS / m) or less to prepare a raw material aqueous solution so that the effective chlorine concentration was 855 ppm. 1000 ml of the prepared raw material aqueous solution was flowed through a column filled with an acidic ion exchange resin after washing at a flow rate of 2 ml / sec, and the spilled weakly acidic hypochlorous acid water was collected in a polyethylene container.
(2)評価方法
(2−1)有効塩素濃度測定
(1)で製造した弱酸性次亜塩素酸水溶液の一部をサンプル溶液とし、当該サンプル溶液を原料溶液の有効塩素濃度に応じ、下記希釈倍率でイオン交換水を用いて希釈し、測定用試料を調製し、有効塩素濃度測定キットAQ−202型(柴田科学株式会社)にて希釈後の有効塩素濃度を測定した。測定結果及び希釈倍率からサンプル溶液の有効塩素濃度を求めた。
・原料溶液の有効塩素濃度301〜900ppm:希釈倍率3倍
・原料溶液の有効塩素濃度901〜3000ppm:希釈倍率10倍
・原料溶液の有効塩素濃度3001〜15000ppm:希釈倍率50倍
・原料溶液の有効塩素濃度15001〜120000ppm:希釈倍率500倍。
(2) Evaluation method (2-1) Measurement of effective chlorine concentration A part of the weakly acidic hypochlorous acid aqueous solution produced in (1) is used as a sample solution, and the sample solution is diluted as follows according to the effective chlorine concentration of the raw material solution. A sample for measurement was prepared by diluting with ion-exchanged water at a magnification, and the effective chlorine concentration after dilution was measured with an effective chlorine concentration measurement kit AQ-202 (Shibata Kagaku Co., Ltd.). The effective chlorine concentration of the sample solution was determined from the measurement results and the dilution ratio.
-Effective chlorine concentration of raw material solution 301-900ppm: Dilution ratio 3 times-Effective chlorine concentration of raw material solution 901-3000ppm: Dilution ratio 10 times-Effective chlorine concentration of raw material solution 3001-15000ppm: Dilution ratio 50 times-Effectiveness of raw material solution Chlorine concentration 15001-120,000 ppm: Dilution ratio 500 times.
(2−2)pH測定
pHメーターF−55型(株式会社堀場製作所)を用いて、(1)で製造した弱酸性次亜塩素酸水溶液の一部をサンプル溶液とし、当該測定サンプル液のpHを測定した。
(2-2) pH measurement Using a pH meter F-55 (Horiba Seisakusho Co., Ltd.), a part of the weakly acidic hypochlorous acid aqueous solution produced in (1) was used as a sample solution, and the pH of the measurement sample solution was used. Was measured.
(2−3)Naイオン濃度測定
(1)で製造した弱酸性次亜塩素酸水溶液の一部をサンプル溶液とし、当該測定サンプル液を原料溶液のナトリウムイオン濃度に応じ、下記希釈倍率でイオン交換水を用いて希釈し、測定用試料を調製し、Naイオンメーター(株式会社堀場製作所)を用いて、測定サンプルのNaイオン濃度を測定した。測定結果及び希釈倍率からサンプル溶液のNaイオン濃度を求めた。
・原料溶液のNaイオン濃度101〜500ppm:希釈倍率5倍
・原料溶液のNaイオン濃度501〜5000ppm:希釈倍率50倍
・原料溶液のNaイオン濃度5001〜20000ppm:希釈倍率200倍。
(2-3) Na ion concentration measurement A part of the weakly acidic hypochlorous acid aqueous solution produced in (1) is used as a sample solution, and the measurement sample solution is ion-exchanged at the following dilution ratio according to the sodium ion concentration of the raw material solution. A sample for measurement was prepared by diluting with water, and the Na ion concentration of the measurement sample was measured using a Na ion meter (Horiba Seisakusho Co., Ltd.). The Na ion concentration of the sample solution was determined from the measurement results and the dilution ratio.
-Na ion concentration of raw material solution 101-500 ppm: dilution ratio 5 times-Na ion concentration of raw material solution 501-5000 ppm: dilution ratio 50 times-Na ion concentration of raw material solution 5001-20000 ppm: dilution ratio 200 times.
(3)得られた弱酸性次亜塩素酸水の評価
表1〜4に示した条件で弱酸性次亜塩素酸水を製造し、製造した弱酸性次亜塩素酸水の有効塩素濃度、pH、Naイオン濃度、CMI/CEC値と、有効塩素残存率を表5に示す。ここで、有効塩素残存率とは、製造した弱酸性次亜塩素酸水の有効塩素濃度を原料水溶液の有効塩素濃度で除した数値(%)であり、その値が100%に近いほど製造中に減少する有効塩素が少ないことを意味する。
(3) Evaluation of the obtained weakly acidic hypochlorous acid water The weakly acidic hypochlorous acid water was produced under the conditions shown in Tables 1 to 4, and the effective chlorine concentration and pH of the produced weakly acidic hypochlorous acid water were obtained. , Na ion concentration, C MI / C EC value, and effective chlorine residual rate are shown in Table 5. Here, the effective chlorine residual ratio is a value (%) obtained by dividing the effective chlorine concentration of the produced weakly acidic hypochlorous acid water by the effective chlorine concentration of the raw material aqueous solution, and the closer the value is to 100%, the more the product is being manufactured. It means that there is little effective chlorine that decreases.
比較例1
表2に示した酸性イオン交換樹脂を用い、前処理工程を行うことなく、表4に示す条件でバッチ法(比較例1−1)及びカラム法(比較例1−2)でイオン交換工程を行い、弱酸性次亜塩素酸水溶液を製造し、実施例と同様の評価を行った。結果を表5に示す。
Comparative Example 1
Using the acidic ion exchange resin shown in Table 2, the ion exchange step was performed by the batch method (Comparative Example 1-1) and the column method (Comparative Example 1-2) under the conditions shown in Table 4 without performing the pretreatment step. Then, a weakly acidic hypochlorous acid aqueous solution was produced, and the same evaluation as in Examples was performed. The results are shown in Table 5.
実施例1〜10は、本発明の製造方法における各条件を全て満足するものであり、有効塩素濃度残存率は78%以上であった。一方比較例1は、酸性イオン交換樹脂の前処理を行わなかった場合であるが、残存率がバッチ法では71%、カラム法では29%であった。 Examples 1 to 10 satisfied all the conditions in the production method of the present invention, and the residual effective chlorine concentration was 78% or more. On the other hand, Comparative Example 1 was a case where the pretreatment of the acidic ion exchange resin was not performed, but the residual rate was 71% in the batch method and 29% in the column method.
Claims (4)
酸性イオン交換樹脂と、酸化性物質が溶解した酸化剤水溶液と、を前記酸性イオン交換樹脂1リットル当たり0.3mol当量以上1.0mol当量以下の前記酸化性物質が還元されるまで、接触させる酸化処理工程を有する前処理工程を更に含んでなり、前記イオン交換工程では、前記前処理工程を経た酸性イオン交換樹脂と、前記原料水溶液と、を接触させることを特徴とする、前記製造方法。 Ions that generate molecular hypochlorous acid by contacting an acidic ion exchange resin and a raw material aqueous solution consisting of an aqueous solution of a metal salt of hypochlorous acid to exchange metal ions and hydrogen ions. A method for producing a weakly acidic hypochlorous acid aqueous solution including a replacement step.
Oxidation in which an acidic ion exchange resin and an aqueous oxidizing agent in which an oxidizing substance is dissolved are brought into contact with each other until the oxidizing substance having 0.3 mol equivalent or more and 1.0 mol equivalent or less per liter of the acidic ion exchange resin is reduced. The production method further comprises a pretreatment step including a treatment step, wherein the ion exchange step brings the acidic ion exchange resin that has undergone the pretreatment step into contact with the raw material aqueous solution.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019011318A JP6808201B2 (en) | 2019-01-25 | 2019-01-25 | Manufacturing method of weakly acidic hypochlorous acid water |
US17/057,341 US20210188634A1 (en) | 2018-05-22 | 2019-05-21 | Method for producing weakly acidic hypochlorous acid aqueous solution |
EP19807467.6A EP3798181A4 (en) | 2018-05-22 | 2019-05-21 | Method for producing weakly acidic hypochlorous acid aqueous solution |
PCT/JP2019/020098 WO2019225599A1 (en) | 2018-05-22 | 2019-05-21 | Method for producing weakly acidic hypochlorous acid aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019011318A JP6808201B2 (en) | 2019-01-25 | 2019-01-25 | Manufacturing method of weakly acidic hypochlorous acid water |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020117422A JP2020117422A (en) | 2020-08-06 |
JP6808201B2 true JP6808201B2 (en) | 2021-01-06 |
Family
ID=71889933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019011318A Active JP6808201B2 (en) | 2018-05-22 | 2019-01-25 | Manufacturing method of weakly acidic hypochlorous acid water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6808201B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116709922A (en) * | 2020-12-23 | 2023-09-05 | 株式会社德山 | Hypochlorous acid water |
WO2022138427A1 (en) * | 2020-12-23 | 2022-06-30 | 株式会社トクヤマ | Hypochlorite water |
JP7541636B2 (en) * | 2021-05-21 | 2024-08-29 | パークス株式会社 | How to make hypochlorous acid water |
WO2024034208A1 (en) * | 2022-08-08 | 2024-02-15 | 株式会社トクヤマ | Device for producing acidic hypochlorous acid water and method for producing acidic hypochlorous acid water |
JP7368658B1 (en) * | 2022-08-08 | 2023-10-24 | 株式会社トクヤマ | Acidic hypochlorous acid water production equipment and acidic hypochlorous acid water production method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011173858A (en) * | 2009-12-03 | 2011-09-08 | Tomita Pharmaceutical Co Ltd | Hypochlorous acid-based germicidal disinfectant, and method and apparatus for preparing the same |
JP2013001620A (en) * | 2011-06-20 | 2013-01-07 | Evatech Corp | Weakly acidic hypochlorous acid and apparatus and method for preparing the same |
-
2019
- 2019-01-25 JP JP2019011318A patent/JP6808201B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020117422A (en) | 2020-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6808201B2 (en) | Manufacturing method of weakly acidic hypochlorous acid water | |
JP6811967B2 (en) | Manufacturing method of weakly acidic hypochlorous acid water | |
WO2019225599A1 (en) | Method for producing weakly acidic hypochlorous acid aqueous solution | |
JP6093799B2 (en) | Method for producing aqueous solution containing chlorous acid used as disinfectant | |
JP5084734B2 (en) | Activated peroxide solutions and methods for their preparation | |
JP2005154551A (en) | Sterilizing cleanser composition | |
JP2014508779A (en) | Electrochemical formation of quaternary ammonium compounds | |
JP2013001620A (en) | Weakly acidic hypochlorous acid and apparatus and method for preparing the same | |
JP2019218436A (en) | Oxidizing composition containing quaternary alkylammonium ion, chlorous acid ion, and hypochlorous acid ion | |
WO2015029263A1 (en) | Cleaning solution and manufacturing method therefor | |
JP2001199811A (en) | Aqueous solution containing peracetic acid | |
JP2011153095A (en) | Disinfection liquid and method for producing the same | |
RU2818765C2 (en) | Method of producing weakly acidic aqueous solution of hypochlorous acid | |
JP2024111519A (en) | Method for producing weakly acidic hypochlorous acid water | |
JP2014148526A (en) | Method for producing disinfectant antiseptic solution | |
JP7066155B1 (en) | Rust preventive for hypochlorous acid aqueous solution, sterilizing / cleaning agent with rust preventive effect, and its preparation method | |
WO2022009824A1 (en) | Bactericidal composition | |
Girenko et al. | Influence of the platinum surface state on the selectivity of the electrochemical synthesis of sodium hypochlorite | |
JP2007031374A (en) | Method for producing germicidal disinfectant solution | |
JP6304701B2 (en) | Washing water containing hypochlorous acid and hypochlorite ion and method for producing the same | |
RU2657432C2 (en) | Method for generating chloride dioxide | |
JP3851932B2 (en) | Chlorine dioxide water production method | |
WO1993017960A1 (en) | Method for the production of chlorine dioxide | |
WO2013132492A1 (en) | Method for preparing biocidal and antifouling aqueous compositions comprising hydrobromic acid, urea and sodium hypochlorite | |
JP2023047032A (en) | Slightly acidic aqueous hypochlorite solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201201 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6808201 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |