JP6848748B2 - 電気機器の余寿命診断方法および余寿命診断装置 - Google Patents
電気機器の余寿命診断方法および余寿命診断装置 Download PDFInfo
- Publication number
- JP6848748B2 JP6848748B2 JP2017144047A JP2017144047A JP6848748B2 JP 6848748 B2 JP6848748 B2 JP 6848748B2 JP 2017144047 A JP2017144047 A JP 2017144047A JP 2017144047 A JP2017144047 A JP 2017144047A JP 6848748 B2 JP6848748 B2 JP 6848748B2
- Authority
- JP
- Japan
- Prior art keywords
- surface resistivity
- remaining life
- electrical equipment
- years
- detection sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003745 diagnosis Methods 0.000 title claims description 53
- 238000000034 method Methods 0.000 title claims description 43
- 238000001514 detection method Methods 0.000 claims description 84
- 239000012212 insulator Substances 0.000 claims description 76
- 238000009434 installation Methods 0.000 claims description 56
- 238000011156 evaluation Methods 0.000 claims description 52
- 238000009413 insulation Methods 0.000 claims description 27
- 238000002474 experimental method Methods 0.000 claims description 26
- 230000006866 deterioration Effects 0.000 claims description 25
- 238000005259 measurement Methods 0.000 claims description 18
- 238000004364 calculation method Methods 0.000 claims description 14
- 238000000605 extraction Methods 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 6
- 238000004378 air conditioning Methods 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 3
- 238000009826 distribution Methods 0.000 description 59
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 54
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 17
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 17
- 230000008569 process Effects 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000003860 storage Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Description
(1)絶縁物の設置環境に浮遊する塵埃やガス(NOx(窒素酸化物)、SOx(硫黄酸化物))が付着することで、絶縁物の表面抵抗率が低下する。また、湿度が高い場合や温度が高い場合も、絶縁物の表面抵抗率が低下する。(2)漏れ電流によるジュール熱により、局所的な乾燥帯が絶縁物に形成される。(3)乾燥帯への電圧集中によって、シンチレーション放電が発生する。(4)放電によって絶縁物の有機物が炭化して導電路が形成され、絶縁破壊に至る。
前記第2の関係式に所定の閾値を設定し、寿命年数を算出するステップと、前記ステップで算出した寿命年数から、検知センサ設置時あるいは検知センサの測定時点の電気機器の使用年数を減算し、余寿命を算出するステップ、を備える。
図1は、受配電機器の一例として示したスイッチギヤの構成を概略的に示した断面図である。スイッチギヤ49は、絶縁体により支持される遮断器、断路器、母線・導体などの主回路構成品と計測機器とから構成される。
図1を参照して、スイッチギヤ49は、操作機構51a、51bとモールドフレーム55a、55bとを備えた遮断器と50、碍子58にて支持された接続導体53a、54a、53b、54bと、三相交流の各相に対応した3本の水平母線52を一括して支持する母線支持板56等を備えている。
絶縁物の劣化に影響を与える評価項目(温度、湿度、NOx量、SOx量、漏れ電流、放電電流)のいずれかもしくは複数を検出可能な検知センサを受配電機器に設置する(S1)。次に、検知センサの設置環境に関する情報((イ)受配電機器を設置している事業所の業種、(ロ)周辺地域の特徴、(ハ)受配電機器に使用されている絶縁物の種類、(ニ)受配電機器の定格電圧、(ホ)受配電機器設置場所の空調設備、(へ)設置建屋内の環境、(ト)対象受配電機器内の環境、(チ)受配電機器の清掃状態、(リ)受配電機器の使用年数)を、過去に余寿命診断を実施した絶縁物の情報を設置環境と関連付けた実績データベース116と照合し、類似している設置環境を検索する(S2)。類似している設置環境での過去診断時における絶縁物の表面抵抗率の値から、検知センサ設置時の表面抵抗率を推定する。推定値と使用年数0年のデータを結び、使用年数―表面抵抗率の関係式を得る(S3)。検知センサで評価する項目と、表面抵抗率との相関を記録している基礎実験データベース117を利用し、検知センサにより連続して得られるデータと前記S3により、使用年数に対する表面抵抗率を逐次求める(S4)。前記S4で求めた相関関係と所定の閾値より、寿命年数を算出。なお、所定の閾値は、所定湿度において放電発生する絶縁物の表面抵抗率のうちの最高値に予め設定される(S5)。前記S5で算出した寿命年数から、検知センサ設置時あるいは検知センサの測定時点の受配電機器の使用年数を減算し、余寿命を算出する(S6)。
実施の形態1においては、ステップS1では絶縁物の劣化に影響を与える項目のひとつである、「湿度」を検出可能な「検知センサ(湿度センサ)」10をスイッチギヤ49内に設置する。
図4は、相対湿度(RH%)と表面抵抗率との関係を説明する図である。図4に示すように、絶縁物の表面抵抗率は相対湿度により大きく変化する。図4には3本の曲線を記載しているが、上方の曲線(C1)は劣化が少ないもの、下方の曲線(C3)は劣化が進展したものを示す。図4から、同じ相対湿度でも劣化が進展した絶縁物ほど表面抵抗率が低くなることがわかる。また、同じ絶縁物であっても相対湿度が高くなると表面抵抗率が下がる傾向にある。例えば、図4の曲線(C2)で湿度Cにおける表面抵抗率はAであるが、湿度が曲線(C2)のDまで上昇すると表面抵抗率はBに低下する。
このようにして、図3にS4で示す4つのプロット点(ウ1、エ1、オ1、カ1)は、使用年数―表面抵抗率の関係直線(a)に対して上または下方向にずれて分布する(ウ2、エ2、オ2、カ2)。このずれの分布を考慮して、図3において、検知センサ10設置時の表面抵抗率(ア)を基点として使用年数に対応して右下がりとなる直線すなわち上側直線(b)あるいは下側直線(c)を引く。この直線(b)あるいは直線(c)が新たに「使用年数―表面抵抗率の第2の関係式」となる。
このように、図3において、使用年数と表面低効率の関係を示す直線(a)(b)(c)は関係式の概念に含むものとする。
なお、所定の閾値は、所定湿度において放電発生する絶縁物の表面抵抗率のうちの最高値に予め設定される。
最後にステップS6では、ステップS5で算出した寿命年数から、検知センサ10の設置時の受配電機器の使用年数を減算し、余寿命を算出する。なお、検知センサ10の設置時の受配電機器の使用年数は、図3において、ア点からグラフ左端の縦軸との距離となる。このため、求める余寿命は、グラフの左右方向に走る破線(閾値)で示した値と直線(a)(b)(c)とが交差する点とア点との水平距離となる。
図6を参照して、制御部103は、類似案件抽出部111と、使用年数―表面抵抗率の関係式作成部112と、使用年数―表面抵抗率の関係式補正部113と、寿命年数算出部114と、余寿命算出部115とを含む。
次に、本発明の実施の形態2を説明する。本発明の実施の形態1では、検知センサとして湿度センサを使用することで、時間や手間をかけることなく余寿命診断する方法を挙げたが、検知センサとして、NOx量を定量できるNOxセンサを用いても良い。
NOxセンサを用いた場合、ステップS4では、ある使用年数Xにおける表面抵抗率がAだとすると、この値Aは、実績データベース116より検索することで得られたS3の使用年数―表面抵抗率からの推定値である。この推定値Aは、過去の診断時のある一定の評価項目(NOx量)の値Cにおける値であることから、実際の設置環境(NOxの影響)は考慮されていない。そこで、検知センサでの評価項目の値と表面抵抗率の相関を記録している基礎実験データベース117を利用する。NOxセンサを利用することで、実際の設置環境でのNOx量を検知し、その時の検知センサの評価項目の値(NOx量)Dより、その環境での表面抵抗率Bが求まる。求まったBを用いて、S3の関係を逐次補正し、実環境(NOx量)を考慮した使用年数―表面抵抗率の相関を得る。
次に、実施の形態3について説明する。本発明の実施の形態1では、検知センサとして湿度センサ、実施の形態2では、NOxセンサを使用することで、時間や手間をかけることなく余寿命診断する方法を挙げたが、検知センサとして、SOx量を定量できるSOxセンサを用いても良い。
SOxセンサを用いた場合、ステップS4では、ある使用年数Xにおける表面抵抗率がAだとすると、この値Aは、実績データベース116より検索することで得られたS3の使用年数―表面抵抗率からの推定値である。この推定値Aは、過去の診断時のある一定の評価項目(SOx量)の値Cにおける値であることから、実際の設置環境(SOxの影響)は考慮されていない。そこで、検知センサでの評価項目の値と表面抵抗率の相関を記録している基礎実験データベース117を利用する。SOxセンサを利用することで、実際の設置環境でのSOx量を検知し、その時の検知センサの評価項目の値(SOx量)Dより、その環境での表面抵抗率Bが求まる。求まったBを用いて、S3の関係を逐次補正し、実環境(SOx量)を考慮した使用年数―表面抵抗率の相関を得ることができる。
次に、実施の形態4について説明する。本発明の実施の形態1では、検知センサとして湿度センサ、実施の形態2では、NOxセンサ、実施の形態3ではSOxセンサを使用することで、時間や手間をかけることなく余寿命診断する方法を挙げたが、検知センサとして、漏れ電流を定量できる漏れ電流センサを用いても良い。
漏れ電流センサを用いた場合、ステップS4では、ある使用年数Xにおける表面抵抗率がAだとすると、この値Aは、実績データベース116より検索することで得られたS3の使用年数―表面抵抗率からの推定値である。この推定値Aは、過去の診断時のある一定の評価項目(漏れ電流量)の値Cにおける値であることから、実際の設置環境(漏れ電流の影響)は考慮されていない。そこで、検知センサでの評価項目の値と表面抵抗率の相関を記録している基礎実験データベース117を利用する。漏れ電流センサを利用することで、実際の設置環境での漏れ電流量を検知し、その時の検知センサの評価項目の値(漏れ電流量)Dより、その環境での表面抵抗率Bが求まる。求まったBを用いて、S3の関係を逐次補正し、実環境(漏れ電流量)を考慮した使用年数―表面抵抗率の相関を得る。
次に、実施の形態5について説明する。本発明の実施の形態1では、検知センサとして湿度センサ、実施の形態2では、NOxセンサ、実施の形態3ではSOxセンサ、実施の形態4では漏れ電流センサを使用することで、時間や手間をかけることなく余寿命診断する方法を挙げたが、検知センサとして、温度を定量できる温度センサ(温度計)を用いても良い。余寿命診断フローは図1と同様に実施するが、ステップS4のみ下記要領で実施する。
次に、実施の形態6について説明する。本発明の実施の形態1では、検知センサとして湿度センサ、実施の形態2では、NOxセンサ、実施の形態3ではSOxセンサ、実施の形態4では漏れ電流センサ、実施の形態5では温度センサ(温度計)を使用することで、時間や手間をかけることなく余寿命診断する方法を挙げたが、検知センサとして、放電を検出できる放電センサ(放電検出器)を用いても良い。放電センサ(放電検出器)としては、放電電流を定量できる放電電流センサあるいは、放電により放出される電磁波を検出する放電感知センサがある。
放電電流センサ(放電検出器)を用いた場合は、NOxセンサ、SOxセンサ、漏れ電流センサ、温度センサ(温度計)と同様の方法で診断する。余寿命診断フローは図2と同様に実施するが、ステップS4のみ下記要領で実施する。
なお、放電感知センサを用いる場合には放電電流の測定はできないが、放電の発生・存在を把握することが可能となり、放電発生を把握することで絶縁物の劣化監視内容に反映させることが可能となる。
実施の形態1〜6は、受配電機器に用いられている絶縁物の絶縁性能に影響を与える項目を考慮した余寿命診断方法であるが、それぞれの検知センサを単体で必ず使用する必要はない。複数の検知センサを設置することで、絶縁物の絶縁性能に影響を与える複数の項目を考慮することができ、より環境に対応した高精度な余寿命診断が可能になる。また、1つの検知センサで複数の絶縁性能に影響を与える項目を検知できるセンサを用いた場合も、より環境に対応した高精度な余寿命診断が可能になる。
上記の実施の形態1〜6説明では、受配電機器としてスイッチギヤを例に説明をしたが、電気機器の通電部の対地間あるいは相間の絶縁に絶縁物を使用しており、かつ当該絶縁物の絶縁性能の劣化状況の診断を行うものであれば、受配電機器あるはスイッチギヤに限定されるものではなく、全ての電気機器に適用できるものであり、上記の実施の形態1〜6のものと同様の効果を得ることが可能となる。
なお、電気機器としては、例えば、スイッチギヤなどの受配電機器、変圧器、モータコントロールセンタのようなコントロールギヤ、発電機、電動機、給電のための電源装置(交流電源装置、直流電源装置、整流器)などがある。
これらの実施形態は、発明の内容を逸脱しない範囲で、省略、置き換え、変更を行うことで、その他の様々な形態で実施されても良い。省略、置き換え、変更を行った実施の形態も、発明の範囲や内容に含まれ、特許請求の範囲に記載された発明と、その内容と同等の範囲に含まれる。
20 測定器
49 スイッチギヤ
50 遮断器
51a,51b 操作機構
52 水平母線
53a,54a,53b,54b 接続導体
55 絶縁体(診断対象の絶縁体)
55a,55b モールドフレーム
56 母線支持板
57a,57b ケーブル
58 碍子
61a,61b 台車
100 寿命診断装置
101 入力部
102 記憶部
103 制御部
104 出力部
105 出力装置
111 類似案件抽出部
112 使用年数―表面抵抗率の関係式作成部
113 使用年数―表面抵抗率の関係式補正部
114 寿命年数算出部
115 余寿命算出部
116 実績データベース
117 基礎実験データベース
X 使用年数
a、b、c 使用年数―表面抵抗率の関係直線
S1〜S6 ステップ。
ア 検知センサ10設置時の表面抵抗率の推定値
イ 使用年数0年の表面抵抗率
Claims (14)
- 絶縁物を含む電気機器の余寿命診断方法であって、
絶縁物の劣化に影響を与える評価項目を検出する検知センサを前記電気機器に設置するステップと、
前記検知センサの設置環境と類似する既設の電気機器の絶縁物の表面抵抗率を、既設の電気機器の設置環境及び絶縁物劣化状況のデータを蓄積した実績データベースから抽出するステップと、
前記抽出により得た類似設置環境における過去診断時の絶縁物の表面抵抗率の値を基に前記検知センサ設置時の表面抵抗率を推定して推定表面抵抗率を得るとともに、前記推定表面抵抗率と基礎実験データベースから抽出した当該絶縁物の使用年数0年の表面抵抗率との間を結び、診断対象の電気機器の使用年数―表面抵抗率の第1の関係式を得るステップと、
前記基礎実験データベースを用いて、前記検知センサにより連続して得られる前記評価項目の値に対応する実測評価項目対応の表面抵抗率を抽出し、前記実測評価項目対応の表面抵抗率を用いて前記ステップで得た前記使用年数―表面抵抗率の第1の関係式を補正した使用年数―表面抵抗率の第2の関係式を得るステップと、
前記第2の関係式に所定の閾値を設定し、寿命年数を算出するステップと、
前記ステップで算出した寿命年数から、検知センサ設置時あるいは検知センサの測定時点の電気機器の使用年数を減算し、余寿命を算出するステップ、
を備えた電気機器の余寿命診断方法。 - 前記評価項目は、温度、湿度、NOx量、SOx量、漏れ電流、放電電流のいずれかであることを特徴とする請求項1に記載の電気機器の余寿命診断方法。
- 前記実績データベースは、既に使用場所に設置された個々の電気機器に関する絶縁物の表面抵抗率及びその背景となる電気機器の設置環境や使用状態に関する情報を蓄積したものであることを特徴とする請求項1に記載の電気機器の余寿命診断方法。
- 前記実績データベースに収録する電気機器の設置環境や使用状態に関する情報は、少なくとも、(イ)電気機器を設置している事業所の業種、(ロ)周辺地域の特徴、(ハ)電気機器に使用されている絶縁物の種類、(ニ)電気機器の定格電圧、(ホ)電気機器設置場所の空調設備、(へ)設置建屋内の環境、(ト)対象電気機器内の環境、(チ)電気機器の清掃状態、(リ)電気機器の使用年数)、のいずれかの情報あるいはその組合せであることを特徴とする請求項1に記載の電気機器の余寿命診断方法。
- 基礎実験データベースは、少なくとも、絶縁物の種類と各劣化段階に対応した各種絶縁物について前記評価項目の値を変化させてそれに対応した表面抵抗率との相関に関するデータを蓄積したものであることを特徴とする請求項1に記載の電気機器の余寿命診断方法。
- 検知センサは、湿度センサ、NOxセンサ、SOxセンサ、漏れ電流センサ、温度センサ、放電電流センサ、のうちのいずれか、あるいはこれらを幾つかを組み合わせて使用することを特徴とする請求項1または請求項2に記載の電気機器の余寿命診断方法。
- 電気機器は、受配電機器、変圧器、コントロールギヤ、発電機、電動機、給電のための電源装置のいずれかであることを特徴とする請求項1から請求項6のいずれか1項に記載の電気機器の余寿命診断方法。
- 絶縁物を含む電気機器の余寿命診断装置であって、
前記電気機器に設置されて絶縁物の劣化に係る評価項目を検知する検知センサと、
前記検知センサの設置環境と類似する既設の電気機器の絶縁物の表面抵抗率を、既設の電気機器の設置環境及び絶縁物劣化状況のデータを蓄積した実績データベースから抽出する類似案件抽出部と、
前記抽出により得た類似設置環境における過去診断時の絶縁物の表面抵抗率の値を基に前記検知センサ設置時の表面抵抗率を推定して推定表面抵抗率を得るとともに、前記推定表面抵抗率と基礎実験データベースから抽出した当該絶縁物の使用年数0年の表面抵抗率との間を結び、診断対象の電気機器の使用年数―表面抵抗率の第1の関係式を作る使用年数―表面抵抗率の関係式作成部と、
前記基礎実験データベースを用いて、前記検知センサにより連続して得られる前記評価項目の値に対応する実測評価項目対応の表面抵抗率を抽出し、前記実測評価項目対応の表面抵抗率を用いて前記使用年数―表面抵抗率の関係式作成部で作成した前記使用年数―表面抵抗率の第1の関係式を補正し使用年数―表面抵抗率の第2の関係式を作成する使用年数―表面抵抗率関係式の補正部と、
前記第2の関係式に所定の閾値を設定し、寿命年数を算出する寿命年数算出部と、
前記寿命年数算出部が算出した寿命年数から、検知センサ設置時あるいは検知センサの測定時点の電気機器の使用年数を減算し、余寿命を算出する余寿命算出部、
を備えた電気機器の余寿命診断装置。 - 前記評価項目は、温度、湿度、NOx量、SOx量、漏れ電流、放電電流のいずれかであることを特徴とする請求項8に記載の電気機器の余寿命診断装置。
- 前記実績データベースは、既に使用場所に設置された個々の電気機器に関する絶縁物の表面抵抗率及びその背景となる電気機器の設置環境や使用状態に関する情報を蓄積したものであることを特徴とする請求項8に記載の電気機器の余寿命診断装置。
- 前記実績データベースに収録する電気機器の設置環境や使用状態に関する情報は、少なくとも、(イ)電気機器を設置している事業所の業種、(ロ)周辺地域の特徴、(ハ)電気機器に使用されている絶縁物の種類、(ニ)電気機器の定格電圧、(ホ)電気機器設置場所の空調設備、(へ)設置建屋内の環境、(ト)対象電気機器内の環境、(チ)電気機器の清掃状態、(リ)電気機器の使用年数)、のいずれかの情報あるいはその組合せであることを特徴とする請求項8に記載の電気機器の余寿命診断装置。
- 基礎実験データベースは、少なくとも、絶縁物の種類と各劣化段階に対応した各種絶縁物について前記評価項目の値を変化させてそれに対応した表面抵抗率との相関に関するデータを蓄積したものであることを特徴とする請求項8に記載の電気機器の余寿命診断装置。
- 検知センサは、湿度センサ、NOxセンサ、SOxセンサ、漏れ電流センサ、温度センサ、放電電流センサ、のうちのいずれか、あるいはこれらを幾つかを組み合わせて使用することを特徴とする請求項8または請求項9に記載の電気機器の余寿命診断装置。
- 電気機器は、受配電機器、変圧器、コントロールギヤ、発電機、電動機、給電のための電源装置のいずれかであることを特徴とする請求項8から請求項13のいずれか1項に記載の電気機器の余寿命診断装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017144047A JP6848748B2 (ja) | 2017-07-26 | 2017-07-26 | 電気機器の余寿命診断方法および余寿命診断装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017144047A JP6848748B2 (ja) | 2017-07-26 | 2017-07-26 | 電気機器の余寿命診断方法および余寿命診断装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019027810A JP2019027810A (ja) | 2019-02-21 |
JP6848748B2 true JP6848748B2 (ja) | 2021-03-24 |
Family
ID=65476035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017144047A Active JP6848748B2 (ja) | 2017-07-26 | 2017-07-26 | 電気機器の余寿命診断方法および余寿命診断装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6848748B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7241476B2 (ja) * | 2018-06-27 | 2023-03-17 | 三菱電機株式会社 | 受配電機器の短絡余寿命診断方法および短絡余寿命診断システム |
CN113424044B (zh) * | 2019-02-13 | 2024-05-28 | 三菱电机株式会社 | 电气设备的剩余寿命诊断方法和剩余寿命诊断装置 |
CN118376833B (zh) * | 2024-06-25 | 2024-09-10 | 安徽大学 | 基于变电站消防监测信息的交流剩余电流监测方法及系统 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4121430B2 (ja) * | 2003-08-08 | 2008-07-23 | 三菱電機株式会社 | 電気機器の絶縁診断方法 |
US7659728B1 (en) * | 2006-08-23 | 2010-02-09 | Watkins Jr Kenneth S | Method and apparatus for measuring degradation of insulation of electrical power system devices |
JP5387877B2 (ja) * | 2008-03-18 | 2014-01-15 | 富士電機株式会社 | 油入電気機器の余寿命推定方法 |
JP5840342B2 (ja) * | 2009-07-27 | 2016-01-06 | 株式会社東芝 | 絶縁材料の絶縁劣化診断方法 |
JP5722027B2 (ja) * | 2010-12-28 | 2015-05-20 | 株式会社東芝 | 絶縁材料の劣化診断装置、劣化診断方法、及び劣化診断プログラム |
JP6334271B2 (ja) * | 2014-05-30 | 2018-05-30 | 株式会社東芝 | 余寿命算出方法、劣化診断方法、劣化診断装置、及びプログラム |
JP6612547B2 (ja) * | 2015-07-29 | 2019-11-27 | 株式会社東芝 | 劣化診断装置、劣化診断方法、及びプログラム |
-
2017
- 2017-07-26 JP JP2017144047A patent/JP6848748B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019027810A (ja) | 2019-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3797304B1 (en) | System and method for monitoring an operating condition of an electrical device when in operation | |
JP4937012B2 (ja) | 受配電機器の余寿命診断方法 | |
JP7241476B2 (ja) | 受配電機器の短絡余寿命診断方法および短絡余寿命診断システム | |
JP6848748B2 (ja) | 電気機器の余寿命診断方法および余寿命診断装置 | |
KR100541996B1 (ko) | 전기기기의 절연 진단방법 | |
CN103649763A (zh) | 使用prpd包络的值来分类高压设备的单个和多个局部放电(pd)缺陷 | |
CN104677927A (zh) | 配电变压器绕组材质检测系统及方法 | |
Antonino-Daviu et al. | Advanced rotor fault diagnosis for medium-voltage induction motors via continuous transforms | |
JP5562287B2 (ja) | 受配電機器の余寿命診断方法および余寿命診断装置 | |
JP6045444B2 (ja) | 受配電機器の余寿命診断方法および余寿命診断装置 | |
JP2003009316A (ja) | 受配電設備の寿命診断方法 | |
JP6460003B2 (ja) | 電気設備の診断方法 | |
CN113424044B (zh) | 电气设备的剩余寿命诊断方法和剩余寿命诊断装置 | |
KR101600698B1 (ko) | 전력용 변압기 수명 예측 시스템 및 방법 | |
Rux et al. | Assessing the condition of hydrogenerator stator winding insulation using the ramped high direct-voltage test method | |
JP4550537B2 (ja) | 高圧回転機の残存絶縁寿命推定システムおよび推定方法 | |
Goel et al. | Condition monitoring of transformer using oil and winding temperature analysis | |
KR100901855B1 (ko) | 삼상 교류 회전 기기 절연 상태 진단 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 매체 | |
WO2022004139A1 (ja) | 変圧器の診断方法および診断システム | |
Cameron et al. | A utility's functional evaluation tests for high-voltage stator insulation | |
Parmar et al. | Assessment of Condition Monitoring of Distribution Transformer to Enhance Microgrid Reliability | |
CN117074824B (zh) | 一种变压器保护系统的检验系统及方法 | |
BERNARDES JUNIOR | Estimation of the remaining useful life of hydro generators | |
KR102124787B1 (ko) | 전력설비의 상태기반 분석방법 | |
Dauksys et al. | Investigation of partial discharges at the high voltage electric motor bars |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200317 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210215 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6848748 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |