[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6860430B2 - Contactless power transfer system - Google Patents

Contactless power transfer system Download PDF

Info

Publication number
JP6860430B2
JP6860430B2 JP2017112918A JP2017112918A JP6860430B2 JP 6860430 B2 JP6860430 B2 JP 6860430B2 JP 2017112918 A JP2017112918 A JP 2017112918A JP 2017112918 A JP2017112918 A JP 2017112918A JP 6860430 B2 JP6860430 B2 JP 6860430B2
Authority
JP
Japan
Prior art keywords
power
power transmission
voltage value
vehicle
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017112918A
Other languages
Japanese (ja)
Other versions
JP2018207715A (en
Inventor
卓也 岩本
卓也 岩本
智明 中川
智明 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2017112918A priority Critical patent/JP6860430B2/en
Publication of JP2018207715A publication Critical patent/JP2018207715A/en
Application granted granted Critical
Publication of JP6860430B2 publication Critical patent/JP6860430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は、路面に設けられた外部コイルから送電された電力を、車両に設けられた車両コイルにより非接触で受電し、前記車両のバッテリを充電する非接触電力伝送システムに関する。 The present invention relates to a non-contact power transmission system in which electric power transmitted from an external coil provided on a road surface is received by a vehicle coil provided in a vehicle in a non-contact manner to charge a battery of the vehicle.

電動機により推進される電動車両、例えば電気自動車、ハイブリッド自動車、及び燃料電池自動車等の開発に伴い、前記電動車両のバッテリを非接触で充電する非接触充電に関する技術が進展している。 With the development of electric vehicles propelled by electric motors, such as electric vehicles, hybrid vehicles, fuel cell vehicles, and the like, technologies related to non-contact charging for non-contact charging the batteries of the electric vehicles have been advanced.

非接触充電を効率的に行うためには、外部の充電ステーション等に設けられた外部コイルと前記車両に設けられる車両コイルとの位置合わせ(両コイルの軸を一致させること)を正確に行う必要がある。 In order to efficiently perform non-contact charging, it is necessary to accurately align the external coil provided in the external charging station or the like with the vehicle coil provided in the vehicle (match the axes of both coils). There is.

例えば、特許文献1には、位置合わせを正確に行うために、運転者が、電動車両を給電コイルの設置位置の近くに停車させることが記載されている(特許文献1の[0048])。このとき、充電電力よりも小さい微弱電力が、位置合わせのために、給電コイルから送電される(同[0049])。この微弱電力の送電に係る電力量を送電電力量という(同[0053])。一方、前記電動車両は、受電コイルで前記微弱電力を受電し、受電した微弱電力の電力量(受電電力量という。)を求める(同[0054])。 For example, Patent Document 1 describes that a driver stops an electric vehicle near a position where a feeding coil is installed in order to perform accurate alignment (Patent Document 1 [0048]). At this time, a weak electric power smaller than the charging electric power is transmitted from the power feeding coil for alignment (the same [0049]). The amount of electric power related to the transmission of this weak electric power is referred to as the amount of electric power transmitted (the same [0053]). On the other hand, the electric vehicle receives the weak electric power by the power receiving coil, and obtains the electric energy of the received weak electric power (referred to as the electric energy received) (the same [0054]).

前記電動車両では、位置合わせ中、前記送電電力量と前記受電電力量により電力伝送効率(受電電力量/送電電力量)を算出し、該電力伝送効率が上昇し最大になった時点・位置で前記電動車両を停車させて、位置合わせを終了させている(同[0054]〜[0057])。 In the electric vehicle, the power transmission efficiency (received power amount / transmitted power amount) is calculated from the transmitted power amount and the received power amount during alignment, and at the time and position where the power transmission efficiency increases and reaches the maximum. The electric vehicle is stopped to complete the alignment (the same [0054] to [0057]).

特許第5966407号公報Japanese Patent No. 5966407

しかしながら、特許文献1では、位置合わせ中に、外部コイルから微弱電力を送電し続ける必要があるため、システム全体の消費電力が増加してしまうという課題がある。 However, Patent Document 1 has a problem that the power consumption of the entire system increases because it is necessary to continue transmitting weak power from the external coil during the alignment.

この発明は、このような課題を考慮してなされたものであり、外部コイルと車両コイルとを利用する位置合わせ用に消費される電力を低減することを可能とする非接触電力伝送システムを提供することを目的とする。 The present invention has been made in consideration of such a problem, and provides a non-contact power transmission system capable of reducing the power consumed for alignment using an external coil and a vehicle coil. The purpose is to do.

この発明に係る非接触電力伝送システムは、路面に設けられた外部コイルから送電された電力を、車両に設けられた車両コイルにより非接触で受電し、車両のバッテリを充電する非接触電力伝送システムである。外部コイル又は車両コイルのうち、一方のコイルから送電された位置合わせ用の電力の送電間隔モードを制御する送電側制御装置と、一方のコイルから送電された位置合わせ用の電力を、外部コイル又は車両コイルのうち、他方のコイルで受電し、受電電力により発生する電圧値を受電電圧値として検知する受電側制御装置と、を備え、送電側制御装置及び受電側制御装置は、受電電圧値が電圧閾値を上回ったときに、送電間隔モードを変更することを特徴とする。 The non-contact power transmission system according to the present invention is a non-contact power transmission system that receives power transmitted from an external coil provided on a road surface in a non-contact manner by a vehicle coil provided in a vehicle to charge a vehicle battery. Is. Of the external coil or vehicle coil, the power transmission side control device that controls the transmission interval mode of the alignment power transmitted from one coil and the alignment power transmitted from one coil are transferred to the external coil or the vehicle coil. Among the vehicle coils, the power receiving side control device that receives power from the other coil and detects the voltage value generated by the received power as the received voltage value is provided, and the power transmission side control device and the power receiving side control device have the received voltage value. It is characterized in that the transmission interval mode is changed when the voltage threshold is exceeded.

この発明によれば、位置合わせ中に、外部コイル又は車両コイルから送電される位置合わせ用の電力の送電間隔モードを変更するようにしたので、正確な位置合わせを維持しつつ、消費電力を低減できる。なお、位置合わせ用の電力を外部コイルから送電する場合には、外部の、例えば、インフラ側の消費電力を低減でき、位置合わせ用の電力を車両コイルから送電する場合には、連続送電モードに比較して車両のバッテリのSOCの低下を抑制することができる。 According to the present invention, during alignment, the transmission interval mode of the alignment power transmitted from the external coil or the vehicle coil is changed, so that the power consumption is reduced while maintaining accurate alignment. it can. When the power for alignment is transmitted from the external coil, the power consumption of the outside, for example, the infrastructure side can be reduced, and when the power for alignment is transmitted from the vehicle coil, the continuous transmission mode is set. In comparison, it is possible to suppress a decrease in SOC of the vehicle battery.

上記の非接触電力伝送システムにおいて、送電側制御装置は、受電電圧値が電圧閾値を上回る前は、送電間隔モードを間欠送電モードにし、上回った後は、連続送電モードにすることが好ましい。 In the above-mentioned non-contact power transmission system, the power transmission side control device preferably sets the power transmission interval mode to the intermittent power transmission mode before the received voltage value exceeds the voltage threshold value, and sets the power transmission side control device to the continuous power transmission mode after the power transmission interval value exceeds the voltage threshold value.

このような構成によれば、送電に割り当てられた一方のコイルと、受電に割り当てられた他方のコイルとの間の距離が遠い(受電電圧が電圧閾値未満の)場合には、送電間隔モードを間欠送電モードとして省電力化を図ることができる。送電に割り当てられた一方のコイルと、受電に割り当てられた他方のコイルとの間の距離が近くなった(受電電圧が電圧閾値以上の)場合には、連続送電モードとしているので正確な位置合わせに資することができる。 According to such a configuration, when the distance between one coil assigned to power transmission and the other coil assigned to power reception is long (the power reception voltage is less than the voltage threshold), the power transmission interval mode is set. Power saving can be achieved as an intermittent power transmission mode. When the distance between one coil assigned to power transmission and the other coil assigned to power reception becomes short (the power reception voltage is equal to or higher than the voltage threshold value), the continuous power transmission mode is set and accurate alignment is performed. Can contribute to.

上記の非接触電力伝送システムにおいて、受電電圧値が電圧閾値より低い低電圧閾値を上回る前は、送電間隔モードを第1間欠送電モードにし、低電圧閾値を上回った後、電圧閾値までは、送電間隔モードを第1間欠送電モードよりも送電間隔の狭い第2間欠送電モードにすることが好ましい。 In the above non-contact power transmission system, before the received voltage value exceeds the low voltage threshold lower than the voltage threshold, the transmission interval mode is set to the first intermittent power transmission mode, and after exceeding the low voltage threshold, power is transmitted up to the voltage threshold. It is preferable to set the interval mode to the second intermittent power transmission mode in which the power transmission interval is narrower than that of the first intermittent power transmission mode.

このような構成によれば、受電電圧値が電圧閾値になるまで、換言すれば、距離が近くなるまでは、段階的に間隔が狭くなっても、実用上十分な範囲で位置合わせが可能であるので、より消費電力を低減することができる。 According to such a configuration, until the received voltage value reaches the voltage threshold value, in other words, until the distance becomes short, even if the interval is gradually narrowed, the alignment can be performed within a practically sufficient range. Therefore, the power consumption can be further reduced.

上記の非接触電力伝送システムにおいて、受電電圧値が低電圧閾値を上回った後、電圧閾値となるまでの間、送電間隔モードを第1間欠送電モードよりも送電間隔の狭い第2間欠送電モードにする際、受電電圧値が電圧閾値に近づくにつれて送電間隔を狭くすることが好ましい。 In the above non-contact power transmission system, after the received voltage value exceeds the low voltage threshold value, the power transmission interval mode is changed to the second intermittent power transmission mode in which the power transmission interval is narrower than that of the first intermittent power transmission mode until the voltage threshold is reached. When doing so, it is preferable to narrow the transmission interval as the received voltage value approaches the voltage threshold.

このような構成によれば、受電電圧値が低電圧閾値を上回った後、電圧閾値に近づくにつれて送電間隔を狭くするようにしたので、位置合わせ距離の把握がより正確になる。 According to such a configuration, after the received voltage value exceeds the low voltage threshold value, the power transmission interval is narrowed as it approaches the voltage threshold value, so that the positioning distance can be grasped more accurately.

上記の非接触電力伝送システムにおいて、比較値としての受電電圧値を、該受電電圧値の電力値、又は送受電電力の伝送電力効率に代替することが好ましい。 In the above-mentioned non-contact power transmission system, it is preferable to replace the received voltage value as a comparative value with the power value of the received voltage value or the transmission power efficiency of the transmitted / received power.

比較値として、受電電圧値を該受電電圧値の電力値、又は伝送電力効率を用いても、同様に、位置合わせ処理を行うことができる。 As a comparison value, even if the received voltage value is the power value of the received voltage value or the transmission power efficiency, the alignment process can be performed in the same manner.

このような構成によれば、位置合わせ中に、外部コイル又は車両コイルの一方のコイルから送電する位置合わせ用の電力の送電間隔モードを変更するようにしたので、正確な位置合わせを維持しつつ、消費電力を低減できる。 According to such a configuration, during alignment, the transmission interval mode of the alignment power transmitted from one of the external coil or the vehicle coil is changed, so that accurate alignment can be maintained. , Power consumption can be reduced.

図1はこの実施形態に係る非接触電力伝送システムを示すシステム構成図である。FIG. 1 is a system configuration diagram showing a non-contact power transmission system according to this embodiment. 図2は電圧値−距離情報を示す特性図である。FIG. 2 is a characteristic diagram showing voltage value-distance information. 図3は、この実施形態に係る非接触電力伝送システムの動作説明に供されるフローチャートの前半部分である。FIG. 3 is the first half of the flowchart provided for explaining the operation of the non-contact power transmission system according to this embodiment. 図4は、この実施形態に係る非接触電力伝送システムの動作説明に供されるフローチャートの後半部分である。FIG. 4 is a latter half of a flowchart provided for explaining the operation of the non-contact power transmission system according to this embodiment. 図5Aは、外部コイルに対して車両が遠いときの微弱電力の送電間隔の説明図、図5Bは、外部コイルに対して車両がやや遠いときの微弱電力の送電間隔の説明図である。FIG. 5A is an explanatory diagram of a weak power transmission interval when the vehicle is far from the external coil, and FIG. 5B is an explanatory diagram of a weak power transmission interval when the vehicle is slightly far from the external coil. 図6は外部コイルに対して車両が近いときの微弱電力の送電間隔の説明図である。FIG. 6 is an explanatory diagram of a transmission interval of weak electric power when the vehicle is close to the external coil. 図7Aは、微弱電力を外部コイルから送電している状態を示す説明図、図7Bは、微弱電力を車両コイルから送電している状態を示す説明図である。FIG. 7A is an explanatory diagram showing a state in which weak electric power is transmitted from an external coil, and FIG. 7B is an explanatory diagram showing a state in which weak electric power is transmitted from a vehicle coil.

以下、本発明に係る非接触電力伝送システムについて好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。 Hereinafter, a preferred embodiment of the non-contact power transmission system according to the present invention will be described in detail with reference to the accompanying drawings.

[構成]
図1は、この実施形態に係る非接触電力伝送システム10の模式的な構成を示している。
[Constitution]
FIG. 1 shows a schematic configuration of the non-contact power transmission system 10 according to this embodiment.

非接触電力伝送システム10は、路面(設置面)12に設けられた給電側の充電ステーション20と、受電側の電動車両(単に、車両ともいう。)40とで構成される。電動車両40に搭載されるバッテリ54は、位置合わせ処理後に、充電ステーション20からの給電により、非接触で充電される。 The non-contact power transmission system 10 is composed of a charging station 20 on the power supply side provided on the road surface (installation surface) 12 and an electric vehicle (simply referred to as a vehicle) 40 on the power receiving side. The battery 54 mounted on the electric vehicle 40 is non-contactly charged by the power supply from the charging station 20 after the alignment process.

充電ステーション20は、基本的に、送電回路22と、外部制御装置34と、外部通信装置36と、を備える。 The charging station 20 basically includes a power transmission circuit 22, an external control device 34, and an external communication device 36.

送電回路22は、交流電源24と、交流電源24から供給される交流電力をより周波数の高い送電電力(給電電力)に変換する電力変換器26と、外部コイル28と、を備える。 The power transmission circuit 22 includes an AC power supply 24, a power converter 26 that converts AC power supplied from the AC power supply 24 into higher frequency transmission power (power supply power), and an external coil 28.

外部コイル28は、外部側パッド30で覆われて路面(設置面)12に配置される。 The external coil 28 is covered with the external pad 30 and arranged on the road surface (installation surface) 12.

外部制御装置34は、CPU等のプロセッサがメモリに格納されたプログラムを読み出して実行することで、送電間隔モード変更部27等として機能する。送電間隔モード変更部27は、電力変換器26での電力変換間隔、すなわち送電間隔Tintを変更する。 The external control device 34 functions as a power transmission interval mode changing unit 27 or the like by reading and executing a program stored in the memory by a processor such as a CPU. The power transmission interval mode changing unit 27 changes the power conversion interval in the power converter 26, that is, the power transmission interval Tint.

外部制御装置34は、外部コイル28の設置位置に対し、車両コイル44を位置合わせするための一定強度の微弱電力、及びバッテリ54を充電するための充電電力を外部コイル28から送電させる。なお、「微弱電力」とは、位置合わせ後にバッテリ54を充電するための「充電電力」よりも小さな電力をいう。 The external control device 34 transmits a weak electric power having a constant strength for aligning the vehicle coil 44 and a charging electric power for charging the battery 54 from the external coil 28 with respect to the installation position of the external coil 28. The "weak power" means a power smaller than the "charging power" for charging the battery 54 after alignment.

外部通信装置36は、外部制御装置34に対して通信線で接続される。外部通信装置36は、電動車両40の車両側通信装置68との間で無線通信を行う。 The external communication device 36 is connected to the external control device 34 by a communication line. The external communication device 36 performs wireless communication with the vehicle-side communication device 68 of the electric vehicle 40.

電動車両40は、基本的に、受電回路42と、バッテリ54と、車両側制御装置56と、車両側通信装置68と、距離センサ70と、表示装置72と、走行装置74と、を備える。 The electric vehicle 40 basically includes a power receiving circuit 42, a battery 54, a vehicle-side control device 56, a vehicle-side communication device 68, a distance sensor 70, a display device 72, and a traveling device 74.

受電回路42は、車両コイル44と、車両コイル44で受電した交流電力である受電電力(充電電力、微弱電力)を整流する整流器48と、受電電力(微弱電力)により発生する電圧を検知する電圧検知器50と、受電回路42とバッテリ54との電気的接続・切断を切り替えるコンタクタ52と、を備える。車両コイル44は、車両側パッド46で覆われて電動車両40の下面に配置される。 The power receiving circuit 42 includes a vehicle coil 44, a rectifier 48 that rectifies the received power (charging power, weak power), which is AC power received by the vehicle coil 44, and a voltage that detects a voltage generated by the received power (weak power). It includes a detector 50 and a contactor 52 that switches between electrical connection and disconnection between the power receiving circuit 42 and the battery 54. The vehicle coil 44 is covered with a vehicle side pad 46 and is arranged on the lower surface of the electric vehicle 40.

電圧検知器50は、微弱電力の受電時に整流器48の出力側に発生する電圧を検知する。この電圧を微弱電圧又はLPE(Low Power Excitation)電圧という。 The voltage detector 50 detects the voltage generated on the output side of the rectifier 48 when receiving weak electric power. This voltage is called a weak voltage or an LPE (Low Power Excitation) voltage.

バッテリ54は、リチウムイオン電池等からなり、コンタクタ52が接続状態にされ、外部コイル28と車両コイル44とが磁気的に結合されると、受電回路42を介して充電される。 The battery 54 is made of a lithium ion battery or the like, and when the contactor 52 is connected and the external coil 28 and the vehicle coil 44 are magnetically coupled, the battery 54 is charged via the power receiving circuit 42.

車両側制御装置56はECUであり、位置合わせ処理を含む充電処理を管理する。車両側制御装置56は、CPU等のプロセッサがメモリ66に格納されるプログラムを読み出し実行することで、充電管理部58と微分値算出部60と垂直距離推定部62と水平距離推定部64と閾値比較部65として機能する。 The vehicle-side control device 56 is an ECU and manages a charging process including an alignment process. The vehicle-side control device 56 reads and executes a program stored in the memory 66 by a processor such as a CPU, so that the charge management unit 58, the differential value calculation unit 60, the vertical distance estimation unit 62, the horizontal distance estimation unit 64, and the threshold value are executed. It functions as a comparison unit 65.

充電管理部58は、充電処理を一括して管理する。 The charge management unit 58 collectively manages the charge process.

微分値算出部60は、電圧検知器50で検知される微弱電圧の値(微弱電圧値vlpeという。)と、距離センサ70で検知される電動車両40の走行距離xと、に基づいて、微小な走行距離dxに対する微弱電圧値vlpeの変化量、すなわち位置微分値d(vlpe)/dxを算出する。 The differential value calculation unit 60 is minute based on the weak voltage value (referred to as weak voltage value vlp) detected by the voltage detector 50 and the mileage x of the electric vehicle 40 detected by the distance sensor 70. The amount of change in the weak voltage value vlpe with respect to the mileage dx, that is, the position differential value d (vlpe) / dx is calculated.

垂直距離推定部62は、微弱電圧値vlpeと、位置微分値d(vlpe)/dxと、メモリ66に記憶される電圧値−距離情報(図2)と、に基づいて、外部コイル28と車両コイル44との垂直距離Zを推定する。なお、平面視で、外部コイル28の中心位置に対して車両コイル44の中心位置が一致したときの垂直距離Zを対面距離という。外部コイル28の中心位置と車両コイル44の中心位置が一致したとき、微弱電力plpeの受電効率(微弱電力/送電電力)が最大となり、バッテリ54の充電時の充電効率(受電電力/送電電力)も最大となる。このため、位置合わせ処理は、外部コイル28と車両コイル44の両方の中心位置(中心)が一致することが目標とされる。 The vertical distance estimation unit 62 sets the external coil 28 and the vehicle based on the weak voltage value vulpe, the position differential value d (vlp) / dx, and the voltage value-distance information (FIG. 2) stored in the memory 66. The vertical distance Z with the coil 44 is estimated. In a plan view, the vertical distance Z when the center position of the vehicle coil 44 coincides with the center position of the external coil 28 is referred to as a face-to-face distance. When the center position of the external coil 28 and the center position of the vehicle coil 44 match, the power receiving efficiency (weak power / transmitted power) of the weak power plpe becomes maximum, and the charging efficiency (received power / transmitted power) when charging the battery 54. Is also the maximum. Therefore, in the alignment process, it is targeted that the center positions (centers) of both the external coil 28 and the vehicle coil 44 match.

水平距離推定部64は、微弱電圧値vlpeと、垂直距離Zに対応する電圧値−距離情報(図2)と、に基づいて、外部コイル28と車両コイル44との水平距離D{平面視での外部コイル28の中心位置(中心)と車両コイル44の中心位置(中心)とを結ぶ直線距離}を推定する。 The horizontal distance estimation unit 64 is based on the weak voltage value vlp and the voltage value-distance information (FIG. 2) corresponding to the vertical distance Z, and the horizontal distance D between the external coil 28 and the vehicle coil 44 {in plan view. The linear distance connecting the center position (center) of the external coil 28 and the center position (center) of the vehicle coil 44} is estimated.

閾値比較部65は、微弱電圧値vlpeと閾値(低電圧閾値vlpel又は電圧閾値vlpeh)とを比較し、微弱電圧値vlpeが閾値(低電圧閾値vlpel又は電圧閾値vlpeh)を上回ったとき、上回ったことを車両側通信装置68に通知する。 The threshold value comparison unit 65 compares the weak voltage value blpe with the threshold value (low voltage threshold blpel or voltage threshold blpeh), and when the weak voltage value vrpe exceeds the threshold value (low voltage threshold blpel or voltage threshold blpeh), it exceeds the threshold value. Notify the vehicle side communication device 68 of this.

車両側通信装置68は、車両側制御装置56に対して通信線で接続される。車両側通信装置68は、充電ステーション20の外部通信装置36との間でWi−Fi(登録商標)又はBluetooth(登録商標)等の無線通信を行う。 The vehicle-side communication device 68 is connected to the vehicle-side control device 56 by a communication line. The vehicle-side communication device 68 performs wireless communication such as Wi-Fi (registered trademark) or Bluetooth (registered trademark) with the external communication device 36 of the charging station 20.

走行装置74は、運転者が行うアクセルペダルの操作に応じて駆動力を発生させる駆動力装置の他に、運転者が行うステアリングホイールの操作に応じて操舵する操舵装置と、運転者が行うブレーキペダルの操作に応じて制動力を発生させる制動装置を含む。駆動力装置は、駆動源としてバッテリ54から電力が供給される電動モータを含む。 The traveling device 74 includes a driving force device that generates a driving force according to the operation of the accelerator pedal performed by the driver, a steering device that steers according to the operation of the steering wheel performed by the driver, and a brake performed by the driver. Includes a braking device that generates braking force in response to pedal operation. The driving force device includes an electric motor to which electric power is supplied from the battery 54 as a driving source.

車両側制御装置56のメモリ66は、各種プログラムと所定値、閾値等の各種数値の他に、図2に示されるような電圧値−距離情報を示す特性をマップMとして記憶する。この電圧値−距離情報は、外部コイル28の基準部位(この実施形態では外部コイル28の中心)及び車両コイル44の基準部位(この実施形態では車両コイル44の中心)との間の距離(水平距離D)と、その距離(水平距離D)に応じた微弱電圧値vlpeと、の関係を示す電圧値−距離特性である。 The memory 66 of the vehicle-side control device 56 stores various programs, predetermined values, threshold values, and other numerical values, as well as characteristics indicating voltage value-distance information as shown in FIG. 2 as a map M. This voltage value-distance information is the distance (horizontal) between the reference portion of the external coil 28 (the center of the external coil 28 in this embodiment) and the reference portion of the vehicle coil 44 (the center of the vehicle coil 44 in this embodiment). It is a voltage value-distance characteristic showing the relationship between the distance D) and the weak voltage value vlpe corresponding to the distance (horizontal distance D).

より詳細には、図2に示される電圧値−距離情報は、外部コイル28の中心と車両コイル44の中心との間の垂直距離Zと、外部コイル28の中心と車両コイル44の中心との間の水平距離Dと、垂直距離Z及び水平距離Dに応じた微弱電圧値vlpeと、の関係を示す電圧値−距離特性である。 More specifically, the voltage value-distance information shown in FIG. 2 is the vertical distance Z between the center of the external coil 28 and the center of the vehicle coil 44, and the center of the external coil 28 and the center of the vehicle coil 44. It is a voltage value-distance characteristic showing the relationship between the horizontal distance D between them and the weak voltage value vlpe corresponding to the vertical distance Z and the horizontal distance D.

電動車両40が充電ステーション20内を走行して外部コイル28に対する車両コイル44の位置合わせを行う場合、垂直距離Zは変わらないものの水平距離Dは変わる。 When the electric vehicle 40 travels in the charging station 20 and aligns the vehicle coil 44 with respect to the external coil 28, the vertical distance Z does not change but the horizontal distance D changes.

図2では、3種類の垂直距離Z1〜Z3(Z1<Z2<Z3)に応じた微弱電圧値vlpe−水平距離Dの特性が2次元のグラフとして示されている。垂直距離Zが大きくなるにつれて磁気結合が弱くなるので微弱電圧値vlpeは小さくなる。一方、水平距離DがD=0で微弱電圧値vlpeが最大値の微弱電圧値vlpemaxとなり、水平距離DがD=0から大きくなるにつれて、微弱電圧値vlpeは小さくなり、距離D1で極小値となる。更に、水平距離Dが距離D1から大きくなるにつれて、微弱電圧値vlpeは大きくなり、距離D2で極大値である微弱電圧値vlpesとなる。更に、水平距離Dが距離D2から大きくなるにつれて、微弱電圧値vlpeは小さくなり、検知できなくなると0値になる。 In FIG. 2, the characteristics of the weak voltage value blpe-horizontal distance D corresponding to the three types of vertical distances Z1 to Z3 (Z1 <Z2 <Z3) are shown as a two-dimensional graph. As the vertical distance Z increases, the magnetic coupling becomes weaker, so that the weak voltage value vlpe becomes smaller. On the other hand, when the horizontal distance D is D = 0, the weak voltage value vulpe becomes the maximum weak voltage value vulpemax, and as the horizontal distance D increases from D = 0, the weak voltage value vulpe becomes smaller and becomes the minimum value at the distance D1. Become. Further, as the horizontal distance D increases from the distance D1, the weak voltage value vlpe increases, and becomes the weak voltage value vlpes which is the maximum value at the distance D2. Further, as the horizontal distance D increases from the distance D2, the weak voltage value vlpe becomes smaller, and when it cannot be detected, it becomes a 0 value.

図2に示されるように、垂直距離Zに応じて一意に微弱電圧値vlpe−水平距離Dの特性が決まる。そして、微弱電圧値vlpeが極大値である微弱電圧値vlpesとなる距離D2において、その極大値(微弱電圧値vlpes)は垂直距離Z毎に異なっている。すなわち、各特性の極大値(微弱電圧値vlpes)は個々の特性の固有値となる。このため、外部コイル28に対する車両コイル44の位置合わせを行う場合に、微弱電圧値vlpeが極大値である微弱電圧値vlpesとなるとき、すなわち位置微分値d(vlpe)/dxが0になるときの微弱電圧値vlpe自体から垂直距離Zを推定できる。そして、推定した垂直距離Zに対応する微弱電圧値vlpe−水平距離Dの特性を特定し、その特性を用いることにより水平距離Dを推定することができる。 As shown in FIG. 2, the characteristic of the weak voltage value vlpe-horizontal distance D is uniquely determined according to the vertical distance Z. Then, at the distance D2 where the weak voltage value vlp is the maximum weak voltage value vlpes, the maximum value (weak voltage value vlpes) is different for each vertical distance Z. That is, the maximum value (weak voltage value vlpes) of each characteristic is an eigenvalue of each characteristic. Therefore, when the vehicle coil 44 is aligned with respect to the external coil 28, when the weak voltage value flape becomes the weak voltage value flapes which is the maximum value, that is, when the position differential value d (vlpe) / dx becomes 0. The vertical distance Z can be estimated from the weak voltage value vlpe itself. Then, the characteristic of the weak voltage value vrpe-horizontal distance D corresponding to the estimated vertical distance Z is specified, and the horizontal distance D can be estimated by using the characteristic.

なお、図2に示される微弱電圧値vlpe−水平距離Dの各特性において、位置微分値d(vlpe)/dxが0となるのは、水平距離DがD=0、D1近傍、D2近傍のときである。このうち水平距離DがD=0のときの微弱電圧値vlpeは各特性の中で最大値となる。しかし、水平距離DがD=0ということは、外部コイル28の中心と車両コイル44の中心との位置が既に合っている状態を意味する。このため、位置合わせ処理では、最大となる微弱電圧値vlpe(D=0)を垂直距離Zの判定材料として使用しない。垂直距離Zの判定材料として使用するのは、水平距離D3より遠方から外部コイル28に近づく際に、位置微分値d(vlpe)/dxが変化を始めて(変化を始める水平距離Dは水平距離D3)から最初に0になる距離D2の位置の微弱電圧値vlpes(極大値)である。 In each characteristic of the weak voltage value vlpe-horizontal distance D shown in FIG. 2, the position differential value d (vlpe) / dx becomes 0 when the horizontal distance D is D = 0, near D1 and near D2. It's time. Of these, the weak voltage value vlpe when the horizontal distance D is D = 0 is the maximum value among the characteristics. However, when the horizontal distance D is D = 0, it means that the positions of the center of the external coil 28 and the center of the vehicle coil 44 are already aligned. Therefore, in the alignment process, the maximum weak voltage value vlp (D = 0) is not used as a determination material for the vertical distance Z. The material used as the determination material for the vertical distance Z is that the position differential value d (vlpe) / dx starts to change when approaching the external coil 28 from a distance farther than the horizontal distance D3 (the horizontal distance D that starts to change is the horizontal distance D3). ) Is the weak voltage value vrpes (maximum value) at the position of the distance D2 where it first becomes 0.

[動作]
図3及び図4のフローチャートを参照して電動車両40側で行われる位置合わせ処理を説明する。以下で説明する処理は、電動車両40の運転者が位置合わせ処理の開始スイッチ(不図示)をオン操作した場合に行われる。
[motion]
The alignment process performed on the electric vehicle 40 side will be described with reference to the flowcharts of FIGS. 3 and 4. The process described below is performed when the driver of the electric vehicle 40 turns on the start switch (not shown) of the alignment process.

図5Aに示されるように、例えば充電ステーション20は線82で区画される。運転者は充電ステーション20から離れた位置P1で駐車開始スイッチをオン操作し、電動車両40を充電ステーション20に向けて走行させる。駐車開始スイッチの操作信号は、車両側制御装置56から車両側通信装置68に供給される。 As shown in FIG. 5A, for example, the charging station 20 is partitioned by a line 82. The driver turns on the parking start switch at the position P1 away from the charging station 20 to drive the electric vehicle 40 toward the charging station 20. The operation signal of the parking start switch is supplied from the vehicle-side control device 56 to the vehicle-side communication device 68.

ステップS1にて、充電管理部58は、車両側通信装置68に対して微弱電力plpeの送電要求を指示する。この指示により車両側通信装置68は、外部通信装置36と認証等のペアリングを行い、微弱電力plpeの送電要求信号を送信する。外部制御装置34は、外部通信装置36で受信される送電要求信号に応じて電力変換器26を制御して微弱電力plpeの送電を開始させる。 In step S1, the charge management unit 58 instructs the vehicle-side communication device 68 to request the transmission of the weak power plpe. In response to this instruction, the vehicle-side communication device 68 performs pairing such as authentication with the external communication device 36, and transmits a transmission request signal of weak electric power plpe. The external control device 34 controls the power converter 26 in response to the power transmission request signal received by the external communication device 36 to start the transmission of the weak power plpe.

電力変換器26は、交流電力を所定の微弱電力plpeに変換して外部コイル28に供給する。すると、図5Aに示すように、位置合わせ用の一定電力の微弱電力plpeが、外部コイル28から外部に対して送電される。このときの送電間隔Tintは、比較的広い一定の送電間隔Taである。 The power converter 26 converts AC power into a predetermined weak power plpe and supplies it to the external coil 28. Then, as shown in FIG. 5A, a weak power plpe of a constant power for alignment is transmitted from the external coil 28 to the outside. The power transmission interval Tint at this time is a relatively wide constant power transmission interval Ta.

電動車両40(車両コイル44)の位置が外部コイル28から遠い場合、瞬間(微小時間)毎の位置情報は必要ない。このため、送電間隔Tintを比較的広い送電間隔Taとしても、位置合わせに対する影響は極めて少ない。 When the position of the electric vehicle 40 (vehicle coil 44) is far from the external coil 28, the position information for each moment (minute time) is not required. Therefore, even if the power transmission interval Tin is set to a relatively wide power transmission interval Ta, the influence on the alignment is extremely small.

ステップS2にて、充電管理部58は、微弱電力plpeにより電圧検知器50に発生する微弱電圧値vlpeが所定値以上か否かを判定する。電動車両40の走行に伴い、車両コイル44は外部コイル28に近づく。車両コイル44が外部コイル28の微弱電力plpeを受電できる位置(水平距離D3)に達すると、電圧検知器50で検知される微弱電圧値vlpeが所定値以上となる。微弱電圧値vlpeが所定値以上の場合(ステップS2:YES)、処理はステップS3に移行する。一方、微弱電圧値vlpeが所定値を下まわる場合(ステップS2:NO)、ステップS2の処理が繰り返し行われる。 In step S2, the charge management unit 58 determines whether or not the weak voltage value vlpe generated in the voltage detector 50 by the weak power pullpe is equal to or higher than a predetermined value. As the electric vehicle 40 travels, the vehicle coil 44 approaches the external coil 28. When the vehicle coil 44 reaches a position (horizontal distance D3) where the weak electric power plpe of the external coil 28 can be received, the weak voltage value vlpe detected by the voltage detector 50 becomes equal to or higher than a predetermined value. When the weak voltage value vrpe is equal to or greater than a predetermined value (step S2: YES), the process proceeds to step S3. On the other hand, when the weak voltage value vlpe falls below a predetermined value (step S2: NO), the process of step S2 is repeated.

ステップS2からステップS3に移行した場合、微分値算出部60は、電圧検知器50で検知される微弱電圧値vlpeと距離センサ70で検知される走行距離xとに基づいて位置微分値d(vlpe)/dxを算出する。 When shifting from step S2 to step S3, the differential value calculation unit 60 has a position differential value d (vlppe) based on the weak voltage value vlpe detected by the voltage detector 50 and the mileage x detected by the distance sensor 70. ) / Dx is calculated.

ステップS4にて、微分値算出部60は、位置微分値d(vlpe)/dxが0であるか否かを判定する。外部コイル28の中心と車両コイル44の中心との水平距離Dが距離D2になると、位置微分値d(vlpe)/dxは0になる。位置微分値d(vlpe)/dxが0となる場合(ステップS4:YES)、処理はステップS5に移行する。一方、位置微分値d(vlpe)/dxが0でない場合(ステップS4:NO)、ステップS3の処理に戻る。 In step S4, the differential value calculation unit 60 determines whether or not the position differential value d (vlpe) / dx is 0. When the horizontal distance D between the center of the external coil 28 and the center of the vehicle coil 44 becomes the distance D2, the position differential value d (vlpe) / dx becomes 0. When the position differential value d (vlpe) / dx becomes 0 (step S4: YES), the process proceeds to step S5. On the other hand, when the position differential value d (vlpe) / dx is not 0 (step S4: NO), the process returns to the process of step S3.

ステップS4からステップS5に移行した場合、垂直距離推定部62は、位置微分値d(vlpe)/dxが0となったときの微弱電圧値vlpesと、メモリ66に記憶されるマップMと、に基づいて垂直距離Zを推定する。例えば、図2に示されるように、微弱電圧値vlpeが微弱電圧値vlpesである場合、極大値が微弱電圧値vlpesとなるのは、垂直距離Z1の微弱電圧値vlpe−水平距離Dの特性である。この場合、垂直距離推定部62は、垂直距離ZがZ1であると推定する。そして、以降の処理で使用する特性を、垂直距離Z1の微弱電圧値vlpe−水平距離Dの特性に特定する。 When shifting from step S4 to step S5, the vertical distance estimation unit 62 sets the weak voltage value vlpes when the position differential value d (vlpe) / dx becomes 0 and the map M stored in the memory 66. The vertical distance Z is estimated based on this. For example, as shown in FIG. 2, when the weak voltage value vlp is the weak voltage value vlpes, the maximum value is the weak voltage value vlpes because of the characteristic of the weak voltage value vlpe-horizontal distance D of the vertical distance Z1. is there. In this case, the vertical distance estimation unit 62 estimates that the vertical distance Z is Z1. Then, the characteristic used in the subsequent processing is specified as the characteristic of the weak voltage value vlpe-horizontal distance D of the vertical distance Z1.

ステップS6にて、水平距離推定部64は、ステップS5で特定された微弱電圧値vlpe−水平距離Dの特性(ここでは、垂直距離Z1の特性)と、電圧検知器50で検知される微弱電圧値vlpeと、に基づいて、微弱電圧値vlpeに応じた水平距離Dを推定する。 In step S6, the horizontal distance estimation unit 64 determines the characteristic of the weak voltage value vrpe-horizontal distance D (here, the characteristic of the vertical distance Z1) specified in step S5 and the weak voltage detected by the voltage detector 50. Based on the value vlp and, the horizontal distance D corresponding to the weak voltage value vlppe is estimated.

ステップS7にて、閾値比較部65は、微弱電圧値vlpeが、極大値である微弱電圧値vlpesよりも大きい低電圧閾値vlpelを上回ったか否かを判定する。 In step S7, the threshold value comparison unit 65 determines whether or not the weak voltage value vrpe exceeds the low voltage threshold value blpel, which is larger than the maximum weak voltage value vrpes.

低電圧閾値vlpelを上回っていない(ステップS7:NO)場合には、送電間隔Ta(図5A)で発生する微弱電力plpeにより発生する微弱電圧値vlpeと、ステップS5で特定された微弱電圧値vlpe−水平距離Dの特性(垂直距離Z1の特性)と、に応じた水平距離Dの推定処理が継続される。 When the low voltage threshold value vrpel is not exceeded (step S7: NO), the weak voltage value vulpe generated by the weak power lppe generated at the transmission interval Ta (FIG. 5A) and the weak voltage value vulpe specified in step S5. -The characteristic of the horizontal distance D (characteristic of the vertical distance Z1) and the estimation process of the horizontal distance D according to the characteristics are continued.

低電圧閾値vlpelを上回った(ステップS7:YES)場合、ステップS8に移行する。ステップS8にて、閾値比較部65は、水平距離Dに応じて、該水平距離DがD=Dlから短くなるにつれて送電間隔Tintを狭くする要求を、車両側通信装置68及び外部通信装置36を通じて外部制御装置34に通知する。 When the low voltage threshold value vlpell is exceeded (step S7: YES), the process proceeds to step S8. In step S8, the threshold value comparison unit 65 requests through the vehicle-side communication device 68 and the external communication device 36 to narrow the power transmission interval Tint as the horizontal distance D becomes shorter from D = Dl according to the horizontal distance D. Notify the external control device 34.

このとき、送電間隔モード変更部27は、電力変換器26及び外部コイル28を通じて、水平距離DがD=Dlから短くなるに従い(すなわち、微弱電圧値vlpeが電圧閾値vlpehに近づくにつれて)、送電間隔Tintが、図5Bに示すように、送電間隔Taから送電間隔Tb、送電間隔Tc(Ta>Tb>Tc)と、段階的に狭くなる微弱電力plpeを送電させる。なお、送電間隔Tintは、送電間隔Taから送電間隔Tbを経て、送電間隔Tcとなるように、連続的に狭くなるようにしてもよい。 At this time, the power transmission interval mode changing unit 27 communicates the power transmission interval through the power converter 26 and the external coil 28 as the horizontal distance D becomes shorter from D = Dl (that is, as the weak voltage value vrpe approaches the voltage threshold vrpeh). As shown in FIG. 5B, Tin transmits a weak electric power plpe that gradually narrows from the transmission interval Ta to the transmission interval Tb and the transmission interval Tc (Ta> Tb> Tc). The power transmission interval Tint may be continuously narrowed so as to be the power transmission interval Tc from the power transmission interval Ta through the power transmission interval Tb.

また、充電管理部58は、水平距離推定部64により推定された水平距離Dを表示装置72に表示させる。運転者は、表示装置72を確認しながら走行装置74を操作して、外部コイル28の中心に対する車両コイル44の中心の位置合わせのための走行を継続する。 Further, the charge management unit 58 causes the display device 72 to display the horizontal distance D estimated by the horizontal distance estimation unit 64. The driver operates the traveling device 74 while checking the display device 72 to continue traveling for aligning the center of the vehicle coil 44 with respect to the center of the external coil 28.

このように電動車両40の位置が外部コイル28に近づくにつれて、段階的に又は連続的に送電間隔Tintを狭くしていくことで、リアルタイムな位置情報を運転者に伝えることができる。 By narrowing the power transmission interval Tin stepwise or continuously as the position of the electric vehicle 40 approaches the external coil 28 in this way, real-time position information can be transmitted to the driver.

次いで、ステップS9にて、ステップS6と同様に、水平距離推定部64は、ステップS5で特定された微弱電圧値vlpe−水平距離Dの特性(垂直距離Z1の特性)と、電圧検知器50で検知される微弱電圧値vlpeと、に基づいて、微弱電圧値vlpeに応じた水平距離D(D=Dl〜Dh)を推定する。 Next, in step S9, as in step S6, the horizontal distance estimation unit 64 uses the weak voltage value vrpe-horizontal distance D characteristic (vertical distance Z1 characteristic) specified in step S5 and the voltage detector 50. Based on the detected weak voltage value vrpe, the horizontal distance D (D = Dl to Dh) corresponding to the weak voltage value vrpe is estimated.

ステップS10にて、閾値比較部65は、微弱電圧値vlpeが、低電圧閾値vlpelを上回る電圧閾値vlpeh(図2参照)を上回ったか否かを判定する。 In step S10, the threshold value comparison unit 65 determines whether or not the weak voltage value blpe exceeds the voltage threshold blpeh (see FIG. 2) that exceeds the low voltage threshold vrpel.

電圧閾値vlpehを上回っていない(ステップS10:NO)場合には、ステップS8に戻り、送電間隔モード変更部27は、水平距離Dが短くなるに従い送電間隔Tintが、更に短くなる微弱電力plpeを外部コイル28から送電させる。 If the voltage threshold voltage threshold is not exceeded (step S10: NO), the process returns to step S8, and the power transmission interval mode changing unit 27 externally externally weakens the power transmission interval Tint as the horizontal distance D becomes shorter. Power is transmitted from the coil 28.

次いで、ステップS9にて、ステップS6と同様に、水平距離推定部64は、ステップS5で特定された微弱電圧値vlpe−水平距離Dの特性(垂直距離Z1の特性)と、電圧検知器50で検知される微弱電圧値vlpeと、に基づいて、微弱電圧値vlpeに応じた水平距離D(D=Dl〜Dh)を推定する。 Next, in step S9, as in step S6, the horizontal distance estimation unit 64 uses the weak voltage value vrpe-horizontal distance D characteristic (vertical distance Z1 characteristic) specified in step S5 and the voltage detector 50. Based on the detected weak voltage value vrpe, the horizontal distance D (D = Dl to Dh) corresponding to the weak voltage value vrpe is estimated.

ステップS10にて、微弱電圧値vlpeが、電圧閾値vlpehを上回った(ステップS10:YES)とき、閾値比較部65は、ステップS11にて、送電間隔Tintが0となる連続送電モードとする要求を、車両側通信装置68及び外部通信装置36を通じて外部制御装置34に通知する。このとき、送電間隔モード変更部27は、電力変換器26及び外部コイル28を通じて、図6に示すように、微弱電力plpeを連続的に送電させる。 In step S10, when the weak voltage value vlpe exceeds the voltage threshold value vlpeh (step S10: YES), the threshold value comparison unit 65 requests in step S11 to set the continuous power transmission mode in which the power transmission interval Tin becomes 0. , Notify the external control device 34 through the vehicle-side communication device 68 and the external communication device 36. At this time, the power transmission interval mode changing unit 27 continuously transmits the weak power plpe through the power converter 26 and the external coil 28, as shown in FIG.

また、充電管理部58は、水平距離推定部64により推定された水平距離Dを表示装置72に表示させる。運転者は、表示装置72を確認しながら走行装置74を操作して、外部コイル28の中心に対する車両コイル44の中心の位置合わせのための走行を継続する。 Further, the charge management unit 58 causes the display device 72 to display the horizontal distance D estimated by the horizontal distance estimation unit 64. The driver operates the traveling device 74 while checking the display device 72 to continue traveling for aligning the center of the vehicle coil 44 with respect to the center of the external coil 28.

このように、電動車両40の位置が外部コイル28に近い場合、瞬間(微小時間)毎の正確な位置情報に基づいて、ステップS12にて、水平距離推定部64は、ステップS5で特定された微弱電圧値vlpe−水平距離Dの特性(例えば垂直距離Z1の特性)と、電圧検知器50で検知される微弱電圧値vlpeと、に基づいて、微弱電圧値vlpeに応じた水平距離D(D=Dh〜0)を推定する。 As described above, when the position of the electric vehicle 40 is close to the external coil 28, the horizontal distance estimation unit 64 is specified in step S5 in step S12 based on the accurate position information for each moment (minute time). Weak voltage value blpe-horizontal distance D (D) according to the weak voltage value vrpe based on the characteristics of the weak voltage value vulpe-horizontal distance D (for example, the characteristics of the vertical distance Z1) and the weak voltage value vulpe detected by the voltage detector 50. = Dh ~ 0) is estimated.

ステップS13にて、充電管理部58は、充電を開始するか否かを判定する。運転者は、外部コイル28の中心に対する車両コイル44の中心の位置合わせが終了すると、電動車両40を停止させて充電開始スイッチ(不図示)をオン操作する。充電開始スイッチがオン操作される場合(ステップS13:YES)、一連の位置合わせ処理は終了する。一方、充電開始スイッチがオン操作されない場合(ステップS13:NO)、ステップS11の処理に戻る。 In step S13, the charge management unit 58 determines whether or not to start charging. When the alignment of the center of the vehicle coil 44 with respect to the center of the external coil 28 is completed, the driver stops the electric vehicle 40 and turns on the charging start switch (not shown). When the charging start switch is turned on (step S13: YES), a series of alignment processes is completed. On the other hand, if the charging start switch is not turned on (step S13: NO), the process returns to step S11.

充電開始スイッチの操作信号は車両側制御装置56に通知される。充電管理部58は、車両側通信装置68に対して微弱電力plpeの停止要求及び充電電力の伝送要求を指示する。車両側通信装置68は、外部通信装置36に対して微弱電力plpeの停止要求信号及び充電電力の伝送要求信号を送信する。外部制御装置34は、外部通信装置36で受信される停止要求信号に応じて電力変換器26を制御して微弱電力plpeの送電を停止させ、外部通信装置36で受信される伝送要求信号に応じて電力変換器26を制御して充電電力の送電を開始させる。 The operation signal of the charging start switch is notified to the vehicle side control device 56. The charge management unit 58 instructs the vehicle-side communication device 68 to stop the weak power plpe and request the transmission of the charge power. The vehicle-side communication device 68 transmits a stop request signal for the weak power pull and a transmission request signal for the charging power to the external communication device 36. The external control device 34 controls the power converter 26 in response to the stop request signal received by the external communication device 36 to stop the transmission of the weak power plpe, and responds to the transmission request signal received by the external communication device 36. The power converter 26 is controlled to start transmission of charging power.

[まとめ]
この実施形態に係る非接触電力伝送システム10は、電動車両40の外部の路面12に設けられた外部コイル28から送電された電力を、電動車両40に設けられた車両コイル44により非接触で受電し、電動車両40のバッテリ54を充電する。
[Summary]
The non-contact power transmission system 10 according to this embodiment receives the electric power transmitted from the external coil 28 provided on the road surface 12 outside the electric vehicle 40 in a non-contact manner by the vehicle coil 44 provided on the electric vehicle 40. Then, the battery 54 of the electric vehicle 40 is charged.

非接触電力伝送システム10は、外部コイル28から送電される位置合わせ用の電力である微弱電力plpeの送電間隔モードを変更する送電間隔モード変更部27を制御する送電側制御装置としての外部制御装置34と、送電された微弱電力plpeを車両コイル44で受電し、受電電力により発生する電圧値を受電電圧値である微弱電圧値vlpeとして検知する受電側制御装置としての車両側制御装置56と、を備える。 The non-contact power transmission system 10 is an external control device as a power transmission side control device that controls a power transmission interval mode change unit 27 that changes the power transmission interval mode of the weak power pullpe, which is the power for alignment transmitted from the external coil 28. 34, a vehicle-side control device 56 as a power-receiving side control device that receives the transmitted weak power plpe with the vehicle coil 44 and detects the voltage value generated by the received power as a weak voltage value vlp, which is the received voltage value. To be equipped.

この場合、外部制御装置34及び車両側制御装置56は、協調して、微弱電圧値vlpeが電圧閾値vlpehを上回ったときに、送電間隔モードを間欠送電モードから連続送電モードに変更(図2)している。 In this case, the external control device 34 and the vehicle side control device 56 coordinately change the power transmission interval mode from the intermittent power transmission mode to the continuous power transmission mode when the weak voltage value vrpe exceeds the voltage threshold value vrpeh (FIG. 2). doing.

このように、位置合わせ中に、外部コイル28から送電される位置合わせ用の電力である微弱電力plpeの送電間隔モードを変更するようにしたので、連続送電モードでは、正確な位置合わせを維持しつつ、間欠送電モードでは、消費電力を低減できる。 In this way, during the alignment, the transmission interval mode of the weak power plpe, which is the alignment power transmitted from the external coil 28, is changed. Therefore, in the continuous transmission mode, accurate alignment is maintained. On the other hand, in the intermittent power transmission mode, the power consumption can be reduced.

上記実施形態によれば、微弱電圧値vlpeが低電圧閾値vlpelを上回った後、電圧閾値vlpehとなるまでの間、送電間隔TintをTint=Ta(第1間欠送電モードという。)よりも送電間隔の狭い、例えば送電間隔Tc(第2間欠送電モードという。)にする際、例えば送電間隔Taから送電間隔Tbを経て、送電間隔Tc(Ta>Tb>Tc)となるように、微弱電圧値vlpeが電圧閾値vlpehに近づくにつれて送電間隔Tintを狭くしている。 According to the above embodiment, the power transmission interval Tin is set to the power transmission interval Tint = Ta (referred to as the first intermittent power transmission mode) from the time when the weak voltage value vrpe exceeds the low voltage threshold value vulpel until the voltage threshold value blpeh is reached. When the transmission interval Tc (referred to as the second intermittent transmission mode) is set to a narrow value, for example, the transmission interval Tc (Ta> Tb> Tc) is obtained from the transmission interval Ta via the transmission interval Tb. The transmission interval Tint is narrowed as it approaches the voltage threshold value vrpeh.

このように、段階的に又は連続的に送電間隔Tintを狭くした区間(水平距離Dlから水平距離Dhまでの区間)では、水平距離D3から水平距離Dlまでの区間(送電間隔Tint=Ta)に比較して位置合わせ距離の把握がより正確になる。 In this way, in the section where the transmission interval Tin is narrowed stepwise or continuously (the section from the horizontal distance Dl to the horizontal distance Dh), the section from the horizontal distance D3 to the horizontal distance Dl (transmission interval Tint = Ta) is set. In comparison, the alignment distance can be grasped more accurately.

[変形例1]
なお、図2中、水平距離Dが水平距離Dhより短く、水平距離Dが0となるまでの連続送電モードの区間は、例えば送電間隔Tcより短く、換言すれば、送電間隔Taに比較して極めて短い送電間隔Tint(Tint<Tc且つTint<<Ta)を採る間欠送電モード区間としてもよい。
[Modification 1]
In FIG. 2, the section of the continuous power transmission mode until the horizontal distance D is shorter than the horizontal distance Dh and the horizontal distance D becomes 0 is shorter than, for example, the power transmission interval Tc, in other words, compared with the power transmission interval Ta. The intermittent power transmission mode section may have an extremely short power transmission interval Tint (Tint <Tc and Tin << Ta).

[変形例2]
微弱電圧値vlpeが電圧閾値vlpehより低い低電圧閾値vlpelを上回る前は、例えば、送電間隔TintがTint=Taを採る第1間欠送電モードにし、低電圧閾値vlpelを上回った後、電圧閾値vlpehまでは前記第1間欠送電モードよりも送電間隔Tintの狭い、例えば送電間隔Tbの第2間欠送電モードにするようにしてもよい。
[Modification 2]
Before the weak voltage value vrpe exceeds the low voltage threshold vrpel lower than the voltage threshold vrpeh, for example, in the first intermittent power transmission mode in which the transmission interval Tin takes Tin = Ta, after exceeding the low voltage threshold vrpel, until the voltage threshold vrpeh. May be set to a second intermittent power transmission mode having a power transmission interval Tin narrower than that of the first intermittent power transmission mode, for example, a power transmission interval Tb.

このように微弱電圧値vlpeが電圧閾値vlpehになるまで、換言すれば、水平距離Dが近くなるまでは、段階的に間隔が狭くなっても、実用上、十分な範囲で位置合わせが可能であるので、より消費電力を低減することができる。 In this way, until the weak voltage value vlpe reaches the voltage threshold value vlpeh, in other words, until the horizontal distance D becomes close, even if the interval is gradually narrowed, it is possible to align within a practically sufficient range. Therefore, the power consumption can be further reduced.

[変形例3]
上述した実施形態では、図7Aに示すように、位置合わせ用の電力である微弱電力plpeを外部コイル28から送電するように構成しているが、微弱電力plpeは、図7Bに示すように、車両コイル44等、電動車両40のコイルから送電し、外部コイル28等、充電ステーション20側のコイルで受電するように構成を変更してもよい。
[Modification 3]
In the above-described embodiment, as shown in FIG. 7A, the weak power plpe, which is the power for alignment, is transmitted from the external coil 28. However, the weak power plpe is as shown in FIG. 7B. The configuration may be changed so that power is transmitted from the coil of the electric vehicle 40 such as the vehicle coil 44 and received by the coil on the charging station 20 side such as the external coil 28.

位置合わせ用の電力である微弱電力plpeを外部コイル28から送電する場合には、外部の、例えば、インフラ側の消費電力を低減できる。車両コイル44から送電する場合には、連続送電モードに比較して電動車両40のバッテリ54のSOC(State Of Charge)の低下を抑制することができる。 When the weak power plpe, which is the power for alignment, is transmitted from the external coil 28, the power consumption of the outside, for example, the infrastructure side can be reduced. When power is transmitted from the vehicle coil 44, it is possible to suppress a decrease in SOC (State Of Charge) of the battery 54 of the electric vehicle 40 as compared with the continuous power transmission mode.

[変形例4]
上述した実施形態において、閾値比較部65は、比較値としての車両コイル44の微弱電圧値vlpeを、基準値としての電圧閾値vlpeh又は低電圧閾値vlpelと比較するようにしているが、これに限られるものではない。例えば、比較値としての車両コイル44の微弱電圧値vlpeを、微弱電圧値vlpeと略線形な関係にある微弱電圧値vlpeの電力値に代替しても、同様に、位置合わせ処理を行うことができる。あるいは、比較値としての車両コイル44の微弱電圧値vlpeを、送受電電力の伝送電力効率(微弱電圧値vlpeの電力値/送電電力値)に代替しても、同様に、位置合わせ処理を行うことができる。この場合、比較値としての電力値又は伝送電力効率と比較する基準値は、電圧閾値vlpehや低電圧閾値vlpelに対応する電力閾値又は伝送電力効率の閾値が用いられる。
[Modification example 4]
In the above-described embodiment, the threshold value comparison unit 65 compares the weak voltage value vlp of the vehicle coil 44 as a comparison value with the voltage threshold value vlpeh or the low voltage threshold value vlpel as a reference value, but the present invention is limited to this. It is not something that can be done. For example, even if the weak voltage value vlp of the vehicle coil 44 as a comparison value is replaced with the power value of the weak voltage value vlpe which has a substantially linear relationship with the weak voltage value vlp, the alignment process can be performed in the same manner. it can. Alternatively, even if the weak voltage value vlp of the vehicle coil 44 as a comparison value is replaced with the transmission power efficiency of the power transmission / reception power (power value / transmission power value of the weak voltage value vlp), the alignment processing is performed in the same manner. be able to. In this case, as the power value as the comparison value or the reference value to be compared with the transmission power efficiency, the power threshold value corresponding to the voltage threshold value vrpeh or the low voltage threshold value vrpel or the threshold value of the transmission power efficiency is used.

なお、この発明は、上述の実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that various configurations can be adopted without departing from the gist of the present invention.

10…非接触電力伝送システム 20…充電ステーション
27…送電間隔モード変更部 28…外部コイル
34…外部制御装置 36…外部通信装置
40…電動車両 44…車両コイル
50…電圧検知器 56…車両側制御装置
60…微分値算出部 62…垂直距離推定部
64…水平距離推定部 65…閾値比較部
66…メモリ 68…車両側通信装置
10 ... Non-contact power transmission system 20 ... Charging station 27 ... Transmission interval mode change unit 28 ... External coil 34 ... External control device 36 ... External communication device 40 ... Electric vehicle 44 ... Vehicle coil 50 ... Voltage detector 56 ... Vehicle side control Device 60 ... Differential value calculation unit 62 ... Vertical distance estimation unit 64 ... Horizontal distance estimation unit 65 ... Threshold comparison unit 66 ... Memory 68 ... Vehicle side communication device

Claims (5)

路面に設けられた外部コイルから送電された電力を、車両に設けられた車両コイルにより非接触で受電し、前記車両のバッテリを充電する非接触電力伝送システムであって、
前記外部コイル又は前記車両コイルのうち、一方のコイルから送電された位置合わせ用の電力の送電間隔モードを制御する送電側制御装置と、
前記一方のコイルから送電された前記位置合わせ用の電力を、前記外部コイル又は前記車両コイルのうち、他方のコイルで受電し、受電電力により発生する電圧値を受電電圧値として検知する受電側制御装置と、を備え、
前記送電側制御装置及び前記受電側制御装置は、前記受電電圧値が前記受電電圧値と前記外部コイル及び前記車両コイルの間の距離との関係から求められる、前記受電電圧値の極大値と該極大値より大きい最大値との間で設定された電圧閾値を上回ったときに、前記送電間隔モードを第1間欠送電モードから、該第1間欠送電モードよりも送電間隔が狭い第2間欠送電モード又は連続送電モードに変更する
ことを特徴とする非接触電力伝送システム。
A non-contact power transmission system that charges the battery of the vehicle by receiving the electric power transmitted from the external coil provided on the road surface in a non-contact manner by the vehicle coil provided in the vehicle.
A power transmission side control device that controls a power transmission interval mode of the power for alignment transmitted from one of the external coil or the vehicle coil.
The power for alignment transmitted from one of the coils is received by the other coil of the external coil or the vehicle coil, and the voltage value generated by the received power is detected as the received voltage value. Equipped with equipment,
The power transmission side control device and the power reception side control device have the maximum value of the power reception voltage value and the maximum value of the power reception voltage value obtained from the relationship between the power reception voltage value and the distance between the external coil and the vehicle coil. When the voltage threshold set between the maximum value and the maximum value is exceeded, the transmission interval mode is changed from the first intermittent transmission mode to the second intermittent transmission mode in which the transmission interval is narrower than the first intermittent transmission mode. Alternatively, a non-contact power transmission system characterized by changing to a continuous power transmission mode.
請求項1に記載の非接触電力伝送システムにおいて、
前記送電側制御装置は、
前記受電電圧値が前記電圧閾値を上回る前は、前記送電間隔モードを前記第1間欠送電モードにし、上回った後は、前記連続送電モードにする
ことを特徴とする非接触電力伝送システム。
In the non-contact power transmission system according to claim 1,
The power transmission side control device is
Wherein before receiving voltage value exceeds the voltage threshold, the power transmission interval mode in the first intermittent power transmission mode, after the above, the non-contact power transmission system, characterized by the continuous transmission mode.
請求項2に記載の非接触電力伝送システムにおいて、
前記受電電圧値が前記電圧閾値より低い低電圧閾値を上回る前は、前記送電間隔モードを前記第1間欠送電モードにし、前記低電圧閾値を上回った後、前記電圧閾値までは、前記送電間隔モードを前記第1間欠送電モードよりも送電間隔の狭い前記第2間欠送電モードにする
ことを特徴とする非接触電力伝送システム。
In the non-contact power transmission system according to claim 2.
Wherein before receiving voltage value exceeds a lower threshold voltage lower than the voltage threshold, the power transmission interval mode in the first intermittent power transmission mode, after exceeding the lower threshold voltage, until the voltage threshold, the power transmission interval mode non-contact power transmission system, characterized by a narrow second intermittent power transmission mode of the transmission intervals than said first intermittent power transmission mode.
請求項3に記載の非接触電力伝送システムにおいて、
前記受電電圧値が前記低電圧閾値を上回った後、前記電圧閾値となるまでの間、前記送電間隔モードを前記第1間欠送電モードよりも送電間隔の狭い前記第2間欠送電モードにする際、前記受電電圧値が前記電圧閾値に近づくにつれて送電間隔を狭くする
ことを特徴とする非接触電力伝送システム。
In the non-contact power transmission system according to claim 3.
After the incoming voltage value is above the low voltage threshold, until the said voltage threshold, when the narrow second intermittent power transmission mode of the transmission intervals than said transmission interval mode the first intermittent power transmission mode, A non-contact power transmission system characterized in that the transmission interval is narrowed as the received voltage value approaches the voltage threshold.
請求項1〜4のいずれか1項に記載の非接触電力伝送システムにおいて、
比較値としての前記受電電圧値を、該受電電圧値の電力値、又は送受電電力の伝送電力効率に代替した
ことを特徴とする非接触電力伝送システム。
In the non-contact power transmission system according to any one of claims 1 to 4.
A non-contact power transmission system characterized in that the received voltage value as a comparative value is replaced with the power value of the received voltage value or the transmission power efficiency of the transmitted / received power.
JP2017112918A 2017-06-07 2017-06-07 Contactless power transfer system Active JP6860430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017112918A JP6860430B2 (en) 2017-06-07 2017-06-07 Contactless power transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017112918A JP6860430B2 (en) 2017-06-07 2017-06-07 Contactless power transfer system

Publications (2)

Publication Number Publication Date
JP2018207715A JP2018207715A (en) 2018-12-27
JP6860430B2 true JP6860430B2 (en) 2021-04-14

Family

ID=64957615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017112918A Active JP6860430B2 (en) 2017-06-07 2017-06-07 Contactless power transfer system

Country Status (1)

Country Link
JP (1) JP6860430B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162707A (en) * 2012-02-08 2013-08-19 Toyota Industries Corp Charging stand and relative position control method
JP6217388B2 (en) * 2013-12-27 2017-10-25 トヨタ自動車株式会社 Power receiving device and vehicle including the same

Also Published As

Publication number Publication date
JP2018207715A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
CN103492219B (en) Torque control device and non-contact charger systems
US9969280B2 (en) Contactless electricity supply device
US9050900B2 (en) Non-contact charging device
CN104813565B (en) Contactless power supply device, contactless power supply system and non-contact power method
CN109747470B (en) Movable body rescue system, server and movable body rescue method
CN103917400A (en) Power receiving device of vehicle, power transmitting device, and noncontact power transmitting/receiving system
US20220402389A1 (en) Vehicle, ground power supplying apparatus, and noncontact power supplying system
CN108928247B (en) Contactless electrical power transmission system
JP2019009874A (en) Non-contact power transmission system
JP2014193095A (en) Non-contact power supply system
US20220402387A1 (en) Ground power supplying apparatus, method for controlling ground power supplying apparatus, and nontransitory computer recording medium
US11894690B2 (en) Vehicle, power supplying method, and communication device
JP2022190551A (en) Movable body and control method of movable body
JP6860430B2 (en) Contactless power transfer system
JP2019047611A (en) Non-contact charger, and non-contact charging method
JP2014110681A (en) Non-contact power supply device, non-contact power supply system, and non-contact power supply method
US11750045B2 (en) Noncontact power supplying system using alternating magnetic field or electric wave for both carrying vehicle information and determining lateral deviation in position
US20220402392A1 (en) Vehicle, method of control of power reception of vehicle, and nontransitory computer recording medium
JP2023016542A (en) Ground power supply device
JP2011166877A (en) Control unit for vehicle, and control method for vehicle
JP7435550B2 (en) vehicle
JP6774379B2 (en) Contactless power transfer system
JP7014591B2 (en) Mobile
CN110462976B (en) Contactless electrical power transmission system
US20220402386A1 (en) Ground power supplying apparatus and power supply method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210326

R150 Certificate of patent or registration of utility model

Ref document number: 6860430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150