[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6723968B2 - Frozen material manufacturing equipment - Google Patents

Frozen material manufacturing equipment Download PDF

Info

Publication number
JP6723968B2
JP6723968B2 JP2017210727A JP2017210727A JP6723968B2 JP 6723968 B2 JP6723968 B2 JP 6723968B2 JP 2017210727 A JP2017210727 A JP 2017210727A JP 2017210727 A JP2017210727 A JP 2017210727A JP 6723968 B2 JP6723968 B2 JP 6723968B2
Authority
JP
Japan
Prior art keywords
liquid
liquid refrigerant
frozen
freezing
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017210727A
Other languages
Japanese (ja)
Other versions
JP2019082298A (en
Inventor
米倉 正浩
正浩 米倉
賢悦 上森
賢悦 上森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2017210727A priority Critical patent/JP6723968B2/en
Publication of JP2019082298A publication Critical patent/JP2019082298A/en
Application granted granted Critical
Publication of JP6723968B2 publication Critical patent/JP6723968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Freezing, Cooling And Drying Of Foods (AREA)

Description

本発明は、凍結物製造装置に関する。 The present invention relates to a frozen material manufacturing apparatus.

食品及び医薬品等の産業分野で、原料液体を凍結して凍結物が製造されている。原料液体を急速に凍結して凍結物を製造する技術として、液体冷媒が流れる低温液化ガス流路に液状物を滴下して氷粒を製造する技術が知られている(特許文献1)。 Frozen products are manufactured by freezing raw material liquids in the industrial fields such as food and pharmaceuticals. As a technique for rapidly freezing a raw material liquid to produce a frozen product, there is known a technique for producing ice particles by dropping a liquid substance into a low temperature liquefied gas channel in which a liquid refrigerant flows (Patent Document 1).

特開平7−23757号公報JP-A-7-23757

しかしながら、特許文献1に記載の凍結装置は凍結物が低温液化ガス流路を流下する際に、低温液化ガス流路の途中で固着して堆積すること又は凍結物どうしが衝突して凍結物のサイズが大きくなることを防止するために、低温液化ガス流路がある程度の傾斜を必要とする。そのため、液状物の凍結時間を確保しながら良質の凍結物を製造するには、下方に傾斜した低温液化ガス流路の流路長を長くする必要がある。 However, in the freezing device described in Patent Document 1, when the frozen material flows down through the low-temperature liquefied gas channel, the frozen object is fixedly deposited in the middle of the low-temperature liquefied gas channel, or frozen objects collide with each other to freeze the frozen object. In order to prevent the size from increasing, the low temperature liquefied gas channel requires a certain inclination. Therefore, in order to produce a good quality frozen product while ensuring the freezing time of the liquid product, it is necessary to lengthen the flow path length of the low temperature liquefied gas flow path inclined downward.

さらに、特許文献1に記載の凍結装置は、低温液化ガス流路を流れる液体冷媒で液状物を凍結するため、液状物と液体冷媒とが十分に接触できる低温液化ガス流路の液位を必要とする。ところが特許文献1に記載の凍結装置において、傾斜した低温液化ガス流路の液位を確保するには、大量の液体冷媒を低温液化ガス流路に供給する必要がある。よって、特許文献1に記載の凍結装置にあっては、大量の液体冷媒を使用しなければならないため、凍結物の製造コストの低減が困難である。 Further, since the freezing device described in Patent Document 1 freezes a liquid material with the liquid refrigerant flowing through the low temperature liquefied gas flow path, a liquid level of the low temperature liquefied gas flow path that allows the liquid material and the liquid refrigerant to make sufficient contact is required. And However, in the freezing device described in Patent Document 1, it is necessary to supply a large amount of liquid refrigerant to the low temperature liquefied gas passage in order to secure the liquid level in the inclined low temperature liquefied gas passage. Therefore, in the freezing device described in Patent Document 1, since a large amount of liquid refrigerant must be used, it is difficult to reduce the production cost of frozen products.

また、特許文献1に記載の凍結装置は、凍結物と液体冷媒とを分離した後に、下方に傾斜した低温液化ガス流路の上流に液体冷媒を再供給して液体冷媒を循環させている。そのため、下方に傾斜した低温液化ガス流路の上流側の高さまで液体冷媒を汲みあげることが必要であり、鉛直方向にある程度の高さを必要とする。また、装置の運転費が増大する。
また、凍結時間の確保の点から低温液化ガス流路がある程度の流路長を必要とすると、装置がさらに水平方向の幅を必要とし、大型化する。
以上より、特許文献1に記載の凍結装置は装置の小型化が困難である。
Further, the freezing device described in Patent Document 1 separates the frozen material from the liquid refrigerant, and then re-supplies the liquid refrigerant upstream of the low-temperature liquefied gas flow path inclined downward to circulate the liquid refrigerant. Therefore, it is necessary to pump up the liquid refrigerant to the height on the upstream side of the low temperature liquefied gas flow channel that is inclined downward, and a certain height is required in the vertical direction. In addition, the operating cost of the device increases.
Further, if the low temperature liquefied gas flow path requires a certain length of flow path from the viewpoint of securing the freezing time, the device further requires a width in the horizontal direction, resulting in an increase in size.
As described above, it is difficult to reduce the size of the freezing device described in Patent Document 1.

本発明は、上記事情に鑑みてなされたものであって、液体冷媒の使用量を低減するとともに、装置の小型化が可能な凍結物製造装置を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a frozen material manufacturing apparatus that can reduce the amount of liquid refrigerant used and can downsize the apparatus.

上記課題を解決するため、本発明は以下の構成を備える。
[1] 被凍結対象物を凍結する液体冷媒の流路が、平坦面に渦巻き状に形成されている、凍結物製造装置。
[2] 液体冷媒で原料液体を凍結する有底筒状の凍結槽と、前記凍結槽に液体冷媒を供給する液体冷媒供給機構と、前記凍結槽に原料液体を供給する原料液体供給機構と、を備え、前記凍結槽の底面が前記平坦面である、[1]の凍結物製造装置。
[3] 前記底面は、前記凍結槽内の凍結物を液体冷媒とともに前記凍結槽外へ排出する貫通穴と、前記貫通穴を中心とする渦巻き状の流路を形成する仕切部材と、を有する、[2]の凍結物製造装置。
[4] 前記貫通穴の鉛直下方に、凍結物と液体冷媒とを分離する分離機構を備える、[3]の凍結物製造装置。
[5] 前記液体冷媒供給機構が、前記凍結槽の外周側から前記流路に液体冷媒を供給する、[2]〜[4]のいずれかの凍結物製造装置。
[6] 前記原料液体供給機構が、前記凍結槽の外周側の前記流路に原料液体を供給する、[2]〜[5]のいずれかの凍結物製造装置。
[7] 前記凍結槽を収容するとともに、液体冷媒を貯留する貯留室を備える、[2]〜[6]のいずれかの凍結物製造装置。
[8] 前記貯留室内の気相の圧力を大気圧以上に調節する圧力調節機構を備える、[7]の凍結物製造装置。
[9] 前記液体冷媒供給機構が、前記貯留室に貯留される液体冷媒を前記凍結槽に供給する、[7]又は[8]の凍結物製造装置。
In order to solve the above problems, the present invention has the following configurations.
[1] A frozen product manufacturing apparatus in which a flow path of a liquid refrigerant for freezing an object to be frozen is spirally formed on a flat surface.
[2] A bottomed cylindrical freezing tank that freezes a raw material liquid with a liquid refrigerant, a liquid refrigerant supply mechanism that supplies the liquid refrigerant to the freezing tank, and a raw material liquid supply mechanism that supplies the raw material liquid to the freezing tank, The frozen product manufacturing apparatus according to [1], wherein the bottom surface of the freezing tank is the flat surface.
[3] The bottom surface has a through hole that discharges a frozen substance in the freezing tank together with a liquid refrigerant to the outside of the freezing tank, and a partition member that forms a spiral flow path centered on the through hole. The frozen product manufacturing apparatus of [2].
[4] The frozen matter manufacturing apparatus according to [3], which includes a separating mechanism that vertically separates the frozen matter and the liquid refrigerant from each other vertically below the through hole.
[5] The frozen material manufacturing device according to any one of [2] to [4], wherein the liquid refrigerant supply mechanism supplies the liquid refrigerant to the flow path from the outer peripheral side of the freezing tank.
[6] The frozen material manufacturing apparatus according to any one of [2] to [5], wherein the raw material liquid supply mechanism supplies the raw material liquid to the flow path on the outer peripheral side of the freezing tank.
[7] The frozen material manufacturing apparatus according to any one of [2] to [6], which accommodates the freezing tank and includes a storage chamber that stores a liquid refrigerant.
[8] The frozen product manufacturing apparatus according to [7], which includes a pressure adjusting mechanism for adjusting the pressure of the gas phase in the storage chamber to atmospheric pressure or higher.
[9] The frozen matter manufacturing apparatus according to [7] or [8], wherein the liquid refrigerant supply mechanism supplies the liquid refrigerant stored in the storage chamber to the freezing tank.

本発明によれば、液体冷媒の使用量を低減できるとともに装置を小型化できる。 According to the present invention, the amount of liquid refrigerant used can be reduced and the device can be downsized.

本発明を適用した一実施形態に係る凍結物製造装置の構成の一例を示す断面図である。It is a sectional view showing an example of composition of a frozen thing manufacturing device concerning one embodiment to which the present invention is applied. 図1の凍結物製造装置が備える凍結槽の上面図である。It is a top view of the freezing tank with which the frozen material manufacturing apparatus of FIG. 1 is equipped.

以下本発明を適用した一実施形態の凍結物製造装置について、図面を参照しながら詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。 A frozen material manufacturing apparatus according to an embodiment of the present invention will be described in detail below with reference to the drawings. In the drawings used in the following description, in order to make the features easier to understand, there are cases where features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are not necessarily the same as the actual ones. Absent.

図1は本実施形態に係る凍結物製造装置1の構成の一例を示す断面図である。図1に示すように、凍結物製造装置1は貯留室10と、圧力調節機構15と、凍結槽20と、液体冷媒供給機構30と、原料液体供給機構40と、分離機構50と、液面制御機構60とを備える。凍結物製造装置1は、被凍結対象物である原料液体を凍結するための装置である。
以下に、凍結物製造装置1の各構成要素に関して、詳しく説明を行う。
FIG. 1 is a cross-sectional view showing an example of the configuration of a frozen material manufacturing apparatus 1 according to this embodiment. As shown in FIG. 1, the frozen material manufacturing apparatus 1 includes a storage chamber 10, a pressure adjustment mechanism 15, a freezing tank 20, a liquid refrigerant supply mechanism 30, a raw material liquid supply mechanism 40, a separation mechanism 50, and a liquid surface. And a control mechanism 60. The frozen material manufacturing apparatus 1 is an apparatus for freezing a raw material liquid that is an object to be frozen.
Hereinafter, each component of the frozen material manufacturing apparatus 1 will be described in detail.

貯留室10は、筒状の容器であり、内側の空間に凍結槽20を収容するとともに液体冷媒を貯留する。本実施形態では貯留室10の底面に設けられる支持体13が凍結槽20を支持している。
貯留室10内の底部には後述する分離機構50によって分離される液体冷媒が貯留される。図1においては、貯留室10内の液体冷媒の液面が水平である。すなわち、図1中の左右方向は水平方向と一致し、図1中の上下方向は鉛直方向と一致する。
液体冷媒としては、液体窒素、液体酸素、液体アルゴン、液体ヘリウム、液体空気等の液体冷媒が例示される。
The storage chamber 10 is a cylindrical container that stores the freezing tank 20 in the inner space and stores the liquid refrigerant. In this embodiment, the support 13 provided on the bottom surface of the storage chamber 10 supports the freezing tank 20.
A liquid refrigerant separated by a separating mechanism 50 described later is stored in the bottom of the storage chamber 10. In FIG. 1, the liquid surface of the liquid refrigerant in the storage chamber 10 is horizontal. That is, the horizontal direction in FIG. 1 corresponds to the horizontal direction, and the vertical direction in FIG. 1 corresponds to the vertical direction.
Examples of the liquid coolant include liquid coolants such as liquid nitrogen, liquid oxygen, liquid argon, liquid helium, and liquid air.

本実施形態では、貯留室10が真空断熱構造を有することが好ましい。これにより、貯留室10内の液体冷媒と外気との接触を低減できるため、液体冷媒の蒸発による損失量を低減できる。本実施形態では貯留室10は円筒状である。貯留室10が円筒状であると、強度を確保しやすいため、真空断熱構造の作製が容易である。 In this embodiment, the storage chamber 10 preferably has a vacuum heat insulating structure. As a result, contact between the liquid refrigerant in the storage chamber 10 and the outside air can be reduced, so that the amount of loss due to evaporation of the liquid refrigerant can be reduced. In this embodiment, the storage chamber 10 has a cylindrical shape. If the storage chamber 10 has a cylindrical shape, it is easy to ensure strength, and thus the vacuum heat insulating structure can be easily manufactured.

圧力調節機構15は、貯留室10内の気相の圧力を大気圧以上に調節する。圧力調節機構15は、排気口11と、開閉板12とを備える。具体的には、貯留室10の上部には排気口11が形成されているとともに、排気口11の開度を調整可能な開閉板12が設けられている。 The pressure adjusting mechanism 15 adjusts the pressure of the gas phase in the storage chamber 10 to atmospheric pressure or higher. The pressure adjusting mechanism 15 includes an exhaust port 11 and an opening/closing plate 12. Specifically, an exhaust port 11 is formed in the upper part of the storage chamber 10, and an opening/closing plate 12 that can adjust the opening degree of the exhaust port 11 is provided.

開閉板12は貯留室10内の圧力が予め設定された圧力以上のとき、排気口11の開度を大きくし、貯留室10内の圧力が予め設定された圧力未満のとき、排気口11の開度を小さくする。ここで、予め設定された圧力は大気圧以上の圧力である。このように開閉板12が排気口11の開度を調節することで貯留室10内の気相の圧力を大気圧以上に調節できる。 The opening/closing plate 12 increases the opening of the exhaust port 11 when the pressure in the storage chamber 10 is equal to or higher than a preset pressure, and increases the opening degree of the exhaust port 11 when the pressure in the storage chamber 10 is less than the preset pressure. Reduce the opening. Here, the preset pressure is a pressure equal to or higher than the atmospheric pressure. In this way, the opening/closing plate 12 adjusts the opening degree of the exhaust port 11, so that the pressure of the gas phase in the storage chamber 10 can be adjusted to the atmospheric pressure or higher.

貯留室10の側面には、搬送口16が形成されている。これにより、搬送口16から貯留室10内に挿入された、後述するコンベア51を介して凍結物が貯留室10内から貯留室10外に搬送される。
貯留室10の外側の底部の両端には車輪17が設けられている。これにより、凍結物製造装置1の搬送が容易となる。
貯留室10の底部にはドレイン配管18が接続される。ドレイン配管18にはドレイン弁19が設けられている。ドレイン弁19を開とすることにより、ドレイン配管18は貯留室10内の液体冷媒及び貯留室10内に溜まる被凍結物の残滓等を排出できる。
A transfer port 16 is formed on the side surface of the storage chamber 10. As a result, the frozen substance is transferred from the inside of the storage chamber 10 to the outside of the storage chamber 10 via the conveyor 51, which will be described later, inserted into the storage chamber 10 from the transfer port 16.
Wheels 17 are provided at both ends of the outer bottom of the storage chamber 10. This facilitates the transportation of the frozen material manufacturing apparatus 1.
A drain pipe 18 is connected to the bottom of the storage chamber 10. A drain valve 19 is provided in the drain pipe 18. By opening the drain valve 19, the drain pipe 18 can discharge the liquid refrigerant in the storage chamber 10 and the residue of the frozen substance accumulated in the storage chamber 10.

凍結槽20は、液体冷媒で原料液体を凍結する有底筒状の槽である。図1に示すように、凍結槽20には原料液体を凍結するための液体冷媒が一時的に貯留される。
凍結槽20の底面26は平坦面である。凍結槽20の底面26が平坦面であると、凍結槽20内の液体冷媒の液位を確保しやすい。その結果、凍結槽20内の液位を確保しつつ、原料液体を凍結するために必要な液体冷媒の量を低減できる。
The freezing tank 20 is a bottomed cylindrical tank that freezes the raw material liquid with a liquid refrigerant. As shown in FIG. 1, the freezing tank 20 temporarily stores a liquid refrigerant for freezing the raw material liquid.
The bottom surface 26 of the freezing tank 20 is a flat surface. When the bottom surface 26 of the freezing tank 20 is a flat surface, it is easy to secure the liquid level of the liquid refrigerant in the freezing tank 20. As a result, it is possible to reduce the amount of liquid refrigerant required to freeze the raw material liquid while ensuring the liquid level in the freezing tank 20.

凍結槽20の底面26の中央部分には、貫通穴21が形成されている。凍結槽20内の凍結物は液体冷媒とともに、貫通穴21から凍結槽20外へ排出される。本実施形態では、貫通穴21が排出管22と接続されている。これにより、凍結槽20は液体冷媒で原料液体を凍結して凍結物とし、貫通穴21から排出管22を介して凍結物を液体冷媒とともに凍結槽20外へ排出できる。なお、凍結槽20の底面26の中央部分とは、凍結槽20の円形の底面26の中心を含む底面領域をいう。 A through hole 21 is formed in the central portion of the bottom surface 26 of the freezing tank 20. The frozen substance in the freezing tank 20 is discharged to the outside of the freezing tank 20 through the through hole 21 together with the liquid refrigerant. In this embodiment, the through hole 21 is connected to the discharge pipe 22. As a result, the freezing tank 20 freezes the raw material liquid with the liquid refrigerant into a frozen product, and the frozen product can be discharged from the through hole 21 through the discharge pipe 22 to the outside of the freezing tank 20 together with the liquid refrigerant. The central portion of the bottom surface 26 of the freezing tank 20 refers to a bottom area including the center of the circular bottom surface 26 of the freezing tank 20.

図2は、凍結物製造装置1が備える凍結槽20の上面図である。図2に示すように、凍結槽20は、円筒状であり、底面26は円形である。凍結槽20内の底面26には、仕切部材25が設けられている。仕切部材25は、貫通穴21を中心とする渦巻き状に設けられている。仕切部材25の第1の端部は凍結槽20の底面26の外周側に設けられており、仕切部材25の第2の端部は貫通穴21の近傍の底面26の中央に設けられている。仕切部材25と底面26とにより、液体冷媒の流路25Aが区画されるとともに、流路25Aが渦巻き状に形成される。
仕切部材25の大きさ、材質及び形状としては、渦巻き状の流路を形成できる形態であれば特に限定されない。仕切部材25の高さは、凍結槽20の高さ、凍結槽20内への液体冷媒の供給量及び凍結槽20内の液体冷媒の貯留量を勘案して適宜設定できる。
FIG. 2 is a top view of the freezing tank 20 included in the frozen material manufacturing apparatus 1. As shown in FIG. 2, the freezing tank 20 has a cylindrical shape, and the bottom surface 26 has a circular shape. A partition member 25 is provided on the bottom surface 26 in the freezing tank 20. The partition member 25 is provided in a spiral shape around the through hole 21. The first end of the partition member 25 is provided on the outer peripheral side of the bottom surface 26 of the freezing tank 20, and the second end of the partition member 25 is provided in the center of the bottom surface 26 near the through hole 21. .. The partition member 25 and the bottom surface 26 define a flow path 25A for the liquid refrigerant, and the flow path 25A is formed in a spiral shape.
The size, material, and shape of the partition member 25 are not particularly limited as long as they can form a spiral flow path. The height of the partition member 25 can be appropriately set in consideration of the height of the freezing tank 20, the supply amount of the liquid refrigerant into the freezing tank 20 and the storage amount of the liquid refrigerant in the freezing tank 20.

本実施形態では仕切部材25の第1の端部の近傍に、液体冷媒供給機構30の上端部分が位置する。そのため、液体冷媒供給機構30が流路25Aの始端に液体冷媒を供給できる。その結果、図2中の矢印で示すように、液体冷媒が流路25Aを渦巻き状に流れる。これにより、凍結槽20は、原料液体を凍結槽20の外周側から中心に向かって渦巻き状に旋回させながら原料液体を凍結できる。原料液体を凍結槽20内で旋回させることで、原料液体の凍結物が重力の作用を受けて即座に凍結槽20内で沈降することを防止でき、原料液体を充分に凍結するための時間を確保できる。 In the present embodiment, the upper end portion of the liquid coolant supply mechanism 30 is located near the first end of the partition member 25. Therefore, the liquid coolant supply mechanism 30 can supply the liquid coolant to the start end of the flow path 25A. As a result, as shown by the arrow in FIG. 2, the liquid refrigerant flows in the flow path 25A in a spiral shape. Thereby, the freezing tank 20 can freeze the raw material liquid while swirling the raw material liquid from the outer peripheral side of the freezing tank 20 toward the center. By swirling the raw material liquid in the freezing tank 20, it is possible to prevent the frozen material of the raw material liquid from immediately settling in the freezing tank 20 due to the action of gravity, and it is possible to sufficiently freeze the raw material liquid. Can be secured.

仕切部材25の第1の端部は、凍結槽20の外周の近傍に設けられていることが好ましい。これにより、凍結槽20の底面26の面積に対する流路25Aの流路長の比を大きくすることができ、原料液体の凍結時間を確保しやすくなる。 The first end of the partition member 25 is preferably provided near the outer circumference of the freezing tank 20. Thereby, the ratio of the flow path length of the flow path 25A to the area of the bottom surface 26 of the freezing tank 20 can be increased, and it becomes easy to secure the freezing time of the raw material liquid.

仕切部材25によって形成される渦巻き状の流路の巻き数は、凍結対象である原料液体の種類及び原料液体の凍結時間を勘案して適宜設定できる。例えば、原料液体が凍結しにくい物質である場合又は凍結時間を長く設定したい場合等は、上記巻き数を多くし、流路長を大きくすればよい。 The number of turns of the spiral flow path formed by the partition member 25 can be appropriately set in consideration of the type of the raw material liquid to be frozen and the freezing time of the raw material liquid. For example, when the raw material liquid is a substance that is difficult to freeze or when it is desired to set the freezing time longer, the number of windings may be increased and the flow path length may be increased.

液体冷媒供給機構30(図1参照)は、貯留室10の底部に貯留される液体冷媒を凍結槽20に供給する。液体冷媒供給機構30は、外筒31と、モーター32と、供給口33と、スクリューポンプ34とを備える。液体冷媒供給機構30は、モーター32でスクリューポンプ34を回転させ、外筒31とスクリューポンプ34との隙間に渦を生じさせて貯留室10の底部に貯留される液体冷媒を揚液し、供給口33から凍結槽20に液体冷媒を送液して供給できる。 The liquid refrigerant supply mechanism 30 (see FIG. 1) supplies the liquid refrigerant stored in the bottom of the storage chamber 10 to the freezing tank 20. The liquid refrigerant supply mechanism 30 includes an outer cylinder 31, a motor 32, a supply port 33, and a screw pump 34. The liquid refrigerant supply mechanism 30 rotates the screw pump 34 with the motor 32 to generate a vortex in the gap between the outer cylinder 31 and the screw pump 34 to pump and supply the liquid refrigerant stored in the bottom of the storage chamber 10. A liquid refrigerant can be sent from the port 33 to the freezing tank 20 to be supplied.

原料液体供給機構40は、凍結槽20内に被凍結物である原料液体を供給できる形態であれば特に限定されない。本実施形態では原料液体供給機構40が凍結槽20内に原料液体の液滴を滴下して供給する。
原料液体供給機構40としては、原料液体が貯留される原料タンク(図示略)と、第1の端部が原料タンクに接続されるとともに第2の端部が凍結槽20の鉛直上方で開口する原料供給配管41と、原料供給配管に設けられる液滴形成手段(図示略)とを有する装置が例示される。かかる装置においては、原料タンクに貯留される原料液体は、液滴形成手段を介して原料供給配管の第2の端部から凍結槽20内の液体冷媒に滴下される。
The raw material liquid supply mechanism 40 is not particularly limited as long as it can supply the raw material liquid that is a frozen object into the freezing tank 20. In the present embodiment, the raw material liquid supply mechanism 40 drops and supplies the liquid droplets of the raw material liquid into the freezing tank 20.
As the raw material liquid supply mechanism 40, a raw material tank (not shown) for storing the raw material liquid, a first end portion thereof is connected to the raw material tank, and a second end portion thereof opens vertically above the freezing tank 20. An apparatus having a raw material supply pipe 41 and a droplet forming means (not shown) provided in the raw material supply pipe is exemplified. In such an apparatus, the raw material liquid stored in the raw material tank is dripped into the liquid refrigerant in the freezing tank 20 from the second end of the raw material supply pipe via the droplet forming means.

図2に示すように原料液体供給機構40は、凍結槽20の外周側の流路25Aに原料液体を滴下して供給できる位置に配置されている。より具体的には、原料液体供給機構40は、流路25Aの始端の近傍に配置されている。これにより、原料液体の液滴が流路25Aに沿って流れる流路長を長く設定することができる。なお、原料液体としては食品及び医薬品の分野で凍結対象となる物質の液体及び水溶液等が例示される。 As shown in FIG. 2, the raw material liquid supply mechanism 40 is arranged at a position where the raw material liquid can be dropped and supplied to the flow path 25A on the outer peripheral side of the freezing tank 20. More specifically, the raw material liquid supply mechanism 40 is arranged near the starting end of the flow path 25A. As a result, the flow path length along which the liquid droplets of the raw material liquid flow along the flow path 25A can be set long. Examples of the raw material liquid include liquids and aqueous solutions of substances to be frozen in the fields of food and medicine.

分離機構50は液滴の凍結物と液体冷媒とを分離する(図1参照)。凍結物製造装置1は貫通穴21の鉛直下方に分離機構50を備える。
本実施形態では分離機構50は網目状又はメッシュ状のコンベア51と、コンベア51の第1の端部に設けられる第1のローラー52と、コンベア51の第2の端部に設けられる第2のローラー53とを備える。
コンベア51は、搬送口16を介して貯留室10内と貯留室10外とにわたって配置されている。コンベア51の第1の端部の近傍は、貯留室10内に配置されるとともに、排出管22の鉛直下方に配置されている。これにより、排出管22の鉛直下方から落下する凍結物と液体冷媒とをメッシュ状のコンベア51が分離できる。なお、コンベア51の第2の端部は、貯留室10外に配置される。
The separation mechanism 50 separates the frozen material of the liquid droplets from the liquid refrigerant (see FIG. 1). The frozen material manufacturing apparatus 1 includes a separating mechanism 50 vertically below the through hole 21.
In the present embodiment, the separation mechanism 50 includes a mesh-shaped or mesh-shaped conveyor 51, a first roller 52 provided at the first end of the conveyor 51, and a second roller 52 provided at the second end of the conveyor 51. And a roller 53.
The conveyor 51 is arranged over the inside of the storage chamber 10 and the outside of the storage chamber 10 via the transfer port 16. The vicinity of the first end of the conveyor 51 is arranged inside the storage chamber 10 and vertically below the discharge pipe 22. As a result, the mesh-shaped conveyor 51 can separate the frozen material and the liquid refrigerant that fall from vertically below the discharge pipe 22. The second end of the conveyor 51 is arranged outside the storage chamber 10.

第1のローラー52はコンベア51の第1の端部を固定する回転体であり、第2のローラー53はコンベア51の第2の端部を固定する回転体である。第1のローラー52と第2のローラー53とが図1中の時計回りに回転することにより、コンベア51は貯留室10内から凍結物を貯留室10外に搬送できる。
コンベア51によって分離される液体冷媒は、貯留室10内の底部に貯留される。
The first roller 52 is a rotating body that fixes the first end of the conveyor 51, and the second roller 53 is a rotating body that fixes the second end of the conveyor 51. By rotating the first roller 52 and the second roller 53 in the clockwise direction in FIG. 1, the conveyor 51 can convey the frozen substance from the inside of the storage chamber 10 to the outside of the storage chamber 10.
The liquid refrigerant separated by the conveyor 51 is stored in the bottom of the storage chamber 10.

液面制御機構60は、貯留室10内の液体冷媒の液面高さを制御できる形態であれば特に限定されない。
本実施形態では、液面制御機構60は補充用の液体冷媒を貯留する液体冷媒タンク(図示略)と、液体冷媒タンクから貯留室10に液体冷媒を供給する液体冷媒供給配管(図示略)と、液体冷媒供給配管に設けられる開閉弁(図示略)と、貯留室10に貯留される液体冷媒の液面高さを測定する液面計(図示略)と、液面計が測定する液面高さに基づいて開閉弁を開閉制御する制御部61とを備える。
The liquid level control mechanism 60 is not particularly limited as long as it can control the liquid level of the liquid refrigerant in the storage chamber 10.
In the present embodiment, the liquid level control mechanism 60 includes a liquid refrigerant tank (not shown) that stores a replenishing liquid refrigerant, and a liquid refrigerant supply pipe (not shown) that supplies the liquid refrigerant from the liquid refrigerant tank to the storage chamber 10. An on-off valve (not shown) provided in the liquid refrigerant supply pipe, a liquid level gauge (not shown) for measuring the liquid level height of the liquid refrigerant stored in the storage chamber 10, and a liquid level measured by the liquid level gauge. And a control unit 61 that controls opening/closing of the opening/closing valve based on the height.

液面制御機構60は、貯留室10内で液体冷媒が気化して液面高さが低下した場合、制御部61が開閉弁を開にする。これにより、貯留室10内の液体冷媒の貯留量が気化して減少した際に、液体冷媒タンクから液体冷媒を供給して貯留室10に液体冷媒を補充できる。 In the liquid level control mechanism 60, when the liquid refrigerant is vaporized in the storage chamber 10 and the liquid level is lowered, the control unit 61 opens the open/close valve. Thereby, when the amount of the liquid refrigerant stored in the storage chamber 10 is vaporized and reduced, the liquid refrigerant can be supplied from the liquid refrigerant tank to replenish the storage chamber 10 with the liquid refrigerant.

貯留室10、支持体13、凍結槽20、仕切部材25、外筒31及びコンベア51並びにこれら以外の構成であって液体冷媒と接触し得る構成部分の材質は、液体冷媒との接触により脆性破壊しにくく、腐食しにくいものであれば特に限定されない。これらの材料として、オーステナイト鋼、アルミニウム合金、ポリテトラフルオロエチレン等が例示される。 The material of the storage chamber 10, the support body 13, the freezing tank 20, the partition member 25, the outer cylinder 31, the conveyor 51, and the components other than these that can come into contact with the liquid refrigerant are brittle fracture due to contact with the liquid refrigerant. It is not particularly limited as long as it is hard to do and is hard to corrode. Examples of these materials include austenitic steel, aluminum alloys, polytetrafluoroethylene and the like.

以上説明した凍結物製造装置の使用方法の一例について、図1及び図2を参照して説明する。 An example of the method of using the frozen material manufacturing apparatus described above will be described with reference to FIGS. 1 and 2.

まず、液体冷媒供給機構30が備える供給口33から流路25Aの接線方向に液体冷媒を流して供給する。ここで、凍結槽20における液体冷媒の供給量は、流路25Aにおける液位の確保に必要な最低限の量に設定することが好ましい。これにより装置全体における液体冷媒の使用量をさらに低減できる。なお、液体冷媒の供給量はモーター32による液体冷媒の汲み上げ量を調節することで微調節できる。
流路25Aを流れる液体冷媒の流速は、液滴の凍結に要する時間を勘案して適宜設定できる。液体冷媒の流速を調節するには、供給口33から供給される液体冷媒の供給量及び供給口33の鉛直方向の位置を調節すればよい。
First, the liquid coolant is supplied from the supply port 33 provided in the liquid coolant supply mechanism 30 in the tangential direction of the flow path 25A. Here, the supply amount of the liquid refrigerant in the freezing tank 20 is preferably set to the minimum amount necessary to secure the liquid level in the flow path 25A. This can further reduce the amount of liquid refrigerant used in the entire device. The supply amount of the liquid refrigerant can be finely adjusted by adjusting the pumping amount of the liquid refrigerant by the motor 32.
The flow velocity of the liquid refrigerant flowing through the flow path 25A can be appropriately set in consideration of the time required for freezing the droplets. In order to adjust the flow velocity of the liquid refrigerant, the supply amount of the liquid refrigerant supplied from the supply port 33 and the vertical position of the supply port 33 may be adjusted.

次に、凍結槽20内の流路25Aの始端の近傍に原料液体の液滴を原料液体供給機構40から滴下して供給する。図2に示すように、凍結槽20内には矢印の向きに液体冷媒が渦巻き状に流れているため、供給される液滴も流路25Aを渦巻き状に流れる。なお、液滴の供給量は凍結物の生産量、生産効率及び生産コストを勘案して、適宜設定できる。また、供給する液滴の粒径は所望する凍結物の粒径を勘案して適宜設定できる。 Next, a droplet of the raw material liquid is dropped and supplied from the raw material liquid supply mechanism 40 in the vicinity of the start end of the flow path 25A in the freezing tank 20. As shown in FIG. 2, since the liquid refrigerant swirls in the freezing tank 20 in the direction of the arrow, the supplied droplets also swirl in the flow path 25A. In addition, the supply amount of the liquid droplets can be appropriately set in consideration of the production amount of frozen material, production efficiency, and production cost. Further, the particle size of the liquid droplets to be supplied can be appropriately set in consideration of the particle size of the desired frozen product.

原料液体の液滴が流路25Aを形状が渦巻き状に流れると、まず液滴の表面から凍結が始まる。液体冷媒より密度が高い凍結物は、凍結槽20内の中央部に集められる傾向が強いため、流路25A内を流れる際の軌跡が、凍結前に比べて短くなる。その結果、凍結物の過剰な凍結を低減できる。 When the droplets of the raw material liquid flow in the flow path 25A in a spiral shape, the freezing starts from the surface of the droplets. Frozen matter having a higher density than the liquid refrigerant has a strong tendency to be collected in the central portion of the freezing tank 20, so that the trajectory when flowing through the flow path 25A becomes shorter than that before freezing. As a result, excessive freezing of the frozen product can be reduced.

一方で、未凍結の液滴は、気化する液体冷媒の気泡による浮力で液体冷媒中と液体冷媒の表面との間を浮遊し、渦巻き状に流れる液体冷媒の遠心力の作用を受けて、流路25Aの外周側、すなわち凍結槽20の内壁側に寄せられる。その結果、未凍結の液滴は流路25A内を流れる際の軌跡が、凍結後に比べて長くなり、未凍結の液滴を十分に凍結する時間が確保される。 On the other hand, the unfrozen liquid droplets float between the liquid refrigerant and the surface of the liquid refrigerant due to the buoyancy of the bubbles of the liquid refrigerant that vaporizes, and are subjected to the centrifugal force of the liquid refrigerant that flows in a spiral shape to flow. It is brought closer to the outer peripheral side of the passage 25A, that is, the inner wall side of the freezing tank 20. As a result, the trajectory of the unfrozen droplets when flowing in the flow path 25A becomes longer than that after freezing, and the time for sufficiently freezing the unfrozen droplets is secured.

凍結物は凍結槽20から貫通穴21及び排出管22をこの順に経由して液体冷媒とともに鉛直下方に落下する。その後、分離機構50によって液体冷媒と分離された凍結物が貯留室10外に搬送される。 The frozen matter drops vertically downward from the freezing tank 20 through the through hole 21 and the discharge pipe 22 in this order together with the liquid refrigerant. Then, the frozen material separated from the liquid refrigerant by the separation mechanism 50 is transported to the outside of the storage chamber 10.

分離機構50によって分離される液体冷媒は、貯留室10内の底部に貯留される。なお、貯留室10内の液体冷媒の貯留量は、凍結物の生産量、生産効率及び生産コスト等を勘案して適宜設定できる。 The liquid refrigerant separated by the separation mechanism 50 is stored in the bottom of the storage chamber 10. The storage amount of the liquid refrigerant in the storage chamber 10 can be appropriately set in consideration of the production amount of frozen products, production efficiency, production cost, and the like.

(作用効果)
以上説明した構成を備える本実施形態の凍結物製造装置によれば、被凍結対象物である原料液体を凍結する液体冷媒の流路が、平坦面に渦巻き状に形成されているため、大量の液体冷媒を供給しなくても凍結槽の液体冷媒の液位を確保しつつ、原料液体を流路に沿って凍結する時間を確保できる。よって、本実施形態によれば、液体冷媒の使用量を低減できる。
(Action effect)
According to the frozen matter manufacturing apparatus of the present embodiment having the configuration described above, since the flow path of the liquid refrigerant that freezes the raw material liquid that is the object to be frozen is formed in a spiral shape on the flat surface, a large amount of Even if the liquid refrigerant is not supplied, it is possible to secure the time for freezing the raw material liquid along the flow path while ensuring the liquid level of the liquid refrigerant in the freezing tank. Therefore, according to this embodiment, the amount of liquid refrigerant used can be reduced.

また、本実施形態の凍結物製造装置で凍結時間をさらに長く設定するためには、仕切部材によって形成される渦巻き状の流路の巻き数を増やして渦巻き状の流路の流路長を長くすればよい。このように本実施形態の凍結物製造装置は、凍結槽の内部空間のスペースを無駄なく使用できるため、装置そのものを小型化できる。 Further, in order to further set the freezing time in the frozen material manufacturing apparatus of the present embodiment, the number of turns of the spiral flow passage formed by the partition member is increased to increase the flow passage length of the spiral flow passage. do it. As described above, the frozen material manufacturing apparatus according to the present embodiment can use the internal space of the freezing tank without waste, so that the apparatus itself can be downsized.

本実施形態では、貯留室が真空断熱構造を有するため、外気と液体冷媒との間で熱交換が起きる場所が排気口及び搬送口に限定される。そのため、液体冷媒が気化して外気に流出する量を低減できる。よって本実施形態によれば、液体冷媒の気化による損失量を低減できるため、液体冷媒を無駄なく利用でき、液体冷媒の使用量をさらに低減できる。 In the present embodiment, since the storage chamber has the vacuum heat insulating structure, the places where heat exchange occurs between the outside air and the liquid refrigerant are limited to the exhaust port and the transfer port. Therefore, the amount of the liquid refrigerant vaporized and flowing out to the outside air can be reduced. Therefore, according to the present embodiment, the amount of loss due to vaporization of the liquid refrigerant can be reduced, so that the liquid refrigerant can be used without waste, and the usage amount of the liquid refrigerant can be further reduced.

凍結物製造装置1は、液体冷媒供給機構と分離機構とを備えるため、貯留室の底部と、凍結槽との間で液体冷媒を循環させることができる。よって原料液体の凍結に必要な最低限の量の液体冷媒を貯留室内に貯留して、凍結物の製造を実行できる。よって本実施形態によれば、液体冷媒の使用量をさらに低減できる。 Since the frozen material manufacturing apparatus 1 includes the liquid refrigerant supply mechanism and the separation mechanism, the liquid refrigerant can be circulated between the bottom of the storage chamber and the freezing tank. Therefore, it is possible to store the minimum amount of the liquid refrigerant required for freezing the raw material liquid in the storage chamber and to manufacture the frozen product. Therefore, according to this embodiment, the amount of liquid refrigerant used can be further reduced.

さらに、本実施形態の凍結物製造装置は圧力調節機構を備え、貯留室内で液体冷媒が気化するため、貯留室内を大気圧以上に維持できる。その結果、貯留室10内から空気中の水分が追い出されるとともに、搬送口から空気が侵入しにくくなり、貯留室内の着氷を低減できる。よって本実施形態によれば、着氷した貯留室内の洗浄等の設備維持の作業の負担が低減できる。 Further, the frozen material manufacturing apparatus of the present embodiment includes the pressure adjusting mechanism, and the liquid refrigerant is vaporized in the storage chamber, so that the storage chamber can be maintained at the atmospheric pressure or higher. As a result, moisture in the air is expelled from the inside of the storage chamber 10, air is less likely to enter through the transfer port, and icing in the storage chamber can be reduced. Therefore, according to the present embodiment, it is possible to reduce the burden of the work for maintaining the equipment such as cleaning the inside of the accreted storage chamber.

以上、本発明のいくつかの実施形態を説明したが、本発明はこれらの特定の実施の形態に限定されない。また、本発明は特許請求の範囲に記載された本発明の要旨の範囲内で、構成の付加、省略、置換、及びその他の変更が加えられてよい。
例えば、原料液体供給機構40は、原料液体を噴霧する形態であってもよい。
Although some embodiments of the present invention have been described above, the present invention is not limited to these specific embodiments. In addition, the present invention may have additions, omissions, substitutions, and other modifications of the configuration within the scope of the gist of the present invention described in the claims.
For example, the raw material liquid supply mechanism 40 may be in the form of spraying the raw material liquid.

1…凍結物製造装置、10…貯留室、11…排気口、12…開閉板、13…支持体、15…圧力調節機構、16…搬送口、17…車輪、18…ドレイン配管、19…ドレイン弁、20…凍結槽、21…貫通穴、22…排出管、25…仕切部材、25A…流路、26…底面、30…液体冷媒供給機構、31…外筒、32…モーター、33…供給口、40…原料液体供給機構、50…分離機構、51…コンベア、52,53…ローラー、60…液面制御機構、61…制御部 DESCRIPTION OF SYMBOLS 1... Frozen thing manufacturing apparatus, 10... Storage chamber, 11... Exhaust port, 12... Open/close plate, 13... Support body, 15... Pressure adjusting mechanism, 16... Conveyor port, 17... Wheel, 18... Drain piping, 19... Drain Valve, 20... Freezing tank, 21... Through hole, 22... Discharge pipe, 25... Partition member, 25A... Flow path, 26... Bottom surface, 30... Liquid refrigerant supply mechanism, 31... Outer cylinder, 32... Motor, 33... Supply Mouth, 40... Raw material liquid supply mechanism, 50... Separation mechanism, 51... Conveyor, 52, 53... Roller, 60... Liquid level control mechanism, 61... Control unit

Claims (8)

液体冷媒で原料液体を凍結する有底筒状の凍結槽を備え、
体冷媒の流路が、前記凍結槽の水平な底面に渦巻き状に形成され
前記凍結槽内の凍結物を液体冷媒とともに前記凍結槽外へ排出する貫通穴が、前記凍結槽の水平な底面の中央部分に形成され、
前記凍結槽の水平な底面に設けられた仕切部材と前記凍結槽の水平な底面とによって区画されることで、前記貫通穴を中心とする前記流路が形成されている、凍結物製造装置。
Equipped with a bottomed cylindrical freezing tank that freezes the raw material liquid with a liquid refrigerant,
The flow path of the liquid body refrigerant is formed in a spiral shape on a horizontal bottom surface of said freezing chamber,
A through hole for discharging the frozen material in the freezing tank to the outside of the freezing tank together with a liquid refrigerant is formed in the central portion of the horizontal bottom surface of the freezing tank,
The frozen material manufacturing apparatus in which the flow path centered on the through hole is formed by being partitioned by the partition member provided on the horizontal bottom surface of the freezing tank and the horizontal bottom surface of the freezing tank .
記凍結槽に液体冷媒を供給する液体冷媒供給機構と、
前記凍結槽に原料液体を供給する原料液体供給機構と、
さらに備える、請求項1に記載の凍結物製造装置。
A liquid coolant supply mechanism supplies the liquid refrigerant before Symbol freezing tank,
A raw material liquid supply mechanism for supplying a raw material liquid to the freezing tank,
Further Ru comprising a frozen product manufacturing apparatus according to claim 1.
前記貫通穴の鉛直下方に、凍結物と液体冷媒とを分離する分離機構をさらに備える、請求項に記載の凍結物製造装置。 The frozen material manufacturing apparatus according to claim 2 , further comprising a separating mechanism that vertically separates the frozen material and the liquid refrigerant from each other. 前記液体冷媒供給機構が、前記凍結槽の外周側から前記流路に液体冷媒を供給する、請求項2又は3に記載の凍結物製造装置。 It said liquid coolant supply mechanism supplies the liquid refrigerant to the flow path from the outer peripheral side of the freezing chamber, frozen product manufacturing apparatus according to claim 2 or 3. 前記原料液体供給機構が、前記凍結槽の外周側の前記流路に原料液体を供給する、請求項2〜のいずれか一項に記載の凍結物製造装置。 The raw material liquid supply mechanism supplies the raw material liquid to the flow path of the outer peripheral side of the freezing chamber, frozen product manufacturing apparatus according to any one of claims 2-4. 前記凍結槽を収容するとともに、液体冷媒を貯留する貯留室をさらに備える、請求項2〜のいずれか一項に記載の凍結物製造装置。 It accommodates the freezing chamber, further comprising a storage chamber for storing the liquid refrigerant, frozen product manufacturing apparatus according to any one of claims 2-5. 前記貯留室内の気相の圧力を大気圧以上に調節する圧力調節機構をさらに備える、請求項に記載の凍結物製造装置。 The frozen material manufacturing apparatus according to claim 6 , further comprising a pressure adjusting mechanism that adjusts the pressure of the gas phase in the storage chamber to atmospheric pressure or higher. 前記液体冷媒供給機構が、前記貯留室に貯留される液体冷媒を前記凍結槽に供給する、請求項又はに記載の凍結物製造装置。 It said liquid coolant supply mechanism supplies the liquid refrigerant to be stored in the storage chamber to the freezing chamber, frozen product manufacturing apparatus according to claim 6 or 7.
JP2017210727A 2017-10-31 2017-10-31 Frozen material manufacturing equipment Active JP6723968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017210727A JP6723968B2 (en) 2017-10-31 2017-10-31 Frozen material manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017210727A JP6723968B2 (en) 2017-10-31 2017-10-31 Frozen material manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2019082298A JP2019082298A (en) 2019-05-30
JP6723968B2 true JP6723968B2 (en) 2020-07-15

Family

ID=66670786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017210727A Active JP6723968B2 (en) 2017-10-31 2017-10-31 Frozen material manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6723968B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110486969A (en) * 2019-09-06 2019-11-22 浙江知瑞科技集团有限公司 A kind of liquid Quick cooling equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3215991B2 (en) * 1993-03-26 2001-10-09 日本酸素株式会社 Article freezing device
US7062924B2 (en) * 2003-11-21 2006-06-20 Irvine J David Method and apparatus for the manipulation and management of a cryogen for production of frozen small volumes of a substance
JP4700044B2 (en) * 2006-11-09 2011-06-15 株式会社小樽フィッシャーマンズキッチン Food freezer
US9151532B2 (en) * 2009-11-23 2015-10-06 Air Liquide Industrial U.S. Lp Recirculating liquid nitrogen immersion bath and method for freezing a product therein

Also Published As

Publication number Publication date
JP2019082298A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
TW418169B (en) Method and device for manufacturing positive pressure packaging body
JP4346037B2 (en) Method and apparatus for producing slush nitrogen, cooling method using slush nitrogen, and apparatus therefor
KR20030031474A (en) Control system for cryogenic processor for liquid feed preparation of a free-flowing frozen product
EP1301750A1 (en) Cryogenic processor for liquid feed preparation of a free-flowing frozen product
JP6723968B2 (en) Frozen material manufacturing equipment
JP2004075771A (en) Apparatus for producing gas hydrate
CA2562722A1 (en) Method and apparatus for cooling product
JP5614999B2 (en) Method and apparatus for producing ozone-containing hydrate
US20140000297A1 (en) Production of Particles from Liquids or Suspensions with Liquid Cryogens
WO2019049644A1 (en) Dissolved gas-containing ice production device and production method
WO1998056480A1 (en) Freeze-concentrating apparatus for aqueous solutions, ice pillar producing apparatus, and freeze-concentrating method for aqueous solutions
CN113795717B (en) Ice making machine
US20220390157A1 (en) Oil supply system for compressor
WO2022067375A1 (en) Method and apparatus for the continuous production of ice having improved melting characteristics
US9772133B2 (en) Ice making device
JP2019122905A (en) Frozen article manufacturing device and frozen article manufacturing method
US574930A (en) Apparatus for concentrating vinegar
JP7223663B2 (en) Granular freezing apparatus and method
JP6423638B2 (en) Beverage cooler
JP7558883B2 (en) Liquefied gas supply device and supply method, spray freezing device and spray freezing method
JP6910215B2 (en) Slurry ice making equipment and method
JP2005274047A (en) Beverage cooling device
JP5265620B2 (en) Method and apparatus for manufacturing gas hydrate
JP2973608B2 (en) Cooling system for cup-type vending machines
KR102000498B1 (en) Water purifier having ice-maker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200624

R150 Certificate of patent or registration of utility model

Ref document number: 6723968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250