[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6710259B2 - スポットアレイ基板、その製造方法、核酸ポリマー解析方法及び装置 - Google Patents

スポットアレイ基板、その製造方法、核酸ポリマー解析方法及び装置 Download PDF

Info

Publication number
JP6710259B2
JP6710259B2 JP2018217491A JP2018217491A JP6710259B2 JP 6710259 B2 JP6710259 B2 JP 6710259B2 JP 2018217491 A JP2018217491 A JP 2018217491A JP 2018217491 A JP2018217491 A JP 2018217491A JP 6710259 B2 JP6710259 B2 JP 6710259B2
Authority
JP
Japan
Prior art keywords
beads
spot array
substrate
array substrate
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018217491A
Other languages
English (en)
Other versions
JP2019022534A (ja
Inventor
板橋 直志
直志 板橋
園子 右高
園子 右高
奈良原 正俊
正俊 奈良原
庄司 智広
智広 庄司
雪夫 小野
雪夫 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Publication of JP2019022534A publication Critical patent/JP2019022534A/ja
Application granted granted Critical
Publication of JP6710259B2 publication Critical patent/JP6710259B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6809Methods for determination or identification of nucleic acids involving differential detection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00421Means for dispensing and evacuation of reagents using centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00457Dispensing or evacuation of the solid phase support
    • B01J2219/00459Beads
    • B01J2219/00466Beads in a slurry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00646Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports
    • B01J2219/00648Making arrays on substantially continuous surfaces the compounds being bound to beads immobilised on the solid supports by the use of solid beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、生体分子の解析、特に核酸ポリマーの塩基配列を高効率、高精度に解読するためのスポットアレイ基板、その製造方法、及びそのスポットアレイ基板を用いた核酸ポリマー解析システムに関する。
特許文献1には、DNAチップを用いて、既知の遺伝子の発現を検査する方法が記載されており、遺伝子の存在を示す蛍光を検出するために自家蛍光の少ない透明樹脂(ポリカーボネート、ポリプロピレン、シクロオレフィン系ポリマー)を用いることが記載されている。アレイスポットとして基板表面に凹部を複数形成(アレイ化)し、その底面が平坦であることが望ましく、この凹部内面にオリゴDNAを固定化すること、既知のプローブDNAを予め凹部の底面に固定化しておき、これに分析対象サンプルの入った溶液を加えることで、ターゲットDNAの検出を行うことができるとの記載がある。
特許文献2には、マイクロアレイを用いて、既知の遺伝子の発現を検査する方法が記載されており、遺伝子の存在を示す蛍光を検出するために自家蛍光の少ない透明樹脂(シクロオレフィン系ポリマー)を用いることが記載されている。基板にオリゴDNAを固定化する方法は当該分野で周知の方法であると述べられており、このアレイスポットに予め既知のプローブDNAを固定化した基板上でターゲットDNAとハイブリダイゼーションさせることにより、有無を判定できるとの記載がある。
特許文献3には、マイクロアレイを用いて、既知の遺伝子の発現を検査する方法が記載されており、基板上にオリゴDNAを固定化するために、官能基を用いることができること、基板には、化学的及び熱的安定性、低い蛍光及び光学的安定性を有するポリマー、好ましくは、シクロオレフィンポリマー、好ましくは、Zeonex(R)若しくはZeonor(R)を用いることが記載されている。
特許文献4には、マイクロアレイを用いて、既知の遺伝子の発現を検査する方法が記載されており、アレイスポットに予め既知のプローブDNAを固定化した基板上でターゲットDNAとハイブリダイゼーションさせること、この基板で蛍光検出を行う場合、マルチウェル(すなわち、凹部のアレイ)のシクロオレフィンポリマーを含む基板を用いることが記載されている。
特許文献5には、底面に電極を有する凹部の高集積アレイを半導体プロセスにより形成したSi基板を用いて、核酸ポリマーを解析する方法が記載されている。基板表面にアレイ状に形成した凹部に対し、分析対象由来のテンプレートDNAの複製を予め表面に形成したビーズを装填し、試薬との反応によりこれらのテンプレートDNAの複製から放出されるイオンを凹部の底面に備えられた電極で検出することにより、塩基配列を解読できることが記載されている。
特開2009−60859号公報 特表2009−513137号公報(US 2007/0099222 A1) 特表2009−537126号公報 特表2004−500867号公報(US 2003/0003496 A1) 特表2010−513869号公報
DNAやRNAなどの核酸ポリマーを解析する方法として、塩基を光学的に計測し識別する方法や電気的に計測し識別する方法など、様々な方式が検討されている。その一つとして、蛍光方式DNAシーケンサは、蛍光色素や酵素を含む試薬をDNAと反応させた際に発生する蛍光を解析することにより塩基を解読するものである。このような核酸ポリマーの解析技術により明らかになった塩基配列情報と病理の因果関係を研究し、解明していけば、医療診断への応用が拡がっていくものと期待される。しかし、現状は、まだ、研究用途に使用される割合が高く、1回の分析にかかる費用も高額である。医療診断技術として、近い将来、広く普及していくためには、更に大幅に分析コストを低減することが望まれている。これに対し、少量のサンプルから大量のデータを高いスループットで取得するための改良や、同じデータ量を取得するのに必要な分析コストを低減(分析用消耗部品、試薬などを含むコスト低減)させるための改良が継続的に進められている。
サンプルの少量化、分析セルの小型化、データ取得量の増加のためには、データ取得効率を向上する必要がある。従来、蛍光方式のDNAシーケンサは、平面状にランダムに分析対象がばらまかれた状態において反応により発せられた蛍光を計測し、ランダム位置の蛍光の輝点のデータ解析から塩基を識別する形態より実用化が開始された。しかし、ランダムであったため、分析対象が偶然存在しない領域や、隣接した分析対象からの蛍光が重なって混ざってしまい解析ができない領域が存在し、反応イベントがおこるフローセルの基板上の領域の利用効率が低かった。結果として、解析に寄与しない無駄になる分析対象サンプルが発生してしまい、また、近接領域のイベントと分離して十分な量のデータを取得するために分析用フローセルの面積を広くせざるを得なかった。
これを解決する有望な方法の一つとして、集積アレイ化が考えられてきた。できるだけ狭い面積で高効率にタスクを実行するための一般的な概念の1つであろう。フローセルの基板上に分析対象が固定化できるスポットを隣接スポットと一定間隔以上のピッチを保って離散的かつできるだけ密に配置することにより、隣接の蛍光イベントと干渉せず、かつ、単位基板面積当たりのデータ取得量を最大化できる。
しかし、フローセルの基板上に高集積のスポットアレイを形成するためには、基板の製造において、リソグラフィや、ドライエッチング微細加工などの半導体プロセス、あるいは、ビームによる描画や加工等々、何らかの微細パターニング技術を用いる必要がある。もちろん、Siウェハ上に各種パターンを形成できる半導体プロセスを用いれば、高集積なスポットアレイを形成した基板を量産することは可能であるが、従来のランダムな蛍光の解析に用いてきた平面基板と比較して、基板製造コストが大幅に高騰することはまぬがれない。基板材料コストやスポットアレイの製造コストを大幅に低減する製造技術が望まれる。
未知の塩基配列を解読するDNAシーケンサとは異なるが、既知の塩基配列の有無を判定する技術として、DNAチップ(マイクロアレイ)が挙げられる。但し、既知のプローブDNAと同じ配列の有無を判定する用途に限定されているため、チップ上にのせるアレイスポット数は、せいぜい分析対象の数だけあればよく、アレイの集積度をできるだけ高くしてできるだけ大量のデータを並列に取得することによりスループットを稼ぎたいDNAシーケンサとは事情が異なる。このため、現状、DNAチップの集積度はさほど高くなく、せいぜい数100〜数10μmレベルまでの寸法の大きなアレイスポットで計測しているものが多い。分析対象であるターゲットDNAを調べるためのスポット領域がアレイ状に配置され、それぞれのスポット領域に、官能基修飾、オリゴDNAの固定化、プローブDNAの固定化などが施されているが、寸法が大きいため、高コストな半導体プロセスを用いた微細化レベル(数μm〜数100nmレベル)でパターニングしなくても製造できる。また、蛍光計測の邪魔になる基板材料の自家蛍光さえ十分に低ければ、基板材料変更に対する他の制約が少ない。このため、DNAチップでは、先行して、樹脂基板の適用などの低コスト化が進められてきた。特許文献1〜4には、DNAチップに自家蛍光の低い樹脂基板を適用して、表面上にはアレイ状に官能基やオリゴDNA等のスポットを形成したDNAチップの形態が開示されている。
一方、DNAシーケンサにおいては、未知の配列データを大量に高スループットで取得することが将来にわたり継続して求められるため、さらなる高集積化が必要とされる。このため、DNAチップよりも少なくとも1桁以上は微細な数μm〜数100nmの寸法レベルでスポットアレイを形成する必要がある。現状は、各アレイスポットからの蛍光を検出する光検出器アレイのピクセルのピッチなどの制約により、スポットアレイの高集積化(ピッチ)に限度があるため、上記の微細化の程度に留まっているが、未知の配列データを大量に高スループットで取得する必要があることから、さらなる高集積化が今後もますます求められるであろう。しかし、数μm〜数100nmの寸法レベルの高集積アレイスポットを形成するために半導体プロセスを使用する場合には、製造プロセスに高いコストがかかるため、たとえ材料コストを低く抑えるために樹脂基板を採用したとしても、トータルの製造コストの低減は十分ではない。樹脂基板材料自体は安価でかつ光学性能(低自家蛍光等)も石英やSiなどの材料と同等以上に優れていても、さらなる微細化と高集積化によってデータ取得効率を向上させていかなければならないDNAシーケンサでは、高集積アレイの形成に製造コストがかかってしまうと、たとえ高集積化によりデータ取得効率を向上しても、最終的な解析コストの低減効果は薄まってしまう。
一方、光学的計測による核酸ポリマーの解析だけでなく、電気的計測による解析においても、高集積アレイの適用が進められている。特許文献5には、底面に電極を有する凹部の高集積アレイを半導体プロセスにより形成したSi基板の形態と、分析対象由来のテンプレートDNAの複製を予め表面に形成したビーズをSi基板表面の凹部に装填して電気的に計測し塩基配列を解読する方法が開示されている。しかし、この方法では、使用する基板には、凹部ごとに信号検出するための微細な電極と、これらに結線するための配線、スイッチも備えられている必要があり、光学式計測に用いるものよりもむしろ複雑である。従って、低材料コストの樹脂基板を用いて容易に製造できるものではなく、全ての基板を高コストな半導体プロセスにより製造しなければならない。
以上のように、さらなる微細化と高集積化の必要なDNAシーケンサでは、低コストの基板材料を採用しても、あるいは、光学的計測、電気的計測のどちらを採用しても、いずれにせよ、リソグラフィ、ドライエッチング微細加工などの半導体プロセスを用いて全ての高集積アレイ基板を製造している限り、製造コスト低減には限界がある。全ての基板の製造に半導体プロセスを適用しなくても量産できる製造技術の確立が望まれる。
本発明によるスポットアレイ基板は、表面に凹凸パターンが形成され、凹凸パターン中に複数のビーズ着座位置が2次元アレイ状に設定されている樹脂基板と、樹脂基板のビーズ着座位置に装填された表面修飾ビーズとを有するものである。
凹凸パターンは、一例として、隣接するビーズ着座位置同士をビーズ着座位置の寸法より狭い幅の溝で連結したパターンである。
表面修飾ビーズは、物理的な嵌め込み、あるいは、化学的な結合、あるいは、その両者で、樹脂基板の前記ビーズ着座位置に固定化されている。
表面修飾ビーズは、官能基表面修飾ビーズ、あるいはオリゴDNA表面修飾ビーズとすることができる。また、オリゴDNA表面修飾ビーズ上で予め分析対象由来のテンプレートDNAの複製を形成したビーズとすることもできる。
ビーズ着座位置の面密度は、一例として、好ましくは6.6×106個/cm2〜180×106個/cm2である。
本発明によるスポットアレイ基板の製造方法は、表面に凹凸パターンが形成され、凹凸パターン中に複数のビーズ着座位置が2次元アレイ状に設定されている樹脂基板を作製する工程と、樹脂基板のビーズ着座位置に表面修飾ビーズを装填する工程とを有するものである。
樹脂基板のビーズ着座位置に表面修飾ビーズを装填する工程では、遠心力や磁力を利用することができる。
本発明のスポットアレイ基板製造キットは、表面に凹凸パターンが形成され、凹凸パターン中に複数のビーズ着座位置が2次元アレイ状に設定されている樹脂基板と、樹脂基板のビーズ着座位置に装填される表面修飾ビーズとを備えるものである。官能基表面修飾ビーズあるいはオリゴDNA表面修飾ビーズ等の表面修飾ビーズを樹脂基板のビーズ着座位置に装填することにより、スポットアレイ基板を作製することができる。また、もし、表面修飾ビーズとして、オリゴDNAなどの表面修飾を施したビーズ上で予め分析対象由来のテンプレートDNAの複製を形成したビーズを用いる場合には、例えば核酸ポリマー解析装置のユーザーが、キットに含まれているオリゴDNA表面修飾ビーズの表面にエマルジョンPCRなどの方法でテンプレートDNAの複製を形成した後、これらのビーズをビーズ着座位置に装填することにより、スポットアレイ基板を作製することができる。
本発明の核酸ポリマー解析装置は、上記したスポットアレイ基板が組み込まれたフローセルと、フローセルに、DNA分子の塩基を識別できる蛍光色素を含む反応試薬、dNTPと色素を切断できる反応試薬、及びフローセル内を洗浄するための洗浄試薬を含む複数の試薬を選択的に供給するための試薬供給ユニットと、フローセルの温度を制御する温調部と、スポットアレイ基板に励起光を照射するための光源と、スポットアレイ基板の各ビーズ着座位置から発生する蛍光を計測する光検出器アレイと、光検出器アレイによる検出信号を解析するための解析装置とを備える。
本発明による核酸ポリマーの解析方法は、一例として、分析対象サンプル由来のテンプレートDNAを予め表面上で複製させたテンプレートDNAビーズを、上記したスポットアレイ基板の官能基表面修飾ビーズ上に固定化する第1の工程と、官能基表面修飾ビーズ上に固定化したテンプレートDNAビーズ上のテンプレートDNAの1塩基分の伸長反応を、蛍光色素を含む試薬により行わせる第2の工程と、反応後に励起光を照射することによりスポットアレイ基板のビーズ着座位置から発生する蛍光信号を計測する第3の工程と、蛍光信号を計測した塩基から蛍光色素を切り離す第4の工程と、切り離した蛍光色素を含む溶液を洗い流す第5の工程と、第3の工程で得られた蛍光信号を解析してテンプレートDNAの塩基配列を決定する第6の工程とを含むものである。
本発明による核酸ポリマーの解析方法は、また、一例として、分析対象サンプル由来のテンプレートDNAを予め表面上で複製させたテンプレートDNAビーズを、上記した表面に凹凸パターンが形成され、凹凸パターン中に複数のビーズ着座位置が2次元アレイ状に設定されている樹脂基板のビーズ着座位置に装填する第1の工程と、ビーズ着座位置に装填したテンプレートDNAビーズ上のテンプレートDNAの1塩基分の伸長反応を、蛍光色素を含む試薬により行わせる第2の工程と、反応後に励起光を照射することによりスポットアレイ基板のビーズ着座位置から発生する蛍光信号を計測する第3の工程と、蛍光信号を計測した塩基から蛍光色素を切り離す第4の工程と、切り離した蛍光色素を含む溶液を洗い流す第5の工程と、第3の工程で得られた蛍光信号を解析してテンプレートDNAの塩基配列を決定する第6の工程とを含むものである。
本発明による核酸ポリマーの解析方法は、また、一例として、分析対象サンプル由来のテンプレートDNAを上記したスポットアレイ基板のオリゴDNA表面修飾ビーズ上に固定化する第1の工程と、オリゴDNA表面修飾ビーズ上に固定化したテンプレートDNAを複製させる第2の工程と、オリゴDNA表面修飾ビーズ上のテンプレートDNAの1塩基分の伸長反応を、蛍光色素を含む試薬により行わせる第3の工程と、反応後に励起光を照射することによりスポットアレイ基板のビーズ着座位置から発生する蛍光信号を計測する第4の工程と、蛍光信号を計測した塩基から蛍光色素を切り離す第5の工程と、切り離した蛍光色素を含む溶液を洗い流す第6の工程と、第4の工程で得られた蛍光信号を解析してテンプレートDNAの塩基配列を決定する第7の工程とを含むものである。
本発明によると、数μm〜数100nmの寸法レベルでの微細な構造形成ができ、かつ、アレイスポットの材料(官能基スポット、オリゴDNAスポット等)をアレイ状にパターニングしたスポットアレイ基板(または、このスポットアレイ基板を作製するためのキット)を低コストに量産できる。また、こうして製造した基板(または、基板を作製するためのキット)を用いることにより消耗品コストの安い核酸ポリマー解析を実現できる。
上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
樹脂基板上にスポットアレイを形成する製造工程の例を示す説明図。 半導体製造プロセスによりSi基板上にスポットアレイを形成する製造フローの一例を説明する図。 Ni製凸型金型の上面図とその金型を用いて製造された樹脂基板の模式図。 Ni製金型の上面図とその金型を用いて製造された樹脂基板の模式図。 スポットアレイ形成に磁力を用いる例の説明図。 樹脂基板の表面に設けられた凹凸パターンの例を示す模式図。 樹脂基板の表面に設けられた凹凸パターンの例を示す模式図。 樹脂基板の表面に設けられた凹凸パターンの例を示す模式図。 樹脂基板の表面に設けられた凹凸パターンの例を示す模式図。 樹脂基板の表面に設けられた凹凸パターンの例を示す模式図。 スポットアレイ基板の製造工程を示す概略図。 Si基板を用いたスポットアレイ基板の製造工程を示す概略図。 化学結合形成工程を追加した製造工程を示す概略図。 簡便に化学結合形成工程を追加する方法の説明図。 核酸ポリマー解析装置の構成例を示す概略図。 蛍光の計測結果の一例を示す図。 核酸ポリマー解析装置の構成例を示す概略図。 蛍光の計測結果の一例を示す図。
従来のアレイ基板製造技術を概説するため、図2に、半導体製造プロセスによりSi基板上にスポットアレイを形成する製造工程の一例を示す。例えば、官能基スポットとして、アミノ基スポットを形成する場合、Siウェハ101に対し、光リソグラフィによりレジストパターン102を形成し、その開口部(例えば、上からみた場合、円形や四角形などの開口部)を酸素プラズマ103でライトに酸化処理し、その後、アミノシラン系ガス104によりアミノシラン膜105を気相成膜して、最後にウェット洗浄によりレジストパターン102を除去するフローで、アミノ基スポットアレイ106を形成した基板を製造することができる。あるいは、Siウェハに対し、先にアミノシラン膜を成膜し、光リソグラフィによってスポットパターンマスク(例えば、上からみた場合、円形や四角形などのマスク)を形成したのち、ドライエッチングによりスポット以外の平面領域のアミノシラン膜を除去してからレジストマスクを剥離することによっても製造することができる。
但し、このような製造方法では、基板材料のそれぞれに半導体プロセス用Si基板を用いる必要があり、また、全てのウェハに対し、リソグラフィ、プラズマ処理あるいはドライエッチング、気相成膜などの半導体プロセスによる処理を施す必要があるため、製造コストの低減には限界があった。また、上記に示した製造工程以外にも、イオンビームでの加工や電子ビームでの成膜など、スポットアレイを形成できる方法はありうるが、このようなビーム描画方式の製造法は、スポット数が増加するに従ってコスト高になるため、ウェハ一括処理と比較して低コストの量産製造方法になることはありえない。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。実施例に記載する構造及び材料は、本発明の思想を具現化するための一例であり、材料及び寸法などを厳密に特定するものではない。
[実施例1]
実施例1として、樹脂基板を用いて、官能基スポットアレイ又はオリゴDNAスポットアレイを形成したスポットアレイ基板の製造例を説明する。
図1は、樹脂基板上にスポットアレイを形成する本実施例の基本製造工程を示す説明図である。要約すると、表面に凹凸パターンが形成され、その凹凸パターン中に複数のビーズ着座位置が2次元アレイ状に設定されている樹脂基板を作製し、その樹脂基板のビーズ着座位置に官能基表面修飾ビーズ又はオリゴDNA表面修飾ビーズなどの表面修飾ビーズを装填することにより、スポットアレイ基板を低コストに製造する方法である。ビーズ着座位置は、凹凸パターンの凸部により周囲の一部あるいは全部を囲まれた、ビーズが丁度嵌め込まれる寸法を有する空間である。
図1(a)は、Si金型を直接用いる方法を示す。この方法では、半導体プロセス(リソグラフィ、ドライエッチング、アッシング)によりSiウェハを加工して、Si製凸型微細金型(マスター)201を製作する。図1(b)は、Ni電鋳を用いる方法を示す。この方法は、Ni電鋳によりサブマスターを作製するものであり、Si製凹型微細金型(マスター)202を製作したのち、Ni製凸型金型(サブマスター)203に転写する。いずれの方法であれ、まず、凸型の金型201あるいは203を、少なくとも1個、作製する。その後、図1(c)に示すように、この金型を用いて凹部のアレイ205を形成した樹脂基板204を製造する。この成形工程では、樹脂原料から射出成形により樹脂基板204を量産することが可能である。また、予め板状あるいはシート状素材として準備された樹脂プレート(あるいは、薄ければ、樹脂フィルム)の加熱変形(熱インプリント)により樹脂基板204を量産することもできる。
本実施例では、一例として、図1(b)に示したNi製凸型金型(サブマスター)203を用い、樹脂材料の一例としてシクロオレフィンポリマー(COP)あるいはシクロオレフィンコポリマー(COC)などのシクロオレフィン系ポリマーを使用し、射出成形により、1,000枚の成形品を作製した結果、問題なく作製することができた。最後に、スポットアレイを形成した。この工程は、図1(d)に示すように、凹部のアレイ205を形成した樹脂基板204を、一例としてシリカ製のアミノ基表面修飾ビーズ(直径1μm)が分散した液体206に浸漬した状態で、凹部にビーズが入る方向に遠心力が発生するように遠心分離器207に載せ、3000rpmで10分間回転させた。球形のビーズには、粒径ばらつきがCV10%のものを用いた。
凹部によって構成されるビーズ着座位置にビーズが入ったかどうかを電子顕微鏡により確認したところ、全体の40%の凹部にアミノ修飾ビーズが装填されていたが、60%の凹部にはビーズが装填されていなかった。原因を推定するため、ビーズが分散した液体に基板を浸漬した状態を光学顕微鏡で注意深く観察した結果、大小さまざまな気泡が残ってしまっている様子が散見された。この気泡がビーズ装填の邪魔になっているようにみえる。そこで、凸型金型により形成した凹部の中に気泡が残りやすく液体が入り難いことが、ビーズが嵌り難い原因であると推定し、この対策として、金型のレイアウト変更と、アルコールから水溶液への液体置換、の二つの気泡低減策を実施することにした。
図3に、前記の試験製造に用いたNi製凸型金型203の上面図、及びその金型を用いて製造された樹脂基板204の模式図を示す。金型の凸部301が樹脂に転写されて樹脂基板204には凹部が形成される。直径1μmの球形ビーズに対して、円柱状の凹部は直径が1μm、凹部の密度は6.6×106個/cm2とした(4.2μmピッチ)。なお、ここでは単純に「1μmの球形ビーズを直径1μmの円柱状の凹部に装填する」といった略式の表現で、寸法の一例を述べているが、実際は、例えば凹部を若干の順テーパとする(例えば深さが1.1μmの凹部において、垂直に対して一例として+5°だけ順テーパとし、凹部の上部開口部の直径を1.1μm、凹部の底部の直径を0.9μmとする)といった形態とすることが好ましく、これにより、ビーズは上部開口部より入りやすく、かつ、入り込んだ後は嵌り込むため脱落しにくい。しかしながら、このように、凹部の上部開口部の直径をわずかにビーズより大きくした方がビーズが入り易いことや、わずかに順テーパとした方がきちんと嵌り込んで脱落しにくいことなどは、言うまでもなく当然発想できる事柄であり、このような詳細設計の工夫を施した状態のことを「1μmの球形ビーズを直径1μmの円柱状の凹部に装填する」と、簡単に表現している。また、例えば、ビーズのばらつきも考慮して、更にもう少し順テーパにする(例えば、+10°だけ順テーパとする)などの工夫や、それ以外にも、上部開口部に、まるみ(R)をつける、あるいは、面取り(C)を施す、などの工夫も当然容易に想定される工夫であろう。
図4は、改良型のNi金型305の一例の上面図、及びその金型を用いて製造された樹脂基板306の模式図である。Ni金型305は、密に配置されたひし形(正確には、頂点を面取りした形態のひし形)の部分が窪み、隣接するひし形の間の部分が突出している凹凸パターンを有する。この金型によって製造された樹脂基板306は、ビーズ充填率向上のための対策の1つとして、図3とビーズ着座位置の配置は同じであるが、液体のフロー方向に対し素直な流路が形成されており、液体が流入しやすく(気泡が残りにくく)、それゆえビーズが嵌りやすいと期待できる。金型305の凸部304が樹脂に転写されて、樹脂基板306には凹部として溝が形成される。この例では、交差した溝のレイアウトとなっている。寸法の一例としては、溝は深さが1.1μm、幅が0.6μmであり、幅がビーズ直径の1μmよりも小さいため、溝にはビーズは装填されないようになっている。溝は交差しており、その交点部分がビーズ着座位置となる。交点部分は最も狭い部分の寸法を1μm(上述のように、実際は、上部の幅は、これよりも少しだけ大きめの寸法であり、かつ、若干順テーパ)として、直径1μmのビーズを装填することのできるレイアウト設計とした。
図4に示す金型を用いて、射出成形により1000枚の成形品を作製した。図3の基板と比較して、流路があり、多少複雑な形状ではあるが、射出成形による試験製造の結果、図4でも、全く問題なく作製できることがわかった。
そこで、最後に、この改良したレイアウトの樹脂基板を、図1(d)に示すようにシリカ製の表面アミノ基修飾ビーズが分散した液体206に浸漬した。但し、今回は、上記の改良したレイアウトの樹脂基板を、シリカ製のアミノ基表面修飾ビーズが分散した液体206に浸漬する前に、一旦、イソプロピルアルコールに浸漬して、気泡ができていないことを注意深く観察しながら水溶液に置換し、それから、シリカ製の表面アミノ基修飾ビーズが分散した液体206に置換した。この状態で、凹部すなわちひし形とひし形の間の部分が溝になったパターンにおいて溝の交点に設定されたビーズ着座位置にアミノ基表面修飾ビーズを装填するため、遠心分離器207に載せ、3000rpmで10分間回転させた。溝の交点のビーズ着座位置にビーズが入ったかどうかを電子顕微鏡により確認したところ、全体のうちの80%のビーズ着座位置にアミノ基修飾ビーズが入っており、改善がみられたが、未だ20%のビーズ着座位置にはビーズが入っていなかった。
その後の分析に用いることを模擬するために、分析用試薬の水溶液を、酵素反応を制御するための温調(10〜70℃)を繰り返し行いながら12時間ランさせたのち、再び、溝の交点のビーズ着座位置に入っていたビーズを電子顕微鏡により確認した。その結果、10%のビーズが脱落して、充填率は全体のうちの70%に低下していた。本実施例の基板は、充填率が若干低いものの、成形した安価な樹脂基板にアレイスポット材料を嵌め込むだけの製造方法であるため、きわめて低コストで製造でき、優位な製造方法であることが確認できた。
本実施例では、一例として、アレイスポットの材料としてバルクの材質がシリカ製のビーズの表面に、官能基の一例としてアミノ基を修飾したものを用いた。また、遠心分離器(あるいはそれに類する回転機械でもよい)によって樹脂基板の凹部にビーズを装填する例について述べた。しかし、本実施例は他の官能基で表面修飾したビーズに対しても適用可能であることは言うまでもなく、また、ビーズのバルクの材質についてもシリカに限るものではない。
例えば、ビーズのバルクの材質としては、磁性材料を含んだアミノ基表面修飾磁気ビーズ208を用いることができる。その場合、図5に示すように、容器に凹部のアレイ205を形成した樹脂基板204をセットし、アミノ基表面修飾磁気ビーズ208を分散した溶液209に浸漬してから、樹脂基板の背面から磁石210によって磁気ビーズに磁力を作用させて引きつけながら磁石を移動させる装置211を用いることにより、凸部のアレイ205にビーズを装填することができる。この、下面から磁石210で引きつけながら磁石が移動する装置211を用いる場合にも、遠心分離器を用いた場合と同様に、十分に気泡を除去してからビーズを装填した方が装填率が高くなり、また、その後の温調(10〜70℃)を繰り返す12時間ランのヒートサイクルテストによって若干のビーズが脱落する現象がみられた。以上のように、ビーズのバルク材質を変え、ビーズを装填するための力を遠心力でなく磁気力に変更しても、基板のビーズ着座位置へのビーズ装填は同様に可能である。
また、上記では一例として、図3に示すような単純なスポットアレイレイアウトの凹部(有底孔)へのビーズの装填と、図4に示すような溝が交わりその交点がビーズを装填できる寸法に設計されたレイアウトの溝の凹部(溝の交点位置)へのビーズ装填について装填率などの詳細結果を説明したが、表面の凹部のデザインはこれらに限られない。
図6から図10は、樹脂基板の表面に設けられた凹凸パターンの他の例を示す模式図である。いずれの図も、左側の図はビーズが嵌め込まれていない樹脂基板の上面模式図、右側の図はビーズ着座位置に表面修飾ビーズを嵌め込んで製造されたスポットアレイ基板の上面模式図である。このうち、図6、図7、図10に示す樹脂基板の表面に形成された凹凸パターンに共通する概念は、隣接するビーズ着座位置同士をビーズ着座位置の寸法より狭い幅の溝で連結したパターンであることである。
図6は、表面に、互いに直交する複数の溝が縦横に形成され、縦溝と横溝の交点がビーズ着座位置となる樹脂基板307の例を示す模式図である。ビーズ着座位置308は2次元アレイを構成して樹脂基板307上に配置されている。溝の幅はビーズ直径より少し小さく設定されているため、ビーズは交点と交点を結ぶ直線状の溝の中に入ることはできない。しかし、縦溝と横溝の交点によって構成されるビーズ着座位置308は直径1μmのビーズが嵌り込むだけの寸法を有する。従って、上記のように遠心力や磁気力によってビーズをビーズ着座位置に嵌め込むことができる。図示するように、溝の幅より直径の大きなビーズが樹脂基板の縦溝と横溝の交点によって構成されるビーズ着座位置に嵌め込まれ、その結果、表面修飾ビーズ310が表面に2次元アレイ状に配置されたスポットアレイ基板309が得られる。
図7は、表面に、くびれのある溝が平行に複数本形成された樹脂基板の例を示す模式図である。樹脂基板311の表面には、幅が広くなった箇所と幅が狭くなった箇所が交互に連なる溝が並列して複数本、互いに交わることなく形成されている。溝の幅は、幅が広い箇所でビーズの嵌め込みを許容するような寸法になっている。従って、くびれのある溝のうち幅広の箇所がビーズ着座位置312となり、ビーズ着座位置に表面修飾ビーズ310を嵌め込むことで、表面に表面修飾ビーズが2次元アレイ状に配置されたスポットアレイ基板313が得られる。この樹脂基板311の場合、溝と溝が交差していないが、液が流れ込みやすいために、少なくとも孤立した円形の有底孔からなるビーズ着座位置よりはビーズが入りやすく、ビーズ装填率を高めることができる。
図8は、表面に、四角形の有底孔からなるビーズ着座位置が2次元アレイ状に形成された樹脂基板の例を示す模式図である。この樹脂基板314は図3に示した樹脂基板と類似であるが、ビーズ着座位置315となる凹部の平面形状を四角形とすることで、円形の凹部よりも気泡や内部の溶液が抜けやすいため装填率が上がりやすい。樹脂基板314の四角形の有底孔からなるビーズ着座位置315に表面修飾ビーズ310を嵌め込むことで、表面に表面修飾ビーズが2次元アレイ状に配置されたスポットアレイ基板316が得られる。
図9は、表面に六角形の有底孔からなるビーズ着座位置が2次元アレイ状に形成された樹脂基板の例を示す模式図である。この樹脂基板317は、図3に示した樹脂基板と類似であるが、ビーズ着座位置318となる凹部の平面形状を六角形とすることで、円形の凹部より気泡や内部の溶液が抜けやすいためビーズ装填率が上がりやすい。また、四角形の孔よりも六角形の孔の方が単位面積当たりに装填できるビーズの数を増加することができる。樹脂基板317の六角形の有底孔からなるビーズ着座位置に表面修飾ビーズ310を嵌め込むことで、表面に表面修飾ビーズが2次元アレイ状に配置されたスポットアレイ基板319が得られる。
図10は、表面に柱状ピラーが規則的に配列した樹脂基板の例を示す模式図である。樹脂基板320の表面に複数の柱状ピラー322が規則的に突出し、6個のピラーで囲まれる空間がビーズ着座位置321となる。柱状ピラーによって囲まれた空間をビーズ着座位置とすることにより、六角形の有底孔によってビーズ着座位置を構成する場合と比較して、細密装填できるビーズの数は同じでも更に溶液が流れやすく、ビーズも装填しやすい。柱状ピラーと柱状ピラーの間に隙間があいていることで、隣接するビーズ着座位置とビーズ着座位置の間を溝で連結することと同じ構成であり、溶液を流れやすくする効果がある。柱状ピラーと柱状ピラーの隙間は、ビーズが最密充填する距離まで、溝の長さを短くしたものと、概念的にみなすことができる。樹脂基板320の柱状ピラーによって囲まれたビーズ着座位置321に表面修飾ビーズ310を嵌め込むことで、表面に表面修飾ビーズが2次元アレイ状に配置されたスポットアレイ基板323が得られる。
図3から図10に示した樹脂基板は、ビーズ着座位置の形成形態が異なり、それによってビーズ装填率などに違いが出ることがあるものの、本発明の金型から樹脂へのパターン転写と、そのパターンによって2次元アレイ状に設定されるビーズ着座位置へのビーズ装填を利用した低コストなスポットアレイ基板の製造技術の本質が変わるものではない。なお、ここでは単なる一例として、ビーズ直径を1μmとして細密装填等を示しているが、微細金型はもっと小さなものまで作製することが可能であり、一方、ビーズも、もっと小さな径のもの、例えば、0.8μm、0.6μmのものも入手できるので、のちに説明する蛍光観察に用いるフォトセンサーアレイと光学系の進歩により、ピクセル数が増加し光学分解能が増せば、その仕様にあわせて、より寸法が小さく、より高集積なアレイを実用化していくことも可能である。本実施例によると、表面に表面修飾ビーズを面密度6.6×106個/cm2〜180×106個/cm2(4.2μmピッチ〜0.8μmピッチ)で2次元アレイ状に配置したスポットアレイ基板を低コストで製造することができる。0.8μmピッチは、0.6μmビーズを用いた場合の最密充填での限界であり、面密度180×106個/cm2に相当する。
なお、アレイスポット材料であるビーズを遠心力や磁力を用いて装填する工程は、スポットアレイ基板の製造工程であり、分析装置のユーザーからみれば、事前の準備作業であるため、望ましくはスポットアレイ基板の製造メーカ側にて実施済みの状態にしてユーザーに供給することが適切である。しかし、表面に凹凸パターンが形成され凹凸パターン中に複数のビーズ着座位置が2次元アレイ状に設定されている樹脂基板と、樹脂基板のビーズ着座位置に装填される官能基表面修飾ビーズあるいはオリゴDNA表面修飾ビーズなどの表面修飾ビーズとがセットになったスポットアレイ基板製造キットと、遠心分離器(あるいはそれに類する回転機械)、又は、磁石を用いて磁気ビーズを装填する装置がユーザーに提供され、ユーザーがアレイスポット材料の装填工程を自ら実施する形態をとっても、多少の手間とコストに差が生じるだけであり、そもそも基本部材自体が低コストに製造されているため、ユーザーが低コストな分析を実現できるメリットが失われることはない。
[実施例2]
実用上好ましくはビーズ充填率が高く、少なくとも90%以上の有効なアレイスポットを形成することが望まれる。そこで、実施例2として、樹脂基板を用いて官能基スポットアレイやオリゴDNAスポットアレイなどの表面修飾スポットアレイを形成したチップを製造し、そのとき特に、ビーズ充填率を向上し、かつ分析中に脱落しない施策を施した例を示す。
図11は、改善したスポットアレイ基板の製造工程を示す概略図であり、図11(a)は金型準備工程、図11(b)は成形工程、図11(c)はスポットアレイ形成工程を示している。要約すると、金型を用いて表面に凹凸パターンが形成され、その凹凸パターン中に複数のビーズ着座位置が2次元アレイ状に設定されている樹脂基板を作製する工程と、樹脂基板のビーズ着座位置に表面修飾ビーズを装填する工程とを有し、樹脂基板のビーズ着座位置に表面修飾ビーズを装填する工程は、樹脂基板を加熱して樹脂基板を熱膨張させた状態でビーズ着座位置に表面修飾ビーズを装填する第1の工程と、その後、樹脂基板の温度を下げ、樹脂基板を収縮させてビーズ着座位置に装填された表面修飾ビーズが脱落しにくくする第2の工程を有するスポットアレイ基板の製造方法である。この方法では、表面修飾ビーズのバルク材質が樹脂基板の材質と比較して熱膨張係数が小さいものを用いる必要がある。
図11(a)に示す金型401としては、図4に示したものと同じ、密に配置されたひし形の部分が窪み、隣接するひし形の間の部分が突出した凹凸パターンを有するNi電鋳品を用いた。これを転写したパターンには、液体が流入しやすく(気泡が残りにくく)、それゆえビーズが嵌りやすいと、実施例1において確認されたものである。その後、図11(b)に示すように、この金型を用いて、ひし形パターン403が形成された樹脂基板402を、シクロオレフィン系ポリマーの射出成形により作製した。樹脂基板402の凹凸パターン中に設定されたビーズ着座位置の面密度は6.6×106個/cm2である。最後に、図11(c)に示すように、ひし形パターン403を形成した樹脂基板402を、一旦、イソプロピルアルコールに浸漬してから、気泡ができていないことを注意深く観察しながら、シリカ製の表面アミノ基修飾ビーズが分散した液体404に置換した後、温調機能406付き遠心分離器405に載せ、温度を樹脂基板の耐熱温度より低い90℃まで上昇させてから、3000rpmで10分間回転させた。その後、温調機能付き遠心分離器405のヒータをオフにし、継続して追加で5分間回転させ続けた時点で、温度が40℃まで低下したため、回転を停止した。なお、本実施例においても、ビーズは、平均粒径が1μm、粒径ばらつきがCV10%のものを用いた。
なお、遠心分離器ではなく、磁力によって磁性体ビーズを装填する場合には、同様のセンスで、磁石を用いて磁気ビーズを装填する温調機能付きの装置を用い、昇温時にビーズを凹凸パターンのビーズ着座位置に嵌めた後、温度が低下してから磁力の印加をオフにする、あるいは温度が低下してから磁力を及ぼしている装置から樹脂基板を降ろせば良い。
広く一般的な樹脂材料の熱膨張係数は10-5台後半から10-4[/℃]程度であり、本実施例に用いたシクロオレフィン系ポリマーもこの範疇に属する。これは、例えばシリカビーズの主原料であるSiO2の10-7台の熱膨張係数と比較して桁違いに大きいため、昇温時の熱膨張による容易なビーズ嵌め込みと、冷却時のビーズ締め付けによる固定の効果が得られると期待できる。一方、シリカビーズではなく磁性体ビーズを選択した場合でも、例えば、鉄や酸化鉄の熱膨張係数は、10-5台前半以下であり、樹脂の熱膨張係数よりもやはり小さい。基板の樹脂材料とビーズの材料の組み合わせの選択により、最適な温度条件や、ビーズ着座位置を構成する凹凸パターンの例えば凹部とビーズの最適な寸法設計、すなわち装填しやすく、かつ、脱落しにくくするための、隙間設計や、凹部の順テーパ角度の最適設計等の詳細は異なれども、少なくともビーズよりも樹脂基板の熱膨張率が高ければ、効果の程度は異なるがビーズ充填率の向上と脱落率の低減が期待できる。
具体的な伸縮量の寸法としては、例えば、直径1μmのシリカビーズとシクロオレフィン系ポリマーの組み合わせの場合、凹部の詳細寸法設計に関し、実施例1にも述べたように、シリカビーズを装填する凹部(例えば孔)の入口の直径(孔の上部寸法)を1μmよりわずかに大きく、また凹部の底面の直径(孔の下部寸法)を1μmよりわずかに小さく設計しておけば、ビーズが装填されやすくなる。ここで、本実施例2で述べる熱膨張率の差を活用する場合に関して、温度を90℃まで上昇させた場合の寸法を計算すると、シクロオレフィン系ポリマー製の基板の孔は約5nm大きくなることになる。一方、シリカビーズの直径の増大量はこれよりも2桁小さいので、ほぼ変化しないと考えてよい。この孔の直径の5nmの増大により、ビーズは孔に装填されやすくなり、より深くまできっちりと嵌り込む。その後、シクロオレフィン系ポリマーが冷えることにより、孔の直径は5nm縮むので、ビーズは装填された上、きっちりと締め付けられ、脱落しにくくなると期待できる。
本実施例の改善策の効果を確認するため、ひし形パターンを囲む溝の交点に設定されたビーズ着座位置にビーズが入ったかどうかを電子顕微鏡により確認したところ、充填率が向上しており、全体のうちの92%のビーズ着座位置にアミノ基修飾ビーズが装填されていることが確認された。90℃までの温度上昇により、ビーズよりも樹脂の方がより膨張した結果、ビーズが嵌りやすくなり、ビーズ装填率が向上したものと推定される。
次に、実施例1と同様に、その後の分析に用いることを模擬するために、分析用試薬の水溶液を、酵素反応を制御するための温調(10〜70℃)を繰り返し行いながら12時間ランさせたのち、再び、ビーズ着座位置に入っていたビーズを電子顕微鏡により確認した結果、充填率は全体のうちの92%を保っていることが分かった。本改善策を用いた場合には、ビーズが締め付けられてしっかり固定され、脱落しにくくなったと考えられる。実施例1と比較すると、遠心分離器あるいは磁石を用いて磁気ビーズを装填する装置に対して、追加で温調機能が必要となるが、これによる製造コストの増大はたいして大きくない。全てのチップをSiウェハを用いて半導体プロセスにより製造することと比較すれば、温調機能の追設がコスト増大に及ぼす影響は極めて小さいと考えられる。
ここで、比較のため、基板の材料をSiとして、同様のビーズ装填ならびに脱落の評価を行った。前記のように、基板の材料がシクロオレフィン系ポリマーのときには、基板の昇温によりビーズ着座位置の凹部の寸法が増大してビーズが嵌りやすくなった。しかし、基板の材料をSiとした場合には、熱膨張率が10−6台前半であるため、ビーズ着座位置の凹部の寸法変化が小さい(Siは、昇温しても、樹脂と比較して、ほとんど膨張しない)。また、シリカ製ビーズの寸法もほとんど変化しない。従って、温調によってビーズが嵌りやすくかつ脱落しにくくなる十分な効果は得られないと考えられる。
評価の手順を図12に示す。前記の図11では、図11(a)に示すNi電鋳の金型401により図11(b)に示すひし形パターン403が形成された樹脂基板402をビーズ装填の評価に用いたが、ここでは、図11(a)のNi電鋳の金型401を作製する際に、そのマスターとして使用したSi金型と同一表面形状のSi基板1201を評価に用いた。図1に簡略化して示しているように、Si製凹型微細金型(マスター)202は、凹部のアレイ205を形成した樹脂基板204と同一の表面形状であり、材質のみが異なるものとなっている。
金型作製時と同様の半導体プロセス(リソグラフィ、ドライエッチング、アッシング)を用いてSiウェハを微細加工し、図12(a)に示すように、Si製凹型微細金型(マスター)と同一表面形状のSi基板1201を作製した。このSi基板1201表面には、図11(b)に示す樹脂基板402の表面と同じひし形パターン403が形成されている。その後、図12(b)に示すように、このSi基板1201を、一旦、イソプロピルアルコールに浸漬してから、気泡ができていないことを注意深く観察しながら、シリカ製の表面アミノ基修飾ビーズが分散した液体404に置換した後、温調機能406付き遠心分離器405に載せ、温度を樹脂基板の耐熱温度より低い90℃まで上昇させてから、3000rpmで10分間回転させた。その後、温調機能付き遠心分離器405のヒータをオフにし、継続して追加で5分間回転させ続けた時点で、温度が40℃まで低下したため、回転を停止した。本実施例においても、ビーズは、平均粒径が1μm、粒径ばらつきがCV10%のものを用いた。
ひし形パターンを囲む溝の交点に設定されたビーズ着座位置にビーズが入ったかどうかを電子顕微鏡により確認したところ、基板の材料がシクロオレフィン系ポリマーのときと比較してビーズ充填率は低下しており、全体のうちの70%のビーズ着座位置にアミノ基修飾ビーズが装填されていることが確認された。また、その後の分析に用いることを模擬するために、分析用試薬の水溶液を、酵素反応を制御するための温調(10〜70℃)を繰り返し行いながら12時間ランさせたのち、再び、ビーズ着座位置に入っていたビーズを電子顕微鏡により確認した結果、充填率はさらに全体のうちの60%に低下していることが分かった。このように、基板材料をSiとした場合には、基板昇温による熱膨張によりビーズが嵌りやすくなる効果、基板温度低下により装填されたビーズが締め付けられ脱落しにくくなる効果は得られないことがわかった。
以上、金型を用いて表面に凹凸パターンが形成され、その凹凸パターン中に複数のビーズ着座位置が2次元アレイ状に設定されている樹脂基板を用いて表面修飾スポットアレイを製造する方法では、材料コスト、製造コストが安くなるだけでなく、樹脂の熱膨張率が高い性質を積極的に活用して、温調機能により、ビーズ装填率を向上させ、ビーズ脱落率を低減できること、即ち、アレイスポット製造の歩留まり向上ができることを示した。
なお、実施例1と同様に、スポットアレイ基板は製造メーカが完成品としてユーザーに供給するのが望ましい。しかし、成形した基板とアレイスポット材料となるビーズがセットになったスポットアレイ基板製造キットと、温調機能付き遠心分離器(あるいはそれに類する回転機械)、又は、磁石を用いて磁気ビーズを装填する温調機能付きの装置がユーザーに提供され、ユーザーがアレイスポット材料の装填工程を自ら実施する形態をとっても、基本部材自体が低コストに製造されているため、ユーザーが低コストな分析を実現できるメリットが失われることはない。
[実施例3]
次に、実施例3として、樹脂基板を用いて、官能基スポットアレイ又はオリゴDNAスポットアレイを形成したチップを製造し、そのとき特に、ビーズ充填率を上げかつ分析中に脱落しない別の施策として、ビーズの固定箇所での化学結合の効果並びにビーズ粒径分布の狭小化の効果を検討した。
図13は、ビーズの固定箇所での化学結合の効果を調べるために、化学結合を形成するための工程を追加したスポットアレイ基板の製造工程を示す概略図である。金型準備工程及び成形工程及び最後のスポットアレイ形成工程は、実施例2と同様であるため説明を省略する。図13(a)は成形工程に続く気相CVD工程、図13(b)はレジスト樹脂スピン塗布工程、図13(c)はO2ドライエッチング工程、図13(d)は保護用レジスト樹脂除去工程を示している。要約すると、金型で樹脂に凹凸パターンを形成し、凹凸パターンのビーズ着座位置に官能基又はオリゴDNAで修飾したビーズを嵌め込む際に化学結合が形成できるよう、予めビーズ着座位置を表面修飾した基板を用いたスポットアレイデバイス製造方法である。
本実施例では、実施例2に示した成形工程によって表面凹凸パターン中に複数のビーズ着座位置が2次元アレイ状に設定された樹脂基板を作製した後、工程の増加にはなるが、化学結合を形成するため、以下の4工程を追加した。
まず、図13(a)に示すように、射出成形によりひし形パターンを形成した樹脂基板502に対し、気相CVDにより、エポキシ系シランカップリング剤504をプリカーサーに使用して、エポキシシラン膜505を成膜し、表面にエポキシ基を形成した。次に、図13(b)に示すように、エポキシシラン膜505を形成した樹脂基板502の表面にスピン塗布機506により、アセトンにて完全溶解可能なレジスト樹脂507を塗布した。次に、図13(c)に示すように、RIE(リアクティブイオンエッチング)装置を用いて、O2プラズマ508により、基板の上面509が露出するまでエッチバックした。このドライエッチングが完了した時点で、ひし形パターンの上面はシクロオレフィン系ポリマーが露出しており、一方、溝の中には、入り込んだレジスト樹脂510が残っている。従って、溝の内面は、エポキシ基がレジスト樹脂にカバーされ保護された状態である。次に、図13(d)に示すように、アセトンにより、溝内のエポキシ基をカバーしているレジスト樹脂を除去することにより、溝の内面だけがエポキシ基で修飾されたひし形パターンのシクロオレフィン系ポリマー基板511を作製した。なお、シクロオレフィン系ポリマー樹脂基板はアセトンに溶けないため、塗布されたレジスト樹脂をアセトンで溶かして除去する例を示したが、樹脂基板材料にはアセトンで溶けるものもあるため、これに注意して基板材料に相応しい保護樹脂と溶剤の組み合わせを選択する必要がある。逆に、シクロオレフィン系ポリマーのように、有機溶剤耐性の高い樹脂も存在するので、レジスト樹脂の除去に他のレジスト剥離剤を使用することも可能であり、レジスト剥離のための溶剤はアセトンに限るものではない。
これら4工程を追加したのち、最後に、ビーズ充填率の評価として、溝の内面だけがエポキシ基で修飾されたひし形パターンのシクロオレフィン系ポリマー基板511を、図11(c)の場合と同様に、一旦、イソプロピルアルコールに浸漬してから、気泡ができていないことを注意深く観察しながら、シリカ製の表面アミノ基修飾ビーズが分散した液体に置換した。その後、温調機能付き遠心分離器に載せ、温度を90℃まで上昇させてから、3000rpmで10分間回転させた。その後、温調機能付き遠心分離器のヒータをオフにし、継続して追加で5分間回転させ続けた時点で、温度が40℃まで低下したため、回転を停止した。なお、この化学結合の効果の評価においても、ビーズは平均粒径が1μm、粒径ばらつきがCV10%のものを用いた。
なお、ここで遠心分離器ではなく、磁石を用いて磁性体ビーズを装填する場合には、同様のセンスで、磁石を用いて磁気ビーズを装填する温調機能付きの装置を用い、昇温時にビーズを嵌めた後、温度が低下してから磁力の印加をオフにする、あるいは、温度が低下してから磁力を及ぼしている装置から降ろせば良い。
本評価では、このように、スポットアレイ材料の一例であるアミノ基修飾ビーズのアミノ基と基板の溝内部のエポキシ基により化学結合が形成されるであろうと予測して、ビーズ充填率が更に高くなることを期待した。この化学結合の効果を確認するため、ひし形パターンを囲む溝の交点に設定されるビーズ着座位置にビーズが入ったかどうかを電子顕微鏡により確認したところ、充填率が更に向上しており、全体のうちの96%のビーズ着座位置にアミノ修飾ビーズが装填されていることが確認された。化学結合での固定化効果が加わったことにより、ビーズ充填率が向上したものと推定される。
次に、実施例1,2と同様に、その後の分析に用いることを模擬するために、分析用試薬の水溶液を、酵素反応を制御するための温調(10〜70℃)を繰り返し行いながら12時間ランさせたのち、再び、ビーズ着座位置に入っていたビーズを電子顕微鏡により確認した結果、充填率はわずかに減少し、全体のうちの94%との結果となった。2%分の減少はみられたものの、化学結合での固定化効果が加わったことにより、それがない場合と比較して、高いビーズ充填率、高いビーズ残存率(=充填率−脱落率)が得られた。なお、アミノ基修飾ビーズと化学結合が形成できるものとして、エポキシ系シランカップリング剤により成膜したエポキシシラン膜以外にも、例えば、イソシアネート系シランカップリング剤により成膜したイソシアネートシラン膜等も用いることができる。試しに同様の検討を実施した結果、エポキシシラン膜の場合とほぼ同じ95%のビーズ充填率が得られ、また、分析を模擬した12時間のランの後には94%のビーズ残存率が得られた。
どちらの官能基を利用した場合にも、化学結合によりビーズを基板上のビーズ着座位置に保持する能力が増していると解釈できる。しかし、実施例1,2と比較すると、図13(a)〜(d)の4工程が増加するため、製造コストはある程度増大することになる。但し、少なくとも、全てのチップをSiウェハを用いて半導体プロセスにより製造することと比較すれば、全てのチップに微細パターニング(リソグラフィ)を用いているわけではないので、低コストに製造できる方法の一つである。
なお、この化学結合による効果を用いる方法においても、実施例1,2と同様に、スポットアレイ基板は製造メーカが完成品としてユーザーに供給するのが望ましい。もちろん、ユーザーがアレイスポット材料の嵌め込み工程を実施する形態をとることも可能であり、その際、基本部材自体が低コストに製造されているため、低コストに分析を実現できるメリットは失われない。しかし、本実施例の場合には、成形した基板、アレイスポット材料となるビーズ、温調機能付き遠心分離器や磁石を用いて磁気ビーズを装填する温調機能付きの装置のセットを供給する際、成形した基板のビーズが固定される位置の官能基(本実施例ではエポキシ基、あるいは、イソシアネート基)の保護の観点から、溝の内側の官能基を保護しているレジスト樹脂のカバーをつけたままでユーザーに供給する方が安心であろう。この場合には、ユーザーは、まず、有機溶剤(アセトン等)により、レジスト樹脂を除去しなければならず、実施例1,2と比較してユーザーの作業工程が増え、煩雑さが増す。
一方、本実施例には化学結合を用いた場合に特有な問題点が発見された。上述のように、ひし形パターンを囲む溝の交点に設定されるビーズ着座位置に関しては、アミノ基修飾ビーズの装填率が96%、分析を模擬して12時間ランした後のビーズ残存率が94%と、良い成績ではあったものの、ビーズ着座位置とは無関係にひし形パターンの上面、すなわちドライエッチングにより官能基を形成している膜を除去してシクロオレフィン系ポリマーが露出した表面上に、アミノ基修飾ビーズの非特異吸着が散見された。実施例1,2において、射出成形や加熱変形(熱インプリント)により表面に凹凸パターンを形成したシクロオレフィン系ポリマー基板の表面は、疎水性を保っており、非特異吸着も問題にならなかった。しかし、本実施例のシクロオレフィン系ポリマーの基板の表面は、一旦その上に別の膜が成膜されてから、その膜をO2プラズマエッチングで除去した後に再び露出したシクロオレフィン系ポリマーの表面である。このため、例えば、ドライエッチングにより、シクロオレフィン系ポリマーが露出したとき、ドライエッチングに用いているO2プラズマにより、シクロオレフィン系ポリマーの表面のC原子にOが結合して、表面に例えばCに結合した−OH基が形成されるなど、シクロオレフィン系ポリマーの通常の表面とは異なる表面官能基の状態になっているのではないかと推定された。
そこで、図13(c)のO2ドライエッチング工程の後に、非特異吸着対策として、フロロカーボン系(CFx系)のシランカップリング剤をプリカーサーとした気相CVD工程を追加した。この時点では、ビーズ着座位置の官能基はレジスト樹脂にカバーされているので、上記工程を追加したのち、図13(d)に示したようにアセトンを用いて保護レジスト樹脂を除去すれば、ビーズ着座位置には所望の官能基(本実施例ではエポキシ基、あるいは、イソシアネート基)が露出し、それ以外の平坦な部分(ひし形パターンならば、ひし形の上面)は、非特異吸着が無いように疎水性表面処理が施されている状態の基板が得られる。
この基板に対し、同様に、温調機能を用いたビーズ装填試験と脱落試験を行ったところ、アミノ基修飾ビーズの装填率は96%、分析を模擬して12時間ランした後のビーズ残存率が94%と、良い成績のまま変わらなかった。また、電子顕微鏡で観察した範囲では非特異吸着がみられなくなった。同じ樹脂基板であっても、プラズマ処理等により表面酸化等が起こると、表面状態が変わってしまうと推測され、そのときには、フロロカーボン系などの疎水化表面処理を行うことにより、元の樹脂材料(疎水性プラスチック)表面と特性の類似した表面を形成することができ、非特異吸着防止に活用できることが分かった。
一方、上記のシクロオレフィン系基板のドライエッチングによりO2プラズマに曝された表面(ひし形パターンならば、ひし形の上面)への非特異吸着とは別に、頻度は少ないが、ひし形パターンを囲む溝内で交点ではない位置に固定化されている粒径の小さいビーズが発見された。図4に示したように、ひし形パターンでは、設計上、ひし形を取り囲む溝と溝の交点の位置にはビーズが入ることができるが、交点でない溝はビーズ径よりも幅が狭いため、ビーズは入ることができないように設計されている。しかし、実際は、ビーズには粒径の分布があるため、平均径よりも小さい方向に寸法が大幅に外れたビーズが、溝内部のエポキシ基又はイソシアネート基と化学結合した、あるいは、物理的に嵌り込んだものと考えられる。
ビーズ粒径バラツキを考慮して、より狭い溝幅に変更して、これを回避することも可能だが、それ以外に、図13に示した製造方法を少し変えることにより、溝内の交点にだけ、エポキシ基、あるいは、イソシアネート基を残すこともできる。具体的には、図13(b)に示したレジスト樹脂スピン塗布工程のように、レジスト樹脂のカバーで、エポキシ基あるいはイソシアネート基を保護するのではなく、その工程の代わりに、一例として化学修飾のないシリカビーズを遠心分離器によってひし形パターンを取り囲む溝の交点に装填し、このシリカビーズによるカバーを、エポキシ基あるいはイソシアネート基の保護マスクに使う方法が考えられる。ひし形パターンを取り囲む溝の交点にシリカビーズを物理的に嵌めた後、図13(c)と同様にRIE装置を用いて、O2プラズマにより、ビーズに隠された部分以外のエポキシ基あるいはイソシアネート基をエッチバックにより除去する。最後に、温度を90℃まで上げた状態で、基板を裏返しにして遠心分離器に載せ、遠心分離器によりビーズを外すことで、ひし形を囲む溝の交点の底部のみに、エポキシ基あるいはイソシアネート基のスポットを残した基板を作製することができる。溝寸法を狭くする設計変更も併せて行うことにより、交点位置ではない溝内の部分に固定化されている粒径の小さいビーズを、確認した視野の範囲ではゼロにすることができた。但し、この方法は、レジスト樹脂スピン塗布が不要になる代わりに、シリカビーズの装填とシリカビーズの取り外しの2工程を追加する必要があり、溝内の固定化を防止する機能は向上するものの、製造工程が増加することになる。
そこで、化学結合の効果を利用する方法の別の検討として、化学結合のためのエポキシ基あるいはイソシアネート基を形成するための工程の更なる簡略化を検討した。図13に示したように、気相CVD、レジスト樹脂塗布(又は、前記の保護マスクとしてのシリカビーズの装填)を実施してから、要らない部分(ひし形パターンの上面)のエポキシ基あるいはイソシアネート基を除去する、といった複雑な方法ではなく、ひし形パターンを囲む溝内や、溝の交点にだけシランカップリング剤による処理ができる簡便な方法を検討した。
図14は、この簡便な方法の手順を示す概略図である。図14(a)は平面板との密着工程、図14(b)は毛細管現象による溝内の表面処理工程、図14(c)は洗浄工程を示している。まず、図14(a)に示すように、ひし形パターンが形成されたシクロオレフィン系ポリマー基板601のパターン面を平面板602とぴったりと密着させる。次に、図14(b)に示すように、端部をエポキシ系あるいはイソシアネート系のシランカップリング剤(液体)603に浸漬する。この工程により、ひし形パターンを伝わって溝の内部にシランカップリング剤が入り込んだ。その後、図14(c)に示すように、平面板602と密着したまま、洗浄用液体604に浸漬し、溝内外の余分なシランカップリング剤を洗い落として、洗浄用液体とできるだけ置換した上、更に、平面板602を取りはずして余分なシランカップリング剤を良く洗浄し、溝内表面で基板と結合したシランカップリング剤のみが残るようにした。
こうして作製した基板を評価した結果、前記の図13の製法にて作製した基板とほぼ同様に、95%のアミノビーズ装填ができることが分かった。また、試しに、平面板602を用いずに直接にひし形パターンの端部に一滴のシランカップリング剤を滴下したところ、この場合にも、毛細管現象により、ひし形パターンを伝わってシランカップリング剤をひし形溝内に入れることができたが、一滴を滴下した部分では、大きくはみ出して、溝以外のひし形パターン上面の平面部にもシランカップリング剤が付いてしまった。
ここでは、液体のシランカップリング剤を真空装置の気相で成膜する以外に、液体のまま毛細管現象で溝内部を修飾できる方法を手作業にて確認できた。平面板との密着性や、一滴を滴下する部分でのはみ出しをきちんと防止すれば、このように、液体の状態でのシランカップリング剤での処理によってもアミノビーズ着座位置を化学修飾し、アミノビーズ充填率を向上させることができる。
ここで、少し視点を変え、最後に、アレイスポット材料のビーズの充填率並びに残存率を向上する更に別の施策として、ビーズの粒径分布の狭小化の効果について検討した。そもそも、上に述べた化学結合の効果を併用する方法でビーズの充填率がよくなった理由や、分析を模擬した使用後にビーズ残存率が2%だけ減少した理由は、ビーズの粒径分布の拡がりにより、平均粒径よりもかなり小さいビーズが物理的にきちんと嵌め込まれず化学結合だけで固定され、これらが分析を模擬した使用中に脱落したのではないかと推定されたため、ビーズの粒径をきちんと揃えて、分布を狭小化することが本質ではないかと推論した。また、前記の溝内の交点でない位置に固定化されてしまったビーズもビーズの粒径分布の狭小化により無くすことができると期待できる。この考えに従い、ここで改めて、図13に示した化学結合の効果は使用せずに、実施例2の図11と同様の処理を実施した。スポットアレイ形成工程では、実施例2と同様に温調機能も用いて、ビーズの嵌め込みを実施した。但し、実施例2とは異なり、ビーズの粒径ばらつきとして、CV3%のものを用いた。
ビーズの粒径分布の狭小化の効果を確認するため、ひし形パターンを囲む溝の交点に設定されるビーズ着座位置にビーズが入ったかどうかを電子顕微鏡により確認したところ、実施例2に示したCV10%の場合と比較して充填率が向上しており、全体のうちの95%のビーズ着座位置にアミノ基修飾ビーズが装填されていることが確認された。また、分析を模擬して12時間ランした後のビーズ残存率も95%のままであり、加えて、電子顕微鏡で観察した範囲では、非特異吸着は全くみられなかった。おそらく、CV10%からCV3%に変更した結果、平均と比較して大きすぎるため装填できずに邪魔になるビーズや、平均と比較して小さすぎるため装填できるがすぐに脱落しやすいビーズの割合が減少して、樹脂基板のビーズ着座位置との寸法適合性が向上し、ビーズ充填率並びに残存率が高くなったと考えられる。
以上、実施例3では、実施例2によって得られていたビーズ充填率92%、分析模擬後のビーズ残存率92%の成績を更に向上するため、ビーズ着座位置での化学結合の併用+非特異吸着防止疎水化処理により、ビーズ充填率96%、ビーズ残存率94%との値を得た。一方、ビーズの粒径分布をCV10%からCV3%に狭小化したところ、ビーズ充填率95%、ビーズ残存率95%となった。粒径分布の狭いビーズは、製造過程で選別する分だけ、粒径分布の広いビーズよりもコストは高めではあるが、少なくとも、量産基板の一つ一つに対して成膜やエッチングなどを施して化学結合のための表面修飾処理や非特異吸着防止処理をする製造プロセスよりは、コストの上昇も少ないと考えられ、製造プロセスも極めてシンプルである。
以上、90%以上の形成率でアレイスポットを形成するいくつかの方法について実施例を示し、製造コストなどの優劣についても検討した。このように、いくつかの実現方法があるが、以降の、実施例4,5には、この中で、実施例3の最後に示した「実施例2と同じ製造工程であるがCV3%のビーズを用いて製造したアレイスポット形成率95%の基板」を用いて、核酸ポリマーの解析、塩基配列の解読を行った例を示す。
[実施例4]
実施例4として、スポットアレイ基板を組み込んだフローセルを用いた分析の例を示す。
図15は、本実施例に用いた核酸ポリマー解析装置の構成例を示す概略図である。フローセル701には、樹脂製のスポットアレイ基板が組み込まれている。フローセル701の溶液導入口を通して導入された溶液は、スポットアレイ基板の表面を浸し、溶液排出口から廃液入れに排出される。スポットアレイ基板としては、密に配置されたひし形凸部とそれを囲む溝の形で凹凸パターンが形成されたシクロオレフィン基板のビーズ着座位置、すなわちひし形パターンを囲む溝の交点位置に遠心力によりアミノ基表面修飾ビーズ714が予め嵌め込まれた基板を用いた。ビーズの基本材質はシリカである。また、ビーズは粒径分布がCV3%のものを使用し、スポットアレイ基板のビーズ着座位置へのビーズ充填率は95%である。分析対象となる少なくともその一部に未知の配列を有するテンプレートDNAをエマルジョンPCRによりビーズ上で予め増幅し、これをアミノ基で表面修飾したアレイスポットに固定化したものを蛍光計測により解析し、塩基配列を解読した。
なお、実施例1〜3に述べたように、表面に形成された凹凸パターンによって2次元アレイ状のビーズ着座位置が設定された樹脂基板(例えば、フローセルに設置した形態)と、官能基(本実施例ではアミノ基)で表面修飾したビーズ(例えば、ビーズが分散した液体)を、ユーザーに別々に供給し、ユーザーがビーズを基板のビーズ着座位置に嵌め込んで官能基スポットアレイ基板を形成し、これを使用することも可能である。
フローセル701は、温調機能712により温度制御が可能である。また、いくつかの反応試薬を供給する反応試薬ユニット702が、試薬内で酵素反応が進行しない低温に保たれて設置されており、配管チューブによりフローセル701に結合されている。本実施例では、この反応試薬ユニット702より、4種類の試薬703〜706を供給できる。試薬703は、予め、分析対象となる少なくともその一部に未知の配列を有するテンプレートDNAを、オリゴDNA(既知配列)で修飾したビーズ表面に導入した上、エマルジョンPCRにより増幅したもの(エマルジョンPCRにより表面にテンプレートDNAの複製を形成したビーズ715)を含む試薬である。試薬704は、dATP−蛍光色素1、dGTP−蛍光色素2、dCTP−蛍光色素3、d−TTP−蛍光色素4、エマルジョンPCR用ビーズのビーズ側固定端に用いた既知配列(オリゴDNA)と相補のプライマー、伸長反応酵素を含む試薬である。試薬705は、上記4種のdNTPと蛍光色素との結合を切断する色素結合切断試薬である。試薬706は電解質溶液である。
また、別途、イソプロピルアルコール707、及び試薬706と同等品である電解質溶液708を用意した。これらの溶液はピペットによりフローセルに注入される。イソプロピルアルコール707はフローセル内の溶液置換に用いるためのもので、エチルアルコールなど別のアルコールでもよい。
フローセル701の上方には、試薬704に含まれる各種蛍光色素を励起するための励起光を発生する光源709、蛍光色素からの蛍光を計測するための光学系710、光検出器アレイ711が設置されている。不透明な基板であっても上方から励起光の照射や蛍光検出が可能であり、また、透明な薄型基板であれば基板の下方からでも励起及び検出は可能であるので、本実施例では光学系や検出器の上下の配置は特に限定しない。温調、光励起、蛍光観察さえできれば、光学系はフローセルの上下どちらに配置しても構わない。また、光検出器アレイ711によって受光された蛍光信号は電気信号に変換されて解析装置713に転送される。解析装置713は、転送された信号から塩基の識別や断片データのつなぎ合わせ等の解析を行い、核酸ポリマーの塩基配列を解読する。
試薬704に含まれる蛍光色素1〜4に用いることができるものとしては、Alexa488,Cy3,Cy5,Cy5.5,Alexa555,Alexa647,Alexa680,dR6G (dichloro-rhodamine 6G),dR110,dTAMRA (dichloro-carboxyteetramethyl-rhodamine),dROX (dichloro-carboxy-X-rhodamine)など、様々な蛍光色素が市販されており、波長が一部重なることがないように適切なものを選択して使用することができるのは周知である。また、これら色素の選択に従って、蛍光色素を効率よく励起するための光源709の波長として、少なくとも1種類以上の適切な波長を選択できることも、周知である。
本実施例では、まず、ピペットを用いた手作業により、フローセル701の導入口より、イソプロピルアルコール707を注入して、気泡が無いことを確認したのち、ピペットを用いた手作業により、電解質溶液708に置換した。アルコールから電解質溶液708に置換する作業は、もちろん、自動送液によって実施することも可能であり、また、場合によっては、フローセルメーカー側で、アルコールから電解質溶液708に置換する方法等を用いて、予め液を充填してユーザーに供給することも可能である。いずれにせよ、次に、電解質溶液708で満たされ気泡が除去された状態でフローセル701を核酸ポリマー解析装置にセッティングした。
次に、表面にテンプレートDNAの複製を形成したビーズ715を含む試薬703を送液ユニットによりフローセル701に自動注入し、その状態で一旦送液を停止して、最適な温度に設定して3時間放置し、アミノ基修飾スポットアレイ上に固定化させた。フローセル701に組み込まれているシクロオレフィン基板には製造時に全ビーズ着座位置の95%にまでアミノ基表面修飾したスポットアレイ材料(アミノ基表面修飾ビーズ714)が埋め込まれているが、この95%のうち92%のスポットに、エマルジョンPCRにより表面にテンプレートDNAの複製を形成したビーズ715を固定化することができた。3%のスポットには、固定化されなかった。その後、適切な温度に設定して、試薬704をフローセルに供給し、プライマーをハイブリし、酵素による伸長反応を起こさせた。このとき、試薬中のdNTPは蛍光色素により終端されているので、テンプレートDNAの1つ目の塩基種に対する伸長反応が起こった後、一旦反応は止まる。その後、光源709により、励起光を照射し、このとき発せられた蛍光を、光学系710、光検出器アレイ711により計測した。
図16に、フローセル701に組み込まれているシクロオレフィン基板上のアレイスポットのうちの1つにおいて、伸長反応を起こさせた後に、光源709で励起することにより発せられた蛍光の計測結果の一例を示す。1つ目のデータ801には、dCTPに結合した蛍光色素3の蛍光が確認されたので、1つ目の塩基はGと解読された。その後、色素結合切断試薬を含む試薬705により適切な温度で色素を切断し、切断された色素を含むフローセル内の液体を試薬706の電解質溶液にて洗い流したのち、再び試薬704を自動注入して、同様に、2つ目以降の塩基の解析を繰り返した。図16に示すように、5回目まで(5つ目の塩基まで)を計測した結果、ここで選択したアレイスポットの一つにおいて、エマルジョンPCR用ビーズ上のオリゴDNAとの結合端から5つ目までの塩基の配列は、GAGTCであることが解読できた。
なお、本実施例では、予めエマルジョンPCRにてテンプレートDNAを複製させた1つのビーズは、一種類のテンプレートDNAが複製されたビーズである必要がある。エマルジョンPCRにおいては、ビーズ上で複製したテンプレートDNAが一種類であるもの以外に、確率論的に、不良品ビーズとして、テンプレートDNAが固定化できなかったビーズや、異なる2種類のテンプレートDNAが一つのビーズ上で複製されてしまったものが存在する。これらにおいては、塩基の信号が得られない、又は、2種類の信号が同時に得られてしまうことになり、データとして使えない。2種類のテンプレートDNAが複製された不良品のビーズを低減する水溶液の濃度の調整や、テンプレートDNAが固定化されたビーズと固定化されなかったビーズを選別する方法などに関しては別の方法があり、アレイスポットから得られるデータの有効率を向上することもできるが、これは、エマルジョンPCRにおける周知の技術であり、特に本実施例において、それらの技術の使用の有無を限定するものではない。
なお、本実施例では、テンプレートDNAをエマルジョンPCRによりビーズ表面上で予め増幅し、このビーズをアミノ基で表面修飾したアレイスポットに固定化したものを蛍光計測により解析する例を示したが、テンプレートDNAをエマルジョンPCRにより表面上で増幅したビーズの解析には、樹脂基板とビーズのキットを用いることも可能である。例えば、表面に形成された凹凸パターンによって2次元アレイ状のビーズ着座位置が設定された樹脂基板(官能基表面修飾ビーズ装填無しで、例えば、フローセルに設置した形態)と、オリゴDNAで表面修飾したビーズ(例えば、ビーズが分散した液体)のキットが、ユーザーに別々に供給され、このキットのオリゴDNA表面修飾ビーズを用いて、予め、分析対象となるテンプレートDNAをエマルジョンPCRによりこのビーズ上で増幅する。このテンプレートDNAビーズを、前記の試薬703に含有させてフローセルに供給するのではなく、遠心力等を利用して基板のビーズ着座位置に嵌め込んでスポットアレイ基板を形成し、これを用いて解析を行えばよい。この場合も、ユーザーがビーズの装填工程を自ら実施する必要があるが、基本部材自体が低コストに製造されているため、ユーザーが低コストな分析を実現できるメリットは変わらない。
[実施例5]
実施例5として、スポットアレイ基板を組み込んだフローセルを用いた分析の他の例を示す。
図17は、本実施例に用いた核酸ポリマー解析装置の構成例を示す概略図である。フローセル901には、樹脂製のスポットアレイ基板が組み込まれている。フローセル901の溶液導入口を通して導入された溶液は、スポットアレイ基板の表面を浸し、溶液排出口から廃液入れに排出される。スポットアレイ基板としては、密に配置されたひし形凸部とそれを囲む溝の形で凹凸パターンが形成されたシクロオレフィン基板のビーズ着座位置、すなわちひし形パターンを囲む溝の交点位置に遠心力によりオリゴDNA表面修飾ビーズ915が嵌め込まれた基板を用いた。ビーズ基本材質はシリカである。また、ビーズは、粒径分布がCV3%のものを使用し、スポットアレイ基板のビーズ着座位置へのビーズ充填率は95%である。分析対象となる少なくともその一部に未知の配列を有するテンプレートDNAを、オリゴDNAで表面修飾したアレイスポットに固定化し、その後、スポット上で複製し、このテンプレートDNAの複製を蛍光計測により解析し、塩基配列を解読した。
実施例1〜4に述べたように、表面に形成した凹凸パターンによって2次元アレイ状のビーズ着座位置が設定された樹脂基板と、オリゴDNAで表面修飾したビーズを、ユーザーに別々に供給し、ユーザーがビーズを基板のビーズ着座位置に嵌め込んでスポットアレイ基板を形成し、これを使用することも可能である。
フローセル901は、温調機能912により温度制御が可能である。また、いくつかの反応試薬を供給する反応試薬ユニット902が、試薬内で酵素反応が進行しない低温に保たれて設置されており、配管チューブによりフローセル901に結合されている。本実施例では、この反応試薬ユニット902より、5種類の試薬903〜906,914を供給できる。試薬903は、分析対象となる少なくともその一部に未知の配列を有するテンプレートDNAを、アレイスポット上のオリゴDNA(既知配列)と相補な配列に結合したもの(相補配列付きテンプレートDNA916)を含む試薬である。試薬914は、dATP、dGTP、dCTP、dTTP、及び酵素を含む、アレイスポット上で複製するための試薬である。試薬904は、dATP−蛍光色素1、dGTP−蛍光色素2、dCTP−蛍光色素3、dTTP−蛍光色素4、アレイスポット上のオリゴDNA(既知配列)と相補な配列のプライマー、伸長反応酵素を含む試薬である。試薬905は、上記4種のdNTPと蛍光色素との結合を切断する色素結合切断試薬である。試薬906は電解質溶液である。また、実施例4と同様に、別途、イソプロピルアルコール907、及び試薬906と同等品である電解質溶液908を用意した。イソプロピルアルコール907はフローセル901内の溶液置換に用いるためのもので、エチルアルコールなど別のアルコールでもよい。
フローセル901の上方には、試薬904に含まれる各種蛍光色素を励起するための光源909と、各種色素からの蛍光を計測するための光学系910、光検出器アレイ911が設置されている。光検出器アレイ911によって受光された蛍光信号は電気信号に変換されて蛍光を解析するための解析装置913に転送される。解析装置913は、転送された信号から塩基の識別や断片データのつなぎ合わせ等の解析を行い、核酸ポリマーの塩基配列を解読する。なお、実施例4と同様に、試薬904に含まれる蛍光色素1〜4には、色々な選択肢があり、適切なものを選択して使用することができる。また、これら色素の選択に従って、これら蛍光色素を効率よく励起するための光源909の適切な波長を選択できる。
まず、ピペットを用いた手作業により、フローセル901の導入口よりイソプロピルアルコール907を注入して、気泡が無いことを確認したのち、ピペットを用いた手作業により、電解質溶液908に置換した。次に、電解質溶液908で満たされ気泡が除去された状態でフローセル901を核酸ポリマー解析装置にセッティングした。
次に、相補配列付きテンプレートDNA916を含む試薬903を送液ユニットによりフローセル901に自動注入し、その状態で一旦送液を停止して、最適な温度に設定して10分間放置し、ハイブリさせ、オリゴDNA修飾スポットアレイ上に固定化させた。基板の材質が疎水性樹脂であるため、相補配列付きテンプレートDNA916がスポットアレイ以外に吸着した様子はみられず、非特異吸着は問題にならなかった。その後、適切な温度に設定して、アレイスポット上で複製するための試薬914をフローセルに供給し、その状態で一旦送液を停止して、最適な温度に設定して伸長反応と引き剥がし(デネイチャー)を繰り返し、テンプレートDNAをアレイスポット上で複製した。フローセル901に組み込まれているシクロオレフィン基板には製造時に95%まで、オリゴDNA修飾したスポットアレイ材料(オリゴDNA表面修飾ビーズ915)が埋め込まれているが、このうち、確率論で定まるある割合のスポットに相補配列付きテンプレートDNA916を固定化することができた。この割合は、試薬903中のテンプレートDNAの濃度により異なる。その後、適切な温度に設定して、試薬904をフローセルに供給し、プライマーをハイブリし、酵素による伸長反応を起こさせた。このとき、試薬中のdNTPは蛍光色素により終端されているので、テンプレートDNAの1つ目の塩基種に対する伸長反応が起こった後、一旦、反応は止まる。その後、光源909により、励起光を照射し、このとき発せられた蛍光を、光学系910、光検出器アレイ911により計測した。
図18に、フローセル901に組み込まれているシクロオレフィン基板上のアレイスポットのうちの1つにおいて、伸長反応を起こさせた後に、光源909で励起することにより発せられた蛍光の計測結果の一例を示す。1つ目のデータ1001には、dATPの塩基に結合した蛍光色素1の蛍光が確認されたので、1つ目の塩基はTと解読された。その後、4種のdNTPと蛍光色素との結合を切断する色素結合切断試薬を含む試薬905により適切な温度で色素を切断し、切断された色素を含むフローセル内の液体を試薬906の電解質溶液にて洗い流したのち、再び試薬904を自動注入して、同様に、2つ目以降の塩基の解析を繰り返した。図18に示すように、5回目まで(5つ目の塩基まで)を計測した結果、ここで選択したアレイスポットの一つにおいて、オリゴDNA修飾ビーズ上のオリゴDNAとの結合端から5つ目までの塩基の配列は、TCATGであることが解読できた。
なお、本実施例では、オリゴDNAで修飾した1つのアレイスポット上に固定化したテンプレートDNAの複製は、一種類のテンプレートDNAの複製である必要がある。オリゴDNAで修飾したアレイスポット上での複製においては、1つのスポット上で複製したテンプレートDNAが一種類であるもの以外に、確率論的に、不良スポットとして、テンプレートDNAが固定化できなかったスポットや、異なる2種類のテンプレートDNAが一つのスポット上で複製されてしまったものが存在する。これらにおいては、塩基の信号が得られない、又は、2種類の信号が同時に得られてしまうことになり、データとして使えない。2種類のテンプレートDNAが複製された不良スポットを低減する水溶液の濃度の調整や、テンプレートDNAが固定化されなかったスポットに、改めてテンプレートDNAを固定化する方法などに関しては別の方法が考案されており、アレイスポットから得られるデータの有効率を向上することもできる。例えば、テンプレートDNAの基板上での複製のプロトコールとして、US 2012/0156728 A1などに記載されている方法を用いることができる。本実施例においては、特に、それらの基板上複製技術の詳細を限定するものではなく、そのプロトコールの詳細は特に示さない。
なお、実施例4,5では、本発明によるスポットアレイ基板を組み込んだフローセルを用いて、エマルジョンPCRによるビーズ上での複製や基板のアレイスポット上での複製を行い、分析対象となる一部に未知の配列を含むDNAを解読したが、本発明のスポットアレイ基板を組み込んだフローセルは、DNAだけでなく、RNAなど他の核酸ポリマーの解読にも応用できることは言うまでもない。
また、本発明の説明に当たり図面では温調機能や光学系などに、シンボリックにヒータフィラメントのマークや凸レンズのマークを用いているが、温調機能には、空冷、水冷、冷却素子など、冷やす機能も含まれている上、PID制御などの一般的な温調制御方法で一定温度に制御できることや、光学系が凸レンズ以外に分光器やカラーフィルタなどの分光機能を有しており蛍光の色が判別できることなどは一般的なことであり言うまでもない。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
204 樹脂基板
207 遠心分離器
208 アミノ基表面修飾磁気ビーズ
210 磁石
304 凸部
305 金型
306 樹脂基板
405 遠心分離器
701 フローセル
702 反応試薬ユニット
709 光源
710 光学系
711 光検出器アレイ
712 温調機能
713 解析装置
714 アミノ基表面修飾ビーズ
715 表面にテンプレートDNAの複製を形成したビーズ
915 オリゴDNA表面修飾ビーズ
916 相補配列付きテンプレートDNA

Claims (13)

  1. 表面に凹凸パターンが形成され、前記凹凸パターン中に複数のビーズ着座位置が2次元アレイ状に設定されている樹脂基板と、
    前記樹脂基板の前記ビーズ着座位置に固定化された表面修飾ビーズとを有し、
    前記表面修飾ビーズは既知配列のオリゴDNAのみで表面修飾されたビーズであることを特徴とするスポットアレイ基板。
  2. 請求項1に記載のスポットアレイ基板において、
    前記凹凸パターンは、隣接するビーズ着座位置同士を前記ビーズ着座位置の寸法より狭い幅の溝で連結したパターンであることを特徴とするスポットアレイ基板。
  3. 請求項1に記載のスポットアレイ基板において、
    前記表面修飾ビーズは、物理的な嵌め込み、あるいは、化学的な結合、あるいは、その両者で、前記樹脂基板の前記ビーズ着座位置に固定化されていることを特徴とするスポットアレイ基板。
  4. 請求項1に記載のスポットアレイ基板において、
    前記表面修飾ビーズのバルク材質が、前記樹脂基板の材質と比較して熱膨張係数が小さいことを特徴とするスポットアレイ基板。
  5. 請求項4に記載のスポットアレイ基板において、
    前記表面修飾ビーズのバルク材質が酸化ケイ素を含有する材質又は磁性体を含有する材質であることを特徴とするスポットアレイ基板。
  6. 請求項1に記載のスポットアレイ基板において、
    前記樹脂基板は、シクロオレフィンポリマーあるいはシクロオレフィンコポリマーを成分に含むことを特徴とするスポットアレイ基板。
  7. 表面に凹凸パターンが形成され、前記凹凸パターン中に複数のビーズ着座位置が2次元アレイ状に設定されている樹脂基板を作製する工程と、
    前記樹脂基板の前記ビーズ着座位置に表面修飾ビーズを固定化する工程とを有し、
    前記表面修飾ビーズは既知配列のオリゴDNAのみで表面修飾されたビーズであることを特徴とするスポットアレイ基板の製造方法。
  8. 請求項7に記載のスポットアレイ基板の製造方法において、
    前記樹脂基板の前記ビーズ着座位置に表面修飾ビーズを固定化する工程では遠心力を利用して装填する工程を含むことを特徴とするスポットアレイ基板の製造方法。
  9. 請求項7に記載のスポットアレイ基板の製造方法において、
    前記表面修飾ビーズは磁性ビーズであり、
    前記樹脂基板の前記ビーズ着座位置に前記磁性ビーズを固定化する工程では前記樹脂基板の背面から前記磁性ビーズに磁力を作用させて装填する工程を含むことを特徴とするスポットアレイ基板の製造方法。
  10. 請求項1に記載のスポットアレイ基板が組み込まれたフローセルと、
    前記フローセルに、DNA分子の塩基を識別できる蛍光色素を含む反応試薬、dNTPと色素を切断できる反応試薬、及びフローセル内を洗浄するための洗浄試薬を含む複数の試薬を選択的に供給するための試薬供給ユニットと、
    前記フローセルの温度を制御する温調部と、
    前記スポットアレイ基板に励起光を照射するための光源と、
    前記スポットアレイ基板の各ビーズ着座位置から発生する蛍光を計測する光検出器アレイと、
    前記光検出器アレイによる検出信号を解析するための解析装置とを備えることを特徴とする核酸ポリマー解析装置。
  11. 請求項10に記載の核酸ポリマー解析装置において、
    前記試薬供給ユニットは、試薬としてDNA分子を複製させることができる反応試薬を含むことを特徴とする核酸ポリマー解析装置。
  12. 分析対象サンプル由来のテンプレートDNAを、請求項1記載のスポットアレイ基板の前記既知配列のオリゴDNA表面修飾ビーズ上に固定化する第1の工程と、
    前記既知配列のオリゴDNA表面修飾ビーズ上に固定化したテンプレートDNAを複製させる第2の工程と、
    前記既知配列のオリゴDNA表面修飾ビーズ上のテンプレートDNAの1塩基分の伸長反応を、蛍光色素を含む試薬により行わせる第3の工程と、
    前記反応後に励起光を照射することにより前記スポットアレイ基板の前記ビーズ着座位置から発生する蛍光信号を計測する第4の工程と、
    蛍光信号を計測した塩基から蛍光色素を切り離す第5の工程と、
    切り離した蛍光色素を含む溶液を洗い流す第6の工程と、
    前記第4の工程で得られた蛍光信号を解析して前記テンプレートDNAの塩基配列を決定する第7の工程と
    を含むことを特徴とする核酸ポリマーの解析方法。
  13. 表面に凹凸パターンが形成され、前記凹凸パターン中に複数のビーズ着座位置が2次元アレイ状に設定されている樹脂基板の前記ビーズ着座位置に既知配列のオリゴDNAのみで表面修飾された表面修飾ビーズを固定化する第1の工程と、
    分析対象サンプル由来のテンプレートDNAを、前記表面修飾ビーズ上に固定化する第2の工程と、
    記表面修飾ビーズ上に固定化したテンプレートDNAを複製させる第3の工程と、
    記表面修飾ビーズ上のテンプレートDNAの1塩基分の伸長反応を、蛍光色素を含む試薬により行わせる第4の工程と、
    前記反応後に励起光を照射することにより前記樹脂基板の前記ビーズ着座位置から発生する蛍光信号を計測する第5の工程と、
    前記蛍光信号を計測した塩基から蛍光色素を切り離す第6の工程と、
    切り離した蛍光色素を含む溶液を洗い流す第7の工程と、
    前記第5の工程で得られた蛍光信号を解析して前記テンプレートDNAの塩基配列を決定する第8の工程と
    を含むことを特徴とする核酸ポリマーの解析方法。
JP2018217491A 2014-11-27 2018-11-20 スポットアレイ基板、その製造方法、核酸ポリマー解析方法及び装置 Expired - Fee Related JP6710259B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014240434 2014-11-27
JP2014240434 2014-11-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016561445A Division JP6466966B2 (ja) 2014-11-27 2015-10-07 スポットアレイ基板の製造方法

Publications (2)

Publication Number Publication Date
JP2019022534A JP2019022534A (ja) 2019-02-14
JP6710259B2 true JP6710259B2 (ja) 2020-06-17

Family

ID=56074067

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016561445A Expired - Fee Related JP6466966B2 (ja) 2014-11-27 2015-10-07 スポットアレイ基板の製造方法
JP2018217491A Expired - Fee Related JP6710259B2 (ja) 2014-11-27 2018-11-20 スポットアレイ基板、その製造方法、核酸ポリマー解析方法及び装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016561445A Expired - Fee Related JP6466966B2 (ja) 2014-11-27 2015-10-07 スポットアレイ基板の製造方法

Country Status (6)

Country Link
US (1) US11130985B2 (ja)
JP (2) JP6466966B2 (ja)
CN (1) CN107002071A (ja)
DE (1) DE112015004899B4 (ja)
GB (1) GB2546441B (ja)
WO (1) WO2016084489A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3275525B1 (en) * 2015-03-26 2019-08-28 Toray Industries, Inc. Filter material for air filter
WO2018100724A1 (ja) * 2016-12-01 2018-06-07 株式会社日立ハイテクノロジーズ スポットアレイ基板、核酸解析方法、及び核酸解析装置
US20210178353A1 (en) * 2017-10-30 2021-06-17 Corning Incorporated Nucleic acid immobilization article and methods thereof
CN112218708B (zh) * 2018-05-15 2023-06-16 生物复制有限公司 微阵列变换器
WO2020095405A1 (ja) * 2018-11-08 2020-05-14 株式会社日立ハイテク 生体分子分析用基板、生体分子分析用フローセル、及び生体分子解析方法
WO2020145124A1 (ja) * 2019-01-09 2020-07-16 株式会社日立ハイテク 核酸分析用基板、核酸分析用フローセル、及び画像解析方法
CN110607220B (zh) * 2019-08-01 2023-03-14 广东工业大学 一种精确修饰生物分子的阵列式结构及其修饰方法
WO2021024416A1 (ja) * 2019-08-07 2021-02-11 株式会社日立ハイテク フローセルの調整方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6429027B1 (en) * 1998-12-28 2002-08-06 Illumina, Inc. Composite arrays utilizing microspheres
EP1165839A2 (en) 1999-03-26 2002-01-02 Whitehead Institute For Biomedical Research Universal arrays
AU2001255518A1 (en) 2000-06-07 2001-12-17 Baylor College Of Medicine Compositions and methods for array-based nucleic acid hybridization
US20020172980A1 (en) * 2000-11-27 2002-11-21 Phan Brigitte Chau Methods for decreasing non-specific binding of beads in dual bead assays including related optical biodiscs and disc drive systems
US7262063B2 (en) * 2001-06-21 2007-08-28 Bio Array Solutions, Ltd. Directed assembly of functional heterostructures
JP2004037338A (ja) * 2002-07-05 2004-02-05 Yokogawa Electric Corp 磁気ビーズを用いて生体高分子を基板へ固定する方法およびその方法を用いた生体高分子測定装置
JP2005003449A (ja) * 2003-06-10 2005-01-06 Hitachi Software Eng Co Ltd マイクロアレイ及びその作製方法
JP2005114706A (ja) * 2003-09-19 2005-04-28 Foundation For The Promotion Of Industrial Science 流体分散可能物質を基板上にパターニングする方法とそのための有孔シート材及びその製造方法
JP3857703B2 (ja) * 2004-08-19 2006-12-13 株式会社日本製鋼所 成形体の製造方法および製造装置
EP2230315A1 (en) 2005-02-01 2010-09-22 AB Advanced Genetic Analysis Corporation Nucleic acid sequencing by performing successive cycles of duplex extension
US7767421B2 (en) 2005-10-27 2010-08-03 President And Fellows Of Harvard College Methods and compositions for labeling nucleic acids
JP5376451B2 (ja) 2006-05-17 2013-12-25 エッペンドルフ アレイ テクノロジーズ エス.アー. 複数の(微)生物又はそれらの成分の同定及び定量
US7948015B2 (en) 2006-12-14 2011-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US7871570B2 (en) * 2007-02-23 2011-01-18 Joseph Zhili Huang Fluidic array devices and systems, and related methods of use and manufacturing
JP5222599B2 (ja) * 2007-07-20 2013-06-26 株式会社日立ハイテクノロジーズ 核酸分析デバイス及びそれを用いた核酸分析装置
JP2009060859A (ja) 2007-09-07 2009-03-26 Sumitomo Bakelite Co Ltd 遺伝子の検出方法
JP5504587B2 (ja) * 2008-05-27 2014-05-28 東レ株式会社 分析用チップ
WO2011026141A2 (en) * 2009-08-31 2011-03-03 Life Technologies Corporation Fast-indexing filter wheel and method of use
CN102665916B (zh) * 2009-11-23 2014-09-24 3M创新有限公司 微孔阵列制品及使用方法
JP5618556B2 (ja) * 2010-01-28 2014-11-05 株式会社日立ハイテクノロジーズ 核酸分析装置,核酸分析反応デバイス、および核酸分析用反応デバイス用基板
DE102010002957A1 (de) * 2010-03-17 2011-09-22 Robert Bosch Gmbh Mikroarray mit Immobilisierungspartikeln
CN118086471A (zh) 2010-12-17 2024-05-28 生命技术公司 用于核酸扩增的方法、组合物、系统、仪器和试剂盒
JP2013150567A (ja) * 2012-01-25 2013-08-08 Hitachi High-Technologies Corp 核酸分析用反応デバイス、及び核酸分析装置
WO2014176435A2 (en) * 2013-04-25 2014-10-30 Bergo Vladislav B Microarray compositions and methods of their use

Also Published As

Publication number Publication date
JP2019022534A (ja) 2019-02-14
WO2016084489A1 (ja) 2016-06-02
GB2546441B (en) 2020-07-29
DE112015004899T5 (de) 2017-08-10
JPWO2016084489A1 (ja) 2017-08-24
US11130985B2 (en) 2021-09-28
DE112015004899B4 (de) 2022-10-20
JP6466966B2 (ja) 2019-02-06
GB2546441A (en) 2017-07-19
US20170260573A1 (en) 2017-09-14
GB201706197D0 (en) 2017-05-31
CN107002071A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
JP6710259B2 (ja) スポットアレイ基板、その製造方法、核酸ポリマー解析方法及び装置
TWI534431B (zh) 形成具有官能性島狀區之奈米級孔洞的方法
US7332328B2 (en) Microcolumn-platform based array for high-throughput analysis
JP7072274B2 (ja) デジタル計数のための方法
US20060228722A1 (en) Thin film coated microwell arrays and methods of making same
US10335982B2 (en) Bead immobilisation method and bead arrays made thereby
JP6223448B2 (ja) 構造化マイクロキャリアの製造方法
CN109661580B (zh) 数字计数方法的改进
KR20150040939A (ko) 마이크로캐리어 제조 방법
JP5618556B2 (ja) 核酸分析装置,核酸分析反応デバイス、および核酸分析用反応デバイス用基板
WO2018100724A1 (ja) スポットアレイ基板、核酸解析方法、及び核酸解析装置
JP2010014648A (ja) プローブアレイおよびその製造方法
JP4845307B2 (ja) 立体基体を用いた検出用アレイ
CN111254061B (zh) 一种探针分子印刷芯片及其制造方法
US20100204063A1 (en) Dna chip package and method for fabricating the same
WO2023049192A1 (en) Methods and systems for substrate functionalization
JP2005030927A (ja) 生体関連分子マイクロアレイ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200526

R150 Certificate of patent or registration of utility model

Ref document number: 6710259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees