JP6733139B2 - 非水系電解質二次電池用正極活物質の製造方法 - Google Patents
非水系電解質二次電池用正極活物質の製造方法 Download PDFInfo
- Publication number
- JP6733139B2 JP6733139B2 JP2015167529A JP2015167529A JP6733139B2 JP 6733139 B2 JP6733139 B2 JP 6733139B2 JP 2015167529 A JP2015167529 A JP 2015167529A JP 2015167529 A JP2015167529 A JP 2015167529A JP 6733139 B2 JP6733139 B2 JP 6733139B2
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- lithium
- active material
- electrode active
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0048—Molten electrolytes used at high temperature
- H01M2300/0051—Carbonates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
以下、図を参照して、本発明の実施形態の一例を説明する。図1は、本実施形態に係る非水系電解質二次電池用正極活物質の製造方法を示すフローチャートである。なお、以下の説明は、製造方法の一例であって、本発明の製造方法を限定するものではない。
本実施形態の非水系電解質二次電池用正極活物質は、一般式LizNi1−x−yCoxMyO2(ただし、0≦x≦0.35、0≦y≦0.10、0.95≦z≦1.10、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物からなり、炭酸リチウム含有量が0.4質量%以上1.5質量%以下、水酸化リチウム含有量が0.5質量%以下および硫酸根含有量が0.1質量%以下である。以下、正極活物質の実施形態の一例について説明する。
上記一般式中、zは、リチウムニッケル複合酸化物中のLi以外の金属元素(Ni、Co及びM)を1としたときの、Liの元素比を示す。zの範囲は、0.95≦z≦1.10である。zが0.95未満である場合、正極の反応抵抗が大きくなり、電池出力が低くなることがある。一方、zが1.10を超える場合、二次電池の安全性が低下することがある。電池出力及び安全性のバランスの観点から、zの範囲は、好ましくは0.97≦z≦1.05、より好ましくは0.97≦z≦1.00である。zが上記範囲である場合、この正極活物質を含む二次電池は、電池出力及び安全性のバランスに優れる。上述したように、リチウムニッケル複合酸化物からなる粉末を母材として洗浄した場合、この粉末からLiが溶出することがある。したがって、洗浄する場合、洗浄前後でのLiの減少量を予備実験により確認し、洗浄後のLiの元素比が上記範囲となるように、洗浄前の粉末を準備することにより、Liの原子比を上記範囲とすることができる。
本実施形態の正極活物質は、炭酸リチウム含有量が0.4質量%以上1.5質量%以下である。炭酸リチウム含有量が上記範囲である場合、リチウムニッケル複合酸化物表面の変質を防止し、耐候性の高い正極活物質が得られる。炭酸リチウム含有量が0.4質量%未満である場合、リチウムニッケル複合酸化物表面の変質防止する効果が薄れ、純分な耐候性を有する正極活物質が得られない。一方、炭酸リチウム含有量が1.5質量%を超える場合、正極活物質が高温環境下で充電されると、炭酸リチウムが分解しガス発生を引き起こすなど、電池特性が低下する。
本実施形態の正極活物質は、硫酸根(硫酸基)含有量が0.05質量%以下、好ましくは0.025質量%以下、より好ましくは0.020質量%以下である。正極活物質中の硫酸基含有量が、0.05質量%を超えると、電池を構成する際、正極活物質の不可逆容量に相当する分、負極材料を余計に電池に使用せざるを得ず、その結果、電池全体としての重量当たり及び体積当たりの容量が小さくなる上、不可逆容量として負極に蓄積された余分なリチウムは安全性の面からも問題となるため好ましくない。また、正極活物質中の硫酸根含有量の下限は、特に限定されないが、例えば、0.001質量%以上である。
本実施形態の正極活物質は、水酸化リチウム含有量が0.5質量%以下、好ましくは0.3質量%以下、より好ましくは0.2質量%以下である。正極活物質中の水酸化リチウム含有量が、0.5質量%を超えると、正極活物質をペーストに混練する際にゲル化を引き起こす原因になる。さらに正極活物質が高温環境下で充電される場合、水酸化リチウムが酸化分解しガス発生を引き起こす要因にもなる。なお、正極活物質中の水酸化リチウム含有量の下限は、特に限定されないが、例えば、0.01質量%以上である。
本実施形態の正極活物質の平均粒径は、特に限定されないが、例えば、3μm以上25μm以下であることにより、正極活物質の容積あたりの電池容量を大きくすることができ、安全性が高く、サイクル特性が良好な二次電池を得ることができる。なお、平均粒径は、レーザ回折式粒度分布計により測定される値である。
本実施形態の正極活物質の比表面積は、特に限定されないが、例えば、1.0m2/g以上7.0m2/g以下であり、電解液との接触できる粒子表面が十分にある。比表面積が1.0m2/g未満になると、電解液と接触できる粒子表面が少なくなり、十分な充放電容量が得られないことがある。一方、比表面積が7.0m2/gを超えると、電解液と接触する粒子表面が多くなり過ぎて安全性が低下することがある。なお、比表面積は、窒素ガス吸着法によるBET法を用いて比表面積測定装置により測定される値である。
本実施形態に係る非水系電解質二次電池は、上記正極活物質を正極に含む。本実施形態の非水系電解質二次電池は、一般の非水系電解質二次電池と同様に、正極、負極、セパレータ、および非水電解液から構成することができる。以下、非水系電解質二次電池の実施形態について、各構成要素、および電池の形状と構成について詳しく説明する。
正極を形成する正極合材及びそれを構成する各材料について説明する。本発明の粉末状の正極活物質と、導電材、結着剤とを混合し、さらに必要に応じて活性炭、粘度調整などの目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。正極合材中のそれぞれの材料の混合比も、リチウム二次電池の性能を決定する重要な要素となる。
負極には、金属リチウム、リチウム合金など、又は、リチウムイオンを吸蔵・脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
正極と負極との間にはセパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し電解質を保持するものであり、ポリエチレン、ポリプロピレンなどの薄い膜で、微少な穴を多数有する膜を用いることができる。
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネートなどの環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネートなどの鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタンなどのエーテル化合物、エチルメチルスルホン、ブタンスルトンなどの硫黄化合物、リン酸トリエチル、リン酸トリオクチルなどのリン化合物などから選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
さらに、非水系電解液は、ラジカル補足剤、界面活性剤及び難燃剤などを含んでいてもよい。
本実施形態に係るリチウム二次電池の形状は、円筒型、積層型など、種々の形状とすることができる。いずれの形状を採る場合であっても、セパレータを介して正極及び負極を積層させ、電極体とし、この電極体に上記非水電解液を含浸させる。正極集電体と外部に通ずる正極端子との間、並びに負極集電体と外部に通ずる負極端子との間に集電用リードなどを用いて接続する。以上の構成のものを電池ケースに密閉して電池を完成させることができる。
母材として用いたリチウムニッケル複合酸化物の粉末を硝酸で溶解した後、ICP発光分光分析装置(株式会社島津製作所製、ICPS−8100)により、各成分の組成比を測定した。また、硫酸根の測定は、ICP発光分析により硫黄元素(S)含有量を測定し、この測定された硫黄元素の含有量をSO4に換算することにより求めた。
炭酸リチウム含有量は、炭素硫黄分析装置(LECO社製CS−600)で全炭素元素(C)含有量を測定し、この測定された全炭素元素の量をLi2CO3に換算することにより求めた。
得られた正極活物質粉末10gに超純水を100ml添加して5分間攪拌し、ろ過した後、ろ液を1mol/リットルの塩酸で滴定し第二中和点まで測定した。塩酸で中和されたアルカリ分を、水酸化リチウム(LiOH)および炭酸リチウム(Li2CO3)に由来するリチウム量(Li)とした。また、前記方法で求めた、炭酸リチウム含有量から炭酸リチウム(Li2CO3)由来のリチウム(Li)量を算出した。そして、水酸化リチウム(LiOH)および炭酸リチウム(Li2CO3)に由来するLi量から、炭酸リチウム(Li2CO3)由来のLi量を引いた量を、水酸化リチウム(LiOH)由来のLi量とし、このLi量をLiOHに換算することにより、水酸化リチウム含有量とした。
得られた正極活物質20gに対して、PVDF(呉羽化学工業製、型番KFポリマー#1100)2.2gと、NMP(関東化学製)9.6mlと容器に入れ、ニーダ(日本精機製作所、製品名ノンバブリングニーダ、型番NBK−1)で2000rpmの回転速度で10分間十分に混合しペーストを作製した。得られたペーストをガラス瓶に移し、密栓した後、温度25℃、露点−40℃のドライボックス中に保管し、24時間放置後のペーストの流動性を観察した。24時間放置後、ペーストの流動性に変化のないものを◎、ペーストの流動性はあるが、流動性が変化したものを○、ペーストがゲル化したものを×と評価した。
(1)評価用コイン電池の作製
得られた正極活物質70質量%に、アセチレンブラック20質量%及びPTFE10質量%を混合し、ここから150mgを取り出してペレットを作製し、正極とした。負極としてリチウム金属を用い、電解液として、1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業製)を用い、露点が−80℃に管理されたAr雰囲気のグローブボックス中で、図1に示すような2032型の評価用コイン電池BAを作製した。2032型の評価用コイン電池BAは、負極にリチウム金属負極1と、電解液を含浸させたセパレータ2と、正極3と、ガスケット4と、負極缶5と、正極缶6と、集電体7とを備える。
(2)放電容量の測定
該コイン電池を24時間程度放置し、開路電圧OCV(open circuit voltage)が安定した後、正極に対する電流密度を0.5mA/cm2としてカットオフ電圧4.3Vまで充電して充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を初期放電容量として測定した。
得られた正極活物質を温度80℃、相対湿度80%の高温高湿条件下に24時間静置した後、前記と同様の方法で、2032型の評価用コイン電池を作製し、上記同様の方法で放電容量を測定した。耐候性試験前の正極活物質(対照群)の初期放電容量を100とした相対値から放電容量維持率を算出し、評価した。
ニッケルを主成分とする酸化物粉末と水酸化リチウムを混合して焼成する公知技術でLi1.03Ni0.88Co0.09Al0.03O2で表されるリチウムニッケル複合酸化物の焼成粉末を得た。この粉末を母材として用いた。この粉末の平均粒径は12.0μmであり、比表面積は1.2m2/gであった。なお、平均粒径はレーザ回折式粒度分布計(日機装株式会社製、マイクロトラック)用い、比表面積は比表面積測定装置(ユアサアイオニクス株式会社製、カンタソーブQS−10)を用いて、窒素ガス吸着によるBET法を用いて評価した。
上記リチウムニッケル複合酸化物の粉末(母材)に、濃度が10.0g/Lの炭酸リチウム水溶液を加えて、スラリーを作製した。この際のスラリー濃度は750g/Lとした。このスラリーを30分間攪拌して洗浄した。その後、粉末を濾過して取り出した。取り出した粉末を、真空雰囲気下、温度210℃で14時間保持しながら乾燥して、リチウムニッケル複合酸化物からなる正極活物質を得た。得られた正極活物質をICP発光分光分析装置で測定したところ、Liの原子比zは、0.992であった。得られた正極活物質の製造条件及び評価結果を表1に示した。
実施例2では、ニッケルを主成分とする酸化物粉末と水酸化リチウムとを混合して焼成する公知技術で得られた、Li1.04Ni0.72Co0.25Al0.03O2で表されるリチウムニッケル複合酸化物粉末を母材として用いた以外は、実施例1と同様にして正極活物質を得た。得られた正極活物質の製造条件及び評価結果を表1に示した。なお、このリチウム金属複合酸化物粉末の平均粒径は12.1μmであり、比表面積は1.1m2/gであった。
実施例3では、ニッケルを主成分とする、酸化物粉末と水酸化リチウムを混合して焼成する公知技術で得られた、Li1.02Ni0.92Co0.05Al0.03O2で表されるリチウムニッケル複合酸化物粉末を母材とした以外は、実施例1と同様にして正極活物質を得た。得られた正極活物質の製造条件及び評価結果を表1に示した。なお、このリチウム金属複合酸化物粉末の平均粒径は12.2μmであり、比表面積は1.3m2/gであった。
実施例4では、炭酸リチウム水溶液の濃度を0.7g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得た。正極活物質の製造条件及び評価結果を表1に示した。
(実施例5)
実施例5では、炭酸リチウム水溶液の濃度を1.5g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得た。正極活物質の製造条件及び評価結果を表1に示した。
(実施例6)
実施例6では、炭酸リチウム水溶液の濃度を5.0g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得た。正極活物質の製造条件及び評価結果を表1に示した。
(実施例7)
実施例7では、炭酸リチウム水溶液の濃度を15.0g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得た。正極活物質の製造条件及び評価結果を表1に示した。
(実施例8)
実施例8では、炭酸リチウム水溶液の濃度を16.0g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得た。正極活物質の製造条件及び評価結果を表1に示した。
(実施例9)
実施例9では、スラリーの濃度を100g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得た。正極活物質の製造条件及び評価結果を表1に示した。
(実施例10)
実施例10では、スラリーの濃度を375g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得た。正極活物質の製造条件及び評価結果を表1に示した。
(実施例11)
実施例11では、スラリーの濃度を1500g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得た。正極活物質の製造条件及び評価結果を表1に示した。
(実施例12)
実施例12では、スラリーの濃度を3000g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得た。正極活物質の製造条件及び評価結果を表1に示した。
比較例1では、炭酸リチウム水溶液で洗浄する工程を行わなかったこと以外は、実施例1と同様にして正極活物質を得た。正極活物質の製造条件及び評価結果を表1に示した。
(比較例2)
比較例2では、炭酸リチウム水溶液の代わりに純水を用いた以外は、実施例1と同様にして正極活物質を得た。正極活物質の製造条件及び評価結果を表1に示した。
(比較例3)
比較例3では、炭酸リチウム水溶液の代わりに純水を用い、スラリーの濃度を1500g/Lとなるようにした以外は、実施例1と同様にして正極活物質を得た。正極活物質の製造条件及び評価結果を表1に示した。
また、本発明の非水系電解質二次電池は、優れた安全性を有し、小型化、高出力化が可能であることから、搭載スペースに制約を受ける電気自動車用電源として好適に用いられることができる。なお、本発明に係る非水系電解質二次電池は、純粋に電気エネルギーで駆動する電気自動車用の電源のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電源としても用いることができる。
1・・・リチウム金属負極
2・・・セパレータ(電解液含浸)
3・・・正極(評価用電極)
4・・・ガスケット
5・・・負極缶
6・・・正極缶
7・・・集電体
Claims (3)
- 一般式LizNi1−x−yCoxMyO2(ただし、0≦x≦0.35、0≦y≦0.10、0.95≦z≦1.10、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物からなる粉末を炭酸リチウム水溶液により洗浄すること、及び、洗浄後の前記粉末を乾燥すること、を含むことを特徴とする非水系電解質二次電池用正極活物質の製造方法。
- 前記炭酸リチウム水溶液の濃度は、0.5g/L以上16.0g/L以下であることを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質の製造方法。
- 前記洗浄は、前記粉末を含む前記炭酸リチウム水溶液のスラリー濃度が100g/L以上3000g/L以下の状態で洗浄すること、を特徴とする請求項1又は2に記載の非水系電解質二次電池用正極活物質の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015167529A JP6733139B2 (ja) | 2015-08-27 | 2015-08-27 | 非水系電解質二次電池用正極活物質の製造方法 |
CN201680048964.0A CN107925078B (zh) | 2015-08-27 | 2016-08-25 | 非水系电解质二次电池用正极活性物质和其制造方法、和非水系电解质二次电池 |
KR1020187005206A KR102582927B1 (ko) | 2015-08-27 | 2016-08-25 | 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지 |
PCT/JP2016/074842 WO2017034000A1 (ja) | 2015-08-27 | 2016-08-25 | 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
US15/754,747 US11223033B2 (en) | 2015-08-27 | 2016-08-25 | Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery |
US16/952,597 US11289688B2 (en) | 2015-08-27 | 2020-11-19 | Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015167529A JP6733139B2 (ja) | 2015-08-27 | 2015-08-27 | 非水系電解質二次電池用正極活物質の製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020079815A Division JP7262418B2 (ja) | 2020-04-28 | 2020-04-28 | 非水系電解質二次電池用正極活物質、および非水系電解質二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017045632A JP2017045632A (ja) | 2017-03-02 |
JP6733139B2 true JP6733139B2 (ja) | 2020-07-29 |
Family
ID=58100382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015167529A Active JP6733139B2 (ja) | 2015-08-27 | 2015-08-27 | 非水系電解質二次電池用正極活物質の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11223033B2 (ja) |
JP (1) | JP6733139B2 (ja) |
KR (1) | KR102582927B1 (ja) |
CN (1) | CN107925078B (ja) |
WO (1) | WO2017034000A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6804630B2 (ja) | 2017-03-10 | 2020-12-23 | 日本碍子株式会社 | 微粒子検出素子及び微粒子検出器 |
JP6426820B1 (ja) * | 2017-11-30 | 2018-11-21 | 住友化学株式会社 | リチウム含有遷移金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム含有遷移金属複合酸化物の製造方法 |
JP7238114B2 (ja) | 2019-05-20 | 2023-03-13 | 株式会社クレハ | リチウムイオン二次電池用の正極合剤およびその製造方法、ならびにリチウムイオン二次電池の製造方法 |
WO2024134896A1 (ja) * | 2022-12-23 | 2024-06-27 | 株式会社 東芝 | 電極、電池及び電池パック |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3244314B2 (ja) | 1991-11-13 | 2002-01-07 | 三洋電機株式会社 | 非水系電池 |
JP3769871B2 (ja) | 1997-04-25 | 2006-04-26 | ソニー株式会社 | 正極活物質の製造方法 |
JP3595734B2 (ja) * | 1999-02-15 | 2004-12-02 | 株式会社デンソー | 非水電解液二次電池用正極活物質、その正極活物質の製法、及びその正極活物質を用いた二次電池 |
JP2001167767A (ja) * | 1999-12-07 | 2001-06-22 | Sony Corp | 非水電解液2次電池 |
JP2002203540A (ja) * | 2000-12-28 | 2002-07-19 | Sony Corp | 非水電解質二次電池 |
JP2002298914A (ja) * | 2001-03-30 | 2002-10-11 | Toshiba Corp | 非水電解質二次電池 |
KR101065307B1 (ko) | 2004-01-19 | 2011-09-16 | 삼성에스디아이 주식회사 | 리튬이차전지용 캐소드 활물질 및 이를 이용한 리튬이차전지 |
JP4794866B2 (ja) * | 2004-04-08 | 2011-10-19 | パナソニック株式会社 | 非水電解質二次電池用正極活物質およびその製造方法ならびにそれを用いた非水電解質二次電池 |
JP4868786B2 (ja) * | 2004-09-24 | 2012-02-01 | 三洋電機株式会社 | リチウム二次電池 |
JP5008328B2 (ja) | 2006-03-30 | 2012-08-22 | 住友金属鉱山株式会社 | 非水電解質二次電池用の正極活物質、その製造方法及びそれを用いた非水電解質二次電池 |
JP4636341B2 (ja) * | 2008-04-17 | 2011-02-23 | トヨタ自動車株式会社 | リチウム二次電池およびその製造方法 |
JP5618116B2 (ja) * | 2008-09-12 | 2014-11-05 | 住友金属鉱山株式会社 | リチウムニッケル複合酸化物及びリチウムニッケル複合酸化物を正極活物質に用いた非水系電解質二次電池 |
JP5490458B2 (ja) * | 2009-07-13 | 2014-05-14 | 日本化学工業株式会社 | リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池 |
JP5490457B2 (ja) * | 2009-07-13 | 2014-05-14 | 日本化学工業株式会社 | リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池 |
JP2011150873A (ja) * | 2010-01-21 | 2011-08-04 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
WO2012090368A1 (ja) * | 2010-12-28 | 2012-07-05 | パナソニック株式会社 | 非水電解質二次電池およびその製造方法 |
WO2012128288A1 (ja) * | 2011-03-24 | 2012-09-27 | Jx日鉱日石金属株式会社 | リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池 |
EP2693536B1 (en) * | 2011-03-31 | 2017-05-03 | JX Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion batteries, positive electrode for lithium ion battery, and lithium ion battery |
TWI482346B (zh) * | 2011-04-28 | 2015-04-21 | Showa Denko Kk | 鋰蓄電池用正極活性物質之製造方法 |
JP6347776B2 (ja) * | 2013-03-14 | 2018-06-27 | 日本化学産業株式会社 | リチウムイオン二次電池用正極活物質の処理方法 |
JP6578635B2 (ja) * | 2013-11-22 | 2019-09-25 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池 |
US10522830B2 (en) | 2013-11-22 | 2019-12-31 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery |
US20150162599A1 (en) * | 2013-12-09 | 2015-06-11 | Samsung Sdi Co., Ltd. | Positive electrode for rechargeable lithium battery, preparing same, and rechargeable lithium battery |
CN103700839B (zh) * | 2014-01-06 | 2016-05-25 | 中信国安盟固利电源技术有限公司 | 一种降低镍钴锰酸锂残余碱含量的方法 |
CN103715423A (zh) * | 2014-01-06 | 2014-04-09 | 深圳市贝特瑞新能源材料股份有限公司 | 锂镍钴铝氧化物复合正极材料、其制备方法和锂离子电池 |
KR101601917B1 (ko) * | 2014-02-11 | 2016-03-09 | 울산과학기술원 | 리튬 이차전지용 양극 활물질, 이들의 제조방법, 및 이를 포함하는 리튬 이차전지 |
JP6312489B2 (ja) * | 2014-03-27 | 2018-04-18 | オートモーティブエナジーサプライ株式会社 | 非水電解質電池及びその製造方法 |
CN104091942B (zh) * | 2014-07-07 | 2016-06-29 | 中南大学 | 控制层状高镍正极材料表面残锂的方法 |
JP6596405B2 (ja) * | 2016-02-24 | 2019-10-23 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質、非水電解質二次電池、及び非水電解質二次電池用負極材の製造方法 |
-
2015
- 2015-08-27 JP JP2015167529A patent/JP6733139B2/ja active Active
-
2016
- 2016-08-25 US US15/754,747 patent/US11223033B2/en active Active
- 2016-08-25 WO PCT/JP2016/074842 patent/WO2017034000A1/ja active Application Filing
- 2016-08-25 KR KR1020187005206A patent/KR102582927B1/ko active IP Right Grant
- 2016-08-25 CN CN201680048964.0A patent/CN107925078B/zh active Active
-
2020
- 2020-11-19 US US16/952,597 patent/US11289688B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017045632A (ja) | 2017-03-02 |
CN107925078A (zh) | 2018-04-17 |
US20210074990A1 (en) | 2021-03-11 |
WO2017034000A1 (ja) | 2017-03-02 |
KR102582927B1 (ko) | 2023-09-26 |
CN107925078B (zh) | 2022-02-01 |
KR20180043276A (ko) | 2018-04-27 |
US11223033B2 (en) | 2022-01-11 |
US20200227718A1 (en) | 2020-07-16 |
US11289688B2 (en) | 2022-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11108043B2 (en) | Method for producing positive electrode active material for nonaqueous electrolyte secondary battery | |
US10854873B2 (en) | Positive electrode active material for nonaqueous electrolyte secondary batteries, and production method thereof | |
US20190020023A1 (en) | Positive-electrode active material for non-aqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery | |
JP6201277B2 (ja) | 非水系電解質二次電池用正極活物質とその製造方法 | |
JP6733140B2 (ja) | 非水系電解質二次電池用正極活物質の製造方法 | |
JP7215423B2 (ja) | 非水系電解質二次電池用正極活物質とその製造方法、及び、非水系電解質二次電池とその製造方法 | |
US11482700B2 (en) | Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries | |
US11289688B2 (en) | Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery | |
JPWO2018221664A1 (ja) | 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池 | |
JP2022095989A (ja) | 非水系電解質二次電池用正極活物質、および非水系電解質二次電池 | |
JP2022095988A (ja) | 非水系電解質二次電池用正極活物質、および非水系電解質二次電池 | |
US11329274B2 (en) | Positive electrode active material for nonaqueous electrolyte secondary batteries, and production method thereof | |
JP6600991B2 (ja) | 非水系電解質二次電池用電解液、および該電解液を用いた非水系電解質二次電池 | |
JP2017135047A (ja) | 非水電解質二次電池用セパレータ、および非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190618 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200428 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20200428 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20200507 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20200512 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200609 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200622 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6733139 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |