JP6874050B2 - 磁界に対する応答が改善された磁気抵抗素子 - Google Patents
磁界に対する応答が改善された磁気抵抗素子 Download PDFInfo
- Publication number
- JP6874050B2 JP6874050B2 JP2019091093A JP2019091093A JP6874050B2 JP 6874050 B2 JP6874050 B2 JP 6874050B2 JP 2019091093 A JP2019091093 A JP 2019091093A JP 2019091093 A JP2019091093 A JP 2019091093A JP 6874050 B2 JP6874050 B2 JP 6874050B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- antiferromagnetic
- layers
- immobilization
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 317
- 230000004044 response Effects 0.000 title description 11
- 230000005290 antiferromagnetic effect Effects 0.000 claims description 112
- 125000006850 spacer group Chemical group 0.000 claims description 80
- 238000000034 method Methods 0.000 claims description 45
- 239000002885 antiferromagnetic material Substances 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 32
- 229910019041 PtMn Inorganic materials 0.000 claims description 26
- 239000000758 substrate Substances 0.000 claims description 17
- 238000001514 detection method Methods 0.000 claims description 8
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 4
- 229910002056 binary alloy Inorganic materials 0.000 claims 2
- 239000010410 layer Substances 0.000 description 467
- 230000005294 ferromagnetic effect Effects 0.000 description 85
- 238000000137 annealing Methods 0.000 description 44
- 230000008878 coupling Effects 0.000 description 16
- 238000010168 coupling process Methods 0.000 description 16
- 238000005859 coupling reaction Methods 0.000 description 16
- 230000005415 magnetization Effects 0.000 description 15
- 229910003321 CoFe Inorganic materials 0.000 description 11
- 239000000696 magnetic material Substances 0.000 description 10
- 239000010949 copper Substances 0.000 description 8
- 230000006399 behavior Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000003302 ferromagnetic material Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000002889 diamagnetic material Substances 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910015136 FeMn Inorganic materials 0.000 description 1
- -1 IrMn Inorganic materials 0.000 description 1
- 241000700141 Rotifera Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000005303 antiferromagnetism Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000005293 ferrimagnetic effect Effects 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0052—Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3929—Disposition of magnetic thin films not used for directly coupling magnetic flux from the track to the MR film or for shielding
- G11B5/3932—Magnetic biasing films
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/098—Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3909—Arrangements using a magnetic tunnel junction
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3929—Disposition of magnetic thin films not used for directly coupling magnetic flux from the track to the MR film or for shielding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3263—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being symmetric, e.g. for dual spin valve, e.g. NiO/Co/Cu/Co/Cu/Co/NiO
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
- H01F10/3272—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/30—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
- H01F41/302—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F41/305—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
- H01F41/306—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling conductive spacer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
- H10N50/85—Materials of the active region
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B2005/3996—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Hall/Mr Elements (AREA)
- Measuring Magnetic Variables (AREA)
- Thin Magnetic Films (AREA)
Description
有することも知られているが、磁界の限られた範囲にわたるものであり、ホール素子が動作することができる範囲よりもさらに範囲が限定されている。しかしながらGMR素子またはTMR素子の直線性は、磁界の範囲が限定されている上に、不規則性の問題を抱えていることが知られている。また、いくつかのGMR素子およびTMR素子には、高温貯蔵の後、挙動が変化する傾向があることも知られている。したがって、直線性不規則性が低減され、また、高温貯蔵の影響が小さいGMR素子またはTMR素子を提供することが望ましい。
上記磁気抵抗素子のいくつかの実施形態では、第1の非磁性層の材料は、第1の合成反強磁性体(SAF)構造と自由層構造の間の磁気結合を最大強磁性結合と最大反強磁性結合の間にすることができるように、第1の非磁性層の厚さを0.5nmより厚くすることができるように選択される。
上記磁気抵抗素子のいくつかの実施形態では、第1の非磁性層の厚さは、約0.9nmと約4.0nmの間である。
上記磁気抵抗素子のいくつかの実施形態では、第2の非磁性層の材料および厚さは、第2の合成反強磁性体(SAF)構造と自由層構造の間の実質的にゼロ磁気結合を可能にするように選択される。
上記磁気抵抗素子のいくつかの実施形態では、第2の非磁性層の厚さは、約2.0nmと約3.0nmの間である。
上記磁気抵抗素子のいくつかの実施形態では、第1の反強磁性構造および第2の反強磁性構造は、いずれもPtMnからなる。
上記磁気抵抗素子のいくつかの実施形態では、第1の反強磁性構造はIrMnからなり、また、第2の反強磁性構造はPtMnからなる。
上記磁気抵抗素子のいくつかの実施形態では、磁気抵抗素子はGMR検知素子を備える。
本発明の別の態様を理解するために有用な別の例によれば、磁気抵抗素子を製造する方法は、基板の上に磁気抵抗素子を堆積させるステップを含み、磁気抵抗素子は、第1の強磁性層、第2の強磁性層、および第1の強磁性層と第2の強磁性層の間に配置されたスペーサ層であって、第1の強磁性層と第2の強磁性層の間の反強磁性結合を可能にするように選択された厚さを有する選択された材料からなるスペーサ層を備える第1の合成反強磁性体(SAF)構造を含む。磁気抵抗素子は、第1の強磁性層、第2の強磁性層、および第1の強磁性層と第2の強磁性層の間に配置されたスペーサ層であって、第1の強磁性層と第2の強磁性層の間の反強磁性結合を可能にするように選択された厚さを有する選択された材料からなるスペーサ層を備える第2の合成反強磁性体(SAF)構造をさらに含む。磁気抵抗素子は、第1の合成反強磁性体(SAF)構造の近傍に配置され、かつ、結合された第1の反強磁性層と、第1の合成反強磁性体(SAF)構造および第2の合成反強磁性体(SAF)構造が第1の反強磁性層と第2の反強磁性層の間に配置されるように、
第2の合成反強磁性体(SAF)構造の近傍に配置され、かつ、結合された第2の反強磁性層をさらに含む。磁気抵抗素子は、第1の合成反強磁性体(SAF)構造と第2の合成反強磁性体(SAF)構造の間に配置された自由層構造をさらに含む。磁気抵抗素子は、第1の合成反強磁性体(SAF)構造と自由層構造の間に配置された第1の非磁性層と、第2の合成反強磁性体(SAF)構造と自由層構造の間に配置された第2の非磁性層とをさらに含む。第1の非磁性層の材料は、第1の非磁性層の厚さを0.5nmより厚くすることができ、一方、第1の合成反強磁性体(SAF)構造と自由層構造の間の所望の部分固定化を可能にするように選択される。
上記方法のいくつかの実施形態では、第1の非磁性層の材料は、第1の合成反強磁性体(SAF)構造と自由層構造の間の磁気結合を最大強磁性結合と最大反強磁性結合の間にすることができるように、第1の非磁性層の厚さを0.5nmより厚くすることができるように選択される。
第1の合成反強磁性体(SAF)構造および第1の反強磁性構造を、第1の焼きなまし温度で、第1の焼きなまし磁界で、第1の焼きなまし磁界方向で、かつ、第1の焼きなまし継続期間で焼きなますステップと、
第2の合成反強磁性体(SAF)構造および第2の反強磁性構造を、第2の焼きなまし温度で、第2の焼きなまし磁界で、第2の焼きなまし磁界方向で、かつ、第2の焼きなまし継続期間で焼きなますステップと
をさらに含み、
第1の焼きなまし磁界方向は選択された磁化方向にあり、
第2の焼きなまし磁界方向は、第1の焼きなまし磁界方向に対して直角であり、
第1の焼きなまし磁界は第2の焼きなまし磁界より大きく、第2の焼きなまし磁界は、第1の合成反強磁性体(SAF)構造の焼きなまし、または第1の反強磁性構造の焼きなましに影響を及ぼすことなく、第2の合成反強磁性体(SAF)構造の焼きなまし、および第2の反強磁性構造の焼きなましが得られるように選択される。
上記方法のいくつかの実施形態では、第1の焼きなまし磁界は約1テスラであり、また、第2の焼きなまし磁界は約1テスラの範囲内である。
上記方法のいくつかの実施形態では、第1の焼きなまし磁界は約1テスラであり、また、第2の焼きなまし磁界は約1テスラの範囲内である。
の焼きなまし温度は約160℃であり、また、第1の焼きなまし継続期間は約1時間であり、第2の焼きなまし継続期間は約30分である。
上記方法のいくつかの実施形態では、第1の非磁性層は、第1の合成反強磁性体(SAF)構造と自由層構造の間の調整可能なRKKY結合を提供するように選択される材料からなる。
本発明の以上の特徴ならびに本発明自体は、図面についての以下の詳細な説明からより完全に理解されよう。
曲線102は、理想GMR素子の伝達関数、すなわちGMR素子によって遭遇される抵抗対磁界を表している。伝達関数102は、上側飽和点102bと下側飽和点102cの間に線形領域102aを有する。領域102d、102eは飽和領域である。線形領域102aは理想線形領域であることを理解されたい。さらに、理想GMR素子は、その磁気履歴に無関係に、所与の磁界に対して同じ抵抗を示す。
図2の左側に、個々の層が機能名称によって識別されている。図2の右側には、機能層を形成することができる副層の磁気特性が示されている。一般に、磁気材料は様々な磁気
特性を有することができ、また、それらに限定されないが、強磁性、反強磁性および非磁性を含む様々な用語によって分類され得る。様々なタイプの磁気材料についての説明は、本明細書においては詳細にはなされていない。しかしながら、ここでは、強磁性材料は、強磁性材料中の原子の磁気モーメントが、概して、平行で、かつ、同じ方向になるように整列する傾向があり、強磁性材料の非ゼロ正味磁気磁化をもたらす材料である、と言及しておくだけで十分であるとしておく。
示されているように、従来技術のGMR素子200は、基板の上に配置されたシード層202、シード層202の上に配置された反強磁性固定化層(pinning layer)204、および反強磁性固定化層204の上に配置された固定層(pinned layer)206を含むことができる。固定層206は、第1の強磁性固定層206a、第2の強磁性固定層206c、およびそれらの間に配置されたスペーサ層206bからなり得る。
従来技術のGMR素子200の層の厚さの例は、ナノメートルの単位で示されている。従来技術のGMR素子の層の材料の例は、原子記号によって示されている。
反強磁性固定化層204に関して、反強磁性固定化層204内の副層(すなわち層部分)には、右矢印および左矢印によって示されている異なる交互方向を指す磁界を有し、ゼロの正味磁界を有する反強磁性固定化層をもたらす傾向がある。反強磁性固定化層204の頂部表面には、1つの方向、ここでは左に向かって示されている方向を指す磁気モーメントを有する傾向がある。
が存在しているため、第2の強磁性固定層206cには、第1の強磁性固定層206aと反強磁性結合する傾向があり、したがって第2の強磁性固定層206cは、他の方向、ここでは右を指して示されている方向を指す磁界を有する。3つの層206a、206b、206cの組合せは、合成反強磁性構造または層と呼ばれ得る。
傾向がある。
先行技術の二重固定GMR素子300は、第2の固定層314によって生成される静磁界を達成する。第2の固定層314層は、第2の反強磁性固定化層316の底部表面に強磁性結合されており、したがって第2の固定層314内の磁界は、反強磁性固定化層316の底部表面における磁気モーメントと同じ方向、ここではページに入る方向を指して示されている方向を指す。
図4の左側に、個々の層が機能名称によって識別されている。図4の右側には、機能層を形成することができる副層の磁気特性が示されている。
一般に、磁気材料は様々な磁気特性を有することができ、また、それらに限定されないが、強磁性、反強磁性および非磁性を含む様々な用語によって分類され得る。これらのタイプの磁気材料の簡単な説明は、上で与えられている。
第1の強磁性固定層406aと第2の強磁性固定層406cの間にスペーサ406bが存在しているため、第2の強磁性固定層406cには、第1の強磁性固定層406aと反強磁性結合する傾向があり、したがって第2の強磁性固定層406cは、他の方向、ここでは右を指して示されている方向を指す磁界を有する。上で説明したように、3つの層406a、406b、406cの組合せは、合成反強磁性構造または層と呼ばれ得る。
きる。いくつかの実施形態では、自由層410は、第2の強磁性自由層410bの下に配置された第1の強磁性自由層410aからなり得る。いくつかの実施形態では、スペーサ層408は、非磁気材料(例えばGMRの場合は導電性Cu、またはTMRの場合は絶縁材料)からなる。
キャップ層418は、GMR素子400を保護するためにGMR素子400の頂部に配置され得る。
自由層410内の磁界の指示方向と整列した固定磁界指示方向を有する第2の固定層414には、特定の挙動を自由層410内にもたらす傾向がある。具体的には、第2の固定層414内の磁界の指示方向は、自由層の正味磁界の方向以外の方向を指す自由層410内の磁気領域の数の低減、すなわち外部磁界が存在しない場合、ページから出る方向以外の方向を指す磁気領域の数の低減をもたらす。
磁界に露出されない場合、ページから出ていくように示されている自由層410の正味磁界と整列される磁界指示方向を有するが、GMR素子400が磁界に露出されると回転することができる。上で説明したように、自由層410内の第1の複数の磁気領域の磁界指示方向は、外部磁界に応答して回転する。第2の複数の磁気領域には、第1の方向とは異なる1つまたは複数の方向を指す磁界指示方向を有する傾向がある。
uの場合、1.3nm)近辺で選択されることが可能であり、それにより、単に厚さに応じて急激に結合が小さくなるだけの図2の薄いTaスペーサ312に現在使用されている堆積プロセスよりはるかに優れた再現可能堆積プロセスが得られる。
− ヨーク500の主部分501の長さ(L)は、約10μmと約10ミリメートルの間であってもよい。
− ヨーク500の幅(w)は、約1μmと約20μmの間であってもよい。
ヨーク形状は、主部分501の縦方向の中央領域により良好な磁気均質性を提供する。これは、主として主部分501に沿っているヨーク長の減磁界によるものであり、また、これは、ヨーク500の長さに沿ったゼロ磁界における磁化として理解され得る図4の自由層410の異方性を誘導する。固定層(例えば図4の406)がヨークに対して直角の磁界(例えば矢印502)を有する場合、矢印502の方向に外部磁界が印加されると、自由層410の磁化が一様に、すなわち領域をジャンプすることなく回転する。自由層410の磁化の均質な回転は、応答にステップがない応答曲線をもたらす(例えば図1参照)。
他の実施形態では、GMR素子またはTMR素子400は、ヨークの形では形成されず
、その代わりに、例えば寸法Lおよびwを有する直線バーの形で形成され、寸法lおよびdに関連する特徴は有していない。バー形GMR素子またはTMR素子の場合でも、依然として断面線A−Aは、図4のGMR素子400または図10および11の磁気抵抗素子の断面を表している。
磁界センサ600は、輪形磁石の少なくとも回転速度を表す出力信号を生成するように構成され得る。いくつかの構造では、輪形磁石602は、ターゲット対象、例えばエンジン内のカム軸に結合され、検知された輪形磁石602の回転速度は、ターゲット対象の回転速度を表す。
に第2の焼きなましが実行され、この第2の焼きなましは、第1の固定層(例えば図4の406)内の磁界の方向、および第1の反強磁性層(例えば図4の404)内の方向に対して直角に配向される第2の固定層内およびやはり第2の反強磁性層内に磁界を提供する。この焼きなましステップは、例えば、T1に等しくてもよい温度T2で、かつ、磁界H1より小さい磁界H2で1時間の継続期間を有することができる。磁界H2は、図5の矢印504に平行の方向に印加され得る。このステップは、第1の固定層(例えば図4の406)の磁化方向および値を変えることなく、第2の固定層(例えば図4の414)の磁化を配向することを意味している。
図4の二重固定GMR素子400とは異なり、部分固定化のための上で説明した望ましい特性を提供する、上で説明した非磁性層412は、自由層412の上ではなく、自由層412の下に存在している。
2つのSAF構造内のスペーサ層406b、1102b(本明細書においては非磁性層とも呼ばれる)は、周囲の強磁性層406a、406bと1102a、1102bの間の強力な反強磁性結合をもたらすように選択される材料および厚さを有する。
11のSAF構造1102に置換された二重固定GMR素子を提供することができることを明確にされたい。
上記図7を簡単に参照すると、PtMn固定化層404およびPtMn固定化層416、すなわち2つのPtMn固定化層を有する図11の二重固定層構造を焼きなますための典型的な値が以下の表2に示されている。
本明細書に記載されているすべての参考文献は、参照によりそれらのすべてが本明細書に組み込まれている。
Claims (28)
- 基板の上に堆積された磁気抵抗素子であって、
前記基板の上に配置された第1の反強磁性固定化層と、
前記基板の上に配置された第2の反強磁性固定化層と、
前記第1の反強磁性固定化層に近接して配置された第1の合成反強磁性体(SAF)構造と、
前記第2の反強磁性固定化層に近接して配置された第2の合成反強磁性体(SAF)構造であって、前記第1及び第2の合成反強磁性体(SAF)構造は前記第1及び第2の反強磁性固定化層の間に配置され、前記第1及び第2の反強磁性固定化層は異なる厚さを有し、前記第1及び第2の反強磁性固定化層は同じ材料からなり、前記第1及び第2の反強磁性固定化層における磁界方向は、それぞれ、第1及び第2の線にそれぞれ平行な第1及び第2の方向を有するように焼きなまされ、前記第1及び第2の方向は互いに90度異なる、第2の合成反強磁性体(SAF)構造と、
前記第1及び第2の合成反強磁性体(SAF)構造の間に配置された自由層構造であって、それぞれ異なる材料からなる第1及び第2の自由層を含む、自由層構造と
を含む、前記基板の上に堆積された層のスタックを備える、磁気抵抗素子。 - 前記第1及び第2の反強磁性固定化層の両方がPtMnからなる、請求項1に記載の磁気抵抗素子。
- 前記第1の反強磁性固定化層の厚さは5〜15nmの第1の範囲にあり、前記第2の反強磁性固定化層は15〜30nmの第2の範囲である、請求項2に記載の磁気抵抗素子。
- 前記磁気抵抗素子はヨーク形状を有する、請求項2に記載の磁気抵抗素子。
- 前記ヨーク形状の長さ(L)及び前記ヨーク形状の横方向アームの長さ(d)はそれぞれ前記ヨーク形状の幅(w)の少なくとも3倍であり、前記ヨーク形状の幅(w)は1μmと20μmの間であり、前記長さ(L)は前記ヨーク形状の最も長い寸法である、請求項4に記載の磁気抵抗素子。
- 前記磁気抵抗素子がスピンバルブを備える、請求項2に記載の磁気抵抗素子。
- 前記磁気抵抗素子がGMR検知素子を備える、請求項2に記載の磁気抵抗素子。
- 前記磁気抵抗素子がTMR検知素子を備える、請求項2に記載の磁気抵抗素子。
- 磁気抵抗素子を製造する方法であって、
基板上の層のスタック内に磁気抵抗素子を堆積させるステップを含み、前記層のスタックは、
前記基板の上に配置された第1の反強磁性固定化層と、
前記基板の上に配置された第2の反強磁性固定化層と、
前記第1の反強磁性固定化層に近接して配置された第1の合成反強磁性体(SAF)構造と、
前記第2の反強磁性固定化層に近接して配置された第2の合成反強磁性体(SAF)構造であって、前記第1及び第2の合成反強磁性体(SAF)構造は前記第1及び第2の反強磁性固定化層の間に配置され、前記第1及び第2の反強磁性固定化層は異なる厚さを有し、前記第1及び第2の反強磁性固定化層は同じ材料からなる、第2の合成反強磁性体(SAF)構造と、
前記第1及び第2の合成反強磁性体(SAF)構造の間に配置された自由層構造であって、それぞれ異なる材料からなる第1及び第2の自由層を含む、自由層構造と
を含み、前記方法はさらに、
前記第1及び第2の反強磁性固定化層における磁界方向を、それぞれ、第1及び第2の線にそれぞれ平行な第1及び第2の方向を有するように焼きなますステップであって、前記第1及び第2の方向は互いに90度異なる、ステップを含む、方法。 - 前記第1及び第2の反強磁性固定化層の両方がPtMnからなる、請求項9に記載の方法。
- 前記第1の反強磁性固定化層の厚さは5〜15nmの第1の範囲にあり、前記第2の反強磁性固定化層は15〜30nmの第2の範囲である、請求項10に記載の方法。
- 前記磁気抵抗素子はヨーク形状を有する、請求項10に記載の方法。
- 前記ヨーク形状の長さ(L)及び前記ヨーク形状の横方向アームの長さ(d)はそれぞれ前記ヨーク形状の幅(w)の少なくとも3倍であり、前記ヨーク形状の幅(w)は1μmと20μmの間であり、前記長さ(L)は前記ヨーク形状の最も長い寸法である、請求項12に記載の方法。
- 前記磁気抵抗素子がスピンバルブを備える、請求項10に記載の方法。
- 前記磁気抵抗素子がGMR検知素子を備える、請求項10に記載の方法。
- 前記磁気抵抗素子がTMR検知素子を備える、請求項10に記載の方法。
- 前記第1及び第2の自由層のうちの1つがNiFeを含む、請求項1に記載の磁気抵抗素子。
- 前記第1及び第2の自由層のうちの1つがNiFeからなる、請求項1に記載の磁気抵抗素子。
- 前記第1及び第2の合成反強磁性体(SAF)構造が前記自由層構造を含まない、請求項1に記載の磁気抵抗素子。
- 前記第1及び第2の自由層が同じ磁界方向を有する、請求項1に記載の磁気抵抗素子。
- 前記層のスタックが、
前記第1の合成反強磁性体(SAF)構造と前記自由層構造との間に配置された第1の非磁性スペーサ層と、
前記第2の合成反強磁性体(SAF)構造と前記自由層構造との間に配置された第2の非磁性スペーサ層とをさらに含む、請求項1に記載の磁気抵抗素子。 - 前記第1及び第2の自由層のうちの1つがNiFeを含む、請求項9に記載の方法。
- 前記第1及び第2の自由層のうちの1つがNiFeからなる、請求項9に記載の方法。
- 前記第1及び第2の合成反強磁性体(SAF)構造が前記自由層構造を含まない、請求項9に記載の方法。
- 前記第1及び第2の自由層が同じ磁界方向を有する、請求項9に記載の方法。
- 前記層のスタックが、
前記第1の合成反強磁性体(SAF)構造と前記自由層構造との間に配置された第1の非磁性スペーサ層と、
前記第2の合成反強磁性体(SAF)構造と前記自由層構造との間に配置された第2の非磁性スペーサ層とをさらに含む、請求項9に記載の方法。 - 前記第1及び第2の自由層のうちの1つが二元合金を含む、請求項1に記載の磁気抵抗素子。
- 前記第1及び第2の自由層のうちの1つが二元合金を含む、請求項9に記載の方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461925446P | 2014-01-09 | 2014-01-09 | |
US61/925,446 | 2014-01-09 | ||
US14/529,564 | 2014-10-31 | ||
US14/529,564 US9922673B2 (en) | 2014-01-09 | 2014-10-31 | Magnetoresistance element with improved response to magnetic fields |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016545937A Division JP6530757B2 (ja) | 2014-01-09 | 2015-01-07 | 磁界に対する応答が改善された磁気抵抗素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019165239A JP2019165239A (ja) | 2019-09-26 |
JP6874050B2 true JP6874050B2 (ja) | 2021-05-19 |
Family
ID=52394404
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016545864A Active JP6514707B2 (ja) | 2014-01-09 | 2015-01-07 | 磁場に対する向上した応答を促すための改良されたシード層を備える磁気抵抗素子 |
JP2016545809A Active JP6605478B2 (ja) | 2014-01-09 | 2015-01-07 | 磁界に対する応答が改善された磁気抵抗素子 |
JP2016545937A Active JP6530757B2 (ja) | 2014-01-09 | 2015-01-07 | 磁界に対する応答が改善された磁気抵抗素子 |
JP2019091093A Active JP6874050B2 (ja) | 2014-01-09 | 2019-05-14 | 磁界に対する応答が改善された磁気抵抗素子 |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016545864A Active JP6514707B2 (ja) | 2014-01-09 | 2015-01-07 | 磁場に対する向上した応答を促すための改良されたシード層を備える磁気抵抗素子 |
JP2016545809A Active JP6605478B2 (ja) | 2014-01-09 | 2015-01-07 | 磁界に対する応答が改善された磁気抵抗素子 |
JP2016545937A Active JP6530757B2 (ja) | 2014-01-09 | 2015-01-07 | 磁界に対する応答が改善された磁気抵抗素子 |
Country Status (5)
Country | Link |
---|---|
US (4) | US9529060B2 (ja) |
EP (3) | EP3090272B1 (ja) |
JP (4) | JP6514707B2 (ja) |
KR (4) | KR102336038B1 (ja) |
WO (3) | WO2015105836A1 (ja) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9529060B2 (en) | 2014-01-09 | 2016-12-27 | Allegro Microsystems, Llc | Magnetoresistance element with improved response to magnetic fields |
JP2015133377A (ja) * | 2014-01-10 | 2015-07-23 | Tdk株式会社 | 磁気検出素子および回転検出装置 |
US9620707B2 (en) * | 2015-04-16 | 2017-04-11 | Infineon Technologies Ag | Magnetoresistive devices and methods for manufacturing magnetoresistive devices |
KR102488536B1 (ko) | 2015-06-05 | 2023-01-13 | 알레그로 마이크로시스템스, 엘엘씨 | 자기장들에 대한 향상된 반응을 갖는 스핀 밸브 자기저항 요소 |
US10276787B2 (en) | 2016-02-11 | 2019-04-30 | Texas Instruments Incorporated | Integrated anisotropic magnetoresistive device |
WO2017221896A1 (ja) * | 2016-06-20 | 2017-12-28 | 国立大学法人東北大学 | トンネル磁気抵抗素子及びその製造方法 |
US9741372B1 (en) * | 2016-08-26 | 2017-08-22 | Allegro Microsystems, Llc | Double pinned magnetoresistance element with temporary ferromagnetic layer to improve annealing |
US11022661B2 (en) | 2017-05-19 | 2021-06-01 | Allegro Microsystems, Llc | Magnetoresistance element with increased operational range |
US10620279B2 (en) | 2017-05-19 | 2020-04-14 | Allegro Microsystems, Llc | Magnetoresistance element with increased operational range |
FR3067116B1 (fr) * | 2017-06-02 | 2019-07-12 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Systeme et procede de suppression du bruit basse frequence de capteurs magneto-resistifs a magnetoresistence tunnel |
US10365123B2 (en) * | 2017-07-21 | 2019-07-30 | Texas Instruments Incorporated | Anisotropic magneto-resistive (AMR) angle sensor |
EP3442042B1 (en) * | 2017-08-10 | 2020-12-09 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Synthetic antiferromagnetic layer, magnetic tunnel junction and spintronic device using said synthetic antiferromagnetic layer |
JP2019068012A (ja) | 2017-10-05 | 2019-04-25 | 東京エレクトロン株式会社 | 被加工物の処理方法。 |
US20190178954A1 (en) * | 2017-12-11 | 2019-06-13 | Allegro Microsystems, Llc | Magnetoresistance Element Having Selected Characteristics To Achieve A Desired Linearity |
US11199424B2 (en) | 2018-01-31 | 2021-12-14 | Allegro Microsystems, Llc | Reducing angle error in a magnetic field angle sensor |
US10777345B2 (en) | 2018-02-21 | 2020-09-15 | Allegro Microsystems, Llc | Spin valve with bias alignment |
US10840001B2 (en) | 2018-03-06 | 2020-11-17 | Allegro Microsystems, Llc | Magnetoresistance element with extended linear response to magnetic fields |
US11193989B2 (en) | 2018-07-27 | 2021-12-07 | Allegro Microsystems, Llc | Magnetoresistance assembly having a TMR element disposed over or under a GMR element |
US10605874B2 (en) | 2018-08-06 | 2020-03-31 | Allegro Microsystems, Llc | Magnetic field sensor with magnetoresistance elements having varying sensitivity |
US10935612B2 (en) | 2018-08-20 | 2021-03-02 | Allegro Microsystems, Llc | Current sensor having multiple sensitivity ranges |
US10753989B2 (en) | 2018-08-27 | 2020-08-25 | Allegro Microsystems, Llc | Magnetoresistance element with perpendicular or parallel magnetic anistropy |
US10734443B2 (en) * | 2018-08-27 | 2020-08-04 | Allegro Microsystems, Llc | Dual manetoresistance element with two directions of response to external magnetic fields |
KR102262706B1 (ko) * | 2019-07-30 | 2021-06-09 | 한양대학교 산학협력단 | 합성형 반강자성체 및 이를 이용하는 다중 비트 메모리 |
US11209505B2 (en) * | 2019-08-26 | 2021-12-28 | Western Digital Technologies, Inc. | Large field range TMR sensor using free layer exchange pinning |
US11175359B2 (en) | 2019-08-28 | 2021-11-16 | Allegro Microsystems, Llc | Reducing voltage non-linearity in a bridge having tunneling magnetoresistance (TMR) elements |
US11217626B2 (en) | 2019-08-30 | 2022-01-04 | Allegro Microsystems, Llc | Dual tunnel magnetoresistance (TMR) element structure |
US11127518B2 (en) | 2019-08-30 | 2021-09-21 | Allegro Microsystems, Llc | Tunnel magnetoresistance (TMR) element having cobalt iron and tantalum layers |
FR3101156B1 (fr) | 2019-09-19 | 2021-10-15 | Commissariat Energie Atomique | Empilement magnétorésistif sans champ rayonné, capteur et système de cartographie magnétique comprenant un tel empilement |
US11500042B2 (en) * | 2020-02-28 | 2022-11-15 | Brown University | Magnetic sensing devices based on interlayer exchange-coupled magnetic thin films |
US11561112B2 (en) * | 2020-03-13 | 2023-01-24 | Allegro Microsystems, Llc | Current sensor having stray field immunity |
US11467233B2 (en) | 2020-03-18 | 2022-10-11 | Allegro Microsystems, Llc | Linear bridges having nonlinear elements |
US11408948B2 (en) | 2020-03-18 | 2022-08-09 | Allegro Microsystems, Llc | Linear bridge having nonlinear elements for operation in high magnetic field intensities |
US11782103B2 (en) | 2020-06-12 | 2023-10-10 | Allegro Microsystems, Llc | Dual double-pinned spin valve element having magnet bias with increased linear range |
US20220238195A1 (en) * | 2021-01-24 | 2022-07-28 | RightDevice Inc. | System and method of processing medical implant device and patient data |
US11630168B2 (en) | 2021-02-03 | 2023-04-18 | Allegro Microsystems, Llc | Linear sensor with dual spin valve element having reference layers with magnetization directions different from an external magnetic field direction |
US11567108B2 (en) | 2021-03-31 | 2023-01-31 | Allegro Microsystems, Llc | Multi-gain channels for multi-range sensor |
US11630169B1 (en) | 2022-01-17 | 2023-04-18 | Allegro Microsystems, Llc | Fabricating a coil above and below a magnetoresistance element |
US11782105B2 (en) | 2022-01-17 | 2023-10-10 | Allegro Microsystems, Llc | Fabricating planarized coil layer in contact with magnetoresistance element |
US11719771B1 (en) | 2022-06-02 | 2023-08-08 | Allegro Microsystems, Llc | Magnetoresistive sensor having seed layer hysteresis suppression |
US20240094314A1 (en) * | 2022-09-15 | 2024-03-21 | Infineon Technologies Ag | Multiple cobalt iron boron layers in a free layer of a magnetoresistive sensing element |
Family Cites Families (202)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2665010B1 (fr) | 1990-07-20 | 1992-09-18 | Thomson Csf | Dispositif magnetique de lecture a reseau matriciel de tetes de lecture. |
DE4243358A1 (de) | 1992-12-21 | 1994-06-23 | Siemens Ag | Magnetowiderstands-Sensor mit künstlichem Antiferromagneten und Verfahren zu seiner Herstellung |
FR2727778B1 (fr) | 1994-12-02 | 1997-01-03 | Commissariat Energie Atomique | Codeur magnetique pour la lecture de marques sur une piste magnetique associee |
FR2729790A1 (fr) | 1995-01-24 | 1996-07-26 | Commissariat Energie Atomique | Magnetoresistance geante, procede de fabrication et application a un capteur magnetique |
JPH09111419A (ja) | 1995-10-16 | 1997-04-28 | Alps Electric Co Ltd | 磁気抵抗効果材料および磁気抵抗効果多層膜 |
FR2742571B1 (fr) | 1995-12-15 | 1998-01-16 | Commissariat Energie Atomique | Structure et capteur multicouches et procede de realisation |
FR2752302B1 (fr) | 1996-08-08 | 1998-09-11 | Commissariat Energie Atomique | Capteur de champ magnetique a pont de magnetoresistances |
US6026355A (en) | 1996-09-18 | 2000-02-15 | Itron, Inc. | Solid state watt-hour meter using GMR sensor |
KR100521798B1 (ko) | 1996-11-06 | 2006-01-12 | 가부시키가이샤 시마세이키 세이사쿠쇼 | 횡편기에있어서편지인하장치 |
JP3886589B2 (ja) | 1997-03-07 | 2007-02-28 | アルプス電気株式会社 | 巨大磁気抵抗効果素子センサ |
US5923514A (en) | 1997-11-05 | 1999-07-13 | Square D Company | Electronic trip circuit breaker with CMR current sensor |
US5933308A (en) | 1997-11-19 | 1999-08-03 | Square D Company | Arcing fault protection system for a switchgear enclosure |
FR2773395B1 (fr) | 1998-01-05 | 2000-01-28 | Commissariat Energie Atomique | Capteur angulaire lineaire a magnetoresistances |
US6094330A (en) | 1998-01-14 | 2000-07-25 | General Electric Company | Circuit interrupter having improved current sensing apparatus |
US5933306A (en) | 1998-01-14 | 1999-08-03 | General Electric Company | Circuit breaker with ground fault detection module |
FR2774774B1 (fr) | 1998-02-11 | 2000-03-03 | Commissariat Energie Atomique | Magnetoresistance a effet tunnel et capteur magnetique utilisant une telle magnetoresistance |
US6141197A (en) | 1998-03-10 | 2000-10-31 | General Electric Company | Smart residential circuit breaker |
DE19810838C2 (de) | 1998-03-12 | 2002-04-18 | Siemens Ag | Sensoreinrichtung mit mindestens einem magnetoresistiven Sensor auf einer Substratschicht eines Sensorsubstrats |
US6738236B1 (en) | 1998-05-07 | 2004-05-18 | Seagate Technology Llc | Spin valve/GMR sensor using synthetic antiferromagnetic layer pinned by Mn-alloy having a high blocking temperature |
JP2000055997A (ja) | 1998-08-05 | 2000-02-25 | Tdk Corp | 磁気センサ装置および電流センサ装置 |
JP2000056000A (ja) | 1998-08-11 | 2000-02-25 | Tdk Corp | 磁気センサ装置および電流センサ装置 |
JP2000055999A (ja) | 1998-08-11 | 2000-02-25 | Tdk Corp | 磁気センサ装置および電流センサ装置 |
DE19843348A1 (de) | 1998-09-22 | 2000-03-23 | Bosch Gmbh Robert | Magnetoresistives Sensorelement, insbesondere Winkelsensorelement |
WO2000063714A1 (en) * | 1999-04-20 | 2000-10-26 | Seagate Technology Llc | GIANT MAGNETORESISTIVE SENSOR WITH A CrMnPt PINNING LAYER AND A NiFeCr SEED LAYER |
US6490140B1 (en) | 1999-04-28 | 2002-12-03 | Seagate Technology Llc | Giant magnetoresistive sensor with a PtMnX pinning layer and a NiFeCr seed layer |
US6449134B1 (en) * | 1999-08-05 | 2002-09-10 | International Business Machines Corporation | Read head with file resettable dual spin valve sensor |
US6278592B1 (en) * | 1999-08-17 | 2001-08-21 | Seagate Technology Llc | GMR spin valve having a bilayer TaN/NiFeCr seedlayer to improve GMR response and exchange pinning field |
US6556390B1 (en) | 1999-10-28 | 2003-04-29 | Seagate Technology Llc | Spin valve sensors with an oxide layer utilizing electron specular scattering effect |
US6411476B1 (en) * | 1999-10-28 | 2002-06-25 | International Business Machines Corporation | Trilayer seed layer structure for spin valve sensor |
US6770382B1 (en) | 1999-11-22 | 2004-08-03 | Headway Technologies, Inc. | GMR configuration with enhanced spin filtering |
WO2001051949A1 (en) | 2000-01-13 | 2001-07-19 | Seagate Technology Llc | Dual spin-valve magnetoresistive sensor |
JP4356172B2 (ja) | 2000-02-16 | 2009-11-04 | ソニー株式会社 | データ送出システム及びデータ配信方法 |
DE10009944A1 (de) | 2000-03-02 | 2001-09-13 | Forschungszentrum Juelich Gmbh | Anordnung zum Messen eines Magnetfeldes und Verfahren zum Herstellen einer Anordnung zum Messen eines Magnetfeldes |
US6504363B1 (en) | 2000-03-07 | 2003-01-07 | Teodor Dogaru | Sensor for eddy current testing and method of use thereof |
EP1181693A1 (en) * | 2000-03-09 | 2002-02-27 | Koninklijke Philips Electronics N.V. | Magnetic device with a coupling layer and method of manufacturing and operation of such device |
US6549382B1 (en) * | 2000-06-14 | 2003-04-15 | International Business Machines Corporation | Read head with asymmetric dual AP pinned spin valve sensor |
JP2002082136A (ja) | 2000-06-23 | 2002-03-22 | Yazaki Corp | 電流センサ |
US6429640B1 (en) | 2000-08-21 | 2002-08-06 | The United States Of America As Represented By The Secretary Of The Air Force | GMR high current, wide dynamic range sensor |
US6521098B1 (en) * | 2000-08-31 | 2003-02-18 | International Business Machines Corporation | Fabrication method for spin valve sensor with insulating and conducting seed layers |
FR2814592B1 (fr) | 2000-09-26 | 2003-01-03 | Commissariat Energie Atomique | Dispositif a vanne de spin a reflexion electronique speculaire dependant du spin |
JP3603771B2 (ja) * | 2000-09-26 | 2004-12-22 | 松下電器産業株式会社 | 磁気抵抗素子およびそれを用いた磁気センサ、メモリー装置 |
JP2002150511A (ja) | 2000-11-06 | 2002-05-24 | Fujitsu Ltd | スピンバルブ磁気抵抗素子及びこれを用いる磁気ヘッド |
US6992482B2 (en) | 2000-11-08 | 2006-01-31 | Jentek Sensors, Inc. | Magnetic field sensor having a switchable drive current spatial distribution |
FR2817999B1 (fr) | 2000-12-07 | 2003-01-10 | Commissariat Energie Atomique | Dispositif magnetique a polarisation de spin et a empilement(s) tri-couche(s) et memoire utilisant ce dispositif |
FR2817998B1 (fr) | 2000-12-07 | 2003-01-10 | Commissariat Energie Atomique | Dispositif magnetique a polarisation de spin et a rotation d'aimantation, memoire et procede d'ecriture utilisant ce dispositif |
JP2002207692A (ja) | 2001-01-12 | 2002-07-26 | Ricoh Co Ltd | 画像データ転送装置、プリンタおよび画像データ転送システム |
JP2004022614A (ja) * | 2002-06-13 | 2004-01-22 | Alps Electric Co Ltd | 磁気検出素子及びその製造方法 |
JP2002314164A (ja) * | 2001-02-06 | 2002-10-25 | Sony Corp | 磁気トンネル素子及びその製造方法、薄膜磁気ヘッド、磁気メモリ、並びに磁気センサ |
US7050275B2 (en) * | 2001-02-20 | 2006-05-23 | Alps Electric Co., Ltd. | Exchange coupled film having improved current-carrying reliability and improved rate of change in resistance and magnetic sensing element using same |
JP2002267692A (ja) | 2001-03-08 | 2002-09-18 | Yazaki Corp | 電流センサ |
WO2002084680A1 (de) | 2001-04-12 | 2002-10-24 | Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. | Verfahren zum festlegen von referenzmagnetisierungen in schichtsystemen |
JP2002328140A (ja) | 2001-04-27 | 2002-11-15 | Yazaki Corp | 電流センサ |
US6791805B2 (en) | 2001-05-03 | 2004-09-14 | Seagate Technology Llc | Current-perpendicular-to-plane spin valve reader with reduced scattering of majority spin electrons |
EP1260787A1 (de) | 2001-05-21 | 2002-11-27 | ruf electronics gmbh | Winkelaufnehmer mit magnetoresistiven Sensorelementen |
JP3563375B2 (ja) * | 2001-06-19 | 2004-09-08 | アルプス電気株式会社 | 磁気検出素子及び前記磁気検出素子を用いた薄膜磁気ヘッド |
US6709767B2 (en) | 2001-07-31 | 2004-03-23 | Hitachi Global Storage Technologies Netherlands B.V. | In-situ oxidized films for use as cap and gap layers in a spin-valve sensor and methods of manufacture |
US6888703B2 (en) | 2001-09-17 | 2005-05-03 | Headway Technologies, Inc. | Multilayered structures comprising magnetic nano-oxide layers for current perpindicular to plane GMR heads |
US6600638B2 (en) * | 2001-09-17 | 2003-07-29 | International Business Machines Corporation | Corrosion resistive GMR and MTJ sensors |
JP3973442B2 (ja) * | 2001-09-25 | 2007-09-12 | アルプス電気株式会社 | 磁気検出素子及びその製造方法 |
FR2830621B1 (fr) | 2001-10-09 | 2004-05-28 | Commissariat Energie Atomique | Structure pour capteur et capteur de champ magnetique |
FR2830971B1 (fr) | 2001-10-12 | 2004-03-12 | Commissariat Energie Atomique | Dispositif magnetoresistif a vanne de spin a performances ameliorees |
JP3839697B2 (ja) | 2001-10-17 | 2006-11-01 | アルプス電気株式会社 | 回転角度センサ |
JP3799270B2 (ja) | 2001-12-21 | 2006-07-19 | 株式会社日立製作所 | 自動車の駆動状態を切り換える為の制御装置 |
JP3793725B2 (ja) * | 2002-01-25 | 2006-07-05 | アルプス電気株式会社 | 磁気検出素子及びその製造方法並びに前記磁気検出素子を用いた磁気検出装置 |
EP1336985A1 (de) * | 2002-02-19 | 2003-08-20 | Singulus Technologies AG | Zerstäubungskathode und Vorrichtung und Verfahren zum Beschichten eines Substrates mit mehreren Schichten |
US7161771B2 (en) | 2002-04-02 | 2007-01-09 | Hitachi Global Storage Technologies Netherlands B.V. | Dual spin valve sensor with a longitudinal bias stack |
JP4663204B2 (ja) | 2002-04-17 | 2011-04-06 | 財団法人電気磁気材料研究所 | 回転角度センサ |
JP3660323B2 (ja) | 2002-04-25 | 2005-06-15 | 久保木 襄 | 海水魚等の魚飼育槽 |
US20040056654A1 (en) | 2002-05-21 | 2004-03-25 | Jentek Sensors, Inc. | Magnetic field characterization of stresses and properties in materials |
US6927566B2 (en) | 2002-05-22 | 2005-08-09 | Ab Eletronik Gmbh | Device for generating output voltages |
DE10222467A1 (de) | 2002-05-22 | 2003-12-11 | A B Elektronik Gmbh | GMR-Drehwinkelsensor |
AU2003236951A1 (en) | 2002-06-06 | 2003-12-22 | Koninklijke Philips Electronics N.V. | Sensor and method for measuring a current of charged particles |
EP1525443A4 (en) | 2002-06-07 | 2007-08-01 | Automotive Systems Lab | SENSOR FOR MEASURING THE TENSION OF A SEAT BELT |
US7106046B2 (en) | 2002-06-18 | 2006-09-12 | Asahi Kasei Emd Corporation | Current measuring method and current measuring device |
US20030235016A1 (en) * | 2002-06-19 | 2003-12-25 | International Business Machines Corporation | Stabilization structures for CPP sensor |
JP2004031545A (ja) * | 2002-06-25 | 2004-01-29 | Alps Electric Co Ltd | 磁気検出素子及びその製造方法 |
US6831816B2 (en) | 2002-07-15 | 2004-12-14 | International Business Machines Corporation | CPP sensor with in-stack biased free layer |
DE10257253A1 (de) | 2002-07-26 | 2004-02-05 | Robert Bosch Gmbh | GMR-Sensorelement und dessen Verwendung |
US6781359B2 (en) | 2002-09-20 | 2004-08-24 | Allegro Microsystems, Inc. | Integrated current sensor |
DE10255327A1 (de) | 2002-11-27 | 2004-06-24 | Robert Bosch Gmbh | Magnetoresistives Sensorelement und Verfahren zur Reduktion des Winkelfehlers eines magnetoresistiven Sensorelements |
WO2004068158A1 (en) | 2003-01-31 | 2004-08-12 | Commissariat Energie Atomique | Device for sensing a magnetic field |
US7511483B2 (en) | 2003-01-31 | 2009-03-31 | Commissariat Energie Atomique | Device for sensing RF field |
US7239000B2 (en) | 2003-04-15 | 2007-07-03 | Honeywell International Inc. | Semiconductor device and magneto-resistive sensor integration |
JP2005018908A (ja) * | 2003-06-26 | 2005-01-20 | Tdk Corp | 磁気抵抗効果装置およびその製造方法、薄膜磁気ヘッド、ヘッドジンバルアセンブリならびにハードディスク装置 |
JP4259937B2 (ja) | 2003-06-30 | 2009-04-30 | アルプス電気株式会社 | 角度検出センサ |
US6985385B2 (en) | 2003-08-26 | 2006-01-10 | Grandis, Inc. | Magnetic memory element utilizing spin transfer switching and storing multiple bits |
DE10340065A1 (de) | 2003-08-28 | 2005-04-07 | Lenord, Bauer & Co. Gmbh | Verfahren und Winkelgeber zur Messung der absoluten Winkelposition |
JP2005091137A (ja) | 2003-09-17 | 2005-04-07 | Nsk Ltd | 舵角センサ |
JP2005209301A (ja) * | 2004-01-23 | 2005-08-04 | Hitachi Global Storage Technologies Netherlands Bv | 磁気ヘッド及びその製造方法 |
US7221545B2 (en) * | 2004-02-18 | 2007-05-22 | Hitachi Global Storage Technologies Netherlands B.V. | High HC reference layer structure for self-pinned GMR heads |
US6992359B2 (en) * | 2004-02-26 | 2006-01-31 | Grandis, Inc. | Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization |
US20110140217A1 (en) | 2004-02-26 | 2011-06-16 | Grandis, Inc. | Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization |
US7180716B2 (en) * | 2004-03-30 | 2007-02-20 | Headway Technologies, Inc. | Fabrication method for an in-stack stabilized synthetic stitched CPP GMR head |
US7611912B2 (en) * | 2004-06-30 | 2009-11-03 | Headway Technologies, Inc. | Underlayer for high performance magnetic tunneling junction MRAM |
EP1617472A1 (en) | 2004-07-16 | 2006-01-18 | Axalto SA | An active protection device for protecting a circuit against mechanical and electromagnetic attack |
US7377557B2 (en) | 2004-08-20 | 2008-05-27 | Honeywell International Inc. | Scissor mechanism for a latch assembly |
US7397637B2 (en) | 2004-08-30 | 2008-07-08 | Hitachi Global Storage Technologies Netherlands B.V. | Sensor with in-stack bias structure providing enhanced magnetostatic stabilization |
US7324312B2 (en) * | 2004-08-30 | 2008-01-29 | Hitachi Global Storage Technologies Netherlands B.V. | Sensor with in-stack bias structure providing exchange stabilization |
US7324313B2 (en) * | 2004-09-30 | 2008-01-29 | Hitachi Global Storage Technologies Netherlands B.V. | Read sensor having an in-stack biasing structure and an AP coupled free layer structure for increased magnetic stability |
US7777607B2 (en) | 2004-10-12 | 2010-08-17 | Allegro Microsystems, Inc. | Resistor having a predetermined temperature coefficient |
FR2876800B1 (fr) | 2004-10-18 | 2007-03-02 | Commissariat Energie Atomique | Procede et dispositif de mesure de champ magnetique a l'aide d'un capteur magnetoresitif |
JP4105142B2 (ja) | 2004-10-28 | 2008-06-25 | Tdk株式会社 | 電流センサ |
JP4105145B2 (ja) | 2004-11-30 | 2008-06-25 | Tdk株式会社 | 電流センサ |
JP4105147B2 (ja) | 2004-12-06 | 2008-06-25 | Tdk株式会社 | 電流センサ |
JP4689435B2 (ja) | 2004-12-16 | 2011-05-25 | アルプス電気株式会社 | 角度検出センサ |
JP2006179566A (ja) * | 2004-12-21 | 2006-07-06 | Tdk Corp | 磁気抵抗効果素子、該磁気抵抗効果素子を備えた薄膜磁気ヘッド、該薄膜磁気ヘッドを備えたヘッドジンバルアセンブリ、該ヘッドジンバルアセンブリを備えた磁気ディスク装置、及び該磁気抵抗効果素子の製造方法 |
US7639459B2 (en) | 2005-01-10 | 2009-12-29 | Hitachi Global Storage Technologies Netherlands B.V. | Three terminal magnetic sensor having an in-stack longitudinal biasing layer structure |
US7342753B2 (en) | 2005-01-20 | 2008-03-11 | Hitachi Global Storage Technologies Netherlands B.V. | In-stack biasing of the free layer of a magnetoresistive read element |
JP2006214091A (ja) | 2005-02-01 | 2006-08-17 | Aisin Keikinzoku Co Ltd | 天窓の防水構造 |
JP4411223B2 (ja) | 2005-02-04 | 2010-02-10 | アルプス電気株式会社 | 車載用gmr角度センサ |
US7554775B2 (en) | 2005-02-28 | 2009-06-30 | Hitachi Global Storage Technologies Netherlands B.V. | GMR sensors with strongly pinning and pinned layers |
US7453720B2 (en) | 2005-05-26 | 2008-11-18 | Maglabs, Inc. | Magnetic random access memory with stacked toggle memory cells having oppositely-directed easy-axis biasing |
DE102005024879B4 (de) | 2005-05-31 | 2018-12-06 | Infineon Technologies Ag | Verfahren zum Bestimmen von Restfehler-Kompensationsparametern für einen magnetoresistiven Winkelsensor und Verfahren zum Verringern eines Restwinkelfehlers bei einem magnetoresistiven Winkelsensor |
DE102006021774B4 (de) | 2005-06-23 | 2014-04-03 | Siemens Aktiengesellschaft | Stromsensor zur galvanisch getrennten Strommessung |
US7411765B2 (en) | 2005-07-18 | 2008-08-12 | Hitachi Global Storage Technologies Netherlands B.V. | CPP-GMR sensor with non-orthogonal free and reference layer magnetization orientation |
JP4088641B2 (ja) | 2005-07-22 | 2008-05-21 | Tdk株式会社 | 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリ、磁気ディスク装置、磁気メモリセルおよび電流センサ |
FR2889348B1 (fr) | 2005-07-27 | 2008-09-12 | Commissariat Energie Atomique | Dispositif magnetoresistif |
JP2007064851A (ja) | 2005-08-31 | 2007-03-15 | Tdk Corp | コイル、コイルモジュールおよびその製造方法、ならびに電流センサおよびその製造方法 |
DE102005042307A1 (de) | 2005-09-06 | 2007-03-08 | Trw Automotive Gmbh | Gurtaufroller |
US7423849B2 (en) | 2005-09-19 | 2008-09-09 | Hitachi Global Sotrage Technologies Netherlands B.V. | Magnetoresistive (MR) elements having pinned layers with canted magnetic moments |
US7973349B2 (en) | 2005-09-20 | 2011-07-05 | Grandis Inc. | Magnetic device having multilayered free ferromagnetic layer |
JP4298691B2 (ja) | 2005-09-30 | 2009-07-22 | Tdk株式会社 | 電流センサおよびその製造方法 |
JP4415923B2 (ja) | 2005-09-30 | 2010-02-17 | Tdk株式会社 | 電流センサ |
JP4224483B2 (ja) | 2005-10-14 | 2009-02-12 | Tdk株式会社 | 電流センサ |
JP4739963B2 (ja) | 2006-01-18 | 2011-08-03 | アルプス電気株式会社 | 車載用gmr角度センサ |
WO2007095971A1 (en) | 2006-02-24 | 2007-08-30 | Commissariat A L'energie Atomique | Method and device for non destructive evaluation of defects in a metallic object |
JP2007273504A (ja) | 2006-03-30 | 2007-10-18 | Fujitsu Ltd | 磁気抵抗効果素子、磁気ヘッド、磁気記録装置、磁気ランダムアクセスメモリ |
US7633724B2 (en) | 2006-03-31 | 2009-12-15 | Hitachi Global Storage Technologies Netherlands, B.V. | Dual-type tunneling magnetoresistance (TMR) elements |
DE102006019483A1 (de) | 2006-04-26 | 2007-10-31 | Siemens Ag | Organo-magnetoresistiver Sensor und Verwendungen dazu |
FR2902891B1 (fr) | 2006-06-22 | 2008-12-12 | Commissariat Energie Atomique | Systeme et procede de mesure d'un signal de resonance magnetique |
FR2902890B1 (fr) | 2006-06-22 | 2008-11-07 | Commissariat Energie Atomique | Procede et systeme pour ajuster la sensibilite d'un capteur magnetoresistif |
DE102006034579A1 (de) | 2006-07-26 | 2008-01-31 | Siemens Ag | Stromerfassungsvorrichtung und Verfahren zur Stromerfassung |
FR2904724B1 (fr) | 2006-08-03 | 2011-03-04 | Commissariat Energie Atomique | Dispositif magnetique en couches minces a forte polarisation en spin perpendiculaire au plan des couches, jonction tunnel magnetique et vanne de spin mettant en oeuvre un tel dispositif |
FR2907587B1 (fr) | 2006-10-23 | 2008-12-26 | Commissariat Energie Atomique | Dispositif magnetique a animation perpendiculaire et a couche intercalaire compensatrice d'interactions. |
JP4991322B2 (ja) | 2006-10-30 | 2012-08-01 | 日立オートモティブシステムズ株式会社 | Gmr素子を用いた変位センサ,gmr素子を用いた角度検出センサ及びそれらに用いる半導体装置 |
FR2910716B1 (fr) | 2006-12-26 | 2010-03-26 | Commissariat Energie Atomique | Dispositif magnetique multicouches, procede pour sa realisation, capteur de champ magnetique, memoire magnetique et porte logique mettant en oeuvre un tel dispositif |
US7476954B2 (en) * | 2007-01-12 | 2009-01-13 | Headway Technologies, Inc. | TMR device with Hf based seed layer |
FR2911690B1 (fr) | 2007-01-19 | 2009-03-06 | Thales Sa | Dispositif d'amplification magnetique comportant un capteur magnetique a sensibilite longitudinale |
EP1990414A1 (en) | 2007-05-10 | 2008-11-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Means for treating inflammatory diseases, autoimmune diseases and cancer |
JP4877095B2 (ja) | 2007-06-25 | 2012-02-15 | Tdk株式会社 | 電流センサおよびその製造方法 |
WO2009001160A1 (en) | 2007-06-27 | 2008-12-31 | Commissariat A L'energie Atomique | Method for low frequency noise cancellation in magneto-resistive mixed sensors |
EP2165210B1 (en) | 2007-06-27 | 2011-04-27 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Device based on a magneto-resistive mixed sensor without low frequency noise and associated method |
JP4979487B2 (ja) | 2007-07-05 | 2012-07-18 | アルプス電気株式会社 | 角度センサ |
FR2918762B1 (fr) | 2007-07-10 | 2010-03-19 | Commissariat Energie Atomique | Capteur de champ magnetique a faible bruit utilisant un transfert de spin lateral. |
FR2918761B1 (fr) | 2007-07-10 | 2009-11-06 | Commissariat Energie Atomique | Capteur de champ magnetique a faible bruit. |
US7583073B2 (en) | 2007-07-19 | 2009-09-01 | Honeywell International Inc. | Core-less current sensor |
US7394247B1 (en) | 2007-07-26 | 2008-07-01 | Magic Technologies, Inc. | Magnetic field angle sensor with GMR or MTJ elements |
US8715776B2 (en) | 2007-09-28 | 2014-05-06 | Headway Technologies, Inc. | Method for providing AFM exchange pinning fields in multiple directions on same substrate |
US20090115405A1 (en) | 2007-11-01 | 2009-05-07 | Magic Technologies, Inc. | Magnetic field angular sensor with a full angle detection |
US20090161268A1 (en) * | 2007-12-22 | 2009-06-25 | Tsann Lin | Current-perpendicular-to-plane read sensor with amorphous ferromagnetic and polycrystalline nonmagnetic seed layers |
JP5170679B2 (ja) | 2008-01-29 | 2013-03-27 | 日立金属株式会社 | 磁気センサおよび回転角度検出装置 |
JP4780117B2 (ja) | 2008-01-30 | 2011-09-28 | 日立金属株式会社 | 角度センサ、その製造方法及びそれを用いた角度検知装置 |
CN101960252B (zh) | 2008-03-04 | 2013-07-31 | 惠普发展公司,有限责任合伙企业 | 采用导模谐振的角传感器、系统 |
US8164862B2 (en) * | 2008-04-02 | 2012-04-24 | Headway Technologies, Inc. | Seed layer for TMR or CPP-GMR sensor |
DE102008019483B4 (de) | 2008-04-17 | 2022-10-13 | Groninger & Co. Gmbh | Dosiereinrichtung und Verfahren zur Handhabung von Dosiereinrichtungen |
US8447570B2 (en) | 2008-05-21 | 2013-05-21 | Infineon Technologies Ag | Predictive sensor readout |
FR2932315B1 (fr) | 2008-06-09 | 2010-06-04 | Commissariat Energie Atomique | Element magnetique tricouches, procede pour sa realisation, capteur de champ magnetique, memoire magnetique et porte logique magnetique mettant en oeuvre un tel element |
DE102008030334B4 (de) | 2008-06-30 | 2018-02-01 | Siemens Aktiengesellschaft | Verfahren zur störarmen berührungslosen Messung hoher Ströme und zugehöriger Hochstromsensor |
FR2933552B1 (fr) | 2008-07-04 | 2014-10-10 | Centre Nat Rech Scient | Circuit d'amplification d'un signal representant une variation de resistance d'une resistance variable et capteur correspondant |
US8477461B2 (en) | 2008-07-29 | 2013-07-02 | Tdk Corporation | Thin film magnetic head having a pair of magnetic layers whose magnetization is controlled by shield layers |
US8189303B2 (en) | 2008-08-12 | 2012-05-29 | Tdk Corporation | Thin film magnetic head having a pair of magnetic layers whose magnetization is controlled by shield layers |
CN102144142A (zh) | 2008-09-03 | 2011-08-03 | 阿尔卑斯电气株式会社 | 角度传感器 |
US8058866B2 (en) | 2008-09-08 | 2011-11-15 | Infineon Technologies Ag | Off-center angle measurement system |
JP5734657B2 (ja) | 2008-09-12 | 2015-06-17 | 日立金属株式会社 | セルフピン型スピンバルブ磁気抵抗効果膜とそれを用いた磁気センサおよび回転角度検出装置 |
JP2010080008A (ja) | 2008-09-26 | 2010-04-08 | Fujitsu Ltd | 再生磁気ヘッド |
JP5383145B2 (ja) * | 2008-10-15 | 2014-01-08 | エイチジーエスティーネザーランドビーブイ | 磁気再生ヘッド |
FR2939955B1 (fr) | 2008-12-11 | 2011-03-11 | Commissariat Energie Atomique | Procede pour la realisation d'une jonction tunnel magnetique et jonction tunnel magnetique ainsi obtenue. |
US20100149689A1 (en) | 2008-12-11 | 2010-06-17 | Tdk Corporation | Thin film magnetic head having a pair of magnetic layers whose magnetization is controlled by shield layer including amorphous layer |
US7713755B1 (en) | 2008-12-11 | 2010-05-11 | Magic Technologies, Inc. | Field angle sensor fabricated using reactive ion etching |
FR2941534B1 (fr) | 2009-01-26 | 2011-12-23 | Commissariat Energie Atomique | Capteur de champ magnetique a jauge de contrainte suspendue |
WO2010113820A1 (ja) | 2009-03-30 | 2010-10-07 | 日立金属株式会社 | 回転角度検出装置 |
FR2944384B1 (fr) | 2009-04-09 | 2012-01-20 | Commissariat Energie Atomique | Oscillateur radiofrequence a vanne de spin ou a jonction tunnel |
JP5680287B2 (ja) | 2009-05-27 | 2015-03-04 | 新科實業有限公司SAE Magnetics(H.K.)Ltd. | 電流センサ |
FR2946183B1 (fr) | 2009-05-27 | 2011-12-23 | Commissariat Energie Atomique | Dispositif magnetique a polarisation de spin. |
CN201622299U (zh) | 2009-06-19 | 2010-11-03 | 钱正洪 | 新型巨磁阻集成电流传感器 |
US7999338B2 (en) | 2009-07-13 | 2011-08-16 | Seagate Technology Llc | Magnetic stack having reference layers with orthogonal magnetization orientation directions |
WO2011007767A1 (ja) | 2009-07-13 | 2011-01-20 | 日立金属株式会社 | 磁気抵抗効果素子の製造方法、磁気センサ、回転角度検出装置 |
US8427144B2 (en) | 2009-07-28 | 2013-04-23 | Tdk Corporation | Magnetic sensor that includes magenetoresistive films and conductors that combine the magnetoresistive films |
JP2011064653A (ja) | 2009-09-18 | 2011-03-31 | Tdk Corp | 磁気センサおよびその製造方法 |
US8891290B2 (en) * | 2010-03-17 | 2014-11-18 | Samsung Electronics Co., Ltd. | Method and system for providing inverted dual magnetic tunneling junction elements |
US8692343B2 (en) * | 2010-04-26 | 2014-04-08 | Headway Technologies, Inc. | MR enhancing layer (MREL) for spintronic devices |
US8780665B2 (en) | 2010-08-11 | 2014-07-15 | Samsung Electronics Co., Ltd. | Method and system for providing magnetic tunneling junction elements having an easy cone anisotropy |
US9146287B2 (en) * | 2010-11-15 | 2015-09-29 | Infineon Technologies Ag | XMR sensors with high shape anisotropy |
US8385025B2 (en) * | 2010-12-15 | 2013-02-26 | HGST Netherlands B.V. | Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with improved seed layer structure for hard bias layer |
US8541855B2 (en) | 2011-05-10 | 2013-09-24 | Magic Technologies, Inc. | Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications |
US8422176B1 (en) * | 2011-11-15 | 2013-04-16 | Western Digital (Fremont), Llc | Method and system for providing a magnetic read transducer having a bilayer magnetic seed layer |
JP5882934B2 (ja) * | 2012-05-09 | 2016-03-09 | シーゲイト テクノロジー エルエルシー | スパッタリング装置 |
US8981505B2 (en) * | 2013-01-11 | 2015-03-17 | Headway Technologies, Inc. | Mg discontinuous insertion layer for improving MTJ shunt |
US9123886B2 (en) * | 2013-03-05 | 2015-09-01 | Headway Technologies, Inc. | High moment wrap-around shields for magnetic read head improvements |
US8743507B1 (en) * | 2013-03-12 | 2014-06-03 | Seagate Technology Llc | Seed trilayer for magnetic element |
US9093102B1 (en) * | 2013-03-12 | 2015-07-28 | Western Digital Technologies, Inc. | Systems and methods for tuning seed layer hardness in components of magnetic recording systems |
US9341685B2 (en) * | 2013-05-13 | 2016-05-17 | HGST Netherlands B.V. | Antiferromagnetic (AFM) grain growth controlled random telegraph noise (RTN) suppressed magnetic head |
US8988833B2 (en) * | 2013-05-16 | 2015-03-24 | HGST Netherlands B.V. | Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with reduced-width top and bottom electrodes and method for making |
US9529060B2 (en) | 2014-01-09 | 2016-12-27 | Allegro Microsystems, Llc | Magnetoresistance element with improved response to magnetic fields |
US9293159B2 (en) * | 2014-01-31 | 2016-03-22 | Seagate Technology Llc | Positive and negative magnetostriction ultrahigh linear density sensor |
US9496489B2 (en) * | 2014-05-21 | 2016-11-15 | Avalanche Technology, Inc. | Magnetic random access memory with multilayered seed structure |
US9559296B2 (en) * | 2014-07-03 | 2017-01-31 | Samsung Electronics Co., Ltd. | Method for providing a perpendicular magnetic anisotropy magnetic junction usable in spin transfer torque magnetic devices using a sacrificial insertion layer |
US9958511B2 (en) | 2014-12-08 | 2018-05-01 | Infineon Technologies Ag | Soft switching of magnetization in a magnetoresistive sensor |
JP6523004B2 (ja) * | 2015-03-24 | 2019-05-29 | 株式会社東芝 | 歪検知素子および圧力センサ |
KR102488536B1 (ko) | 2015-06-05 | 2023-01-13 | 알레그로 마이크로시스템스, 엘엘씨 | 자기장들에 대한 향상된 반응을 갖는 스핀 밸브 자기저항 요소 |
US9780299B2 (en) * | 2015-11-23 | 2017-10-03 | Headway Technologies, Inc. | Multilayer structure for reducing film roughness in magnetic devices |
US9940955B2 (en) * | 2015-12-01 | 2018-04-10 | Western Digital Technologies, Inc. | Tunnel magnetoresistance magnetic sensor with scissor sensor and multi-seed layer configuration |
-
2014
- 2014-08-06 US US14/452,783 patent/US9529060B2/en active Active
- 2014-10-31 US US14/529,564 patent/US9922673B2/en active Active
-
2015
- 2015-01-07 WO PCT/US2015/010424 patent/WO2015105836A1/en active Application Filing
- 2015-01-07 JP JP2016545864A patent/JP6514707B2/ja active Active
- 2015-01-07 EP EP15701862.3A patent/EP3090272B1/en active Active
- 2015-01-07 KR KR1020167021480A patent/KR102336038B1/ko active IP Right Grant
- 2015-01-07 EP EP15701863.1A patent/EP3090273B1/en active Active
- 2015-01-07 KR KR1020167021479A patent/KR102267081B1/ko active IP Right Grant
- 2015-01-07 KR KR1020217002152A patent/KR102327224B1/ko active IP Right Grant
- 2015-01-07 US US14/591,213 patent/US9804234B2/en active Active
- 2015-01-07 KR KR1020167021481A patent/KR102336037B1/ko active IP Right Grant
- 2015-01-07 JP JP2016545809A patent/JP6605478B2/ja active Active
- 2015-01-07 WO PCT/US2015/010417 patent/WO2015105830A1/en active Application Filing
- 2015-01-07 WO PCT/US2015/010422 patent/WO2015105834A1/en active Application Filing
- 2015-01-07 EP EP15700938.2A patent/EP3092505B1/en active Active
- 2015-01-07 JP JP2016545937A patent/JP6530757B2/ja active Active
-
2018
- 2018-02-01 US US15/886,032 patent/US10347277B2/en active Active
-
2019
- 2019-05-14 JP JP2019091093A patent/JP6874050B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
EP3090273A1 (en) | 2016-11-09 |
KR20160106682A (ko) | 2016-09-12 |
US10347277B2 (en) | 2019-07-09 |
EP3090273B1 (en) | 2020-10-14 |
US9804234B2 (en) | 2017-10-31 |
EP3090272B1 (en) | 2020-10-14 |
JP6530757B2 (ja) | 2019-06-12 |
KR102336037B1 (ko) | 2021-12-06 |
JP2017504208A (ja) | 2017-02-02 |
EP3092505A1 (en) | 2016-11-16 |
JP2017505537A (ja) | 2017-02-16 |
JP6605478B2 (ja) | 2019-11-13 |
WO2015105834A1 (en) | 2015-07-16 |
EP3092505B1 (en) | 2020-10-14 |
US20180158475A1 (en) | 2018-06-07 |
WO2015105830A1 (en) | 2015-07-16 |
KR20160107235A (ko) | 2016-09-13 |
JP6514707B2 (ja) | 2019-05-15 |
US9922673B2 (en) | 2018-03-20 |
KR102327224B1 (ko) | 2021-11-16 |
KR102267081B1 (ko) | 2021-06-18 |
JP2017505538A (ja) | 2017-02-16 |
EP3090272A1 (en) | 2016-11-09 |
US20150194597A1 (en) | 2015-07-09 |
KR20160106681A (ko) | 2016-09-12 |
WO2015105836A1 (en) | 2015-07-16 |
KR102336038B1 (ko) | 2021-12-06 |
US20150192649A1 (en) | 2015-07-09 |
US9529060B2 (en) | 2016-12-27 |
KR20210010676A (ko) | 2021-01-27 |
US20150192648A1 (en) | 2015-07-09 |
JP2019165239A (ja) | 2019-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6874050B2 (ja) | 磁界に対する応答が改善された磁気抵抗素子 | |
JP6763887B2 (ja) | 磁界に対する応答が改善されたスピンバルブ磁気抵抗効果素子 | |
EP3288091B1 (en) | Double pinned magnetoresistance element with temporary ferromagnetic layer to improve annealing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190514 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200716 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210415 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210421 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6874050 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |