[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6841429B2 - 未分化間葉系幹細胞マーカー及びその用途 - Google Patents

未分化間葉系幹細胞マーカー及びその用途 Download PDF

Info

Publication number
JP6841429B2
JP6841429B2 JP2017532474A JP2017532474A JP6841429B2 JP 6841429 B2 JP6841429 B2 JP 6841429B2 JP 2017532474 A JP2017532474 A JP 2017532474A JP 2017532474 A JP2017532474 A JP 2017532474A JP 6841429 B2 JP6841429 B2 JP 6841429B2
Authority
JP
Japan
Prior art keywords
islr
mesenchymal stem
stem cells
cancer
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017532474A
Other languages
English (en)
Other versions
JPWO2017022472A1 (ja
Inventor
篤 榎本
篤 榎本
高橋 雅英
雅英 高橋
啓子 前田
啓子 前田
昭壽 原
昭壽 原
水谷 泰之
泰之 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai National Higher Education and Research System NUC
Original Assignee
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai National Higher Education and Research System NUC filed Critical Tokai National Higher Education and Research System NUC
Publication of JPWO2017022472A1 publication Critical patent/JPWO2017022472A1/ja
Application granted granted Critical
Publication of JP6841429B2 publication Critical patent/JP6841429B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は間葉系幹細胞マーカーに関する。詳しくは、未分化な状態の間葉系幹細胞に特異性の高い分子(バイオマーカー)及びその用途に関する。本出願は、2015年8月3日に出願された日本国特許出願第2015−153712号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。
間葉系幹細胞(mesenchymal stem cell又はmesenchymal stromal cell。以下、「MSC」と略称することがある)は骨髄、脂肪組織、歯髄、臍帯、子宮内膜をはじめとして多くの臓器に存在する細胞であり、培養皿上で特定の条件下で培養すると骨、軟骨及び脂肪に分化することが知られている。また、間葉系幹細胞は他の細胞群の増殖や分化を促す作用(trophic effect)及び免疫調整能を有することも知られ、現在ではGVHD(移植片対宿主病)、脊椎損傷、腎移植後の腎不全、心筋梗塞、末梢閉塞性動脈疾患等の多様な疾患の治療への応用が期待されている。
間葉系幹細胞は骨髄では類洞及び細小動脈等の血管周囲に、その他の臓器では毛細血管周囲に存在することが知られている(非特許文献1)。骨髄では造血幹細胞維持のためのニッチ細胞として、あるいは骨再生のための骨幹細胞として機能している(非特許文献2)。骨髄以外の臓器ではペリサイト(血管周皮細胞)あるいは血管周囲の線維芽細胞として存在しており、血管の成熟化に関わるとされている(非特許文献3)。また、癌や各種線維化疾患において間質の線維化を引き起こす原因がペリサイトの増殖であるとする学説も存在する(非特許文献4)。
国際的に以下の条件(1)〜(3)を満たす細胞が間葉系幹細胞と定義されている。
(1)培養皿上で接着する細胞であること
(2)CD105陽性、CD73陽性、CD90陽性、CD45陰性、CD34陰性、CD14又はCD11bが陰性、CD79a又はCD19が陰性、HLA-DR陰性であること
(3)試験管内(in vitro)において骨芽細胞、軟骨芽細胞及び脂肪細胞への分化能を有すること
上記(2)に列挙された分子以外にも、Stro-1、PDGF受容体、Sca-1、CD271、CD146などが間葉系幹細胞のマーカーとして報告されており、これらのマーカーの組み合わせで間葉系幹細胞を単離する方法が開発されている(例えば特許文献1を参照)。しかしながら、上記のCD105、CD73、CD90を含め、いずれのマーカーも上皮細胞や癌細胞、あるいは神経細胞などに発現しており、間葉系幹細胞に特異的ではない。
国際公開第2009/031678号パンフレット 米国特許出願公開第2005/0260639 A1号明細書
Murray, I.R., West, C.C., Hardy, W.R., James, A.W., Park, T.S., Nguyen, A., Tawonsawatruk, T., Lazzari, L., Soo, C., and Peault, B. (2014). Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cellular and Molecular Life Sciences 71, 1353-1374. Morrison, S.J., and Scadden, D.T. (2014). The bone marrow niche for haematopoietic stem cells. Nature 505, 327-334. Armulik, A., Genove, G., and Betsholtz, C. (2011). Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises. Developmental Cell 21, 193-215. Kramann, R, Schneider, R. DiRocco, D. Machado, F. Fleig, S., Bondzie, A., Henderson, J., Ebert, B., and Humphreys, B. (2015). Perivascular Gli1+ Progenitors Are Key Contributors to Injury-Induced Organ Fibrosis Cell Stem Cell ,16, 51-66. Nagasawa, A., Kubota, R., Imamura, Y., Nagamine, K., Wang, Y., Asakawa, S., Kudoh, J., Minoshima, S., Mashima, Y., Oguchi, Y., et al. (1997). Cloning of the cDNA for a new member of the immunoglobulin superfamily (ISLR) containing leucine-rich repeat (LRR). Genomics 44, 273-279. Nagasawa, A., Kudoh, J., Noda, S., Mashima, Y., Wright, A., Oguchi, Y., and Shimizu, N. (1999). Human and mouse ISLR (immunoglobulin superfamily containing leucine-rich repeat) genes: genomic structure and tissue expression. Genomics 61, 37-43. Homma, S., Shimada, T., Hikake, T., and Yaginuma, H. (2009). Expression pattern of LRR and Ig domain-containing protein (LRRIG protein) in the early mouse embryo. Gene Expression Patterns 9, 1-26. Mandai, K., Guo, T., Hillaire, C.S., Meabon, J.S., Kanning, K.C., Bothwell, M., and Ginty, D.D. (2009). LIG family receptor tyrosine kinase-associated proteins modulate growth factor signals during neural development. Neuron 63, 614-627. Walter, K., Omura, N., Hong, S.-M., Griffith, M., Vincent, A., Borges, M., and Goggins, M. (2010). Overexpression of Smoothened Activates the Sonic Hedgehog Signaling Pathway in Pancreatic Cancer-Associated Fibroblasts. Clinical Cancer Research 16, 1781-1789. Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J., Huang, H., Porter, D., Hu, M., Chin, L., Richardson, A., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer cell 6, 17-32. Jansen, B.J., Gilissen, C., Roelofs, H., Schaap-Oziemlak, A., Veltman, J.A., Raymakers, R.A., Jansen, J.H., Kogler, G., Figdor, C.G., Torensma, R., et al. (2010). Functional differences between mesenchymal stem cell populations are reflected by their transcriptome. Stem cells and development 19, 481-490. Hsieh, J.-Y., Fu, Y.-S., Chang, S.-J., Tsuang, Y.-H., and Wang, H.-W. (2010). Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord. Stem cells and development 19, 1895-1910.
間葉系幹細胞のマーカーとして数多くの分子が報告されているが、いずれも間葉系幹細胞以外の細胞にも発現しており特異性は低い。そこで本発明は、未分化な状態の間葉系幹細胞に特異性が高く、高感度での間葉系幹細胞の同定や高純度な間葉系幹細胞の調製などを可能にするマーカー分子及びその用途を提供することを課題とする。
上記課題の下で研究を進める中、本発明者らは細胞膜結合型/分泌型の分子であるロイシンリッチリピート含有免疫グロブリンスーパーファミリー(ISLR:immunoglobulin superfamily containing leucine-rich repeat)に着眼し、各種実験を行った。ISLRは1997年に眼の網膜に発現する分子として遺伝子クローニングされたが、その機能は未だ明らかになっていない(非特許文献5、6)。2009年に発表された遺伝子発現解析の論文では、マウス胎児において鰓弓、肢芽、体節、頭部や体幹の間葉系組織に発現していることが報告されている(非特許文献7)。ISLRの相同遺伝子に相当するISLR2(別名Linx)は神経系組織を中心に発現することも報告されている(非特許文献8)。また、肺癌、乳癌、膵癌などにおいてISLRの発現が正常に比して高いとする報告もある(例えば、特許文献2、非特許文献9、10を参照)。但し、いずれの報告においても、同様の挙動を示す多数の遺伝子の中の一つとしてISLRが掲載されているにすぎず、また、ISLRの機能に関する言及はない。一方、間葉系幹細胞における遺伝子発現を網羅的に調べた研究の報告では、発現の上昇を認める遺伝子のリストにISLRが掲載されている(非特許文献11、12)。しかしながら、間葉系幹細胞におけるISLRの発現の意義、その機能などは不明である。
後述の実施例に示す通り、本発明者らの検討の結果、ISLRが間葉系幹細胞に特異的なマーカー分子であることが明らかとなった。ISLRは未分化な状態の間葉系幹細胞に特異性が高く、これまでに報告された間葉系幹細胞のマーカーとは一線を画する。また、ヒトに限らずマウスにおいてもISLRが間葉系幹細胞のマーカーになることが判明し、その利用価値は高い。
ところで、間葉系幹細胞は腫瘍又は癌の発生部位や転移部位に集積する特性を有するとの学説がある。しかしながら、集積することの意義、集積した細胞の役割(特に癌の進展への関与)については諸説あり、その解明が切望されている。本発明者らは、間葉系幹細胞を特異的に検出するISLRというツールを得たことにより、間葉系幹細胞の集積を視覚的に捉え、また間葉系幹細胞の存在量を検出することができるようになった。この成果を基に更に研究を進めた結果、ISLRの発現が癌の進展及び癌患者の予後に関連することが見出された。また、心筋梗塞のモデル動物を用いた実験によって心筋梗塞の梗塞部位に間葉系幹細胞が集積する現象が観察されるとともに、ISLRノックアウトマウスでは心筋梗塞後の予後が有意に悪いことが示され、心筋梗塞等の線維化疾患の進展や予後の評価ないし推定にもISLRが有用であることが判明した。
以下の発明は、主として以上の成果に基づく。
[1]ロイシンリッチリピート含有免疫グロブリンスーパーファミリー(ISLR)からなる、未分化間葉系幹細胞マーカー。
[2]ISLRが、配列番号1〜3のいずれかのアミノ酸配列を含む、[1]に記載の未分化間葉系幹細胞マーカー。
[3]間葉系幹細胞を含む細胞集団から、ISLRを発現する細胞を選別し、回収するステップを含む、未分化間葉系幹細胞を調製する方法。
[4]間葉系幹細胞を含む細胞集団が、骨髄、歯髄、脂肪組織、子宮内膜、臍帯、骨格筋又は末梢血に由来する、[3]に記載の方法。
[5]ISLRの発現状態を指標として検出することを特徴とする、未分化間葉系幹細胞を検出する方法。
[6]被検間葉系幹細胞におけるISLRの発現状態を調べるステップを含む、間葉系幹細胞の未分化性を評価する方法。
[7]間葉系幹細胞がヒト細胞である、[3]〜[6]のいずれか一項に記載の方法。
[8]抗ISLR抗体を含む、未分化間葉系幹細胞検出用試薬。
[9][8]に記載の試薬を含む、未分化間葉系幹細胞検出用キット。
[10]ISLRの発現状態を指標として検出することを特徴とする、癌又は線維化疾患の罹患部位に集積する未分化間葉系幹細胞を検出する方法。
[11]癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、[10]に記載の方法。
[12]ISLRからなる、癌又は線維化疾患の予後推定用バイオマーカー。
[13]癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、[12]に記載の予後推定用バイオマーカー。
[14]ISLRの発現量を指標とした、癌又は線維化疾患患者の予後推定法。
[15]癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、[14]に記載の予後推定法。
[16]抗ISLR抗体を含む、癌又は線維化疾患患者の予後推定用試薬。
[17]癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、[16]に記載の予後推定用試薬。
[18][16]又は[17]に記載の試薬を含む、癌又は線維化疾患患者の予後推定用キット。
ヒト骨髄由来間葉系幹細胞及び皮膚線維芽細胞におけるISLRの発現。ウェスタンブロット法によってISLRの発現を調べた。注1:ISLR特異的shRNAを導入したヒト皮膚線維芽細胞 ヒト脂肪由来幹細胞におけるISLRの発現。ウェスタンブロット法によってISLRの発現を調べた。注1:Glyceraldehyde-3- Phosphate Dehydrogenase(内因性コントロール) マウス骨髄由来間葉系幹細胞におけるISLRの発現。ウェスタンブロット法によってISLRの発現を調べた。注1:内因性コントロール マウス間葉系幹細胞の分化に伴うISLR発現の減少。分化誘導0日目、1日目、7日目、及び14日目のISLR及び各種マーカー分子の発現をウェスタンブロット法で調べた。注1:Glyceraldehyde-3-Phosphate Dehydrogenase(内因性コントロール)、注2:fatty-acid binding protein 4(脂肪細胞マーカー)、注3:軟骨芽細胞マーカー、注4:骨芽細胞マーカー ヒト間葉系幹細胞の分化に伴うISLR発現の減少。分化誘導0日目、1日目、7日目、及び14日目のISLR及び各種マーカー分子の発現をウェスタンブロット法で調べた。注1:Glyceraldehyde-3-Phosphate Dehydrogenase(コントロール) 間葉系幹細胞の分化に伴うISLR遺伝子mRNAの発現の減少。分化誘導7日目のISLRのmRNAの発現量を定量的RT-PCRで調べた。 ISLRの高発現が間葉系幹細胞の分化に及ぼす影響の検証。ISLRを強制発現させたC3H10T1/2を分化誘導し、0日目及び7日目にISLR、Sox9(軟骨分化のマーカー)、Osteopontin、Runx2(ともに骨分化のマーカー)の発現をウェスタンブロット法で調べた。注1:軟骨細胞マーカー、注2:骨芽細胞マーカー、注3:骨芽細胞マーカー 各種培養細胞におけるISLRの発現。ヒト線維芽細胞、血管平滑筋細胞、血管内皮細胞及び各種上皮細胞(ロンザジャパン株式会社又はZenBio社より購入)におけるISLRの発現をウェスタンブロット法で調べた。 膵癌の間質で増殖する間葉系幹細胞におけるISLRの発現。中分化型膵癌および低分化型膵癌の間質には間葉系幹細胞が集積する。この間葉系幹細胞の存在をISLRの発現を指標としてIn situハイブリダイゼーション法で調べた。 大腸癌組織におけるISLRの発現。中分化型大腸癌および低分化型大腸癌の間質には間葉系幹細胞が集積する。この間葉系幹細胞の存在をISLRの発現を指標としてIn situハイブリダイゼーション法で調べた。 乳癌組織におけるISLRの発現。浸潤性乳管癌の間質には間葉系幹細胞が集積する。この間葉系幹細胞の存在をISLRの発現を指標としてIn situハイブリダイゼーション法で調べた。 マウス心筋梗塞モデルの梗塞部位におけるISLRの発現。マウス心筋梗塞モデルの心筋梗塞部位には間葉系幹細胞が集積する。この間葉系幹細胞の存在をISLRの発現を指標としてIn situハイブリダイゼーション法で調べた。 野生型マウスとISLRノックアウトマウスの心筋梗塞後の生存率の相違。ISLRノックアウトマウスを作製し、心筋梗塞後の生存率を野生型マウスと比較した。
1.未分化間葉系幹細胞マーカー
本発明の第1の局面は未分化間葉系幹細胞に特異的発現を認めたマーカー分子、即ち「未分化間葉系幹細胞マーカー」に関する。「未分化間葉系幹細胞マーカー」とは、未分化性を保持している間葉系幹細胞であることの指標となる分子をいう。本発明の未分化間葉系幹細胞マーカー(以下、略して「本発明のマーカー」と呼ぶこともある)を利用すれば、未分化間葉系幹細胞の検出、測定、標識化、調製(分取・濃縮)、評価等が可能になる。特に、間葉系幹細胞を含む細胞集団から未分化間葉系幹細胞を調製する上で本発明のマーカーはその利用価値が高い。「未分化間葉系幹細胞」は、骨芽細胞、軟骨芽細胞、脂肪細胞への分化能を有する。未分化間葉系幹細胞を特定の誘導条件で培養すれば、誘導条件に対応した細胞系譜に沿って分化する。
本発明のマーカーはロイシンリッチリピート含有免疫グロブリンスーパーファミリー(ISLR:immunoglobulin superfamily containing leucine-rich repeat)からなる。ISLRは細胞膜結合型又は分泌型の分子であり、肺癌、乳癌、膵癌などにおいて高発現が認められている(例えば、特許文献2、非特許文献9、10を参照)。
公共のデータベースに登録されているISLRのアミノ酸配列とそれをコードする遺伝子配列を添付の配列表に示す。配列番号と配列の対応関係は以下の通りである。
配列番号1:ヒトISLRのアミノ酸配列(NCBI Reference Sequence: NP_005536.1, immunoglobulin superfamily containing leucine-rich repeat protein precursor [Homo sapiens].)
配列番号2:マウスISLRのアミノ酸配列(NCBI Reference Sequence: NP_036173.1, immunoglobulin superfamily containing leucine-rich repeat protein precursor [Mus musculus].)
配列番号3:ラットISLRのアミノ酸配列(NCBI Reference Sequence: NP_001119772.1 immunoglobulin superfamily containing leucine-rich repeat protein precursor [Rattus norvegicus])
配列番号4:ヒトISLRのcDNA配列(GeneID:3671、NCBI Reference Sequence: NM_005545.3, Homo sapiens immunoglobulin superfamily containing leucine-rich repeat (ISLR), transcript variant 1, mRNA.)
配列番号5:マウスISLRのcDNA配列(GeneID: 26968、NCBI Reference Sequence: NM_012043.4, Mus musculus immunoglobulin superfamily containing leucine-rich repeat (Islr), transcript variant 1, mRNA.)
配列番号6:ラットISLRのcDNA配列(GeneID: 686539、NCBI Reference Sequence: XM_006243176.2, NM_001126300.1, Rattus norvegicus immunoglobulin superfamily containing leucine-rich repeat (Islr), mRNA)
ヒトISLRにはバリアント(variant 2)の配列(Homo sapiens immunoglobulin superfamily containing leucine-rich repeat (ISLR), transcript variant 2, mRNA、アミノ酸配列:NP_958934.1、cDNA配列:NM_201526.1)が知られている。当該バリアントのアミノ酸配列は上記のアミノ酸配列(配列番号1)と同一である。
マウスについてもバリアント(variant 2)の配列(Mus musculus immunoglobulin superfamily containing leucine-rich repeat (Islr), transcript variant 2, mRNA、アミノ酸配列:NP_001182360.1、cDNA配列:NM_001195431.1)が知られている。当該バリアントのアミノ酸配列は上記のアミノ酸配列(配列番号2)と同一である。
尚、ヒトへの適用の場合、ヒト生体中に存在する未分化間葉系幹細胞の指標としてではなく、ヒト生体から分離された状態の未分化間葉系幹細胞の指標として本発明のマーカーは利用される。
2.未分化間葉系幹細胞の調製
本発明の第2の局面は本発明のマーカーの用途に関し、未分化間葉系幹細胞を調製する方法(以下、「本発明の調製法」と呼ぶ)を提供する。本発明の調製法を実施する前の細胞集団(即ち、本発明の調製法に供される細胞集団)と本発明の調製法によって得られる細胞集団を比較すると、前者よりも後者の方が未分化間葉系幹細胞の含有率が高いことから、「未分化間葉系幹細胞の調製」を、「未分化間葉系幹細胞の濃縮」、或いは「未分化間葉系幹細胞の純度(比率)の向上」と言い換えることも可能である。
未分化間葉系幹細胞はそれ自体が有用であり、例えば再生医療用の移植材料としての利用が期待される。また、それを分化誘導して得られる各種細胞(骨芽細胞、軟骨芽細胞等)も特定の組織の再建に利用され得る。更には、間葉系幹細胞の産生するケモカイン、サイトカイン、増殖因子なども、様々な疾患の治療への適用が期待される。一方、未分化間葉系幹細胞は造血幹細胞の維持に重要であることが知られており、造血幹細胞を生体外で維持する場合の支持細胞としても未分化間葉系幹細胞は利用され得る。従って、未分化間葉系幹細胞は骨髄移植の分野でも有用である。本発明の調製法によれば、特異性の高いマーカーを用いることから、このように極めて有用性の高い未分化間葉系幹細胞を高純度で調製することができる。また、効率的な調製も可能になる。
本発明の調製法は上記本発明のマーカーを利用する。具体的には、本発明の調製法では以下のステップ、即ち、「間葉系幹細胞を含む細胞集団から、ISLRを発現する細胞を選別し、回収するステップ」、を行う。以下、当該ステップの詳細を説明する。
間葉系幹細胞を含む細胞集団は予め用意しておく。当該細胞集団はヒト又は非ヒト動物(例えばマウス、ラット)の骨髄、歯髄、脂肪組織、子宮内膜、臍帯、臍帯血、骨格筋、末梢血等から常法で取得することができる。通常、これらの細胞源(細胞ソース、由来)から採取した試料(例えば、骨髄液、吸引脂肪、骨格筋組織片、血液)に対して物理的処理(裁断、ピペッティング、フィルタ処理等)や酵素処理(例えば、トリプシン、ディスパーゼ、コラゲナーゼ、エラスターゼ、パパイン等を使用する)を単独又は併用して行い、細胞を分離する。好ましくは、細胞塊がない状態にしておく。末梢血などから細胞集団を用意する場合には溶血処理などによって血球成分を除去しておくことが好ましい。
上記細胞源から採取した試料又はそこから分離した細胞を培養容器に播種して培養し、接着性を示した細胞を「間葉系幹細胞を含む細胞集団」として用いることにしてもよい。換言すれば、本発明の一態様では、接着性細胞を選択するという、従来の間葉系幹細胞の調製法と同様の方法で得られる細胞集団を「間葉系幹細胞を含む細胞集団」として用いる。
本発明の調製法では、間葉系幹細胞を含む細胞集団から、ISLRを発現する細胞を選別し、回収する。即ち、ISLRの発現を指標として、目的の細胞である未分化間葉系幹細胞を得る。ISLRを指標とした選別及び回収は、例えば、抗ISLR抗体を利用したフローサイトメトリー及びセルソーティングで行うことができる。フローサイトメトリー及びセルソーティングによれば特異的且つ効率的にISLR陽性細胞を分取することが可能である。フローサイトメトリー及びセルソーティングを実施するための装置(フローサイトメーター及びセルソーター)は例えばベックマン・コールター株式会社、日本ベクトン・ディッキンソン株式会社などから販売されており、それらを利用することができる。基本的な操作法、分取条件などは装置に添付の取扱説明書に従えばよい。
フローサイトメトリー以外にも、抗ISLR抗体を用いたアフィニティークロマトグラフィーあるいは磁気ビーズを用いた磁気細胞分離等によって、ISLR陽性細胞を選別、回収することが可能である。
フローサイトメトリー、セルソーティング、或いは磁気細胞分離等に用いる抗ISLR抗体は、ISLR陽性細胞の選別及び回収に利用可能な限り、ポリクローナル抗体、オリゴクローナル抗体(数種〜数十種の抗体の混合物)、及びモノクローナル抗体のいずれでもよい。ポリクローナル抗体又はオリゴクローナル抗体としては、動物免疫して得た抗血清由来のIgG画分のほか、抗原によるアフィニティー精製抗体を使用できる。抗ISLR抗体は免疫学的手法、ファージディスプレイ法、リボソームディスプレイ法などを利用して調製することができる。免疫学的手法によるポリクローナル抗体の調製は次の手順で行うことができる。抗原(ISLR又はその一部)を調製し、これを用いてウサギ等の動物に免疫を施す。生体試料を精製することにより抗原を得ることができる。また、組換え型抗原を用いることもできる。組換え型ISLRは、例えば、ISLRをコードする遺伝子(遺伝子の一部であってもよい)を、ベクターを用いて適当な宿主に導入し、得られた組換え細胞内で発現させることにより調製することができる。
免疫惹起作用を増強するために、キャリアタンパク質を結合させた抗原を用いてもよい。キャリアタンパク質としてはKLH(Keyhole Limpet Hemocyanin)、BSA(Bovine Serum Albumin)、OVA(Ovalbumin)などが使用される。キャリアタンパク質の結合にはカルボジイミド法、グルタルアルデヒド法、ジアゾ縮合法、MBS(マレイミドベンゾイルオキシコハク酸イミド)法などを使用できる。一方、ISLR(又はその一部)を、GST、βガラクトシダーゼ、マルトース結合タンパク、又はヒスチジン(His)タグ等との融合タンパク質として発現させた抗原を用いることもできる。このような融合タンパク質は、汎用的な方法により簡便に精製することができる。
必要に応じて免疫を繰り返し、十分に抗体価が上昇した時点で採血し、遠心処理などによって血清を得る。得られた抗血清をアフィニティー精製し、ポリクローナル抗体とする。
一方、モノクローナル抗体については次の手順で調製することができる。まず、上記と同様の手順で免疫操作を実施する。必要に応じて免疫を繰り返し、十分に抗体価が上昇した時点で免疫動物から抗体産生細胞を摘出する。次に、得られた抗体産生細胞と骨髄腫細胞とを融合してハイブリドーマを得る。続いて、このハイブリドーマをモノクローナル化した後、抗原に対して高い特異性を有する抗体を産生するクローンを選択する。選択されたクローンの培養液を精製することによって目的の抗体が得られる。一方、ハイブリドーマを所望数以上に増殖させた後、これを動物(例えばマウス)の腹腔内に移植し、腹水内で増殖させて腹水を精製することにより目的の抗体を取得することもできる。上記培養液の精製又は腹水の精製には、プロテインG、プロテインA等を用いたアフィニティークロマトグラフィーが好適に用いられる。また、抗原を固相化したアフィニティークロマトグラフィーを用いることもできる。更には、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、硫安分画、及び遠心分離等の方法を用いることもできる。これらの方法は単独ないし任意に組み合わされて用いられる。
本発明の調製法は未分化間葉系幹細胞に特異性の高いマーカーを利用することから、単独でも未分化間葉系幹細胞を特異的且つ効率的に調製することを可能にする。しかしながら、未分化間葉系幹細胞の選別に利用可能な他のマーカー分子(例えば、間葉系幹細胞のマーカーとして知られているCD105、CD73、CD90、CD45、CD34、CD14、CD11b、CD79a、CD19、HLA-DR等)の併用を排除或いは制限するものではない。即ち、純度ないし均一性の更なる向上、特定の細胞集団(例えば特定のマーカー分子の発現によって特徴付けられるもの)の濃縮等の目的の下、本発明の方法を構成するステップ(ISLRを利用したステップ)に加え、他のマーカー分子による選別及び回収のステップを行うことにしてもよい。当該ステップは、ISLRを利用した選別及び回収ステップの前又は後に実施される。
3.未分化間葉系幹細胞の検出
本発明の第3の局面は未分化間葉系幹細胞の検出に関し、未分化間葉系幹細胞を検出する方法(以下、「本発明の検出法」と呼ぶ)、当該方法に用いられる試薬及びキットが提供される。本発明の検出法は、ISLRの発現状態を指標として未分化間葉系幹細胞を検出する点に最大の特徴を有する。本発明の検出法によれば、試料中の未分化間葉系幹細胞を特異的且つ高感度に検出できる。従って、未分化間葉系幹細胞の同定、可視化、抽出等を可能にする実験手段(リサーチツール)として本発明の検出法は有用である。
未分化間葉系幹細胞を含む試料に対して本発明の検出法が適用される。未分化間葉系幹細胞を含む可能性がある限り、試料は特に限定されない。例えば、生体から採取ないし分離した組織片や細胞集団、或いはそれらから抽出した細胞集団などを試料として用いることができる。
本発明の検出法は典型的にはin vitroで実施されるが、非ヒト動物の試料を用いる場合や、非ヒト動物に移植したヒト試料中のISLRの発現を検出する場合には、in vivoで実施することもできる。
「ISLRの発現状態」を指標とした検出ではISLR mRNA又はISLRタンパク質が検出対象となる。即ち、本発明の検出法ではISLR mRNA又はISLRタンパク質の発現を検出する。本発明において「発現状態」とは発現の程度(レベル)を意味し、発現の有無と発現量を包括した用語として使用される。従って、本発明の検出法ではISLR mRNA又はISLRタンパク質の発現に関して定性的又は定量的な検出が行われることになる。
ISLR mRNAの発現の検出は、ISLR mRNAに特異的なプライマー又はプローブを利用した各種方法、例えばRT-PCR、定量PCR、in situハイブリダイゼーション、ノーザンブロッティング等によって実施することができる。他方、ISLRタンパク質の発現の検出には、ISLRタンパク質に対して特異的な結合性を示す物質が用いられる。当該物質として、好ましくは抗ISLR抗体を採用する。抗ISLR抗体によれば特異性の高い検出が可能になる。標識化抗体を使用すれば、標識量を指標に結合抗体量を直接検出することが可能である。従って、より簡便な検出法を構築できる。その反面、標識物質を結合させた抗ISLR抗体を用意する必要があることに加えて、検出感度が一般に低くなるという問題点がある。そこで、標識物質を結合させた二次抗体を利用する方法、二次抗体と標識物質を結合させたポリマーを利用する方法など、間接的検出方法を利用することが好ましい。ここでの二次抗体とは、抗ISLR抗体に特異的結合性を有する抗体である。例えばウサギ抗体として抗ISLR抗体を調製した場合には抗ウサギIgG抗体を使用できる。ウサギやヤギ、マウスなど様々な種の抗体に対して使用可能な標識二次抗体が市販されており(例えばフナコシ株式会社やコスモ・バイオ株式会社など)、本発明の検出法の構成に応じて適切なものを適宜選択して使用することができる。
上記の説明から明らかなように、抗ISLR抗体は未分化間葉系幹細胞の検出に有用である。そこで本発明は、抗ISLR抗体を含む未分化間葉系幹細胞検出用試薬も提供する。一態様では抗ISLR抗体は標識化されている。標識化に用いる標識物質としては例えば、フルオレセイン、ローダミン、テキサスレッド、オレゴングリーン等の蛍光色素、ホースラディッシュペルオキシダーゼ、マイクロペルオキシダーゼ、アルカリ性ホスファターゼ、β−D−ガラクトシダーゼ等の酵素、ルミノール、アクリジン色素等の化学又は生物発光化合物、32P、131I、125I等の放射性同位体、及びビオチンを挙げることができる。
本発明は更に、本発明の試薬を構成要素として含む、未分化間葉系幹細胞検出用キットも提供する。当該キットを用いることにより、本発明の検出法をより簡便に実施することができる。本発明の検出法を実施する際に使用するその他の試薬(緩衝液、反応用試薬、酵素、酵素の基質など)及び/又は装置ないし器具(容器、反応装置、蛍光リーダーなど)をキットに含めてもよい。尚、通常、本発明のキットには取り扱い説明書が添付される。
4.間葉系幹細胞の未分化性評価
上記の通り、ISLRは未分化間葉系幹細胞のマーカーとして有用であり、ISLRの発現状態は未分化性の指標となる。そこで本発明の更なる局面は、ISLRの発現状態を指標として判定することを特徴とする、間葉系幹細胞の未分化性を評価する方法を提供する。本発明の評価法では、試料(被検間葉系幹細胞)についてISLRの発現状態を調べ、その結果に基づき未分化性を維持しているか否か、或いは未分化性の程度を判定する。ISLRの発現状態を調べるため、ISLR mRNA又はISLRタンパク質が検出される。本発明の評価法では、例えば、ISLR mRNA又はISLRタンパク質の発現を認める場合に未分化性を維持していると判定する。ISLR mRNA又はISLRタンパク質の発現量から未分化性のレベルを判定することにしてもよい。尚、ISLR mRNA又はISLRタンパク質の検出については上記(項目3.の欄)の説明が援用される。
本発明の評価法を利用すると、未分化性を維持した間葉系幹細胞(即ち未分化間葉系幹細胞)を同定したり、選別したりすることが可能になる。即ち、間葉系幹細胞の同定、選別の手段として本発明の評価法は有用である。一方、間葉系幹細胞の未分化性は間葉系幹細胞を各種用途に適用する際の有効性、言い換えれば「品質」を表すことにもなる。従って、間葉系幹細胞の品質を評価又は担保するための手段としても本発明の評価法は有用である。
5.癌又は線維化疾患の罹患部位に集積(浸潤)する間葉系幹細胞の検出と患者の予後推定(評価)
ISLRの発現が癌の進展及び癌患者の予後に関連するとの知見、及び心筋梗塞等の線維化疾患の進展や予後の評価ないし推定にもISLRが有用であるとの知見に基づき、本発明は更なる局面として、癌又は線維化疾患の罹患部位に集積する未分化間葉系幹細胞を検出する方法、並びに癌又は線維化疾患患者の予後推定法及びそれに利用される試薬・キットを提供する。
この局面の検出法では、試料についてISLRの発現状態を調べ、その結果に基づき罹患部位に間葉系幹細胞が集積しているか否かを判定する。検出結果は疾患の進行状態(例えば癌組織の分化度)の判定や患者の予後推定(予後推定についての詳細は後述する)に利用することができる。癌を対象にした場合、癌組織が罹患部位となる。他方、線維化疾患を対象にした場合の罹患部位は、炎症ないし線維化を生じている部位である。
典型的には、生体(患者)からバイオプシー(生検)によって或いは手術の際に分離された病理組織又は病理組織標本を試料として用いる、病理組織の抽出物や、患者由来の血清、エクソソーム等を試料として用いることにしてもよい。
癌は特に限定されない。癌を例示すれば、膵癌、大腸癌、乳癌、肺癌、腎臓癌、前立腺癌、メラノーマである。線維化疾患も同様に限定されるものではなく、代表的なものを挙げると、心筋梗塞、肺線維症(間質性肺炎)、肝硬変、慢性腎症である。
検出手段(ISLR mRNAやISLRタンパク質の検出)については上記(項目3.の欄)の説明が援用されるが、病理組織又は病理組織標本を試料とした場合に適用可能な検出法の具体例の一つとして、In situハイブリダイゼーション法を挙げることができる。
本発明は上記検出法の応用として、癌又は線維化疾患患者の予後推定法も提供する。本発明の予後推定法ではISLRをバイオマーカーとして用いる。即ち、本発明ではISLRを癌又は線維化疾患予後推定用マーカーとして患者の予後を推定する。本発明の予後推定法によれば、癌患者又は線維化疾患患者の予後推定に有益な情報が得られる。当該情報は例えば治療方針の決定(効果的な治療法の選択など)に利用される。判定結果を利用することによって治療成績の向上、予後改善、患者の生活の質(QOL)の向上などがもたらされる。
本明細書において「予後推定用バイオマーカー」とは、患者の予後推定の指標となる生体分子のことをいう。本発明の予後推定法では、患者由来の試料中のISLR発現量を検出するステップ(検出ステップ)及び、検出結果に基づき予後を推定するステップ(予後推定ステップ)を実施する。検出ステップは上記検出法に準ずる。予後推定ステップでは、検出されたISLR(即ちISLR発現量)を指標として予後を推定する。基本的には、ISLR発現量が多いと予後が良好であるとの判断基準が採用される。以下、ISLR発現量に基づく評価の具体例を示す。まず、ISLR発現量と予後とが関連付けられた複数の評価区分を予め設定しておく。そして、検出ステップで得られたISLR発現量に基づき、該当する評価区分を決定する。評価区分の設定に関する具体例として、ISLRの発現の有無に注目した例(例1)と、ISLRの発現量の程度に注目した例(例2)、発現量の変化に注目した例(例3)を以下に示す。例3の場合には、通常、少なくとも2回(異なる時点)の検出を行うことになる。尚、区分名:当該区分に関連付けられるISLR発現量:当該区分に関連付けられる評価結果の順で記載する。
<例1>
区分1:ISLR陽性である:予後が良い
区分2:ISLR陰性である:予後が悪い
<例2>
区分1:ISLRの発現を認めず:予後が悪い
区分2:ISLRの弱い発現を認める:予後が比較的悪い
区分3:ISLRの中程度の発現を認める:予後が比較的良い
区分4:ISLRの強い発現を認める:予後が良い
<例3>
区分1:ISLR発現量の増大を認める:予後が良い
区分2:ISLR発現量の減少を認める:予後が悪い
評価区分の数、及び各評価区分に関連付けられるISLR発現量及び評価結果はいずれも上記の例に何らとらわれることなく、予備実験等を通して任意に設定することができる。尚、本発明における判定・評価は、医師や検査技師など専門知識を有する者の判断によらずとも自動的/機械的に行うことができる。
本発明は更に、予後推定用試薬及び予後推定用キットも提供する。予後推定用試薬はISLRの検出を可能にするものであり、具体例の一つは抗ISLR抗体である。抗ISLR抗体については上記(項目3.の欄)の説明が援用される。予後推定用キットは予後推定用を必須の構成要素とするものであり、上記の「未分化間葉系幹細胞の検出」に使用されるキットに準ずる。
1.ヒト骨髄由来間葉系幹細胞及び皮膚線維芽細胞におけるISLRの発現
(1)方法と結果(図1)
ヒト骨髄由来間葉系幹細胞(以下ヒト骨髄MSC)及び皮膚線維芽細胞(いずれもロンザジャパン株式会社より入手)から細胞抽出液を調製し、当該研究室によって開発された抗ISLR抗体を用いたウェスタンブロット法によってISLRの発現を調べた。抗ISLR抗体は以下の方法で調製した。まず、以下の抗原用ペプチド1〜3を合成した。
抗原用ペプチド1:ヒトISLRの229-251番目アミノ酸(CSAPSVQLSYQPSQDGAELRPGF:配列番号7)
抗原用ペプチド2:ヒトISLRの344-368番目アミノ酸(LATPGEGGEDTLGRRFHGKAVEGKG:配列番号8
抗原用ペプチド3:マウスISLRの341-359番目アミノ酸(NVALATPGEGGEDAVGHKF:配列番号9)
次に、抗原用ペプチドをキャリアタンパク質KLHと結合後、ウサギ(抗原用ペプチド1、3)又はモルモット(抗原用ペプチド2)に免疫した。免疫後に血清を回収し、抗原用ペプチドを共有結合させたアフィニティーカラムを用いて特異的抗体を精製した。このようにして3種類の抗ISLR抗体を得た。説明の便宜上、抗原用ペプチド1の免疫により得た抗体を抗ISLR抗体1、抗原用ペプチド2の免疫により得た抗体を抗ISLR抗体2、抗原用ペプチド3の免疫により得た抗体を抗ISLR抗体3とそれぞれ呼ぶ。
抗ISLR抗体2を用いたウェスタンブロットの結果、約50kDaのサイズに確認されるバンドを認め、ヒト骨髄MSC及び線維芽細胞におけるISLRの発現が証明された。ヒト骨髄MSC及び線維芽細胞の培養上清(メディウム)中にもISLRが検出され、ISLRは分泌性因子であることも示された。RNA干渉法によってISLRの発現を抑制(ノックダウン)した線維芽細胞ではISLRのバンドを認めず、本実験で用いた抗体の特異性が示された。尚、PDGF受容体α及びβ−アクチンは内因性のコントロールとして用いている。
(2)考察
ヒト骨髄MSC及び皮膚線維芽細胞におけるISLRの発現が確認された。各種臓器より単離される線維芽細胞はMSCと同様に骨、軟骨、脂肪への分化能を有することも報告されており、線維芽細胞と呼ばれる細胞の少なくとも一部はMSCとしての特徴を備えていることが報告されている。今回のウェスタンブロット法の結果はヒト骨髄MSCのみならず皮膚線維芽細胞に含まれるMSCにもISLRが発現している可能性を示唆するものである。
2.ヒト脂肪由来幹細胞におけるISLRの発現
(1)方法と結果(図2)
脂肪組織には骨髄由来間葉系幹細胞と同等の特徴と機能を有する細胞が存在していることが知られ脂肪由来幹細胞(adipose tissue-derived stem cell、以下ADSC)あるいは単にMSCと呼ばれている。ヒトADSC(ロンザジャパン株式会社)から細胞抽出液を調製し、抗ISLR抗体2を用いたウェスタンブロット法によってISLRの発現を調べた。その結果、ヒトADSCにおけるISLRの発現が確認された。尚、GAPDHは内因性のコントロールとして用いている。
3.マウス骨髄由来間葉系幹細胞におけるISLRの発現
(1)方法と結果(図3)
マウス骨髄由来間葉系幹細胞(Cyagen社)から細胞抽出液を調製し、抗ISLR抗体3を用いたウェスタンブロット法によってISLRの発現を調べた。その結果、マウス骨髄由来間葉系幹細胞にISLRが発現していることが確認された。また、同細胞を高密度で培養した際にはISLRの発現が上昇することも確認された。尚、β−チュブリンは内因性のコントロールとして用いている。
4.間葉系幹細胞の分化に伴うISLR発現の減少(マウス間葉系幹細胞株C3H10T1/2を用いた検証)
(1)方法と結果(図4)
マウス間葉系幹細胞の細胞株であるC3H10T1/2を用いて、脂肪、軟骨、及び骨への分化におけるISLRの発現の変化について検証した。各分化誘導メディウム(ロンザジャパン株式会社)を添加後、0日、1日、7日、及び14日のISLR及び各種マーカー分子の発現をウェスタンブロット法(ISLRの検出には抗ISLR抗体3を使用)で検証した。脂肪、軟骨、骨分化のいずれにおいても分化誘導後1日でISLRの発現の顕著な低下が観察された。尚、FABP4は脂肪細胞のマーカー、Collagen IIaは軟骨芽細胞のマーカー、Osteopontinは骨芽細胞のマーカーとして使用している。
(2)考察
脂肪、軟骨、骨分化のいずれにおいても分化誘導直後にISLRの発現の顕著な低下が観察され、ISLRは未分化な状態の間葉系幹細胞のマーカー分子であることが示唆された。
5.間葉系幹細胞の分化に伴うISLR発現の減少(ヒト骨髄MSCを用いた検証)
(1)方法と結果(図5)
ヒト骨髄MSCを用いて、脂肪、軟骨、及び骨への分化におけるISLRの発現の変化について検証した。各分化誘導メディウム(ロンザジャパン株式会社)を添加後、0日、1日、7日、及び14日のISLRの発現をウェスタンブロット法(抗ISLR抗体2を使用)で検証した。脂肪、軟骨、骨分化のいずれにおいても分化誘導後1日目でISLRの発現の顕著な低下が観察された。
(2)考察
図4の実験と同様、脂肪、軟骨、骨分化のいずれにおいても分化誘導直後にISLRの発現の顕著な低下が観察され、ISLRは未分化な状態のヒト骨髄MSCのマーカー分子であることが示唆された。
6.間葉系幹細胞の分化に伴うISLR遺伝子メッセンジャーRNA(mRNA)の発現の減少(間葉系幹細胞株C3H10T1/2を用いた検証)
(1)方法と結果(図6)
間葉系幹細胞株C3H10T1/2を用いて、脂肪、軟骨、及び骨への分化におけるISLRのmRNAの発現量の変化について検証した。各分化誘導メディウム(ロンザジャパン株式会社)を添加後、7日後のISLRのmRNAの発現量を定量的RT-PCR法で検証した。脂肪、軟骨、骨分化のいずれにおいても分化誘導後7日でISLRのmRNAの発現量の顕著な低下が観察された。グラフの縦軸はISLRと内因性コントロールとして用いたGAPDHのmRNAの比として示している。
(2)考察
脂肪、軟骨、骨分化のいずれにおいても分化誘導後にISLRのmRNAの発現量の顕著な低下が観察され、ISLRは未分化な状態の間葉系幹細胞のマーカー分子であることが示唆された。
7.ISLRの高発現が間葉系幹細胞の分化に及ぼす影響の検証
(1)方法と結果(図7)
間葉系幹細胞株C3H10T1/2を用いて、ISLRを外因性に強制発現させた場合に、脂肪、軟骨、及び骨への分化に与える影響について検証した。レトロウイルス発現系を用いてISLRをC3H10T1/2に強制発現させ、その後に各分化誘導メディウム(ロンザジャパン株式会社)を添加後、0及び7日のISLR、Sox9(軟骨分化のマーカー)、Osteopontin(骨分化のマーカー)及びRunx2(骨分化のマーカー)の発現をウェスタンブロット法(ISLRの検出には抗ISLR抗体3を使用)で検証した。その結果、ISLRの強制発現がSox9、Osteopointin及びRunx2の発現を抑制することが明らかとなった。
(2)考察
軟骨・骨分化のいずれにおいてもISLRの強制発現によってSox9、Osteopontin及びRunx2の各種分化マーカーの発現の抑制が観察され、ISLRは間葉系幹細胞が未分化な状態を維持するために必要な分子である可能性が示された。
8.各種培養細胞におけるISLRの発現
(1)方法及び結果(図8)
ヒト線維芽細胞、血管平滑筋細胞、血管内皮細胞及び各種上皮細胞(ロンザジャパン株式会社又はZenBio社より購入)の細胞抽出液を調製し、ISLR及び各種マーカー分子に対する抗体を用いてウェスタンブロット法(ISLRの検出には抗ISLR抗体2を使用)で検証した。その結果、ISLRは線維芽細胞以外の細胞には発現していないことが明らかとなった。
(2)考察
ISLRは間葉系幹細胞、線維芽細胞、脂肪由来幹細胞には発現するが、それ以外の細胞では発現していないことが確認され、ISLRがMSCに特異性の高いマーカー分子であることが示された。
9.膵癌間質に浸潤する間葉系幹細胞におけるISLRの発現
(1)方法及び結果(図9)
中分化型膵癌および低分化型膵癌におけるISLRの発現をIn situハイブリダイゼーション法で調べた。矢頭で示すように、中分化型膵癌の間質に集積あるいは浸潤する間葉系幹細胞においてISLRの発現が高く、間葉系幹細胞が集積ないし浸潤していることが検出された。一方で低分化型膵癌ではISLRの発現が見られなかった。また、右図に示すように、ISLRの発現は患者の良好な予後と相関した。尚、検体採取は次のようにして行った。
膵癌の患者の手術により得た病理組織標本から鏡検下で腫瘍成分が最も多い領域を選別し、ISLRの発現をIn situハイブリダイゼーション法で調べた。調べた組織の内、中倍率視野(20倍対物レンズ)で癌間質に浸潤する線維芽細胞様形態を有する細胞の20%以上にISLRが陽性のものをISLR高発現、それより少ないものを低発現としてグループ分けし、それぞれのグループについて手術後累積無増悪生存率をプロットした。In situハイブリダイゼーション法によるメッセンジャーRNAの検出であるため、細胞質の一部でもシグナルが観察される場合に陽性と判定した。
(2)考察
ISLRは癌組織に浸潤する間葉系幹細胞に発現しており、ISLRにより検出される間葉系幹細胞の程度は担癌患者の良好な予後を反映することが示された。
10.大腸癌間質に浸潤する間葉系幹細胞におけるISLRの発現
(1)方法及び結果(図10)
中分化型大腸癌および低分化型大腸癌におけるISLRの発現をIn situハイブリダイゼーション法で調べた。矢頭で示すように、中分化型大腸癌の間質に集積あるいは浸潤する間葉系幹細胞においてISLRの発現が高く、間葉系幹細胞が集積ないし浸潤していることが検出された。一方で低分化型大腸癌ではISLRの発現が見られなかった。
(2)考察
ISLRは膵癌に加えて大腸癌組織に浸潤する間葉系幹細胞にも発現しており、ISLRが多様な癌組織に浸潤する間葉系幹細胞を検出するために有用なマーカーである可能性が示唆された。
10.乳癌間質に浸潤する間葉系幹細胞におけるISLRの発現
(1)方法及び結果(図11)
浸潤性乳管癌におけるISLRの発現をIn situハイブリダイゼーション法で調べた。矢頭で示すように、浸潤性乳管癌の間質に集積ないし浸潤する間葉系幹細胞においてISLRの発現が認められた。
(2)考察
ISLRは膵癌や大腸癌に加えて乳癌組織に浸潤する間葉系幹細胞にも発現しており、ISLRが多様な癌組織に浸潤する間葉系幹細胞を検出するために有用なマーカーである可能性が示唆された。
11.マウス心筋梗塞モデルの梗塞部位におけるISLRの発現
(1)方法及び結果(図12)
マウス心筋梗塞モデルの心筋梗塞部位におけるISLRの発現をIn situハイブリダイゼーション法(RNAscope法を用いた)で調べた。8週齢雄の心筋梗塞モデルを用いた。矢頭で示すように、発症後7日目の心外膜周辺においてISLRが認めらる。即ち、心筋梗塞部位においても間葉系幹細胞が浸潤していることが検出できた。
(2)考察
ISLRは心筋梗塞部位に集積する間葉系幹細胞に発現しており、ISLRが心筋梗塞などの線維化疾患においても有用なマーカーになることが示唆された。
12.野生型マウスとISLRノックアウトマウスの心筋梗塞後の生存率の相違
(1)方法及び結果(図13)
ISLRノックアウトマウスを作製し、心筋梗塞後の生存率を野生型マウスと比較した。ISLRノックアウトマウスは野生型マウスに比較して、心筋梗塞後の予後が有意に悪いことが明らかとなった。
(2)考察
心筋梗塞などの線維化疾患の予後にもISLRが関連することが示唆された。
本発明は未分化間葉系幹細胞のマーカーを提供する。本発明のマーカーは未分化間葉系幹細胞に高い特異性を示す。当該マーカーを用いた調製法によれば、特に再生医療の分野で重要且つ有用な未分化間葉系幹細胞を高純度で調製することが可能になる。また、当該マーカーは未分化間葉系幹細胞の検出や未分化性の評価等にも有用である。
この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。

Claims (16)

  1. ロイシンリッチリピート含有免疫グロブリンスーパーファミリー(ISLR)、未分化間葉系幹細胞マーカーとしての使用
  2. ISLRが、配列番号1〜3のいずれかのアミノ酸配列を含む、請求項1に記載の使用
  3. 間葉系幹細胞を含む細胞集団から、ISLRを発現する細胞を選別し、回収するステップを含む、未分化間葉系幹細胞を調製する方法。
  4. 間葉系幹細胞を含む細胞集団が、骨髄、歯髄、脂肪組織、子宮内膜、臍帯、骨格筋又は末梢血に由来する、請求項3に記載の方法。
  5. ISLRの発現状態を指標として検出することを特徴とする、未分化間葉系幹細胞を検出する方法。
  6. 被検間葉系幹細胞におけるISLRの発現状態を調べるステップを含む、間葉系幹細胞の未分化性を評価する方法。
  7. 間葉系幹細胞がヒト細胞である、請求項3〜6のいずれか一項に記載の方法。
  8. 抗ISLR抗体を含む、未分化間葉系幹細胞検出用試薬。
  9. 請求項8に記載の試薬を含む、未分化間葉系幹細胞検出用キット。
  10. ISLRの発現状態を指標として検出することを特徴とする、癌又は線維化疾患の罹患部位に集積する未分化間葉系幹細胞を検出する方法。
  11. 癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、請求項10に記載の方法。
  12. ISLRの発現状態を指標として、癌又は線維化疾患の罹患部位に集積する未分化間葉系幹細胞を検出し、検出結果に基づき癌又は線維化疾患患者の予後を推定することを特徴とする、癌又は線維化疾患患者の予後推定法。
  13. 癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、請求項12に記載の予後推定法。
  14. 抗ISLR抗体を含請求項12又は13の予後推定法に用いられる、癌又は線維化疾患患者の予後推定用試薬。
  15. 癌が膵癌、大腸癌、又は乳癌であり、線維化疾患が心筋梗塞である、請求項14に記載の予後推定用試薬。
  16. 請求項14又は15に記載の試薬を含む、癌又は線維化疾患患者の予後推定用キット。
JP2017532474A 2015-08-03 2016-07-19 未分化間葉系幹細胞マーカー及びその用途 Active JP6841429B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015153712 2015-08-03
JP2015153712 2015-08-03
PCT/JP2016/071190 WO2017022472A1 (ja) 2015-08-03 2016-07-19 未分化間葉系幹細胞マーカー及びその用途

Publications (2)

Publication Number Publication Date
JPWO2017022472A1 JPWO2017022472A1 (ja) 2018-05-31
JP6841429B2 true JP6841429B2 (ja) 2021-03-10

Family

ID=57943895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017532474A Active JP6841429B2 (ja) 2015-08-03 2016-07-19 未分化間葉系幹細胞マーカー及びその用途

Country Status (2)

Country Link
JP (1) JP6841429B2 (ja)
WO (1) WO2017022472A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7246731B2 (ja) * 2017-07-27 2023-03-28 国立大学法人高知大学 膵癌の予後マーカー、膵癌の予後診断キット及び膵癌の予後を予測するための方法
WO2019159825A1 (ja) 2018-02-14 2019-08-22 国立大学法人名古屋大学 抗pd-1抗体/抗pd-l1抗体療法の効果を予測するバイオマーカー
CN108949682A (zh) * 2018-08-22 2018-12-07 广东唯泰生物科技有限公司 一种牙髓间充质干细胞的制备、培养及纯化方法
CN109331187A (zh) * 2018-12-10 2019-02-15 天津长和生物技术有限公司 间充质干细胞制剂致敏性的评价方法和应用
US20230084099A1 (en) 2020-02-03 2023-03-16 National University Corporation Tokai National Higher Education And Research System Anti-meflin antibody for use in treatment of cancer in subject having cancer, and pharmaceutical composition comprising the antibody

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5192632B2 (ja) * 2003-12-12 2013-05-08 愛知県 肺癌組織中の遺伝子発現強度を識別する方法
EP2270226B1 (en) * 2005-03-31 2016-05-18 Two Cells Co., Ltd Method for distinguishing mesenchymal stem cell using molecular marker and use thereof
US8105777B1 (en) * 2008-02-13 2012-01-31 Nederlands Kanker Instituut Methods for diagnosis and/or prognosis of colon cancer
CN102858999A (zh) * 2009-12-01 2013-01-02 简要生物科学有限公司 癌症的分类
CA2892757A1 (en) * 2012-11-26 2014-05-30 Ecole Polythechnique Federale De Lausanne (Epfl) Colorectal cancer classification with differential prognosis and personalized therapeutic responses

Also Published As

Publication number Publication date
JPWO2017022472A1 (ja) 2018-05-31
WO2017022472A1 (ja) 2017-02-09

Similar Documents

Publication Publication Date Title
JP6841429B2 (ja) 未分化間葉系幹細胞マーカー及びその用途
Paquet-Fifield et al. A role for pericytes as microenvironmental regulators of human skin tissue regeneration
US8889361B2 (en) Gene expression signatures in enriched tumor cell samples
JP6478418B2 (ja) 細胞分化ポテンシャル判別法
US20120115146A1 (en) Method of analyzing genetically abnormal cells
JP2008220334A (ja) 間葉系幹細胞の分化能マーカーとしてのcd106の使用
WO2015086132A1 (en) Assays and monitoring paradigms for stem cell culture
JP2019060869A (ja) がんの転移形成能に関与する因子および前記因子を用いたがん患者の予後予測方法
Fiévet et al. Single-cell RNA sequencing of human non-hematopoietic bone marrow cells reveals a unique set of inter-species conserved biomarkers for native mesenchymal stromal cells
EP3009521B1 (en) Marker for detecting proliferation and treatment capacities of adipose-derived stem cell cultured in medium containing egf or bfgf, and use thereof
JPH08500731A (ja) 診断法
KR102113310B1 (ko) 암 세포 분리용 조성물, 키트 및 이를 이용한 분리 방법
JPWO2005070964A1 (ja) 単球の単離方法
WO2020218427A1 (ja) 体性幹細胞の品質を評価する方法
JP2007185127A (ja) 中枢神経系原発悪性リンパ腫マーカーおよびその用途
KR20170018538A (ko) 뇌암 환자의 생존 기간 예측용 키트와 생존 기간 예측을 위한 정보 제공 방법
KR102129380B1 (ko) 단백질표지자 grp78을 이용한 고효율 줄기세포의 선별 방법
KR102293079B1 (ko) 편도 유래 중간엽 줄기세포의 골분화능 예측을 위한 wnt16 마커의 용도
JP2022147356A (ja) 黄色人種由来メラノーマ細胞の検出方法及び回収方法、並びに、それらの方法に用いる試薬及び担体固定化分子
JP2010216826A (ja) 新規腫瘍マーカーを用いた乳癌の検査方法
JP2018130094A (ja) 静止期癌幹細胞の効率的分離方法
Fawdar Characterisation of STRO-1 expression on human mesenchymal stem cells and identification of putative cancer stem cells in osteosarcoma: prevention by micronutrients
Xu et al. Identification and characterization of human skeletal stem cell-like cells derived from infrapatellar fat pad
JP2017093383A (ja) 真皮幹細胞の検出及び分離方法
JP5904801B2 (ja) 制御性t細胞への分化誘導能の予測方法及びその方法に用いられるバイオマーカー、並びにそれらの利用

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200916

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20201106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210203

R150 Certificate of patent or registration of utility model

Ref document number: 6841429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250