[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6774379B2 - Contactless power transfer system - Google Patents

Contactless power transfer system Download PDF

Info

Publication number
JP6774379B2
JP6774379B2 JP2017102398A JP2017102398A JP6774379B2 JP 6774379 B2 JP6774379 B2 JP 6774379B2 JP 2017102398 A JP2017102398 A JP 2017102398A JP 2017102398 A JP2017102398 A JP 2017102398A JP 6774379 B2 JP6774379 B2 JP 6774379B2
Authority
JP
Japan
Prior art keywords
voltage
value
maximum value
electric vehicle
secondary coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017102398A
Other languages
Japanese (ja)
Other versions
JP2018198493A (en
Inventor
卓也 岩本
卓也 岩本
智明 中川
智明 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2017102398A priority Critical patent/JP6774379B2/en
Publication of JP2018198493A publication Critical patent/JP2018198493A/en
Application granted granted Critical
Publication of JP6774379B2 publication Critical patent/JP6774379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、1次コイルと2次コイルとの間で電力を伝送する非接触電力伝送システムに関し、特に、1次コイルと2次コイルの位置合わせをするために送電側から受電側に微弱電力を伝送し、微弱電力の受電時に抵抗の両端に発生するLPE(Low Power Excitation)電圧を検出するものに関する。 The present invention relates to a non-contact power transmission system that transmits power between a primary coil and a secondary coil, and in particular, weak power from the power transmitting side to the power receiving side in order to align the primary coil and the secondary coil. The present invention relates to a device that detects an LPE (Low Power Activation) voltage generated across a resistor when a weak electric power is received.

電動車両、例えば電気自動車やハイブリッド自動車等の開発と共に、電動車両のバッテリを非接触で充電する非接触充電に関する技術も開発されている。非接触充電を効率的に行うためには、充電ステーションに設けられる1次コイルと電動車両に設けられる2次コイルの位置合わせを正確に行う必要がある。 Along with the development of electric vehicles such as electric vehicles and hybrid vehicles, technologies related to non-contact charging for non-contact charging of batteries of electric vehicles have also been developed. In order to efficiently perform non-contact charging, it is necessary to accurately align the primary coil provided in the charging station and the secondary coil provided in the electric vehicle.

1次コイルと2次コイルの位置合わせに関しては、例えば特許文献1に示されるような技術がある。特許文献1には、1次コイルと2次コイルの位置合わせの際に、車輪の位置を充電ステーション側に設けられる複数の近接センサで検出する装置が示される。この装置は、近接センサが電動車両の車輪を検出する場合と検出しない場合とで、充電ステーションに設けられる信号機の点灯状態を変えている。乗員は信号機の点灯状態を見つつ電動車両を操作し、1次コイルと2次コイルの位置合わせを行う。 Regarding the alignment of the primary coil and the secondary coil, for example, there is a technique as shown in Patent Document 1. Patent Document 1 discloses a device that detects the position of a wheel by a plurality of proximity sensors provided on the charging station side when aligning the primary coil and the secondary coil. In this device, the lighting state of the traffic light provided in the charging station is changed depending on whether the proximity sensor detects the wheel of the electric vehicle or not. The occupant operates the electric vehicle while observing the lighting state of the traffic light to align the primary coil and the secondary coil.

特開2014−099964号公報(段落[0024]−[0031])Japanese Unexamined Patent Publication No. 2014-099964 (paragraphs [0024]-[0031])

特許文献1の装置においては、1次コイルと2次コイルの位置合わせの際に、1次コイルに対する2次コイルの位置ずれ量が考慮されていない。このため、乗員が1次コイルと2次コイルの位置合わせを正確に行うことは困難である。 In the apparatus of Patent Document 1, the amount of misalignment of the secondary coil with respect to the primary coil is not taken into consideration when aligning the primary coil and the secondary coil. Therefore, it is difficult for the occupant to accurately align the primary coil and the secondary coil.

本発明はこのような課題を考慮してなされたものであり、1次コイルと2次コイルの位置合わせをより正確に行うことができる非接触電力伝送システムを提供することを目的とする。 The present invention has been made in consideration of such a problem, and an object of the present invention is to provide a non-contact power transmission system capable of more accurately aligning a primary coil and a secondary coil.

本発明は、
充電ステーションの縦方向と電動車両の車長方向とが略平行し、且つ、前記充電ステーションの横方向と前記電動車両の車幅方向とが略平行する状態で、1次コイルから2次コイルに対して非接触で電力を伝送する非接触電力伝送システムであって、
前記1次コイルから送電され前記2次コイルで受電される微弱電力により発生する電圧を検出する電圧検出器と、
前記1次コイルに対する前記2次コイルの前記縦方向の位置ずれ量が0であるときの前記横方向の位置ずれ量と、前記横方向の位置ずれ量に応じた前記電圧の値と、の対応関係を示す電圧値−位置ずれ量情報を記憶する記憶装置と、
前記電動車両の走行に伴い変動する前記電圧の最大値を判定する最大値判定部と、
前記記憶装置に記憶される前記電圧値−位置ずれ量情報と、前記最大値判定部により判定される前記最大値と、に基づいて前記最大値に対応する前記横方向の位置ずれ量を推定するずれ量推定部と、を備える
ことを特徴とする。
The present invention
From the primary coil to the secondary coil in a state where the vertical direction of the charging station and the vehicle length direction of the electric vehicle are substantially parallel, and the horizontal direction of the charging station and the vehicle width direction of the electric vehicle are substantially parallel. On the other hand, it is a non-contact power transmission system that transmits power in a non-contact manner.
A voltage detector that detects the voltage generated by the weak power transmitted from the primary coil and received by the secondary coil.
Correspondence between the lateral misalignment amount when the vertical misalignment amount of the secondary coil with respect to the primary coil is 0 and the voltage value according to the lateral misalignment amount. A storage device that stores voltage value-positional deviation amount information indicating the relationship,
A maximum value determination unit that determines the maximum value of the voltage that fluctuates as the electric vehicle travels,
The lateral displacement amount corresponding to the maximum value is estimated based on the voltage value-positional deviation amount information stored in the storage device and the maximum value determined by the maximum value determination unit. It is characterized by including a deviation amount estimation unit.

上記構成によれば、記憶装置に記憶される電圧値−位置ずれ量情報と電圧検出器で検出される電圧の最大値とに基づいて1次コイルに対する2次コイルの横方向の位置ずれ量を容易に推定することができる。更に1次コイルに対する2次コイルの横方向の位置ずれ量を推定できるため、1次コイルと2次コイルの位置合わせをより正確に行うことができる。 According to the above configuration, the amount of lateral misalignment of the secondary coil with respect to the primary coil is determined based on the voltage value-misalignment amount information stored in the storage device and the maximum value of the voltage detected by the voltage detector. It can be easily estimated. Further, since the amount of lateral displacement of the secondary coil with respect to the primary coil can be estimated, the alignment of the primary coil and the secondary coil can be performed more accurately.

本発明において、
前記ずれ量推定部により推定される前記横方向の位置ずれ量を報知装置で報知させる報知制御部を更に備えてもよい。
In the present invention
A notification control unit may be further provided to notify the lateral position deviation amount estimated by the deviation amount estimation unit by the notification device.

上記構成によれば、乗員に1次コイルに対する2次コイルの横方向の位置ずれ量を報知することができる。このため、乗員は1次コイルと2次コイルの位置合わせを容易に行うことができる。 According to the above configuration, it is possible to notify the occupant of the amount of lateral displacement of the secondary coil with respect to the primary coil. Therefore, the occupant can easily align the primary coil and the secondary coil.

本発明において、
前記電動車両の走行距離を検出する距離センサを更に備え、
前記最大値判定部は、前記電圧検出器で検出される前記電圧の値と、前記距離センサで検出される前記電動車両の走行距離と、に基づいて、微小な走行距離に対する前記電圧の値の変化量である位置微分値を算出し、その位置微分値が0となるときの前記電圧の値を前記最大値と判定するようにしてもよい。
In the present invention
Further equipped with a distance sensor for detecting the mileage of the electric vehicle,
The maximum value determination unit determines the value of the voltage with respect to a minute mileage based on the value of the voltage detected by the voltage detector and the mileage of the electric vehicle detected by the distance sensor. The position differential value, which is the amount of change, may be calculated, and the value of the voltage when the position differential value becomes 0 may be determined as the maximum value.

上記構成によれば、電圧値の位置微分値を演算するといった容易な手法により電圧の最大値を算出することができる。このため、1次コイルと2次コイルの位置合わせを容易に行うことができる。 According to the above configuration, the maximum value of the voltage can be calculated by a simple method such as calculating the position derivative value of the voltage value. Therefore, the alignment of the primary coil and the secondary coil can be easily performed.

本発明によれば、1次コイルに対する2次コイルの横方向の位置ずれ量を推定できるため、1次コイルと2次コイルの位置合わせをより正確に行うことができる。 According to the present invention, since the amount of lateral displacement of the secondary coil with respect to the primary coil can be estimated, the alignment of the primary coil and the secondary coil can be performed more accurately.

図1は本実施形態に係る非接触電力伝送システムを示すシステム構成図である。FIG. 1 is a system configuration diagram showing a non-contact power transmission system according to the present embodiment. 図2は1次コイルに対する2次コイルの横方向の位置ずれの説明に供する説明図である。FIG. 2 is an explanatory diagram provided for explaining the lateral displacement of the secondary coil with respect to the primary coil. 図3は電圧値−水平距離の特性を示す図である。FIG. 3 is a diagram showing the characteristics of the voltage value-horizontal distance. 図4は電動車両で行われる処理を示すフローチャートである。FIG. 4 is a flowchart showing the processing performed by the electric vehicle. 図5Aおよび図5Bは充電ステーションに対する電動車両の駐車動作の説明に供する説明図である。5A and 5B are explanatory views for explaining the parking operation of the electric vehicle with respect to the charging station.

以下、本発明に係る非接触電力伝送システムについて好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。 Hereinafter, a preferred embodiment of the non-contact power transmission system according to the present invention will be described and described in detail with reference to the accompanying drawings.

[1 非接触電力伝送システム10の構成]
図1を用いて第1実施形態に係る非接触電力伝送システム10の構成を説明する。非接触電力伝送システム10は、地面(設置面)に設けられる1次側(給電側)の充電ステーション20と、2次側(受電側)の電動車両40とで構成される。図1中、2点鎖線の下側の構成要素が充電ステーション20を示し、2点鎖線の上側の構成要素が電動車両40を示す。非接触電力伝送システム10において、電動車両40に搭載されるバッテリ56は非接触で充電ステーション20により充電される。
[1 Configuration of non-contact power transmission system 10]
The configuration of the non-contact power transmission system 10 according to the first embodiment will be described with reference to FIG. The non-contact power transmission system 10 is composed of a charging station 20 on the primary side (power supply side) provided on the ground (installation surface) and an electric vehicle 40 on the secondary side (power receiving side). In FIG. 1, the component below the alternate long and short dash line indicates the charging station 20, and the component above the alternate long and short dash line indicates the electric vehicle 40. In the non-contact power transmission system 10, the battery 56 mounted on the electric vehicle 40 is non-contactly charged by the charging station 20.

充電ステーション20は、主として送電回路22と、1次側制御装置34と、1次側通信装置36と、を備える。送電回路22は、交流電源24と、交流電源24から供給される交流電力を送電電力に変換する電力変換器26と、共振用の1次コンデンサ(不図示)および1次コイル28と、を備える。1次コイル28は、1次パッド30で覆われて地面(設置面)に配置される。 The charging station 20 mainly includes a power transmission circuit 22, a primary side control device 34, and a primary side communication device 36. The power transmission circuit 22 includes an AC power supply 24, a power converter 26 that converts AC power supplied from the AC power supply 24 into power transmission power, a primary capacitor for resonance (not shown), and a primary coil 28. .. The primary coil 28 is covered with the primary pad 30 and arranged on the ground (installation surface).

1次側制御装置34は、CPU等のプロセッサ(不図示)が記憶装置(不図示)に格納されるプログラムを読み出して実行することで所定の動作部として機能する。第1実施形態において、1次側制御装置34は、1次コイル28と2次コイル44の位置合わせのための微弱電力、および、バッテリ56を充電するための充電電力を1次コイル28に送電させる送電制御部として機能する。 The primary control device 34 functions as a predetermined operation unit when a processor (not shown) such as a CPU reads and executes a program stored in a storage device (not shown). In the first embodiment, the primary side control device 34 transmits a weak electric power for aligning the primary coil 28 and the secondary coil 44 and a charging electric power for charging the battery 56 to the primary coil 28. It functions as a power transmission control unit.

1次側通信装置36は、1次側制御装置34に対して通信線で接続される。1次側通信装置36は、電動車両40の2次側通信装置74との間で無線通信を行う。例えば、Wi−Fi(登録商標)やBluetooth(登録商標)等の無線通信が使用可能である。 The primary side communication device 36 is connected to the primary side control device 34 by a communication line. The primary side communication device 36 performs wireless communication with the secondary side communication device 74 of the electric vehicle 40. For example, wireless communication such as Wi-Fi (registered trademark) and Bluetooth (registered trademark) can be used.

電動車両40は、主として受電回路42と、バッテリ56と、2次側制御装置60と、2次側通信装置74と、表示装置76と、音響装置78と、距離センサ80と、走行装置90と、を備える。 The electric vehicle 40 mainly includes a power receiving circuit 42, a battery 56, a secondary side control device 60, a secondary side communication device 74, a display device 76, an acoustic device 78, a distance sensor 80, and a traveling device 90. , Equipped with.

受電回路42は、共振用の2次コンデンサ(不図示)および2次コイル44と、2次コイル44で受電した交流電力である受電電力を整流する整流器50と、受電回路42とバッテリ56との電気的接続/切断を切り替えるコンタクタ54と、を備える。2次コイル44は、2次パッド46で覆われて電動車両40の下面に配置される。 The power receiving circuit 42 includes a secondary capacitor (not shown) for resonance, a secondary coil 44, a rectifier 50 that rectifies the received power that is AC power received by the secondary coil 44, a power receiving circuit 42, and a battery 56. It includes a contactor 54 that switches between electrical connection and disconnection. The secondary coil 44 is covered with the secondary pad 46 and arranged on the lower surface of the electric vehicle 40.

更に受電回路42は、整流器50とコンタクタ54との間に接続自在である電圧検出器52を備える。電圧検出器52は、例えば、特許第5937631号公報に示されるように、所定の抵抗と電圧センサとの並列回路(いずれも不図示)を有する。電圧センサは微弱電力の受電時に抵抗の両端に発生する電圧を検出する。この電圧をLPE電圧という。微弱電力の受電時にスイッチ装置(不図示)が2次側制御装置60の制御指示を受けて切替動作すると、電圧検出器52は受電回路42に接続される。なお、本実施形態では、充電時に使用する受電回路42を利用してLPE電圧を検出するようにしているが、受電回路42とは別に、LPE電圧を検出するための回路を設け、そこに整流器と電圧検出器52を設けるようにしてもよい。 Further, the power receiving circuit 42 includes a voltage detector 52 that can be freely connected between the rectifier 50 and the contactor 54. The voltage detector 52 has, for example, as shown in Japanese Patent No. 5937631, a parallel circuit (both not shown) of a predetermined resistor and a voltage sensor. The voltage sensor detects the voltage generated across the resistor when receiving weak power. This voltage is called the LPE voltage. When the switch device (not shown) receives a control instruction from the secondary control device 60 and performs a switching operation when receiving weak power, the voltage detector 52 is connected to the power receiving circuit 42. In the present embodiment, the LPE voltage is detected by using the power receiving circuit 42 used at the time of charging, but a circuit for detecting the LPE voltage is provided separately from the power receiving circuit 42, and a rectifier is provided therein. And the voltage detector 52 may be provided.

バッテリ56は、リチウムイオン電池等からなり、コンタクタ54が接続状態にされ、1次コイル28と2次コイル44とが磁気結合されると、受電回路42を介して充電される。 The battery 56 is made of a lithium ion battery or the like, and when the contactor 54 is connected and the primary coil 28 and the secondary coil 44 are magnetically coupled, the battery 56 is charged via the power receiving circuit 42.

2次側制御装置60はECUであり、受電処理を管理する。2次側制御装置60は、CPU等のプロセッサ(不図示)が記憶装置70に格納されるプログラムを読み出し実行することで、統括部62と最大値判定部64とずれ量推定部66と報知制御部68として機能する。 The secondary side control device 60 is an ECU and manages the power receiving process. The secondary side control device 60 reads and executes a program stored in the storage device 70 by a processor (not shown) such as a CPU, so that the control unit 62, the maximum value determination unit 64, the deviation amount estimation unit 66, and the notification control It functions as a unit 68.

統括部62は、受電処理を統括して管理する。最大値判定部64は、電圧検出器52で検出されるLPE電圧の値V_LPE(以下、電圧値V_LPEという。)と、距離センサ80で検出される電動車両40の走行距離Xと、に基づいて、微小な走行距離X(単位時間当たりの走行距離X)に対する電圧値V_LPEの変化量、すなわちLPE電圧に関する位置微分値dV/dXを算出する。そして、その算出値が0となるときに電圧検出器52で検出される電圧値V_LPEを最大値(ピーク値)V_LPEmaxと判定する。ずれ量推定部66は、記憶装置70に記憶される後述の電圧値−位置ずれ量情報Inと、最大値判定部64により判定される最大値V_LPEmaxと、に基づいて最大値V_LPEmaxに対応する横方向の位置ずれ量A2を推定する。報知制御部68は、ずれ量推定部66により推定される横方向の位置ずれ量A2に応じた指令信号を出力し、横方向の位置ずれ量A2を表示装置76および音響装置78で報知させる。 The control unit 62 controls and manages the power receiving process. The maximum value determination unit 64 is based on the LPE voltage value V_LPE (hereinafter referred to as voltage value V_LPE) detected by the voltage detector 52 and the mileage X of the electric vehicle 40 detected by the distance sensor 80. , The amount of change in the voltage value V_LPE with respect to a minute mileage X (mileage X per unit time), that is, the position differential value dV / dX with respect to the LPE voltage is calculated. Then, the voltage value V_LPE detected by the voltage detector 52 when the calculated value becomes 0 is determined to be the maximum value (peak value) V_LPEmax. The deviation amount estimation unit 66 corresponds to the maximum value V_LPEmax based on the voltage value-positional deviation amount information In stored in the storage device 70 and the maximum value V_LPEmax determined by the maximum value determination unit 64. The amount of misalignment A2 in the direction is estimated. The notification control unit 68 outputs a command signal corresponding to the lateral displacement amount A2 estimated by the displacement amount estimation unit 66, and notifies the lateral displacement amount A2 by the display device 76 and the sound device 78.

記憶装置70は、各種プログラムおよび各種演算の際に使用される所定値、既定値等の他に、電圧値−位置ずれ量情報Inを記憶する。電圧値−位置ずれ量情報Inというのは、1次コイル28に対する2次コイル44の縦方向の位置ずれ量A1が0であるときの横方向の位置ずれ量A2と、横方向の位置ずれ量A2に応じた電圧値V_LPEと、の対応関係を示す情報である。電圧値−位置ずれ量情報Inに関しては下記[2]で更に説明する。 The storage device 70 stores voltage value-positional deviation amount information In in addition to predetermined values, default values, and the like used in various programs and various operations. The voltage value-positional displacement amount information In is the lateral displacement amount A2 when the vertical displacement amount A1 of the secondary coil 44 with respect to the primary coil 28 is 0, and the lateral displacement amount. It is information which shows the correspondence relationship with the voltage value V_LPE corresponding to A2. The voltage value-positional deviation amount information In will be further described in [2] below.

2次側通信装置74は、2次側制御装置60に対して通信線で接続される。2次側通信装置74は、上述したように充電ステーション20の1次側通信装置36との間で無線通信を行う。 The secondary side communication device 74 is connected to the secondary side control device 60 by a communication line. As described above, the secondary side communication device 74 performs wireless communication with the primary side communication device 36 of the charging station 20.

表示装置76は、2次側制御装置60から出力される指令信号に応じて1次コイル28と2次コイル44の位置ずれ量A2を示す情報を表示する。例えば、1次コイル28と2次コイル44の位置を模擬的に示す鳥瞰図や、1次コイル28と2次コイル44の位置ずれ量A2自体を画面に表示する。音響装置78は、2次側制御装置60から出力される指令信号に応じて1次コイル28と2次コイル44の位置ずれ量A2を示す情報をスピーカから出力する。 The display device 76 displays information indicating the amount of misalignment A2 between the primary coil 28 and the secondary coil 44 in response to the command signal output from the secondary control device 60. For example, a bird's-eye view showing the positions of the primary coil 28 and the secondary coil 44 in a simulated manner and the misalignment amount A2 itself of the primary coil 28 and the secondary coil 44 are displayed on the screen. The sound device 78 outputs information indicating the misalignment amount A2 between the primary coil 28 and the secondary coil 44 from the speaker in response to the command signal output from the secondary control device 60.

走行装置90は、乗員が行うアクセルペダルの操作に応じて駆動力を発生させる駆動力装置の他に、乗員が行うステアリングホイールの操作に応じて操舵する操舵装置と、乗員が行うブレーキペダルの操作に応じて制動力を発生させる制動装置を含む。駆動力装置は、駆動源としてバッテリ56から電力が供給される電動モータを含む。 The traveling device 90 includes a driving force device that generates a driving force according to the operation of the accelerator pedal performed by the occupant, a steering device that steers according to the operation of the steering wheel performed by the occupant, and an operation of the brake pedal performed by the occupant. Includes a braking device that generates braking force accordingly. The driving force device includes an electric motor to which power is supplied from the battery 56 as a driving source.

[2 電圧値−位置ずれ量情報In]
充電ステーション20の縦方向と電動車両40の車長方向とが略平行し且つ1次コイル28に対して2次コイル44が縦方向に離れた状態で、電動車両40が真っ直ぐに水平移動する場面を想定する。このとき、図2に示されるように、1次コイル28に対する2次コイル44の横方向の位置ずれ量A2が0であるとする。この場面で、1次コイル28と2次コイル44の水平距離Dと、電圧検出器52で検出される電圧値V_LPEと、は図3の曲線B1に示されるような関係にある。
[2 Voltage value-Position deviation amount information In]
A scene in which the electric vehicle 40 moves straight and horizontally with the vertical direction of the charging station 20 and the vehicle length direction of the electric vehicle 40 substantially parallel to each other and the secondary coil 44 being vertically separated from the primary coil 28. Is assumed. At this time, as shown in FIG. 2, it is assumed that the lateral displacement amount A2 of the secondary coil 44 with respect to the primary coil 28 is 0. In this scene, the horizontal distance D between the primary coil 28 and the secondary coil 44 and the voltage value V_LPE detected by the voltage detector 52 have a relationship as shown in the curve B1 of FIG.

すなわち、電動車両40が遠方から1次コイル28に近づき、1次コイル28から送電される微弱電力を2次コイル44が受電できる位置{水平距離D=D1(位置ずれ量A1=D1)}に達すると、電圧値V_LPEが第1所定値V_LPE1から上昇を始める。電動車両40が走行し水平距離Dが小さくなるにつれて電圧値V_LPEは徐々に大きくなり、水平距離D=D2(位置ずれ量A1=D2)の位置で極大値V_LPE2となる。更に電動車両40が走行し水平距離Dが小さくなるにつれて電圧値V_LPEは徐々に小さくなり、水平距離D=D3(位置ずれ量A1=D3)の位置で極小値V_LPE3となる。更に電動車両40が走行し水平距離Dが小さくなるにつれて電圧値V_LPEは徐々に大きくなり、水平距離D=0(位置ずれ量A1=0)の位置、すなわち2次コイル44の中心44cが1次コイル28の中心28cの上方位置に達したときに、最大値V_LPEmax1となる。 That is, the electric vehicle 40 approaches the primary coil 28 from a distance, and at a position {horizontal distance D = D1 (positional deviation amount A1 = D1)} where the secondary coil 44 can receive the weak electric power transmitted from the primary coil 28. When it reaches, the voltage value V_LPE starts to rise from the first predetermined value V_LPE1. As the electric vehicle 40 travels and the horizontal distance D decreases, the voltage value V_LPE gradually increases, and reaches the maximum value V_LPE2 at the position of the horizontal distance D = D2 (positional deviation amount A1 = D2). Further, as the electric vehicle 40 travels and the horizontal distance D becomes smaller, the voltage value V_LPE gradually becomes smaller, and becomes the minimum value V_LPE3 at the position of the horizontal distance D = D3 (positional deviation amount A1 = D3). Further, as the electric vehicle 40 travels and the horizontal distance D becomes smaller, the voltage value V_LPE gradually increases, and the position at the horizontal distance D = 0 (positional deviation amount A1 = 0), that is, the center 44c of the secondary coil 44 is primary. When the position above the center 28c of the coil 28 is reached, the maximum value V_LPEmax1 is reached.

次に電動車両40が横方向にずれた状態で走行する場合を想定する。例えば、図2に示されるように1次コイル28に対する2次コイル44の横方向の位置ずれ量A2=a(>0)である場合、図3の曲線B2のように、電圧値V_LPEは、位置ずれ量A2=0である場合の曲線B1よりも低くなる。1次コイル28に対する2次コイル44の縦方向の位置ずれ量A1=0のときの最大値V_LPEmax2は、最大値V_LPEmax1よりも低い。また、図2に示されるように1次コイル28に対する2次コイル44の横方向の位置ずれ量A2=b(>a)である場合、図3の曲線B3のように、電圧値V_LPEは、位置ずれ量A2=aである場合の曲線B2よりも低くなる。1次コイル28に対する2次コイル44の縦方向の位置ずれ量A1=0のときの最大値V_LPEmax3は、最大値V_LPEmax1および最大値V_LPEmax2よりも低い。このように、縦方向の位置ずれ量A1=0となるときに検出される最大値V_LPEmaxは、1次コイル28に対する2次コイル44の横方向の位置ずれ量A2が大きくなるほど低くなる。記憶装置70は、最大値V_LPEmaxと横方向の位置ずれ量A2との対応関係、例えば、A2=0とV_LPE=V_LPEmax1、A2=aとV_LPE=V_LPEmax2、A2=bとV_LPE=V_LPEmax3等の情報を、電圧値−位置ずれ量情報Inとして記憶する。 Next, it is assumed that the electric vehicle 40 travels in a state of being displaced in the lateral direction. For example, when the lateral displacement amount A2 = a (> 0) of the secondary coil 44 with respect to the primary coil 28 as shown in FIG. 2, the voltage value V_LPE is as shown in the curve B2 of FIG. It is lower than the curve B1 when the misalignment amount A2 = 0. The maximum value V_LPEmax2 when the vertical misalignment amount A1 = 0 of the secondary coil 44 with respect to the primary coil 28 is lower than the maximum value V_LPEmax1. Further, as shown in FIG. 2, when the lateral displacement amount A2 = b (> a) of the secondary coil 44 with respect to the primary coil 28, the voltage value V_LPE is as shown in the curve B3 of FIG. It is lower than the curve B2 when the misalignment amount A2 = a. The maximum value V_LPEmax3 when the vertical displacement amount A1 = 0 of the secondary coil 44 with respect to the primary coil 28 is lower than the maximum value V_LPEmax1 and the maximum value V_LPEmax2. As described above, the maximum value V_LPEmax detected when the vertical displacement amount A1 = 0 becomes lower as the lateral displacement amount A2 of the secondary coil 44 with respect to the primary coil 28 becomes larger. The storage device 70 stores information such as the correspondence between the maximum value V_LPEmax and the lateral displacement amount A2, for example, A2 = 0 and V_LPE = V_LPEmax1, A2 = a and V_LPE = V_LPEmax2, A2 = b and V_LPE = V_LPEmax3. , Voltage value-Position deviation amount information In is stored.

[3 位置合わせ処理]
本実施形態は、電圧値V_LPEの最大値V_LPEmaxを検出することにより、1次コイル28に対する2次コイル44の縦方向の位置ずれ量A1が0であると想定し、そのときの1次コイル28に対する2次コイル44の横方向の位置ずれ量A2を推定するものである。
[3 Alignment processing]
In the present embodiment, by detecting the maximum value V_LPEmax of the voltage value V_LPE, it is assumed that the vertical misalignment amount A1 of the secondary coil 44 with respect to the primary coil 28 is 0, and the primary coil 28 at that time. The lateral displacement amount A2 of the secondary coil 44 with respect to the relative coil 44 is estimated.

図4を中心にして本実施形態に係る電動車両40側で行われる位置合わせ処理を説明する。以下で説明する処理は、電動車両40の乗員が駐車開始スイッチ(不図示)をオン操作した場合に行われる。図2、図5Aに示されるように、例えば充電ステーション20は線150で区画される。乗員は充電ステーション20から離れた位置P1で駐車開始スイッチをオン操作し、電動車両40を充電ステーション20に向けて走行させる。駐車開始スイッチの操作信号は2次側制御装置60に送信される。 The alignment process performed on the electric vehicle 40 side according to the present embodiment will be described with reference to FIG. The process described below is performed when the occupant of the electric vehicle 40 turns on the parking start switch (not shown). As shown in FIGS. 2 and 5A, for example, the charging station 20 is partitioned by line 150. The occupant turns on the parking start switch at the position P1 away from the charging station 20 to drive the electric vehicle 40 toward the charging station 20. The operation signal of the parking start switch is transmitted to the secondary control device 60.

なお、乗員は、充電ステーション20の縦方向と電動車両40の車長方向とが略平行になり、且つ、充電ステーション20の横方向と電動車両40の車幅方向とが略平行になるように電動車両40を操作する。そして、電動車両40を略真っ直ぐ走行させて、1次コイル28と2次コイル44の位置合わせを行う。 For the occupants, the vertical direction of the charging station 20 and the vehicle length direction of the electric vehicle 40 are substantially parallel, and the horizontal direction of the charging station 20 and the vehicle width direction of the electric vehicle 40 are substantially parallel. Operate the electric vehicle 40. Then, the electric vehicle 40 is run substantially straight to align the primary coil 28 and the secondary coil 44.

ステップS1において、統括部62は、2次側通信装置74に対して微弱電力の伝送要求を指示する。2次側通信装置74は1次側通信装置36と認証等のペアリングを行い、微弱電力の伝送要求信号を送信する。1次側制御装置34は、1次側通信装置36で受信される伝送要求信号に応じて電力変換器26を制御して送電を開始させる。電力変換器26は、交流電源24から供給される交流電力を所定の微弱電力に変換して1次コイル28に供給する。すると、1次コイル28から外部に位置合わせ用の微弱電力が送電される。 In step S1, the control unit 62 instructs the secondary communication device 74 to request transmission of weak power. The secondary side communication device 74 performs pairing such as authentication with the primary side communication device 36, and transmits a transmission request signal of weak power. The primary side control device 34 controls the power converter 26 in response to the transmission request signal received by the primary side communication device 36 to start power transmission. The power converter 26 converts the AC power supplied from the AC power supply 24 into a predetermined weak power and supplies it to the primary coil 28. Then, a weak electric power for alignment is transmitted from the primary coil 28 to the outside.

ステップS2において、統括部62は、電圧検出器52により検出される電圧値V_LPEが第1所定値V_LPE1以上であるか否か、すなわち図5Aに示されるように2次コイル44が微弱電力を受電可能な範囲R(水平距離D=D1)に入ったか否かを判定する。第1所定値V_LPE1以上である場合、すなわち2次コイル44が微弱電力を受電可能な範囲Rに入った場合(ステップS2:YES)、処理はステップS3に移行する。一方、第1所定値V_LPE1未満である場合、すなわち2次コイル44が微弱電力を受電可能な範囲Rに入っていない場合(ステップS2:NO)、ステップS2の処理が繰り返し行われる。 In step S2, the control unit 62 determines whether or not the voltage value V_LPE detected by the voltage detector 52 is equal to or higher than the first predetermined value V_LPE 1, that is, the secondary coil 44 receives weak power as shown in FIG. 5A. It is determined whether or not the range R (horizontal distance D = D1) is reached. When the value is equal to or greater than the first predetermined value V_LPE1, that is, when the secondary coil 44 enters the range R where weak power can be received (step S2: YES), the process proceeds to step S3. On the other hand, if it is less than the first predetermined value V_LPE1, that is, if the secondary coil 44 is not within the range R in which weak power can be received (step S2: NO), the process of step S2 is repeated.

ステップS2からステップS3に移行した場合、最大値判定部64は、電圧検出器52により検出される電圧値V_LPEと距離センサ80で検出される単位時間当たりの走行距離Xとに基づいて位置微分値dV/dXを算出する。 When shifting from step S2 to step S3, the maximum value determination unit 64 determines the position differential value based on the voltage value V_LPE detected by the voltage detector 52 and the mileage X per unit time detected by the distance sensor 80. Calculate dV / dX.

ステップS4において、最大値判定部64は、電圧値V_LPE、および、位置微分値dV/dXを判定する。図3に示されるように、例えば、位置ずれ量A2=0の特性を示す曲線B1において、水平距離D=D2と0の位置で、電圧値V_LPEは極大値V_LPE2となり位置微分値dV/dXが0となる。本実施形態では、最大値V_LPEmaxを正しく判定するために、言い換えると、水平距離D=D2の位置を縦方向の位置ずれ量A1=0の位置と判定しないようにするために、電圧値V_LPEが最も大きくなる曲線B1における水平距離D=D2の位置で検出される極大値V_LPE2を第2所定値として、記憶装置70で記憶する。電圧値V_LPEが第2所定値V_LPE2よりも大きく、且つ、位置微分値dV/dXが0である場合(ステップS4:YES)、電圧値V_LPEが最大値V_LPEmaxであり、縦方向の位置ずれ量A1=0の位置であると推定して、処理はステップS5に移行する。一方、電圧値V_LPEが第2所定値V_LPE2以下であるか、または、位置微分値dV/dXが0でない場合(ステップS4:NO)、電圧値V_LPEが最大値V_LPEmaxでなく、縦方向の位置ずれ量A1=0の位置でないと推定して、処理はステップS3に戻る。 In step S4, the maximum value determination unit 64 determines the voltage value V_LPE and the position differential value dV / dX. As shown in FIG. 3, for example, in the curve B1 showing the characteristic of the misalignment amount A2 = 0, the voltage value V_LPE becomes the maximum value V_LPE2 and the position differential value dV / dX becomes the maximum value V_LPE2 at the positions of the horizontal distances D = D2 and 0. It becomes 0. In the present embodiment, in order to correctly determine the maximum value V_LPEmax, in other words, in order not to determine the position of the horizontal distance D = D2 as the position of the vertical displacement amount A1 = 0, the voltage value V_LPE is set. The maximum value V_LPE2 detected at the position of the horizontal distance D = D2 on the largest curve B1 is set as the second predetermined value and stored in the storage device 70. When the voltage value V_LPE is larger than the second predetermined value V_LPE2 and the position differential value dV / dX is 0 (step S4: YES), the voltage value V_LPE is the maximum value V_LPEmax and the vertical misalignment amount A1. Estimating that the position is = 0, the process proceeds to step S5. On the other hand, when the voltage value V_LPE is equal to or less than the second predetermined value V_LPE2, or the position differential value dV / dX is not 0 (step S4: NO), the voltage value V_LPE is not the maximum value V_LPEmax and is displaced in the vertical direction. It is estimated that the position is not the position of the quantity A1 = 0, and the process returns to step S3.

ステップS5において、ずれ量推定部66は、記憶装置70に記憶される電圧値−位置ずれ量情報Inを参照し、位置微分値dV/dXが0となるときの電圧値V_LPEに対応する位置ずれ量A2を推定する。 In step S5, the deviation amount estimation unit 66 refers to the voltage value-positional deviation amount information In stored in the storage device 70, and the positional deviation corresponding to the voltage value V_LPE when the position differential value dV / dX becomes 0. Estimate the quantity A2.

ステップS6において、報知制御部68は、ずれ量推定部66により推定された位置ずれ量A2に基づいて表示装置76および音響装置78に報知を指示する指令信号を出力する。表示装置76は、位置ずれ量A2または1次コイル28と2次コイル44との鳥瞰図を画面に表示する。音響装置78は、位置ずれ量A2を報知する音声や位置ずれ量A2に応じた信号音をスピーカから出力する。例えば、位置ずれ量A2に応じて信号音の出力と停止の間隔を変化させる。 In step S6, the notification control unit 68 outputs a command signal instructing the display device 76 and the sound device 78 to notify based on the position deviation amount A2 estimated by the deviation amount estimation unit 66. The display device 76 displays a bird's-eye view of the misalignment amount A2 or the primary coil 28 and the secondary coil 44 on the screen. The sound device 78 outputs a voice for notifying the misalignment amount A2 and a signal sound corresponding to the misalignment amount A2 from the speaker. For example, the interval between the output of the signal sound and the stop is changed according to the misalignment amount A2.

運転者は、表示装置76および/または音響装置78の報知により、位置ずれ量A2を把握する。図5Bに示すように、1次コイル28に対する2次コイル44の位置ずれ量A2が0になると、運転者は電動車両40を駐車させて充電を開始する。一方、運転者が位置合わせ操作をやり直す場合は、ステップS2以降の処理が再び実行される。 The driver grasps the misalignment amount A2 by the notification of the display device 76 and / or the sound device 78. As shown in FIG. 5B, when the misalignment amount A2 of the secondary coil 44 with respect to the primary coil 28 becomes 0, the driver parks the electric vehicle 40 and starts charging. On the other hand, when the driver redoes the alignment operation, the processes after step S2 are executed again.

[4 実施形態のまとめ]
上述した実施形態に係る非接触電力伝送システム10は、充電ステーション20の縦方向と電動車両40の車長方向とが略平行し、且つ、充電ステーション20の横方向と電動車両40の車幅方向とが略平行する状態で、1次コイル28から2次コイル44に対して非接触で電力を伝送する。非接触電力伝送システム10は、1次コイル28から送電され2次コイル44で受電される微弱電力により発生するLPE電圧を検出する電圧検出器52と、1次コイル28に対する2次コイル44の縦方向の位置ずれ量A1が0であるときの横方向の位置ずれ量A2と、横方向の位置ずれ量A2に応じた電圧値V_LPEと、の対応関係を示す電圧値−位置ずれ量情報Inを記憶する記憶装置70と、電動車両40の走行に伴い変動するLPE電圧の最大値V_LPEmaxを判定する最大値判定部64と、記憶装置70に記憶される電圧値−位置ずれ量情報Inと、最大値判定部64により判定される最大値V_LPEmaxと、に基づいて最大値V_LPEmaxに対応する横方向の位置ずれ量A2を推定するずれ量推定部66と、を備える。
[Summary of 4 Embodiments]
In the non-contact power transmission system 10 according to the above-described embodiment, the vertical direction of the charging station 20 and the vehicle length direction of the electric vehicle 40 are substantially parallel, and the horizontal direction of the charging station 20 and the vehicle width direction of the electric vehicle 40. Power is transmitted from the primary coil 28 to the secondary coil 44 in a non-contact manner in a state of being substantially parallel to each other. The non-contact power transmission system 10 has a voltage detector 52 that detects the LPE voltage generated by the weak power transmitted from the primary coil 28 and received by the secondary coil 44, and the vertical of the secondary coil 44 with respect to the primary coil 28. The voltage value-positional deviation amount information In indicating the correspondence between the lateral misalignment amount A2 when the misalignment amount A1 in the direction is 0 and the voltage value V_LPE corresponding to the lateral misalignment amount A2. The storage device 70 to be stored, the maximum value determination unit 64 for determining the maximum value V_LPEmax of the LPE voltage that fluctuates with the running of the electric vehicle 40, the voltage value-positional deviation amount information In stored in the storage device 70, and the maximum. A deviation amount estimation unit 66 that estimates a lateral position deviation amount A2 corresponding to the maximum value V_LPEmax based on the maximum value V_LPEmax determined by the value determination unit 64 is provided.

上記構成によれば、記憶装置70に記憶される電圧値−位置ずれ量情報Inと電圧検出器52で検出されるLPE電圧の最大値V_LPEmaxとに基づいて1次コイル28に対する2次コイル44の横方向の位置ずれ量A2を容易に推定することができる。更に1次コイル28に対する2次コイル44の横方向の位置ずれ量A2を推定できるため、1次コイル28と2次コイル44の位置合わせをより正確に行うことができる。 According to the above configuration, the secondary coil 44 with respect to the primary coil 28 is based on the voltage value-positional deviation amount information In stored in the storage device 70 and the maximum value V_LPEmax of the LPE voltage detected by the voltage detector 52. The amount of misalignment A2 in the lateral direction can be easily estimated. Further, since the lateral displacement amount A2 of the secondary coil 44 with respect to the primary coil 28 can be estimated, the alignment of the primary coil 28 and the secondary coil 44 can be performed more accurately.

非接触電力伝送システム10は、ずれ量推定部66により推定される横方向の位置ずれ量A2を報知装置としての表示装置76および音響装置78で報知させる報知制御部68を備える。上記構成によれば、乗員に1次コイル28に対する2次コイル44の横方向の位置ずれ量A2を報知することができる。このため、乗員は1次コイル28と2次コイル44の位置合わせを容易に行うことができる。 The non-contact power transmission system 10 includes a notification control unit 68 that notifies the lateral position deviation amount A2 estimated by the deviation amount estimation unit 66 by the display device 76 as a notification device and the sound device 78. According to the above configuration, it is possible to notify the occupant of the lateral displacement amount A2 of the secondary coil 44 with respect to the primary coil 28. Therefore, the occupant can easily align the primary coil 28 and the secondary coil 44.

非接触電力伝送システム10は、電動車両40の走行距離Xを検出する距離センサ80を備える。最大値判定部64は、電圧検出器52で検出される電圧値V_LPEと、距離センサ80で検出される電動車両40の走行距離Xと、に基づいて、微小な走行距離Xに対する電圧値V_LPEの変化量である位置微分値dV/dXを算出し、その位置微分値dV/dXが0となるときの電圧値V_LPEを最大値V_LPEmaxと判定する。上記構成によれば、電圧値V_LPEの位置微分値dV/dXを演算するといった容易な手法によりLPE電圧の最大値V_LPEmaxを算出することができる。このため、1次コイル28と2次コイル44の位置合わせを容易に行うことができる。 The non-contact power transmission system 10 includes a distance sensor 80 that detects the mileage X of the electric vehicle 40. The maximum value determination unit 64 determines the voltage value V_LPE for a minute mileage X based on the voltage value V_LPE detected by the voltage detector 52 and the mileage X of the electric vehicle 40 detected by the distance sensor 80. The position differential value dV / dX, which is the amount of change, is calculated, and the voltage value V_LPE when the position differential value dV / dX becomes 0 is determined to be the maximum value V_LPEmax. According to the above configuration, the maximum value V_LPEmax of the LPE voltage can be calculated by a simple method such as calculating the position differential value dV / dX of the voltage value V_LPE. Therefore, the alignment of the primary coil 28 and the secondary coil 44 can be easily performed.

なお、本発明に係る非接触電力伝送システムは、上述の実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。例えば、本発明に係る非接触電力伝送システムは、操舵、駆動、制動のうちの少なくとも1つの制御を自動的に行う駐車支援装置または自動駐車装置(特開2015−074266号公報等)を備える車両にも使用することができる。 It should be noted that the non-contact power transmission system according to the present invention is not limited to the above-described embodiment, and of course, various configurations can be adopted without deviating from the gist of the present invention. For example, the non-contact power transmission system according to the present invention is a vehicle provided with a parking support device or an automatic parking device (Japanese Patent Laid-Open No. 2015-07426, etc.) that automatically controls at least one of steering, driving, and braking. Can also be used for.

10…非接触電力伝送システム 20…充電ステーション
28…1次コイル 34…1次側制御装置
40…電動車両 44…2次コイル
52…電圧検出器 64…最大値判定部
66…ずれ量推定部 68…報知制御部
70…記憶装置 76…表示装置
78…音響装置 80…距離センサ
10 ... Non-contact power transmission system 20 ... Charging station 28 ... Primary coil 34 ... Primary side control device 40 ... Electric vehicle 44 ... Secondary coil 52 ... Voltage detector 64 ... Maximum value determination unit 66 ... Deviation amount estimation unit 68 ... Notification control unit 70 ... Storage device 76 ... Display device 78 ... Sound device 80 ... Distance sensor

Claims (3)

充電ステーションの縦方向と電動車両の車長方向とが略平行し、且つ、前記充電ステーションの横方向と前記電動車両の車幅方向とが略平行する状態で、1次コイルから2次コイルに対して非接触で電力を伝送する非接触電力伝送システムであって、
前記1次コイルから送電され前記2次コイルで受電される微弱電力により発生する電圧を検出する電圧検出器と、
前記1次コイルに対する前記2次コイルの前記縦方向の位置ずれ量が0であるときの前記横方向の位置ずれ量と、前記横方向の位置ずれ量に応じた前記電圧の値と、の対応関係を示す電圧値−位置ずれ量情報を記憶する記憶装置と、
前記電動車両の走行に伴い変動する前記電圧の最大値を判定する最大値判定部と、
前記記憶装置に記憶される前記電圧値−位置ずれ量情報と、前記最大値判定部により判定される前記最大値と、に基づいて前記最大値に対応する前記横方向の位置ずれ量を推定するずれ量推定部と、を備える
ことを特徴とする非接触電力伝送システム。
From the primary coil to the secondary coil in a state where the vertical direction of the charging station and the vehicle length direction of the electric vehicle are substantially parallel, and the horizontal direction of the charging station and the vehicle width direction of the electric vehicle are substantially parallel. On the other hand, it is a non-contact power transmission system that transmits power in a non-contact manner.
A voltage detector that detects the voltage generated by the weak power transmitted from the primary coil and received by the secondary coil.
Correspondence between the lateral misalignment amount when the vertical misalignment amount of the secondary coil with respect to the primary coil is 0 and the voltage value according to the lateral misalignment amount. A storage device that stores voltage value-positional deviation amount information indicating the relationship,
A maximum value determination unit that determines the maximum value of the voltage that fluctuates as the electric vehicle travels,
The lateral displacement amount corresponding to the maximum value is estimated based on the voltage value-positional deviation amount information stored in the storage device and the maximum value determined by the maximum value determination unit. A non-contact power transmission system including a deviation amount estimation unit.
請求項1に記載の非接触電力伝送システムにおいて、
前記ずれ量推定部により推定される前記横方向の位置ずれ量を報知装置で報知させる報知制御部を更に備える
ことを特徴とする非接触電力伝送システム。
In the non-contact power transmission system according to claim 1,
A non-contact power transmission system further comprising a notification control unit that notifies the lateral position deviation amount estimated by the deviation amount estimation unit by a notification device.
請求項1または2に記載の非接触電力伝送システムにおいて、
前記電動車両の走行距離を検出する距離センサを更に備え、
前記最大値判定部は、前記電圧検出器で検出される前記電圧の値と、前記距離センサで検出される前記電動車両の走行距離と、に基づいて、微小な走行距離に対する前記電圧の値の変化量である位置微分値を算出し、その位置微分値が0となるときの前記電圧の値を前記最大値と判定する
ことを特徴とする非接触電力伝送システム。
In the non-contact power transmission system according to claim 1 or 2.
Further equipped with a distance sensor for detecting the mileage of the electric vehicle,
The maximum value determination unit determines the value of the voltage with respect to a minute mileage based on the value of the voltage detected by the voltage detector and the mileage of the electric vehicle detected by the distance sensor. A non-contact power transmission system characterized in that a position differential value which is an amount of change is calculated, and the value of the voltage when the position differential value becomes 0 is determined as the maximum value.
JP2017102398A 2017-05-24 2017-05-24 Contactless power transfer system Active JP6774379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017102398A JP6774379B2 (en) 2017-05-24 2017-05-24 Contactless power transfer system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017102398A JP6774379B2 (en) 2017-05-24 2017-05-24 Contactless power transfer system

Publications (2)

Publication Number Publication Date
JP2018198493A JP2018198493A (en) 2018-12-13
JP6774379B2 true JP6774379B2 (en) 2020-10-21

Family

ID=64663652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017102398A Active JP6774379B2 (en) 2017-05-24 2017-05-24 Contactless power transfer system

Country Status (1)

Country Link
JP (1) JP6774379B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112389248B (en) * 2020-11-30 2022-02-18 中国科学院电工研究所 Non-contact power supply positioning method, system and device for electric automobile

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5177433B2 (en) * 2009-03-30 2013-04-03 アイシン・エィ・ダブリュ株式会社 Power reception guidance device, power reception guidance method, and power reception guidance program
JP5051257B2 (en) * 2010-03-16 2012-10-17 トヨタ自動車株式会社 vehicle
WO2011132272A1 (en) * 2010-04-21 2011-10-27 トヨタ自動車株式会社 Vehicle parking assistance device and electric vehicle equipped with same
JP6464951B2 (en) * 2015-07-28 2019-02-06 株式会社デンソー Parking assistance system
JP6464994B2 (en) * 2015-11-09 2019-02-06 株式会社デンソー Non-contact power transmission device

Also Published As

Publication number Publication date
JP2018198493A (en) 2018-12-13

Similar Documents

Publication Publication Date Title
CN108928248B (en) Contactless electrical power transmission system
US10541551B2 (en) Non-contact power transmission system
US9969280B2 (en) Contactless electricity supply device
US20150336464A1 (en) Ultrasonic location for electric vehicle charging system
US9463706B2 (en) Infrared triangulation method for locating vehicles for hands-free electric vehicle charging
JP6060195B2 (en) Vehicle parking control device
KR101684033B1 (en) Method and system for aligning a vehicle with a wireless charging assembly
US10919402B2 (en) Non-contact power transmission system
JP2012191721A (en) Wireless power transmission device and wireless power transmission method
JP2010226945A (en) Power supply system of mobile unit
KR101922781B1 (en) Charging device and contactless power supply device
CN108928247B (en) Contactless electrical power transmission system
US20150336462A1 (en) Sonic triangulation method for locating vehicles for hands-free electric vehicle charging
US10847990B2 (en) Non-contact power transmission system
JP6391214B2 (en) Contactless power supply system
US20180281610A1 (en) Non-contact power transmission system
JP6774379B2 (en) Contactless power transfer system
US11180036B2 (en) Non-contact power transmission system
US20230032752A1 (en) Running mode proposal device, navigation device, and running control device
CN110462976B (en) Contactless electrical power transmission system
JP6860430B2 (en) Contactless power transfer system
JP7413002B2 (en) Vehicle control equipment and vehicles
JP2013187934A (en) Charging system, on-vehicle device, and charger
JP2023129014A (en) Vehicle and vehicle control method
KR20130029877A (en) Movable inductive charging system and method using car stopper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201002

R150 Certificate of patent or registration of utility model

Ref document number: 6774379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150