[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6799551B2 - Manufacturing method of positive electrode active material for lithium secondary battery - Google Patents

Manufacturing method of positive electrode active material for lithium secondary battery Download PDF

Info

Publication number
JP6799551B2
JP6799551B2 JP2018020570A JP2018020570A JP6799551B2 JP 6799551 B2 JP6799551 B2 JP 6799551B2 JP 2018020570 A JP2018020570 A JP 2018020570A JP 2018020570 A JP2018020570 A JP 2018020570A JP 6799551 B2 JP6799551 B2 JP 6799551B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium
lithium secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018020570A
Other languages
Japanese (ja)
Other versions
JP2018081937A5 (en
JP2018081937A (en
Inventor
裕一郎 今成
裕一郎 今成
佳世 山岸
佳世 山岸
恭崇 飯田
恭崇 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Sumitomo Chemical Co Ltd
Original Assignee
Tanaka Chemical Corp
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp, Sumitomo Chemical Co Ltd filed Critical Tanaka Chemical Corp
Priority to JP2018020570A priority Critical patent/JP6799551B2/en
Publication of JP2018081937A publication Critical patent/JP2018081937A/en
Publication of JP2018081937A5 publication Critical patent/JP2018081937A5/ja
Application granted granted Critical
Publication of JP6799551B2 publication Critical patent/JP6799551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池に関する。 The present invention relates to a positive electrode active material for a lithium secondary battery, a positive electrode for a lithium secondary battery, and a lithium secondary battery.

リチウム複合酸化物は、リチウム二次電池用正極活物質として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中・大型電源においても、実用化が進んでいる。 Lithium composite oxides are used as positive electrode active materials for lithium secondary batteries. Lithium secondary batteries have already been put into practical use not only in small power sources for mobile phones and notebook computers, but also in medium- and large-sized power sources for automobiles and power storage.

初期放電容量等のリチウム二次電池の性能を向上させるために、リチウム二次電池用正極活物質の粒子強度に着目した試みがされている(例えば特許文献1〜6)。 Attempts have been made to focus on the particle strength of the positive electrode active material for a lithium secondary battery in order to improve the performance of the lithium secondary battery such as the initial discharge capacity (for example, Patent Documents 1 to 6).

特開2001−80920号公報Japanese Unexamined Patent Publication No. 2001-80920 特開2004−335152号公報Japanese Unexamined Patent Publication No. 2004-335152 国際公開第2005/124898号公報International Publication No. 2005/124898 特開2007−257985号公報JP-A-2007-257985 特開2011−119092号公報Japanese Unexamined Patent Publication No. 2011-119092 特開2013−232318号公報Japanese Unexamined Patent Publication No. 2013-232318

リチウム二次電池の応用分野の拡大が進む中、リチウム二次電池の正極活物質にはさらなる初回充放電効率の向上が求められる。
しかしながら、前記特許文献1〜6に記載のようなリチウム二次電池用正極活物質においては、初回充放電効率を向上させる観点から改良の余地があった。
本発明は上記事情に鑑みてなされたものであって、初回充放電効率に優れるリチウム二次電池用正極活物質、該リチウム二次電池用正極活物質を用いたリチウム二次電池用正極及び該リチウム二次電池用正極を有するリチウム二次電池を提供することを課題とする。
As the application fields of lithium secondary batteries continue to expand, the positive electrode active material of lithium secondary batteries is required to further improve the initial charge / discharge efficiency.
However, there is room for improvement in the positive electrode active material for a lithium secondary battery as described in Patent Documents 1 to 6 from the viewpoint of improving the initial charge / discharge efficiency.
The present invention has been made in view of the above circumstances, and is a positive electrode active material for a lithium secondary battery having excellent initial charge / discharge efficiency, a positive electrode for a lithium secondary battery using the positive electrode active material for a lithium secondary battery, and the positive electrode for a lithium secondary battery. An object of the present invention is to provide a lithium secondary battery having a positive electrode for a lithium secondary battery.

すなわち、本発明は、下記[1]〜[9]の発明を包含する。
[1]一般式(1)で表されるリチウム金属複合酸化物粉末からなるリチウム二次電池用正極活物質であって、前記リチウム金属複合酸化物粉末が一次粒子と、該一次粒子が凝集して形成された二次粒子と、から構成され、前記リチウム金属複合酸化物粉末のBET比表面積が1m/g以上3m/g以下であり、前記二次粒子の平均圧壊強度が10MPa以上100MPa以下であることを特徴とするリチウム二次電池用正極活物質。
Li[Li(Ni(1−y−z−w)CoMn1−x]O(1)(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属元素であり、−0.1≦x≦0.2、0<y≦0.4、0<z≦0.4、0≦w≦0.1、0.25<y+z+wを満たす。)
[2]前記一般式(1)において、y<zである[1]記載のリチウム二次電池用正極活物質。
[3]前記リチウム金属複合酸化物粉末の平均粒子径が2μm以上10μm以下である[1]または[2]に記載のリチウム二次電池用正極活物質。
[4]CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内の回折ピークの半値幅をA、2θ=44.4±1°の範囲内の回折ピークの半値幅をBとしたとき、AとBの積が0.014以上0.030以下である[1]〜[3]のいずれか1項に記載のリチウム二次電池用正極活物質。
[5]前記半値幅Aの範囲が0.115以上0.165以下である[4]に記載のリチウム二次電池用正極活物質。
[6]前記半値幅Bの範囲が0.120以上0.180以下である[4]又は[5]に記載のリチウム二次電池用正極活物質。
[7]前記リチウム金属複合酸化物粉末に含まれる炭酸リチウム成分が0.4質量%以下である[1]〜[6]のいずれか1項に記載のリチウム二次電池用正極活物質。
[8]前記リチウム金属複合酸化物粉末に含まれる水酸化リチウム成分が0.35質量%以下である[1]〜[7]のいずれか1項に記載のリチウム二次電池用正極活物質。
[9][1]〜[8]のいずれか1項に記載のリチウム二次電池用正極活物質を有するリチウム二次電池用正極。
[10][9]に記載のリチウム二次電池用正極を有するリチウム二次電池。
That is, the present invention includes the following inventions [1] to [9].
[1] A positive electrode active material for a lithium secondary battery made of a lithium metal composite oxide powder represented by the general formula (1), wherein the lithium metal composite oxide powder aggregates with primary particles and the primary particles aggregate. The lithium metal composite oxide powder has a BET specific surface area of 1 m 2 / g or more and 3 m 2 / g or less, and the average crushing strength of the secondary particles is 10 MPa or more and 100 MPa or more. A positive electrode active material for a lithium secondary battery, which is characterized by the following.
Li [Li x (Ni (1 -y-z-w) Co y Mn z M w) 1-x] O 2 (1) ( however, M is Fe, Cu, Ti, Mg, Al, W, B, It is one or more metal elements selected from the group consisting of Mo, Nb, Zn, Sn, Zr, Ga and V, and is −0.1 ≦ x ≦ 0.2, 0 <y ≦ 0.4, 0 <. z ≦ 0.4, 0 ≦ w ≦ 0.1, 0.25 <y + z + w is satisfied.)
[2] The positive electrode active material for a lithium secondary battery according to [1], wherein y <z in the general formula (1).
[3] The positive electrode active material for a lithium secondary battery according to [1] or [2], wherein the average particle size of the lithium metal composite oxide powder is 2 μm or more and 10 μm or less.
[4] In powder X-ray diffraction measurement using CuKα ray, the half width of the diffraction peak in the range of 2θ = 18.7 ± 1 ° is set to A, and the diffraction peak in the range of 2θ = 44.4 ± 1 °. The positive electrode active material for a lithium secondary battery according to any one of [1] to [3], wherein the product of A and B is 0.014 or more and 0.030 or less, where B is the full width at half maximum.
[5] The positive electrode active material for a lithium secondary battery according to [4], wherein the range of the half width A is 0.115 or more and 0.165 or less.
[6] The positive electrode active material for a lithium secondary battery according to [4] or [5], wherein the range of the half width B is 0.120 or more and 0.180 or less.
[7] The positive electrode active material for a lithium secondary battery according to any one of [1] to [6], wherein the lithium carbonate component contained in the lithium metal composite oxide powder is 0.4% by mass or less.
[8] The positive electrode active material for a lithium secondary battery according to any one of [1] to [7], wherein the lithium hydroxide component contained in the lithium metal composite oxide powder is 0.35% by mass or less.
[9] A positive electrode for a lithium secondary battery having the positive electrode active material for the lithium secondary battery according to any one of [1] to [8].
[10] A lithium secondary battery having the positive electrode for the lithium secondary battery according to [9].

本発明によれば、初回充放電効率に優れるリチウム二次電池用正極活物質、該リチウム二次電池用正極活物質を用いたリチウム二次電池用正極及び該リチウム二次電池用正極を有するリチウム二次電池を提供することができる。 According to the present invention, a positive electrode active material for a lithium secondary battery having excellent initial charge / discharge efficiency, a positive electrode for a lithium secondary battery using the positive electrode active material for the lithium secondary battery, and a lithium having a positive electrode for the lithium secondary battery. A secondary battery can be provided.

リチウムイオン二次電池の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a lithium ion secondary battery. 本発明の効果を説明する模式図である。It is a schematic diagram explaining the effect of this invention. 実施例2の二次粒子断面のSEM画像である。It is an SEM image of the secondary particle cross section of Example 2. 比較例4の二次粒子断面のSEM画像である。It is an SEM image of the secondary particle cross section of Comparative Example 4.

<リチウム二次電池用正極活物質>
本発明は、一般式(1)で表されるリチウム金属複合酸化物粉末からなるリチウム二次電池用正極活物質であって、前記リチウム金属複合酸化物粉末が一次粒子と、該一次粒子が凝集して形成された二次粒子と、から構成され、前記リチウム金属複合酸化物粉末のBET比表面積が1m/g以上3m/g以下であり、前記二次粒子の平均圧壊強度が10MPa以上100MPa以下であることを特徴とするリチウム二次電池用正極活物質である。
Li[Li(Ni(1−y−z−w)CoMn1−x]O(1)(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属元素であり、−0.1≦x≦0.2、0<y≦0.4、0<z≦0.4、0≦w≦0.1、0.25<y+z+wを満たす。)
<Positive electrode active material for lithium secondary batteries>
The present invention is a positive electrode active material for a lithium secondary battery made of a lithium metal composite oxide powder represented by the general formula (1), wherein the lithium metal composite oxide powder is the primary particles and the primary particles are aggregated. The BET specific surface area of the lithium metal composite oxide powder is 1 m 2 / g or more and 3 m 2 / g or less, and the average crushing strength of the secondary particles is 10 MPa or more. It is a positive electrode active material for a lithium secondary battery, which is characterized by having a pressure of 100 MPa or less.
Li [Li x (Ni (1 -y-z-w) Co y Mn z M w) 1-x] O 2 (1) ( however, M is Fe, Cu, Ti, Mg, Al, W, B, It is one or more metal elements selected from the group consisting of Mo, Nb, Zn, Sn, Zr, Ga and V, and is −0.1 ≦ x ≦ 0.2, 0 <y ≦ 0.4, 0 <. z ≦ 0.4, 0 ≦ w ≦ 0.1, 0.25 <y + z + w is satisfied.)

本実施形態のリチウム二次電池用正極活物質(以下、「正極活物質」と記載することがある)は、リチウム金属複合酸化物粉末のBET比表面積が特定の範囲であり、さらに、二次粒子の平均圧壊強度が特定の範囲であることを特徴とする。本実施形態に用いるリチウム金属複合酸化物粉末は、二次粒子の平均圧壊強度が上記特定の範囲であるため粒子強度が低い。これは、一次粒子同士の接触面積が少なく、空隙の多い二次粒子構造であると推定される。つまり、本実施形態の正極活物質は、空隙の多い二次粒子を用いているため、電解液との接触面積が多くなる。このためリチウムイオンの脱離(充電)と挿入(放電)が、二次粒子の内部で進行しやすい。従って、本実施形態の正極活物質は、初回充放電効率に優れる。 The positive electrode active material for a lithium secondary battery of the present embodiment (hereinafter, may be referred to as “positive electrode active material”) has a BET specific surface area of the lithium metal composite oxide powder in a specific range, and further, is secondary. It is characterized in that the average crushing strength of the particles is in a specific range. The lithium metal composite oxide powder used in the present embodiment has low particle strength because the average crushing strength of the secondary particles is within the above-mentioned specific range. It is presumed that this is a secondary particle structure in which the contact area between the primary particles is small and there are many voids. That is, since the positive electrode active material of the present embodiment uses secondary particles having many voids, the contact area with the electrolytic solution is large. Therefore, desorption (charging) and insertion (discharging) of lithium ions are likely to proceed inside the secondary particles. Therefore, the positive electrode active material of the present embodiment is excellent in initial charge / discharge efficiency.

本実施形態において、リチウム金属複合酸化物粉末は下記一般式(1)で表される。
Li[Li(Ni(1−y−z−w)CoMn1−x]O(1)(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属元素であり、−0.1≦x≦0.2、0<y≦0.4、0<z≦0.4、0≦w≦0.1、0.25<y+z+wを満たす。)
In the present embodiment, the lithium metal composite oxide powder is represented by the following general formula (1).
Li [Li x (Ni (1 -y-z-w) Co y Mn z M w) 1-x] O 2 (1) ( however, M is Fe, Cu, Ti, Mg, Al, W, B, It is one or more metal elements selected from the group consisting of Mo, Nb, Zn, Sn, Zr, Ga and V, and is −0.1 ≦ x ≦ 0.2, 0 <y ≦ 0.4, 0 <. z ≦ 0.4, 0 ≦ w ≦ 0.1, 0.25 <y + z + w is satisfied.)

サイクル特性が高いリチウム二次電池を得る意味で、前記組成式(1)におけるxは0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る意味で、前記組成式(1)におけるxは0.1以下であることが好ましく、0.08以下であることがより好ましく、0.06以下であることがさらに好ましい。
xの上限値と下限値は任意に組み合わせることができる。
本明細書において、「サイクル特性が高い」とは、放電容量維持率が高いことを意味する。
In order to obtain a lithium secondary battery having high cycle characteristics, x in the composition formula (1) is preferably more than 0, more preferably 0.01 or more, and further preferably 0.02 or more. .. Further, in order to obtain a lithium secondary battery having a higher initial coulombic efficiency, x in the composition formula (1) is preferably 0.1 or less, more preferably 0.08 or less, and 0.06. The following is more preferable.
The upper limit value and the lower limit value of x can be arbitrarily combined.
In the present specification, "high cycle characteristics" means that the discharge capacity retention rate is high.

また、低温時(−15℃〜0℃)の電池抵抗が低いリチウム二次電池を得る意味で、前記組成式(1)におけるyは0.005以上であることが好ましく、0.01以上であることがより好ましく、0.05以上であることがさらに好ましい。また、熱的安定性が高いリチウム二次電池を得る意味で、前記組成式(1)におけるyは0.4以下であることが好ましく、0.35以下であることがより好ましく、0.33以下であることがさらに好ましい。
yの上限値と下限値は任意に組み合わせることができる。
Further, y in the composition formula (1) is preferably 0.005 or more, preferably 0.01 or more, in order to obtain a lithium secondary battery having a low battery resistance at low temperature (-15 ° C to 0 ° C). More preferably, it is more preferably 0.05 or more. Further, in order to obtain a lithium secondary battery having high thermal stability, y in the composition formula (1) is preferably 0.4 or less, more preferably 0.35 or less, and 0.33. The following is more preferable.
The upper limit value and the lower limit value of y can be arbitrarily combined.

また、サイクル特性が高いリチウム二次電池を得る意味で、前記組成式(1)におけるzは0.01以上であることが好ましく、0.03以上であることがより好ましく、0.1以上であることがさらに好ましい。また、高温(例えば60℃環境下)での保存特性が高いリチウム二次電池を得る意味で、前記組成式(1)におけるzは0.4以下であることが好ましく、0.38以下であることがより好ましく、0.35以下であることがさらに好ましい。
zの上限値と下限値は任意に組み合わせることができる。
Further, in order to obtain a lithium secondary battery having high cycle characteristics, z in the composition formula (1) is preferably 0.01 or more, more preferably 0.03 or more, and 0.1 or more. It is more preferable to have. Further, in order to obtain a lithium secondary battery having high storage characteristics at a high temperature (for example, in an environment of 60 ° C.), z in the composition formula (1) is preferably 0.4 or less, preferably 0.38 or less. More preferably, it is more preferably 0.35 or less.
The upper limit value and the lower limit value of z can be arbitrarily combined.

また、低温時(−15℃〜0℃)の電池抵抗が低いリチウム二次電池を得る意味で、前記組成式(1)におけるwは0を超えることが好ましく、0.0005以上であることがより好ましく、0.001以上であることがさらに好ましい。また、高い電流レートにおいて放電容量が高いリチウム二次電池を得る意味で、前記組成式(1)におけるwは0.09以下であることが好ましく、0.08以下であることがより好ましく、0.07以下であることがさらに好ましい。
wの上限値と下限値は任意に組み合わせることができる。
Further, w in the composition formula (1) preferably exceeds 0, and is 0.0005 or more, in the sense of obtaining a lithium secondary battery having a low battery resistance at a low temperature (-15 ° C to 0 ° C). More preferably, it is more preferably 0.001 or more. Further, in order to obtain a lithium secondary battery having a high discharge capacity at a high current rate, w in the composition formula (1) is preferably 0.09 or less, more preferably 0.08 or less, and 0. It is more preferably .07 or less.
The upper limit value and the lower limit value of w can be arbitrarily combined.

前記組成式(1)におけるMはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属を表す。 M in the composition formula (1) represents one or more metals selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V. ..

また、サイクル特性が高いリチウム二次電池を得る意味で、組成式(1)におけるMは、Ti、Mg、Al、W、B、Zrであることが好ましく、熱的安定性が高いリチウム二次電池を得る意味では、Al、W、B、Zrであることが好ましい。 Further, in order to obtain a lithium secondary battery having high cycle characteristics, M in the composition formula (1) is preferably Ti, Mg, Al, W, B, Zr, and the lithium secondary has high thermal stability. In terms of obtaining a battery, it is preferably Al, W, B, Zr.

(BET比表面積)
本実施形態において、初回充放電効率が高いリチウム二次電池を得る意味で、リチウム金属複合酸化物粉末のBET比表面積(m/g)は1m/g以上であることが好ましく、1.05m/g以上であることがより好ましく、1.1m/g以上であることがさらに好ましい。また、リチウム二次電池用正極活物質のハンドリング性を高める意味で、3m/g以下であることが好ましく、2.95m/g以下であることがより好ましく、2.9m/g以下であることがさらに好ましい。
BET比表面積の上限値と下限値は任意に組み合わせることができる。
(BET specific surface area)
In the present embodiment, the BET specific surface area (m 2 / g) of the lithium metal composite oxide powder is preferably 1 m 2 / g or more in order to obtain a lithium secondary battery having high initial charge / discharge efficiency. more preferably 05m 2 / g or more, further preferably 1.1 m 2 / g or more. Further, in order to improve the handleability of the positive electrode active material for a lithium secondary battery, it is preferably 3 m 2 / g or less, more preferably 2.95 m 2 / g or less, and 2.9 m 2 / g or less. Is more preferable.
The upper and lower limits of the BET specific surface area can be arbitrarily combined.

(平均圧壊強度)
本実施形態において、リチウム金属複合酸化物粉末は、一次粒子と、該一次粒子が凝集して形成された二次粒子とから構成されている。
本実施形態において、初回充放電効率が高いリチウム二次電池を得る意味で、前記二次粒子の平均圧壊強度は10MPa以上であることが好ましく、11MPa以上であることがより好ましく、12MPa以上であることがさらに好ましい。また、高い電流レートにおいて放電容量が高いリチウム二次電池を得る意味で、100MPa以下であることが好ましく、99MPa以下であることがより好ましく、98MPa以下であることがさらに好ましい。
平均圧壊強度の上限値と下限値は任意に組み合わせることができる。
(Average crush strength)
In the present embodiment, the lithium metal composite oxide powder is composed of primary particles and secondary particles formed by aggregating the primary particles.
In the present embodiment, in order to obtain a lithium secondary battery having high initial charge / discharge efficiency, the average crushing strength of the secondary particles is preferably 10 MPa or more, more preferably 11 MPa or more, and 12 MPa or more. Is even more preferable. Further, in the sense of obtaining a lithium secondary battery having a high discharge capacity at a high current rate, it is preferably 100 MPa or less, more preferably 99 MPa or less, and further preferably 98 MPa or less.
The upper and lower limits of the average crush strength can be arbitrarily combined.

従来用いられてきた緻密な粒子構造の二次粒子は、平均圧壊強度が100MPaを超えるものであった。これに比べて、平均圧壊強度が上記特定の範囲である二次粒子は、従来の緻密な粒子構造の二次粒子に比べて粒子強度が低く、空隙の多い粒子である。
図2(a)に本実施形態の二次粒子の断面の模式図を示す。図2(a)に示すとおり、本実施形態の正極活物質は空隙が多いため電解液との接触面積が多くなる。このため、図2(a)の符号Aに示すリチウムイオンの脱離(充電)と、符号Bに示すリチウムイオンの挿入(放電)が、二次粒子の内部と表面で進行しやすくなる。このため、初回放電効率を向上させることができる。
図2(b)に従来用いられてきた緻密な粒子構造の二次粒子の断面の模式図を示す。図2(b)に記載の通り、緻密な粒子構造の場合、符号Aに示すリチウムイオンの脱離(充電)と、符号Bに示すリチウムイオンの挿入(放電)が、粒子の表面近傍でのみ進行する。これに対し、上述の通り本実施形態では、二次粒子の内部だけでなく、表面でも進行するため、初回放電効率を向上させることができる。
本実施形態において、二次粒子の平均圧壊強度は、下記の測定方法により測定した値である。
The secondary particles having a dense particle structure that have been conventionally used have an average crushing strength of more than 100 MPa. In comparison, the secondary particles having the average crushing strength in the above-mentioned specific range are particles having a lower particle strength and more voids than the conventional secondary particles having a dense particle structure.
FIG. 2A shows a schematic view of a cross section of the secondary particles of the present embodiment. As shown in FIG. 2A, the positive electrode active material of the present embodiment has many voids, so that the contact area with the electrolytic solution is large. Therefore, the desorption (charging) of the lithium ions shown by the reference numeral A in FIG. 2A and the insertion (discharge) of the lithium ions shown by the reference numeral B are likely to proceed inside and on the surface of the secondary particles. Therefore, the initial discharge efficiency can be improved.
FIG. 2B shows a schematic view of a cross section of a secondary particle having a dense particle structure that has been conventionally used. As described in FIG. 2B, in the case of a dense particle structure, the desorption (charging) of lithium ions shown by reference numeral A and the insertion (discharge) of lithium ions shown by reference numeral B are performed only near the surface of the particles. proceed. On the other hand, as described above, in the present embodiment, since the particles proceed not only inside the secondary particles but also on the surface, the initial discharge efficiency can be improved.
In the present embodiment, the average crushing strength of the secondary particles is a value measured by the following measuring method.

[平均圧壊強度の測定方法]
本発明において、リチウム金属複合酸化物粉末に存在する二次粒子の「平均圧壊強度」とは、以下の方法によって測定される値を指す。
[Measurement method of average crush strength]
In the present invention, the "average crush strength" of the secondary particles present in the lithium metal composite oxide powder refers to a value measured by the following method.

まず、リチウム金属複合酸化物粉末について株式会社島津製作所製「微小圧縮試験機MCT−510」を用いて、任意に選んだ二次粒子1個に対して試験圧力(負荷)をかけ、二次粒子の変位量を測定する。試験圧力を徐々にあげて行った際、試験圧力がほぼ一定のまま変位量が最大となる圧力値を試験力(P)とし、下記数式(A)に示す平松らの式(日本鉱業会誌,Vol.81,(1965))により、圧壊強度(St)を算出した。この操作を計5回行い、圧壊強度の5回平均値から平均圧壊強度を算出した。
St=2.8×P/(π×d×d) (d:二次粒子径) …(A)
First, for lithium metal composite oxide powder, a test pressure (load) was applied to one arbitrarily selected secondary particle using the "micro-compression tester MCT-510" manufactured by Shimadzu Corporation, and the secondary particle was used. Measure the amount of displacement of. When the test pressure is gradually increased, the pressure value at which the displacement amount is maximized while the test pressure remains almost constant is defined as the test force (P), and the formula of Hiramatsu et al. (Journal of the Japan Mining Association, Vol.81, (1965)) was used to calculate the crushing strength (St). This operation was performed a total of 5 times, and the average crush strength was calculated from the average value of the crush strength 5 times.
St = 2.8 × P / (π × d × d) (d: secondary particle diameter)… (A)

(遷移金属の組成)
本実施形態において、サイクル特性が高いリチウム二次電池を得る意味で、一般式(1)において、y<zであることが好ましい。y≧zである場合は、リチウム二次電池のサイクル特性が低下する場合がある。
(Composition of transition metal)
In the present embodiment, y <z is preferable in the general formula (1) in the sense of obtaining a lithium secondary battery having high cycle characteristics. When y ≧ z, the cycle characteristics of the lithium secondary battery may deteriorate.

(平均粒子径)
本実施形態において、リチウム二次電池用正極活物質のハンドリング性を高める意味で、前記リチウム金属複合酸化物粉末の平均粒子径は2μm以上であることが好ましく、2.1μm以上であることがより好ましく、2.2μm以上であることがさらに好ましい。
また、高い電流レートにおいて放電容量が高いリチウム二次電池を得る意味で、10μm以下であることが好ましく、9.9μm以下であることがより好ましく、9.8μm以下であることがさらに好ましい。
平均粒子径の上限値と下限値は任意に組み合わせることができる。
本発明において、リチウム金属複合酸化物粉末の「平均粒子径」とは、以下の方法(レーザー回折散乱法)によって測定される値を指す。
(Average particle size)
In the present embodiment, the average particle size of the lithium metal composite oxide powder is preferably 2 μm or more, more preferably 2.1 μm or more, in order to improve the handleability of the positive electrode active material for the lithium secondary battery. It is preferably 2.2 μm or more, and more preferably 2.2 μm or more.
Further, in order to obtain a lithium secondary battery having a high discharge capacity at a high current rate, it is preferably 10 μm or less, more preferably 9.9 μm or less, and further preferably 9.8 μm or less.
The upper and lower limits of the average particle size can be arbitrarily combined.
In the present invention, the "average particle size" of the lithium metal composite oxide powder refers to a value measured by the following method (laser diffraction / scattering method).

レーザー回折粒度分布計(株式会社堀場製作所製、型番:LA−950)を用い、リチウム金属複合酸化物粉末0.1gを、0.2質量%ヘキサメタリン酸ナトリウム水溶液50mlに投入し、該粉末を分散させた分散液を得た。得られた分散液について粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径(D50)の値を、リチウム金属複合酸化物粉末の平均粒子径とした。 Using a laser diffraction particle size distribution meter (manufactured by HORIBA, Ltd., model number: LA-950), 0.1 g of lithium metal composite oxide powder was added to 50 ml of a 0.2 mass% sodium hexametaphosphate aqueous solution, and the powder was dispersed. The dispersion liquid was obtained. The particle size distribution of the obtained dispersion is measured, and a volume-based cumulative particle size distribution curve is obtained. In the obtained cumulative particle size distribution curve, the value of the particle size (D 50 ) seen from the fine particle side at the time of 50% accumulation was taken as the average particle size of the lithium metal composite oxide powder.

本実施形態においては、リチウム金属複合酸化物のBET比表面積が上記特定の範囲であり、さらに、前記二次粒子の平均圧壊強度が上記特定の範囲であることにより、初回充放電効率を向上させることができる。さらに、BET比表面積や平均圧壊強度が上記特定の範囲であることにより、リチウム金属複合酸化物と電解液との接触面積が増加し、電解液の粘度が上昇する低温条件(−15℃〜0℃)において、電池抵抗を低くすることができる。さらに、一般式(1)において元素Mを加えることにより、リチウム金属複合酸化物中におけるリチウムイオンの伝導性が高まり、低温条件において、電池抵抗を低くすることができる。 In the present embodiment, the BET specific surface area of the lithium metal composite oxide is in the above-mentioned specific range, and the average crushing strength of the secondary particles is in the above-mentioned specific range, thereby improving the initial charge / discharge efficiency. be able to. Further, when the BET specific surface area and the average crushing strength are within the above-mentioned specific ranges, the contact area between the lithium metal composite oxide and the electrolytic solution increases, and the viscosity of the electrolytic solution increases under low temperature conditions (-15 ° C to 0). Battery resistance can be lowered at (° C.). Further, by adding the element M in the general formula (1), the conductivity of lithium ions in the lithium metal composite oxide is increased, and the battery resistance can be lowered under low temperature conditions.

(半値幅)
本実施形態において、CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内の回折ピークの半値幅をA、2θ=44.4±1°の範囲内の回折ピークの半値幅をBとしたとき、高い電流レートにおいて放電容量が高いリチウム二次電池を得る意味で、AとBの積が0.014以上であることが好ましく、0.015以上であることがより好ましく、0.016以上であることがさらに好ましい。また、サイクル特性が高いリチウム二次電池を得る意味で、0.030以下であることが好ましく、0.029以下であることがより好ましく、0.028以下であることがさらに好ましい。
AとBの積の上限値と下限値は任意に組み合わせることができる。
まず、正極活物質について、CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内の回折ピーク(以下、ピークA’と呼ぶこともある)、2θ=44.4±1°の範囲内の回折ピーク(以下、ピークB’と呼ぶこともある)を決定する。
さらに、決定したピークA’の半値幅Aと、ピークB’の半値幅Bとを算出し、Scherrer式 D=Kλ/Bcosθ (D:結晶子サイズ、K:Scherrer定数、B:ピーク線幅)を用いることで結晶子サイズを算出することが出来る。該式により、結晶子サイズを算出することは従来から使用されている手法である(例えば「X線構造解析−原子の配列を決める−」2002年4月30日第3版発行、早稲田嘉夫、松原栄一郎著、参照)。
(Half width)
In the present embodiment, in the powder X-ray diffraction measurement using CuKα ray, the half width of the diffraction peak within the range of 2θ = 18.7 ± 1 ° is set to A, and the diffraction within the range of 2θ = 44.4 ± 1 °. When the half width of the peak is B, the product of A and B is preferably 0.014 or more, preferably 0.015 or more, in order to obtain a lithium secondary battery having a high discharge capacity at a high current rate. Is more preferable, and 0.016 or more is further preferable. Further, in the sense of obtaining a lithium secondary battery having high cycle characteristics, it is preferably 0.030 or less, more preferably 0.029 or less, and further preferably 0.028 or less.
The upper and lower limits of the product of A and B can be arbitrarily combined.
First, regarding the positive electrode active material, in the powder X-ray diffraction measurement using CuKα ray, the diffraction peak within the range of 2θ = 18.7 ± 1 ° (hereinafter, may be referred to as peak A'), 2θ = 44. The diffraction peak within the range of 4 ± 1 ° (hereinafter, may be referred to as peak B') is determined.
Further, the determined half-value width A of the peak A'and the half-value width B of the peak B'are calculated, and the Scherrer equation D = Kλ / Bcosθ (D: crystallite size, K: Scherrer constant, B: peak line width). The crystallite size can be calculated by using. Calculating the crystallite size by this formula is a conventionally used method (for example, "X-ray structure analysis-determining the arrangement of atoms-", April 30, 2002, 3rd edition, Yoshio Waseda, By Eiichiro Matsubara, see).

本実施形態において、高い電流レートにおいて放電容量が高いリチウム二次電池を得る意味で、正極活物質の前記半値幅Aの範囲が0.115以上であることが好ましく、0.116以上であることがより好ましく、0.117以上であることがさらに好ましい。また、サイクル特性が高いリチウム二次電池を得る意味で、0.165以下であることが好ましく、0.164以下であることがより好ましく、0.163以下であることがさらに好ましい。
半値幅Aの上限値と下限値は任意に組み合わせることができる。
In the present embodiment, in the sense of obtaining a lithium secondary battery having a high discharge capacity at a high current rate, the range of the half width A of the positive electrode active material is preferably 0.115 or more, preferably 0.116 or more. Is more preferable, and 0.117 or more is further preferable. Further, in the sense of obtaining a lithium secondary battery having high cycle characteristics, it is preferably 0.165 or less, more preferably 0.164 or less, and further preferably 0.163 or less.
The upper limit value and the lower limit value of the half width A can be arbitrarily combined.

本実施形態において、高い電流レートにおいて放電容量が高いリチウム二次電池を得る意味で、正極活物質の前記半値幅Bの範囲が0.120以上であることが好ましく、0.125以上であることがより好ましく、0.126以上であることがさらに好ましい。また、サイクル特性が高いリチウム二次電池を得る意味で、0.180以下であることが好ましく、0.179以下であることがより好ましく、0.178以下であることがさらに好ましい。
半値Bの上限値と下限値は任意に組み合わせることができる。
In the present embodiment, the range of the half-value width B of the positive electrode active material is preferably 0.120 or more, preferably 0.125 or more, in order to obtain a lithium secondary battery having a high discharge capacity at a high current rate. Is more preferable, and 0.126 or more is further preferable. Further, in the sense of obtaining a lithium secondary battery having high cycle characteristics, it is preferably 0.180 or less, more preferably 0.179 or less, and further preferably 0.178 or less.
The upper limit value and the lower limit value of the half price B can be arbitrarily combined.

(層状構造)
リチウムニッケル複合酸化物の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
(Layered structure)
The crystal structure of the lithium nickel composite oxide is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.

六方晶型の結晶構造は、P3、P3、P3、R3、P−3、R−3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P−31m、P−31c、P−3m1、P−3c1、R−3m、R−3c、P6、P6、P6、P6、P6、P6、P−6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P−6m2、P−6c2、P−62m、P−62c、P6/mmm、P6/mcc、P6/mcm、P6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。 The hexagonal crystal structure is P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3 m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6mm, P6cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, and P6 3 / mmc.

また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、C2/cからなる群から選ばれるいずれか一つの空間群に帰属される。 The monoclinic crystal structure is P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, C2 /. It belongs to any one space group selected from the group consisting of c.

これらのうち、放電容量が高いリチウム二次電池を得る意味で、結晶構造は、空間群R−3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。 Of these, in the sense of obtaining a lithium secondary battery having a high discharge capacity, the crystal structure is a hexagonal crystal structure belonging to the space group R-3m or a monoclinic crystal structure belonging to C2 / m. It is particularly preferable to have a crystal structure.

本発明に用いるリチウム化合物は、前記(1)式を満たすものであれば特に限定されず、炭酸リチウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、水酸化リチウム、酸化リチウム、塩化リチウム、フッ化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。これらの中では、水酸化リチウム及び炭酸リチウムのいずれか一方又は両方が好ましい。
リチウム二次電池用正極活物質のハンドリング性を高める意味で、リチウム金属複合酸化物粉末に含まれる炭酸リチウム成分は0.4質量%以下であることが好ましく、0.39質量%以下であることがより好ましく、0.38質量%以下であることが特に好ましい。
また、リチウム二次電池用正極活物質のハンドリング性を高める意味で、リチウム金属複合酸化物粉末に含まれる水酸化リチウム成分は0.35質量%以下であることが好ましく、0.25質量%以下であることがより好ましく、0.2質量%以下であることが特に好ましい。
The lithium compound used in the present invention is not particularly limited as long as it satisfies the above formula (1), and includes lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium hydroxide, lithium oxide, lithium chloride, and lithium fluoride. Any one of them, or a mixture of two or more of them can be used. Among these, either one or both of lithium hydroxide and lithium carbonate is preferable.
In order to improve the handleability of the positive electrode active material for the lithium secondary battery, the lithium carbonate component contained in the lithium metal composite oxide powder is preferably 0.4% by mass or less, and preferably 0.39% by mass or less. Is more preferable, and 0.38% by mass or less is particularly preferable.
Further, in order to improve the handleability of the positive electrode active material for the lithium secondary battery, the lithium hydroxide component contained in the lithium metal composite oxide powder is preferably 0.35% by mass or less, preferably 0.25% by mass or less. Is more preferable, and 0.2% by mass or less is particularly preferable.

[リチウム金属複合酸化物の製造方法]
本発明のリチウム金属複合酸化物を製造するにあたって、まず、リチウム以外の金属、すなわち、Ni、Co及びMnから構成される必須金属、並びに、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVのうちいずれか1種以上の任意金属を含む金属複合化合物を調製し、当該金属複合化合物を適当なリチウム塩と焼成することが好ましい。金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、正極活物質の製造方法の一例を、金属複合化合物の製造工程と、リチウム金属複合酸化物の製造工程とに分けて説明する。
[Manufacturing method of lithium metal composite oxide]
In producing the lithium metal composite oxide of the present invention, first, a metal other than lithium, that is, an essential metal composed of Ni, Co and Mn, and Fe, Cu, Ti, Mg, Al, W, B, It is preferable to prepare a metal composite compound containing any one or more arbitrary metals of Mo, Nb, Zn, Sn, Zr, Ga and V, and to calcin the metal composite compound with an appropriate lithium salt. As the metal composite compound, a metal composite hydroxide or a metal composite oxide is preferable. Hereinafter, an example of the method for producing the positive electrode active material will be described separately for the process for producing the metal composite compound and the process for producing the lithium metal composite oxide.

(金属複合化合物の製造工程)
金属複合化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
(Manufacturing process of metal composite compound)
The metal composite compound can be produced by a commonly known batch co-precipitation method or continuous co-precipitation method. Hereinafter, the production method thereof will be described in detail using a metal composite hydroxide containing nickel, cobalt and manganese as an example.

まず共沈殿法、特に特開2002−201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、NiCoMn(OH)(式中、x+y+z=1)で表される金属複合水酸化物を製造する。 First co-precipitation method, in particular by a continuous method described in 2002-201028 JP-nickel salt solution, cobalt salt solution, is reacted manganese salt solution and a complexing agent, Ni x Co y Mn z ( OH) 2 A metal composite hydroxide represented by (x + y + z = 1 in the formula) is produced.

上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れかを使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト、及び酢酸コバルトのうちの何れかを使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、塩化マンガン、及び酢酸マンガンのうちの何れかを使用することができる。以上の金属塩は、上記NiCoMn(OH)の組成比に対応する割合で用いられる。
また、溶媒として水が使用される。
The nickel salt which is the solute of the nickel salt solution is not particularly limited, and for example, any one of nickel sulfate, nickel nitrate, nickel chloride and nickel acetate can be used. As the cobalt salt which is the solute of the cobalt salt solution, for example, any one of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used. As the manganese salt which is the solute of the manganese salt solution, for example, any one of manganese sulfate, manganese nitrate, manganese chloride, and manganese acetate can be used. More metal salts are used in proportions corresponding to the composition ratio of the Ni x Co y Mn z (OH ) 2.
In addition, water is used as a solvent.

錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。 The complexing agent can form a complex with ions of nickel, cobalt, and manganese in an aqueous solution, and is, for example, an ammonium ion feeder (ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.). ), Hydrazin, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracildiacetic acid, and glycine.

沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム、水酸化カリウム)を添加する。 At the time of precipitation, alkali metal hydroxides (for example, sodium hydroxide and potassium hydroxide) are added if necessary in order to adjust the pH value of the aqueous solution.

上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、NiCoMn(OH)が製造される。反応に際しては、反応槽の温度が例えば20℃以上80℃以下、好ましくは30〜70℃の範囲内で制御され、反応槽内のpH値は例えばpH9以上pH13以下、好ましくはpH11〜13の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプのものである。 The nickel salt solution, cobalt salt solution, and other manganese salt solution and is supplied continuously complexing agent to the reaction vessel, nickel, cobalt, and manganese to react, Ni x Co y Mn z ( OH) 2 Is manufactured. In the reaction, the temperature of the reaction vessel is controlled in the range of, for example, 20 ° C. or higher and 80 ° C. or lower, preferably 30 to 70 ° C., and the pH value in the reaction vessel is, for example, pH 9 or higher and pH 13 or lower, preferably pH 11 to 13. Controlled within, the material in the reaction vessel is stirred as appropriate. The reaction vessel is of a type in which the formed reaction precipitate overflows for separation.

反応槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び後述する焼成条件等を適宜制御することにより、下記工程で最終的に得られるリチウム金属複合酸化物の一次粒子径、二次粒子径、各結晶子サイズ、BET比表面積、平均圧壊強度等の各種物性を制御することができる。とりわけ、所望とする二次粒子の平均圧壊強度、細孔分布、空隙を実現するためには、上記の条件の制御に加えて、各種気体、例えば、窒素、アルゴン、二酸化炭素等の不活性ガス、空気、酸素等の酸化性ガス、あるいはそれらの混合ガスによるバブリングを併用しても良い。気体以外に酸化状態を促すものとして、過酸化水素などの過酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン、オゾンなどを使用することができる。気体以外に還元状態を促すものとして、シュウ酸、ギ酸などの有機酸、亜硫酸塩、ヒドラジンなどを使用することができる。 By appropriately controlling the concentration of the metal salt supplied to the reaction vessel, the stirring speed, the reaction temperature, the reaction pH, the firing conditions described later, etc., the primary particle size of the lithium metal composite oxide finally obtained in the following steps, Various physical properties such as secondary particle size, size of each crystallite, BET specific surface area, and average crushing strength can be controlled. In particular, in order to realize the desired average crushing strength, pore distribution, and voids of the secondary particles, in addition to controlling the above conditions, various gases such as nitrogen, argon, carbon dioxide, and other inert gases are used. , Air, oxidizing gas such as oxygen, or bubbling with a mixed gas thereof may be used in combination. In addition to gas, peroxides such as hydrogen peroxide, peroxide salts such as permanganate, perchlorate, hypochlorite, nitric acid, halogen, ozone, etc. are used to promote the oxidation state. be able to. In addition to the gas, organic acids such as oxalic acid and formic acid, sulfites, hydrazine and the like can be used to promote the reducing state.

例えば、反応槽内の反応pHを高くすると、金属複合化合物の一次粒子径は小さくなり、BET比表面積が高い金属複合化合物が得られやすい。一方、反応pHを低くすると、金属複合化合物の一次粒子径は大きくなり、BET比表面積が低い金属複合化合物が得られやすい。また、反応槽内の酸化状態を高くすると、空隙を多く有する金属複合酸化物が得られやすい。一方、酸化状態を低くすると、緻密な金属複合化合物が得られやすい。最終的に、金属複合化合物が所望の物性となるよう、反応pHと酸化状態の各条件を適宜制御すればよい。
本発明におけるリチウム金属複合酸化物粉末のBET比表面積や、二次粒子の平均圧壊強度は、前記の金属複合化合物を用いて、後述する焼成条件等を制御することにより、本発明の特定の範囲内とすることができる。
For example, when the reaction pH in the reaction vessel is increased, the primary particle size of the metal composite compound becomes smaller, and a metal composite compound having a high BET specific surface area can be easily obtained. On the other hand, when the reaction pH is lowered, the primary particle size of the metal composite compound becomes large, and a metal composite compound having a low BET specific surface area can be easily obtained. Further, when the oxidation state in the reaction vessel is raised, a metal composite oxide having many voids can be easily obtained. On the other hand, when the oxidation state is lowered, a dense metal composite compound can be easily obtained. Finally, the reaction pH and the conditions of the oxidation state may be appropriately controlled so that the metal composite compound has desired physical properties.
The BET specific surface area of the lithium metal composite oxide powder and the average crushing strength of the secondary particles in the present invention are within a specific range of the present invention by controlling the firing conditions and the like described later using the metal composite compound. Can be inside.

反応条件については、使用する反応槽のサイズ等にも依存することから、最終的に得られるリチウム複合酸化物の各種物性をモニタリングしつつ、反応条件を最適化すれば良い。 Since the reaction conditions depend on the size of the reaction vessel used and the like, the reaction conditions may be optimized while monitoring various physical properties of the finally obtained lithium composite oxide.

以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケルコバルトマンガン複合化合物としてのニッケルコバルトマンガン水酸化物を単離する。また、必要に応じて弱酸水や水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄しても良い。
なお、上記の例では、ニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製してもよい。
After the above reaction, the obtained reaction precipitate is washed with water and then dried to isolate nickel cobalt manganese hydroxide as a nickel cobalt manganese composite compound. Further, if necessary, it may be washed with a weak acid water or an alkaline solution containing sodium hydroxide or potassium hydroxide.
In the above example, the nickel-cobalt-manganese composite hydroxide is produced, but the nickel-cobalt-manganese composite oxide may be prepared.

(リチウム金属複合酸化物の製造工程)
上記金属複合酸化物又は水酸化物を乾燥した後、リチウム塩と混合する。乾燥条件は、特に制限されないが、例えば、金属複合酸化物又は水酸化物が酸化・還元されない条件(酸化物→酸化物、水酸化物→水酸化物)、金属複合水酸化物が酸化される条件(水酸化物→酸化物)、金属複合酸化物が還元される条件(酸化物→水酸化物)のいずれの条件でもよい。酸化・還元がされない条件のためには、窒素、ヘリウム及びアルゴン等の不活性ガスを使用すれば良く、水酸化物が酸化される条件では、酸素又は空気を使用すれば良い。
また、金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン、亜硫酸ナトリウム等の還元剤を使用すれば良い。リチウム塩としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、または、二つ以上を混合して使用することができる。
金属複合酸化物又は水酸化物の乾燥後に、適宜分級を行っても良い。以上のリチウム塩と金属複合水酸化物とは、最終目的物の組成比を勘案して用いられる。例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム塩と当該金属複合水酸化物は、LiNiCoMn(式中、x+y+z=1)の組成比に対応する割合で用いられる。ニッケルコバルトマンガン金属複合水酸化物及びリチウム塩の混合物を焼成することによって、リチウム−ニッケルコバルトマンガン複合酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
(Manufacturing process of lithium metal composite oxide)
The metal composite oxide or hydroxide is dried and then mixed with a lithium salt. The drying conditions are not particularly limited, but for example, conditions under which the metal composite oxide or hydroxide is not oxidized / reduced (oxide → oxide, hydroxide → hydroxide), and the metal composite hydroxide are oxidized. Any of the conditions (hydroxide → oxide) and the condition for reducing the metal composite oxide (oxide → hydroxide) may be used. An inert gas such as nitrogen, helium, or argon may be used under the condition of not being oxidized or reduced, and oxygen or air may be used under the condition of oxidizing the hydroxide.
Further, as a condition for reducing the metal composite oxide, a reducing agent such as hydrazine or sodium sulfite may be used in an inert gas atmosphere. As the lithium salt, any one or a mixture of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, and lithium oxide can be used.
After drying the metal composite oxide or hydroxide, classification may be performed as appropriate. The above lithium salt and metal composite hydroxide are used in consideration of the composition ratio of the final target product. For example, when using a nickel-cobalt-manganese composite hydroxide, lithium salt and the metal complex hydroxide is used in a proportion corresponding to LiNi x Co y Mn z O 2 composition ratio of (wherein, x + y + z = 1 ) .. A lithium-nickel cobalt manganese composite oxide is obtained by calcining a mixture of a nickel cobalt manganese metal composite hydroxide and a lithium salt. For firing, dry air, an oxygen atmosphere, an inert atmosphere, or the like is used according to a desired composition, and a plurality of heating steps are carried out if necessary.

上記金属複合酸化物又は水酸化物と、水酸化リチウム、炭酸リチウム等のリチウム化合物との焼成温度としては、特に制限はないが、リチウム金属複合酸化物のBET比表面積や二次粒子の平均圧壊強度を本発明の特定の範囲とするために、600℃以上1100℃以下であることが好ましく、750℃以上1050℃以下であることがより好ましく、800℃以上1025℃以下がさらに好ましい。焼成温度が600℃を下回ると、規則正しい結晶構造をもったリチウム金属複合酸化物が得られにくく、リチウム金属複合酸化物のBET比表面積が本発明の上限値を超えたり、二次粒子の平均圧壊強度が本発明の下限値を下回るおそれがあり、エネルギー密度(放電容量)や充放電効率(放電容量÷充電容量)が低下するという問題を生じやすい。 The firing temperature of the metal composite oxide or hydroxide and a lithium compound such as lithium hydroxide or lithium carbonate is not particularly limited, but the BET specific surface area of the lithium metal composite oxide and the average crushing of secondary particles are crushed. In order to keep the strength within the specific range of the present invention, it is preferably 600 ° C. or higher and 1100 ° C. or lower, more preferably 750 ° C. or higher and 1050 ° C. or lower, and further preferably 800 ° C. or higher and 1025 ° C. or lower. When the firing temperature is lower than 600 ° C., it is difficult to obtain a lithium metal composite oxide having a regular crystal structure, the BET specific surface area of the lithium metal composite oxide exceeds the upper limit of the present invention, or the average crushing of secondary particles is performed. The strength may be lower than the lower limit of the present invention, and problems such as energy density (discharge capacity) and charge / discharge efficiency (discharge capacity ÷ charge capacity) are likely to decrease.

一方、焼成温度が1100℃を上回ると、Liの揮発によって目標とする組成のリチウム金属複合酸化物が得られにくいなどの作製上の問題に加え、BET比表面積が本発明の下限値を下回ったり、粒子の高密度化の影響でリチウム金属複合酸化物の二次粒子の平均圧壊強度が本発明の上限値を超えたりするおそれがあり、電池性能が低下するという問題が生じやすい。これは、1100℃を上回ると、一次粒子成長速度が増加し、リチウム金属複合酸化物の結晶粒子が大きくなりすぎることに起因していると考えられる。焼成温度を600℃以上1100℃以下の範囲とすることによって、特に高いエネルギー密度を示し、充放電効率や出力特性に優れた電池を作製できる。 On the other hand, when the firing temperature exceeds 1100 ° C., in addition to problems in production such as difficulty in obtaining a lithium metal composite oxide having a target composition due to volatilization of Li, the BET specific surface area may fall below the lower limit of the present invention. The average crushing strength of the secondary particles of the lithium metal composite oxide may exceed the upper limit of the present invention due to the influence of the densification of the particles, which tends to cause a problem that the battery performance is deteriorated. It is considered that this is because the primary particle growth rate increases and the crystal particles of the lithium metal composite oxide become too large when the temperature exceeds 1100 ° C. By setting the firing temperature in the range of 600 ° C. or higher and 1100 ° C. or lower, it is possible to manufacture a battery that exhibits a particularly high energy density and is excellent in charge / discharge efficiency and output characteristics.

焼成時間は、3時間〜50時間が好ましい。焼成時間が50時間を超えると、電池性能上問題はないが、Liの揮発によって実質的に電池性能に劣る傾向となる。焼成時間が3時間より少ないと、結晶の発達が悪く、電池性能が悪くなる傾向となる。なお、上記の焼成の前に、仮焼成を行うことも有効である。この様な仮焼成の温度は、300〜850℃の範囲で、1〜10時間行うことが好ましい。 The firing time is preferably 3 hours to 50 hours. If the firing time exceeds 50 hours, there is no problem in battery performance, but the battery performance tends to be substantially inferior due to the volatilization of Li. If the firing time is less than 3 hours, crystal development tends to be poor and battery performance tends to be poor. It is also effective to perform temporary firing before the above firing. The temperature of such temporary firing is preferably in the range of 300 to 850 ° C. for 1 to 10 hours.

焼成によって得たリチウム金属複合酸化物は、粉砕後に適宜分級され、リチウム二次電池に適用可能な正極活物質とされる。 The lithium metal composite oxide obtained by calcination is appropriately classified after pulverization to obtain a positive electrode active material applicable to a lithium secondary battery.

<リチウム二次電池>
次いで、リチウム二次電池の構成を説明しながら、本発明のリチウム二次電池用正極活物質を、リチウム二次電池の正極活物質として用いた正極、およびこの正極を有するリチウム二次電池について説明する。
<Lithium secondary battery>
Next, while explaining the configuration of the lithium secondary battery, the positive electrode using the positive electrode active material for the lithium secondary battery of the present invention as the positive electrode active material of the lithium secondary battery, and the lithium secondary battery having this positive electrode will be described. To do.

本実施形態のリチウム二次電池の一例は、正極および負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。 An example of the lithium secondary battery of the present embodiment has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution arranged between the positive electrode and the negative electrode.

図1は、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。 FIG. 1 is a schematic view showing an example of the lithium secondary battery of the present embodiment. The cylindrical lithium secondary battery 10 of the present embodiment is manufactured as follows.

まず、図1(a)に示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、および一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。 First, as shown in FIG. 1A, a pair of strip-shaped separators 1, a strip-shaped positive electrode 2 having a positive electrode lead 21 at one end, and a strip-shaped negative electrode 3 having a negative electrode lead 31 at one end are combined with the separator 1 and the positive electrode. 2. The separator 1 and the negative electrode 3 are laminated in this order and wound to form an electrode group 4.

次いで、図1(b)に示すように、電池缶5に電極群4および不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7および封口体8で封止することで、リチウム二次電池10を製造することができる。 Next, as shown in FIG. 1 (b), after accommodating the electrode group 4 and an insulator (not shown) in the battery can 5, the bottom of the can is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, and the positive electrode 2 is used. An electrolyte is placed between the negative electrode 3 and the negative electrode 3. Further, the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.

電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。 The shape of the electrode group 4 is, for example, a columnar shape such that the cross-sectional shape when the electrode group 4 is cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.

また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。 Further, as the shape of the lithium secondary battery having such an electrode group 4, the shape defined by IEC60086, which is a standard for batteries defined by the International Electrotechnical Commission (IEC), or JIS C 8500 can be adopted. .. For example, a cylindrical shape, a square shape, or the like can be mentioned.

さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。 Further, the lithium secondary battery is not limited to the above-mentioned winding type configuration, and may have a laminated configuration in which a laminated structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly laminated. Examples of the laminated lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.

以下、各構成について順に説明する。
(正極)
本実施形態の正極は、まず正極活物質、導電材およびバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
Hereinafter, each configuration will be described in order.
(Positive electrode)
The positive electrode of the present embodiment can be manufactured by first preparing a positive electrode mixture containing a positive electrode active material, a conductive material, and a binder, and supporting the positive electrode mixture on a positive electrode current collector.

(導電材)
本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率および出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、および正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
(Conductive material)
A carbon material can be used as the conductive material contained in the positive electrode of the present embodiment. Examples of the carbon material include graphite powder, carbon black (for example, acetylene black), and fibrous carbon material. Since carbon black is fine and has a large surface area, it is possible to improve the conductivity inside the positive electrode by adding a small amount to the positive electrode mixture to improve charge / discharge efficiency and output characteristics, but if too much is added, it depends on the binder. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture decrease, which causes an increase in internal resistance.

正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。 The ratio of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. When a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be reduced.

(バインダー)
本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。
この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。
)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
(binder)
A thermoplastic resin can be used as the binder contained in the positive electrode of the present embodiment.
This thermoplastic resin may be referred to as polyvinylidene fluoride (hereinafter referred to as PVdF).
), Polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), ethylene tetrafluoride / propylene hexafluoride / vinylidene fluoride copolymer, propylene hexafluoride / vinylidene fluoride copolymer, tetrafluoropolymer. Fluororesin such as ethylene / perfluorovinyl ether-based copolymer; polyolefin resin such as polyethylene and polypropylene; can be mentioned.

これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂およびポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力および正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。 Two or more kinds of these thermoplastic resins may be mixed and used. Fluororesin and polyolefin resin are used as binders, and the ratio of fluororesin to the entire positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of polyolefin resin is 0.1% by mass or more and 2% by mass or less. It is possible to obtain a positive electrode mixture having high adhesion to the current collector and high bonding force inside the positive electrode mixture.

(正極集電体)
本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
(Positive current collector)
As the positive electrode current collector included in the positive electrode of the present embodiment, a band-shaped member made of a metal material such as Al, Ni, or stainless steel can be used. Of these, Al is used as a forming material and processed into a thin film because it is easy to process and inexpensive.

正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。 Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure molding the positive electrode mixture on the positive electrode current collector. Further, the positive electrode mixture is made into a paste using an organic solvent, and the obtained positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed to the positive electrode current collector. The mixture may be carried.

正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N−メチル−2−ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。 When the positive electrode mixture is made into a paste, the organic solvents that can be used include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate. Ester-based solvents such as dimethylacetamide and amide-based solvents such as N-methyl-2-pyrrolidone (hereinafter, may be referred to as NMP);

正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法および静電スプレー法が挙げられる。 Examples of the method of applying the paste of the positive electrode mixture to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method and an electrostatic spray method.

以上に挙げられた方法により、正極を製造することができる。
(負極)
本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、および負極活物質単独からなる電極を挙げることができる。
The positive electrode can be manufactured by the method described above.
(Negative electrode)
The negative electrode of the lithium secondary battery of the present embodiment may be capable of doping and dedoping lithium ions at a lower potential than that of the positive electrode, and a negative electrode mixture containing a negative electrode active material is supported on the negative electrode current collector. Examples of the electrode and an electrode composed of the negative electrode active material alone.

(負極活物質)
負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
(Negative electrode active material)
Examples of the negative electrode active material of the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals, or alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. Be done.

負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維および有機高分子化合物焼成体を挙げることができる。 Examples of the carbon material that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolyzed carbons, carbon fibers, and calcined organic polymer compounds.

負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタン又はバナジウムとを含有する金属複合酸化物;を挙げることができる。 Oxides that can be used as the negative electrode active material include silicon oxides represented by the formula SiO x (where x is a positive real number) such as SiO 2 , SiO; the formula TiO x such as TiO 2 and TiO (here). , X is a positive real number) titanium oxide; V 2 O 5 , VO 2, etc. Formula VO x (where x is a positive real number) vanadium oxide; Fe 3 O 4 , Fe 2 O 3 , FeO, etc. Iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO, etc. Formula SnO x (where x is a positive real number) Oxides of tin; oxides of tungsten represented by the general formula WO x (where x is a positive real number) such as WO 3 and WO 2 ; lithium and titanium such as Li 4 Ti 5 O 12 and LiVO 2. Alternatively, a metal composite oxide containing vanadium; can be mentioned.

負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。 Sulfides that can be used as the negative electrode active material include Ti 2 S 3 , TiS 2 , TiS, and other titanium sulfides represented by the formula TiS x (where x is a positive real number); V 3 S 4 , VS. 2. VS, etc. The sulfide of vanadium represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2 , FeS, etc. formula FeS x (where x is a positive real number) Iron sulfide represented by; Mo 2 S 3 , MoS 2, etc. Formula MoS x (where x is a positive real number) Molybdenum sulfide represented by the formula MoS x (where x is a positive real number); SnS 2, SnS, etc. formula SnS x (here, here) Tin sulfide represented by x is a positive real number); WS 2 and the like formula WS x (where x is a positive real number) and represented by tungsten sulfide; Sb 2 S 3 and the like formula SbS x (here) in, x is antimony represented by a positive real number); Se 5 S 3, SeS 2, SeS formula SeS x (wherein such, sulfide selenium x is represented by a positive real number); the Can be mentioned.

負極活物質として使用可能な窒化物としては、LiN、Li3−xN(ここで、AはNiおよびCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。 The nitrides that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is either or both of Ni and Co, and 0 <x <3). Such as lithium-containing nitrides can be mentioned.

これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質又は非晶質のいずれでもよい。 These carbon materials, oxides, sulfides, and nitrides may be used alone or in combination of two or more. Further, these carbon materials, oxides, sulfides and nitrides may be either crystalline or amorphous.

また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属およびスズ金属などを挙げることができる。 Examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.

負極活物質として使用可能な合金としては、Li−Al、Li−Ni、Li−Si、Li−Sn、Li−Sn−Niなどのリチウム合金;Si−Znなどのシリコン合金;Sn−Mn、Sn−Co、Sn−Ni、Sn−Cu、Sn−Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。 Alloys that can be used as the negative electrode active material include lithium alloys such as Li-Al, Li-Ni, Li-Si, Li-Sn, and Li-Sn-Ni; silicon alloys such as Si-Zn; Sn-Mn, Sn. Also mentioned are tin alloys such as −Co, Sn—Ni, Sn—Cu, Sn—La; alloys such as Cu 2 Sb, La 3 Ni 2 Sn 7 ;

これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。 These metals and alloys are mainly used alone as electrodes after being processed into a foil, for example.

上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。 Among the above negative electrode active materials, the potential of the negative electrode hardly changes from the uncharged state to the fully charged state during charging (potential flatness is good), the average discharge potential is low, and the capacity retention rate when repeatedly charged and discharged is high. A carbon material containing graphite as a main component, such as natural graphite or artificial graphite, is preferably used because of its high value (good cycle characteristics). The shape of the carbon material may be, for example, a flaky shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an agglomerate of fine powder.

前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレンおよびポリプロピレンを挙げることができる。 The negative electrode mixture may contain a binder, if necessary. Examples of the binder include thermoplastic resins, and specific examples thereof include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene and polypropylene.

(負極集電体)
負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
(Negative electrode current collector)
Examples of the negative electrode current collector included in the negative electrode include a band-shaped member made of a metal material such as Cu, Ni, or stainless steel as a forming material. Among them, Cu is used as a forming material and processed into a thin film because it is difficult to form an alloy with lithium and it is easy to process.

このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。 As a method of supporting the negative electrode mixture on such a negative electrode current collector, as in the case of the positive electrode, a method by pressure molding, a paste using a solvent or the like, coating on the negative electrode current collector, drying and pressing. A method of crimping can be mentioned.

(セパレータ)
本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
(Separator)
Examples of the separator included in the lithium secondary battery of the present embodiment include a porous film, a non-woven fabric, and a woven fabric made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin, and a nitrogen-containing aromatic polymer. A material having the above can be used. Further, two or more kinds of these materials may be used to form a separator, or these materials may be laminated to form a separator.

本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。 In the present embodiment, the separator has an air permeation resistance of 50 seconds / 100 cc or more and 300 seconds / 100 cc according to the Garley method defined by JIS P 8117 in order to allow the electrolyte to permeate well when the battery is used (during charging / discharging). It is preferably 50 seconds / 100 cc or more, and more preferably 200 seconds / 100 cc or less.

また、セパレータの空孔率は、好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。 The porosity of the separator is preferably 30% by volume or more and 80% by volume or less, and more preferably 40% by volume or more and 70% by volume or less. The separator may be a stack of separators having different porosity.

(電解液)
本実施形態のリチウム二次電池が有する電解液は、電解質および有機溶媒を含有する。
(Electrolytic solution)
The electrolytic solution contained in the lithium secondary battery of the present embodiment contains an electrolyte and an organic solvent.

電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCFおよびLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。 The electrolytes contained in the electrolytic solution include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN. (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) boronate) ), LiFSI (where FSI stands for bis (fluorosulfonyl) image), lower aliphatic carboxylic acid lithium salts, lithium salts such as LiAlCl 4, and mixtures of two or more of these. May be used. Among them, the electrolyte is at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one type.

また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。 Examples of the organic solvent contained in the electrolytic solution include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, 1,2-di. Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropylmethyl ether, 2,2,3,3-tetrafluoropropyldifluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyl tetrahydrofuran; esters such as methyl formate, methyl acetate, γ-butyrolactone; nitriles such as acetonitrile and butyronitrile; amides such as N, N-dimethylformamide, N, N-dimethylacetamide; 3-methyl Carbamates such as -2-oxazolidone; sulfur-containing compounds such as sulfolane, dimethylsulfoxide, 1,3-propanesartone, or those in which a fluoro group is further introduced into an organic solvent (1 of the hydrogen atoms of the organic solvent). The above is replaced with a fluorine atom).

有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒および環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。 As the organic solvent, it is preferable to use a mixture of two or more of these. Of these, a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable. As the mixed solvent of the cyclic carbonate and the acyclic carbonate, a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable. An electrolytic solution using such a mixed solvent has a wide operating temperature range, is not easily deteriorated even when charged and discharged at a high current rate, is not easily deteriorated even when used for a long time, and is made of natural graphite as an active material of a negative electrode. It has many features that it is resistant to decomposition even when a graphite material such as artificial graphite is used.

また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩およびフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。 Further, as the electrolytic solution, it is preferable to use an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is enhanced. A mixed solvent containing ethers having a fluorine substituent such as pentafluoropropylmethyl ether and 2,2,3,3-tetrafluoropropyldifluoromethyl ether and dimethyl carbonate has a capacity even when charged and discharged at a high current rate. It is more preferable because of its high maintenance rate.

上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS−SiS、LiS−GeS、LiS−P、LiS−B、LiS−SiS−LiPO、LiS−SiS−LiSO、LiS−GeS−Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。 A solid electrolyte may be used instead of the above electrolyte. As the solid electrolyte, for example, an organic polymer electrolyte such as a polyethylene oxide-based polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used. Further, a so-called gel type compound in which a non-aqueous electrolytic solution is retained in a polymer compound can also be used. In addition, Li 2 S-SiS 2 , Li 2 S-GeS 2 , Li 2 S-P 2 S 5 , Li 2 S-B 2 S 3 , Li 2 S-SiS 2 -Li 3 PO 4 , Li 2 S-SiS 2 -Li 2 SO 4, Li 2 S-GeS 2 -P 2 S 5 inorganic solid electrolytes containing a sulfide, and the like, may be used a mixture of two or more thereof. By using these solid electrolytes, the safety of the lithium secondary battery may be further enhanced.

また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。 Further, in the lithium secondary battery of the present embodiment, when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.

以上のような構成の正極活物質は、上述した本実施形態のリチウム金属複合酸化物を用いているため、正極活物質を用いたリチウム二次電池の寿命を延ばすことができる。 Since the positive electrode active material having the above configuration uses the lithium metal composite oxide of the present embodiment described above, the life of the lithium secondary battery using the positive electrode active material can be extended.

また、以上のような構成の正極は、上述した本実施形態のリチウム二次電池用正極活物質を有するため、リチウム二次電池の寿命を延ばすことができる。 Further, since the positive electrode having the above configuration has the positive electrode active material for the lithium secondary battery of the present embodiment described above, the life of the lithium secondary battery can be extended.

さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、従来よりも寿命の長いリチウム二次電池となる。 Further, since the lithium secondary battery having the above configuration has the above-mentioned positive electrode, it is a lithium secondary battery having a longer life than the conventional one.

次に、本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be described in more detail with reference to Examples.

本実施例においては、リチウム二次電池用正極活物質の評価、リチウム二次電池用正極及びリチウム二次電池の作製評価を、次のようにして行った。
(1)リチウム二次電池用正極活物質の評価
1.二次粒子の平均圧壊強度
二次粒子の平均圧壊強度の測定は、微小圧縮試験機(株式会社島津製作所製、MCT−510)を用い、リチウム金属複合酸化物粉末中から任意に選んだ二次粒子1個に対して試験圧力をかけて測定した。試験圧力がほぼ一定で、二次粒子の変位量が最大となる圧力値を試験力(P)とし、前述した平松らの式により、圧壊強度(St)を算出した。最終的に、圧壊強度試験を計5回行った平均値から平均圧壊強度を求めた。
In this example, the evaluation of the positive electrode active material for the lithium secondary battery and the production evaluation of the positive electrode for the lithium secondary battery and the lithium secondary battery were carried out as follows.
(1) Evaluation of positive electrode active material for lithium secondary batteries 1. Average crushing strength of secondary particles The average crushing strength of secondary particles was measured using a microcompression tester (MCT-510, manufactured by Shimadzu Corporation), and was arbitrarily selected from among lithium metal composite oxide powders. The test pressure was applied to one particle for measurement. The pressure value at which the test pressure was substantially constant and the displacement amount of the secondary particles was maximized was defined as the test force (P), and the crushing strength (St) was calculated by the above-mentioned formula of Hiramatsu et al. Finally, the average crush strength was obtained from the average value obtained by performing the crush strength test a total of 5 times.

2.BET比表面積測定
リチウム金属複合酸化物粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、マウンテック社製Macsorb(登録商標)を用いて測定した。
2. 2. BET Specific Surface Area Measurement 1 g of lithium metal composite oxide powder was dried at 105 ° C. for 30 minutes in a nitrogen atmosphere, and then measured using Macsorb (registered trademark) manufactured by Mountec.

3.平均粒子径の測定
平均粒子径の測定は、レーザー回折粒度分布計(株式会社堀場製作所製、LA−950)を用い、リチウム金属複合酸化物粉末0.1gを、0.2質量%ヘキサメタリン酸ナトリウム水溶液50mlに投入し、該粉末を分散させた分散液を得た。得られた分散液について粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径(D50)の値を、リチウム金属複合酸化物粉末の平均粒子径とした。
3. 3. Measurement of average particle size For the measurement of the average particle size, 0.1 g of lithium metal composite oxide powder was used to measure 0.2 mass% sodium hexametaphosphate using a laser diffraction particle size distribution counter (LA-950, manufactured by Horiba Seisakusho Co., Ltd.). It was put into 50 ml of an aqueous solution to obtain a dispersion liquid in which the powder was dispersed. The particle size distribution of the obtained dispersion is measured, and a volume-based cumulative particle size distribution curve is obtained. In the obtained cumulative particle size distribution curve, the value of the particle size (D 50 ) seen from the fine particle side at the time of 50% accumulation was taken as the average particle size of the lithium metal composite oxide powder.

4.粉末X線回折測定
粉末X線回折測定は、X線回折装置(PANalytical社製、X‘Pert PRO)を用いて行った。リチウム金属複合酸化物粉末を専用の基板に充填し、Cu−Kα線源を用いて、回折角2θ=10°〜90°の範囲にて測定を行うことで、粉末X線回折図形を得た。粉末X線回折パターン総合解析ソフトウェアJADE5を用い、該粉末X線回折図形から2θ=18.7±1°の回折ピークの半値幅A及び、2θ=44.4±1°の回折ピークの半値幅Bを求めた。
半値幅Aの回折ピーク: 2θ=18.7±1°
半値幅Bの回折ピーク: 2θ=44.4±1°
4. Powder X-ray diffraction measurement The powder X-ray diffraction measurement was performed using an X-ray diffractometer (X'Pert PRO manufactured by PANalytical). A powder X-ray diffraction pattern was obtained by filling a dedicated substrate with a lithium metal composite oxide powder and measuring in a diffraction angle range of 2θ = 10 ° to 90 ° using a Cu-Kα radiation source. .. Using the powder X-ray diffraction pattern comprehensive analysis software JADE5, the half width A of the diffraction peak of 2θ = 18.7 ± 1 ° and the half width of the diffraction peak of 2θ = 44.4 ± 1 ° from the powder X-ray diffraction pattern. I asked for B.
Diffraction peak of full width at half maximum: 2θ = 18.7 ± 1 °
Diffraction peak of full width at half maximum: 2θ = 44.4 ± 1 °

5.組成分析
後述の方法で製造されるリチウム金属複合酸化物粉末の組成分析は、得られたリチウム金属複合酸化物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
5. Composition analysis The composition analysis of the lithium metal composite oxide powder produced by the method described below is performed by dissolving the obtained lithium metal composite oxide powder in hydrochloric acid and then inductively coupled plasma emission spectrometry (SI Nanotechnology). This was performed using SPS3000) manufactured by SPS Co., Ltd.

6.リチウム金属複合酸化物粉末に含まれる残留リチウム定量(中和滴定)
リチウム金属複合酸化物粉末20gと純水100gを100mlビーカーに入れ、5分間撹拌した。撹拌後、リチウム金属複合酸化物を濾過し、残った濾液の60gに0.1mol/L塩酸を滴下し、pHメーターにて濾液のpHを測定した。pH=8.3±0.1時の塩酸の滴定量をAml、pH=4.5±0.1時の塩酸の滴定量をBmlとして、下記の計算式より、リチウム金属複合酸化物中に残存する炭酸リチウム及び水酸化リチウム濃度を算出した。下記の式中、炭酸リチウム及び水酸化リチウムの分子量は、各原子量を、H;1.000、Li;6.941、C;12、O;16、として算出した。
炭酸リチウム濃度(%)=
0.1×(B−A)/1000×73.882/(20×60/100)×100水酸化リチウム濃度(%)=
0.1×(2A−B)/1000×23.941/(20×60/100)×100
6. Quantification of residual lithium contained in lithium metal composite oxide powder (neutralization titration)
20 g of lithium metal composite oxide powder and 100 g of pure water were placed in a 100 ml beaker and stirred for 5 minutes. After stirring, the lithium metal composite oxide was filtered, 0.1 mol / L hydrochloric acid was added dropwise to 60 g of the remaining filtrate, and the pH of the filtrate was measured with a pH meter. The titration amount of hydrochloric acid at pH = 8.3 ± 0.1 is Aml, and the titration amount of hydrochloric acid at pH = 4.5 ± 0.1 is Bml. From the following formula, the lithium metal composite oxide is contained. The remaining lithium carbonate and lithium hydroxide concentrations were calculated. In the formula below, the molecular weights of lithium carbonate and lithium hydroxide were calculated with each atomic weight as H; 1.000, Li; 6.941, C; 12, O; 16.
Lithium carbonate concentration (%) =
0.1 x (BA) / 1000 x 73.882 / (20 x 60/100) x 100 Lithium hydroxide concentration (%) =
0.1 x (2A-B) / 1000 x 23.941 / (20 x 60/100) x 100

(2)リチウム二次電池用正極の作製
後述する製造方法で得られるリチウム二次電池用正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N−メチル−2−ピロリドンを有機溶媒として用いた。
(2) Preparation of Positive Electrode for Lithium Secondary Battery The positive electrode active material for lithium secondary battery, conductive material (acetylene black) and binder (PVdF) obtained by the manufacturing method described later are used as the positive electrode active material for lithium secondary battery: A paste-like positive electrode mixture was prepared by adding and kneading the conductive material so as to have a composition of binder = 92: 5: 3 (mass ratio). N-methyl-2-pyrrolidone was used as an organic solvent when preparing the positive electrode mixture.

得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して150℃で8時間真空乾燥を行い、リチウム二次電池用正極を得た。このリチウム二次電池用正極の電極面積は1.65cmとした。 The obtained positive electrode mixture was applied to an Al foil having a thickness of 40 μm as a current collector and vacuum dried at 150 ° C. for 8 hours to obtain a positive electrode for a lithium secondary battery. The electrode area of the positive electrode for the lithium secondary battery was 1.65 cm 2 .

(3)リチウム二次電池用負極の作製
次に、負極活物質として人造黒鉛(日立化成株式会社製MAGD)と、バインダーとしてCMC(第一工業薬製株式会社製)とSBR(日本エイアンドエル株式会社製)とを、負極活物質:CMC:SRR=98:1:1(質量比)の組成となるように加えて混練することにより、ペースト状の負極合剤を調製した。負極合剤の調製時には、溶媒としてイオン交換水を用いた。
(3) Preparation of negative electrode for lithium secondary battery Next, artificial graphite (MAGD manufactured by Hitachi Kasei Co., Ltd.) as the negative electrode active material, CMC (manufactured by Daiichi Kogyo Yakuhin Co., Ltd.) and SBR (Nippon A & L Inc.) as the binder. The negative electrode active material: CMC: SRR = 98: 1: 1 (mass ratio) was added and kneaded to prepare a paste-like negative electrode mixture. Ion-exchanged water was used as the solvent when preparing the negative electrode mixture.

得られた負極合剤を、集電体となる厚さ12μmのCu箔に塗布して100℃で8時間真空乾燥を行い、リチウム二次電池用負極を得た。このリチウム二次電池用負極の電極面積は1.77cmとした。 The obtained negative electrode mixture was applied to a Cu foil having a thickness of 12 μm as a current collector and vacuum dried at 100 ° C. for 8 hours to obtain a negative electrode for a lithium secondary battery. The electrode area of the negative electrode for the lithium secondary battery was 1.77 cm 2 .

(4)リチウム二次電池(コイン型ハーフセル)の作製
以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
「(2)リチウム二次電池用正極の作製」で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネート(以下、ECと称することがある。)とジメチルカーボネート(以下、DMCと称することがある。)とエチルメチルカーボネート(以下、EMCと称することがある。)の30:35:35(体積比)混合液に、LiPF6を1.0mol/lとなるように溶解したもの(以下、LiPF6/EC+DMC+EMCと表すことがある。)を用いた。
次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型ハーフセルR2032。以下、「ハーフセル」と称することがある。)を作製した。
(4) Preparation of lithium secondary battery (coin type half cell) The following operation was performed in a glove box with an argon atmosphere.
Place the positive electrode for the lithium secondary battery manufactured in "(2) Fabrication of the positive electrode for the lithium secondary battery" on the lower lid of the part for the coin-type battery R2032 (manufactured by Hosen Co., Ltd.) with the aluminum foil surface facing down. A laminated film separator (a heat-resistant porous layer laminated (thickness 16 μm) on a porous polyethylene film) was placed on the laminated film separator. 300 μl of the electrolytic solution was injected therein. The electrolytic solution is ethylene carbonate (hereinafter, may be referred to as EC), dimethyl carbonate (hereinafter, may be referred to as DMC), and ethyl methyl carbonate (hereinafter, may be referred to as EMC) at 30:35. A mixture of 35 (volume ratio) in which LiPF 6 was dissolved at 1.0 mol / l (hereinafter, may be referred to as LiPF 6 / EC + DMC + EMC) was used.
Next, using metallic lithium as the negative electrode, the negative electrode is placed on the upper side of the laminated film separator, the upper lid is closed through a gasket, and the lithium secondary battery (coin type half cell R2032; hereinafter, “half cell”) is crimped with a caulking machine. It may be referred to as).

(5)リチウム二次電池(コイン型フルセル)の作製
以下の操作を、アルゴン雰囲気のグローブボックス内で行った。
「(2)リチウム二次電池用正極の作製」で作製したリチウム二次電池用正極を、コイン型電池R2032用のパーツ(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μl注入した。電解液は、エチレンカーボネート(以下、ECと称することがある。)とジメチルカーボネート(以下、DMCと称することがある。)とエチルメチルカーボネート(以下、EMCと称することがある。)の16:10:74(体積比)混合液にビニレンカーボネート(以下、VCと称することがある。)を1体積%加え、そこにLiPF6を1.3mol/lとなるように溶解したもの(以下、LiPF6/EC+DMC+EMCと表すことがある。)を用いた。
次に、「(3)リチウム二次電池用負極の作製」で作製したリチウム二次電池用負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型フルセルR2032。以下、「フルセル」と称することがある。)を作製した。
(5) Preparation of Lithium Secondary Battery (Coin-type Full Cell) The following operation was performed in a glove box with an argon atmosphere.
Place the positive electrode for the lithium secondary battery manufactured in "(2) Fabrication of the positive electrode for the lithium secondary battery" on the lower lid of the part for the coin-type battery R2032 (manufactured by Hosen Co., Ltd.) with the aluminum foil surface facing down. A laminated film separator (a heat-resistant porous layer laminated (thickness 16 μm) on a porous polyethylene film) was placed on the laminated film separator. 300 μl of the electrolytic solution was injected therein. The electrolytic solution is 16:10 of ethylene carbonate (hereinafter, may be referred to as EC), dimethyl carbonate (hereinafter, may be referred to as DMC) and ethyl methyl carbonate (hereinafter, may be referred to as EMC). : 74 (volume ratio) A mixture of vinylene carbonate (hereinafter, may be referred to as VC) in an amount of 1% by volume, and LiPF 6 dissolved therein so as to be 1.3 mol / l (hereinafter, LiPF 6). / EC + DMC + EMC may be expressed.) Was used.
Next, the negative electrode for the lithium secondary battery prepared in "(3) Preparation of the negative electrode for the lithium secondary battery" is placed on the upper side of the laminated film separator, the upper lid is closed through the gasket, and the lithium secondary is crimped with a caulking machine. A battery (coin-type full cell R2032; hereinafter, may be referred to as "full cell") was produced.

(6)初回充放電試験
「(4)リチウム二次電池(コイン型ハーフセル)の作製」で作製したハーフセルを用いて、以下に示す条件で初回充放電試験を実施した。
<初回充放電試験>
試験温度25℃
充電最大電圧4.3V、充電時間6時間、充電電流0.2CA、定電流定電圧充電
放電最小電圧2.5V、放電時間5時間、放電電流0.2CA、定電流放電また、初回充放電効率は以下のようにして求めた。
初回充放電効率(%=0.2CAの初回放電容量/0.2CAの初回充電容量×100
(6) Initial charge / discharge test Using the half cell prepared in "(4) Preparation of lithium secondary battery (coin type half cell)", the initial charge / discharge test was carried out under the following conditions.
<First charge / discharge test>
Test temperature 25 ° C
Maximum charging voltage 4.3V, charging time 6 hours, charging current 0.2CA, constant current constant voltage charging Minimum discharge voltage 2.5V, discharge time 5 hours, discharge current 0.2CA, constant current discharge Also, initial charge / discharge efficiency Was calculated as follows.
Initial charge / discharge efficiency (% = 0.2CA initial discharge capacity / 0.2CA initial charge capacity x 100

(7)低温放電試験
「(5)リチウム二次電池(コイン型フルセル)の作製」で作製したフルセルを用いて、以下に示す条件で初回充放電試験を実施した。
<充放電試験条件>
試験温度:25℃
充電最大電圧4.2V、充電時間6時間、充電電流0.2CA、定電流定電圧充電
放電最小電圧2.7V、放電時間5時間、放電電流0.2CA、定電流放電<電池抵抗測定>
上記で測定した放電容量を充電深度(以下、SOCと称することがある。)100%として、−15℃において、SOC15%、50%の電池抵抗を測定した。なお、各SOCへの調整は25℃環境下で行った。電池抵抗測定は、−15℃の恒温槽内にSOCを調整したフルセルを2時間静置し、20μAで15秒間放電、5分静置、20μAで15秒間充電、5分静置、40μAで15秒間放電、5分静置、20μAで30秒間充電、5分静置、80μAで15秒間放電、5分静置、20μAで60秒間充電、5分静置、160μAで15秒間放電、5分静置、20μAで120秒間充電、5分静置の順に実施した。電池抵抗は、20、40、80、120μA放電時に測定された10秒後の電池電圧と各電流値とのプロットから、最小二乗近似法を用いて傾きを算出し、この傾きを電池抵抗とした。
(7) Low-temperature discharge test Using the full cell prepared in "(5) Preparation of lithium secondary battery (coin type full cell)", the initial charge / discharge test was carried out under the following conditions.
<Charging / discharging test conditions>
Test temperature: 25 ° C
Maximum charging voltage 4.2V, charging time 6 hours, charging current 0.2CA, constant current constant voltage charging Minimum discharge voltage 2.7V, discharge time 5 hours, discharge current 0.2CA, constant current discharge <Battery resistance measurement>
The battery resistance of 15% SOC and 50% SOC was measured at −15 ° C. with the discharge capacity measured above as 100% of the charging depth (hereinafter, may be referred to as SOC). The adjustment to each SOC was performed in an environment of 25 ° C. For battery resistance measurement, a full cell with SOC adjusted is allowed to stand in a constant temperature bath at -15 ° C for 2 hours, discharged at 20 μA for 15 seconds, left to stand for 5 minutes, charged at 20 μA for 15 seconds, left to stand for 5 minutes, and left at 40 μA for 15 minutes. Discharge for 2 seconds, stand for 5 minutes, charge for 30 seconds at 20 μA, stand for 5 minutes, discharge for 15 seconds at 80 μA, stand for 5 minutes, charge for 60 seconds at 20 μA, stand for 5 minutes, discharge for 15 seconds at 160 μA, discharge for 5 minutes It was placed, charged at 20 μA for 120 seconds, and allowed to stand for 5 minutes in that order. The battery resistance was calculated by using the least squares approximation method from the plot of the battery voltage after 10 seconds measured at 20, 40, 80, and 120 μA discharge and each current value, and this slope was used as the battery resistance. ..

(実施例1)
1.リチウム二次電池用正極活物質1の製造
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
(Example 1)
1. 1. Manufacture of positive electrode active material 1 for lithium secondary battery
After putting water in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to maintain the liquid temperature at 50 ° C.

硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.315:0.330:0.355となるように混合して、混合原料液を調整した。 A nickel sulfate aqueous solution, a cobalt sulfate aqueous solution, and a manganese sulfate aqueous solution are mixed so that the atomic ratio of nickel atom, cobalt atom, and manganese atom is 0.315: 0.330: 0.355 to prepare a mixed raw material solution. It was adjusted.

次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、酸素濃度が4.0%となるように窒素ガスに空気を混合して得た酸素含有ガスを連続通気させた。反応槽内の溶液のpHが11.7になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物1を得た。 Next, the mixed raw material solution and the ammonium sulfate aqueous solution were continuously added as a complexing agent into the reaction vessel under stirring, and air was mixed with nitrogen gas so that the oxygen concentration became 4.0%. The oxygen-containing gas was continuously ventilated. An aqueous sodium hydroxide solution was added dropwise at appropriate times so that the pH of the solution in the reaction vessel became 11.7 to obtain nickel-cobalt-manganese composite hydroxide particles, which were washed and then dehydrated with a centrifuge, washed, dehydrated. The nickel-cobalt-manganese composite hydroxide 1 was obtained by isolating and drying at 105 ° C.

ニッケルコバルトマンガン複合水酸化物1と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.13となるように秤量して混合した後、大気雰囲気下690℃で5時間焼成し、さらに、大気雰囲気下925℃で6時間焼成して、目的のリチウム二次電池用正極活物質1を得た。 Nickel cobalt manganese composite hydroxide 1 and lithium carbonate powder are weighed and mixed so that Li / (Ni + Co + Mn) = 1.13, then calcined at 690 ° C. for 5 hours in an air atmosphere, and further, the atmosphere. The target positive electrode active material 1 for a lithium secondary battery was obtained by firing at 925 ° C. for 6 hours in an atmosphere.

2.リチウム二次電池用正極活物質1の評価
リチウム二次電池用正極活物質1の組成分析を行い、一般式(1)に対応させたところ、x=0.06、y=0.328、z=0.356、w=0であった。
2. 2. Evaluation of positive electrode active material 1 for lithium secondary battery
When the composition of the positive electrode active material 1 for the lithium secondary battery was analyzed and corresponded to the general formula (1), it was x = 0.06, y = 0.328, z = 0.356, w = 0. ..

リチウム二次電池用正極活物質1の平均圧壊強度は52.2MPa、BET比表面積は2.4m/g、平均粒子径D50は3.4μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.020、半値幅Aが0.134、半値幅Bが0.147であった。 The average crushing strength of the positive electrode active material 1 for a lithium secondary battery is 52.2 MPa, the BET specific surface area is 2.4 m 2 / g, the average particle size D 50 is 3.4 μm, and the half width of 2θ = 18.7 ± 1 °. A × B, which is the product of A and the half width B of 2θ = 44.4 ± 1 °, was 0.020, the half width A was 0.134, and the half width B was 0.147.

リチウム二次電池用正極活物質1の残留リチウム定量を行い、炭酸リチウムが0.10質量%、水酸化リチウムが0.11質量%であった。 The residual lithium of the positive electrode active material 1 for the lithium secondary battery was quantified, and lithium carbonate was 0.10% by mass and lithium hydroxide was 0.11% by mass.

3.リチウム二次電池の評価
リチウム二次電池用正極活物質1を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ170.4mAh/g、161.1mAh/g、94.5%であった。
3. 3. Evaluation of lithium secondary battery
A coin-type half cell was prepared using the positive electrode active material 1 for a lithium secondary battery, and the initial charge / discharge test was carried out. The initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency were 170.4 mAh / g, 161.1 mAh / g, and 94.5%, respectively.

リチウム二次電池用正極活物質1を用いて、コイン型フルセルを作製し、−15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ423Ω、384Ωであった。 A coin-type full cell was prepared using the positive electrode active material 1 for a lithium secondary battery, and a low-temperature discharge test at −15 ° C. was conducted. The DC resistance at SOC 15% and SOC 50% was 423Ω and 384Ω, respectively.

(実施例2)
1.リチウム二次電池用正極活物質2の製造
実施例1と同様にしてニッケルコバルトマンガン複合水酸化物1を得た。
(Example 2)
1. 1. Manufacture of positive electrode active material 2 for lithium secondary batteries
Nickel cobalt manganese composite hydroxide 1 was obtained in the same manner as in Example 1.

WOを61g/Lで溶解したLiOH水溶液を作製した。作製したW溶解LiOH水溶液をレディゲミキサーにてW/(Ni+Co+Mn+W)=0.005となるよう、ニッケルコバルトマンガン複合水酸化物1に被着させた。Wが被着したニッケルコバルトマンガン複合水酸化物と炭酸リチウム粉末とを、Li/(Ni+Co+Mn+W)=1.13となるように秤量して混合した後、大気雰囲気下690℃で5時間焼成し、さらに大気雰囲気下925℃で6時間焼成して、目的のリチウム二次電池用正極活物質2を得た。 A LiOH aqueous solution in which WO 3 was dissolved at 61 g / L was prepared. The prepared W-dissolved LiOH aqueous solution was adhered to nickel-cobalt-manganese composite hydroxide 1 so as to have W / (Ni + Co + Mn + W) = 0.005 with a Ladyge mixer. The nickel-cobalt-manganese composite hydroxide coated with W and the lithium carbonate powder were weighed and mixed so that Li / (Ni + Co + Mn + W) = 1.13, and then calcined at 690 ° C. for 5 hours in an air atmosphere. Further, it was calcined at 925 ° C. for 6 hours in an air atmosphere to obtain the target positive electrode active material 2 for a lithium secondary battery.

2.リチウム二次電池用正極活物質2の評価
リチウム二次電池用正極活物質2の組成分析を行い、一般式(1)に対応させたところ、MがW、x=0.06、y=0.327、z=0.354、w=0.005であった。
2. 2. Evaluation of positive electrode active material 2 for lithium secondary batteries
When the composition of the positive electrode active material 2 for the lithium secondary battery was analyzed and made to correspond to the general formula (1), M was W, x = 0.06, y = 0.327, z = 0.354, w =. It was 0.005.

リチウム二次電池用正極活物質2の平均圧壊強度は54.0MPa、BET比表面積は2.0m/g、平均粒子径D50は3.6μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.023、半値幅Aが0.141、半値幅Bが0.161であった。 The average crushing strength of the positive electrode active material 2 for lithium secondary batteries is 54.0 MPa, the BET specific surface area is 2.0 m 2 / g, the average particle size D 50 is 3.6 μm, and the half width of 2θ = 18.7 ± 1 °. A × B, which is the product of A and the half width B of 2θ = 44.4 ± 1 °, was 0.023, the half width A was 0.141, and the half width B was 0.161.

リチウム二次電池用正極活物質2の残留リチウム定量を行い、炭酸リチウムが0.17質量%、水酸化リチウムが0.11質量%であった。 The residual lithium of the positive electrode active material 2 for the lithium secondary battery was quantified, and lithium carbonate was 0.17% by mass and lithium hydroxide was 0.11% by mass.

3.リチウム二次電池の評価
リチウム二次電池用正極活物質2を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ170.6mAh/g、161.2mAh/g、94.5%であった。
3. 3. Evaluation of lithium secondary battery
A coin-type half cell was prepared using the positive electrode active material 2 for a lithium secondary battery, and the initial charge / discharge test was carried out. The initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency were 170.6 mAh / g, 161.2 mAh / g, and 94.5%, respectively.

リチウム二次電池用正極活物質2を用いて、コイン型フルセルを作製し、−15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ296Ω、269Ωであった。 A coin-shaped full cell was prepared using the positive electrode active material 2 for a lithium secondary battery, and a low temperature discharge test at −15 ° C. was conducted. The DC resistance at SOC 15% and SOC 50% was 296Ω and 269Ω, respectively.

(実施例3)
1.リチウム二次電池用正極活物質3の製造
実施例1と同様にしてニッケルコバルトマンガン複合水酸化物1を得た。
(Example 3)
1. 1. Manufacture of positive electrode active material 3 for lithium secondary batteries
Nickel cobalt manganese composite hydroxide 1 was obtained in the same manner as in Example 1.

ニッケルコバルトマンガン複合水酸化物1と、Zr/(Ni+Co+Mn+Zr)=0.003となるようにZrOを添加し、混合してZrO含有混合粉を得た。この混合粉と炭酸リチウム粉末とを、Li/(Ni+Co+Mn+Zr)=1.13となるように秤量して混合した後、大気雰囲気下690℃で5時間焼成し、さらに大気雰囲気下925℃で6時間焼成して、目的のリチウム二次電池用正極活物質3を得た。 Nickel-cobalt-manganese composite hydroxide 1 and ZrO 2 were added so that Zr / (Ni + Co + Mn + Zr) = 0.003 and mixed to obtain a ZrO 2- containing mixed powder. This mixed powder and lithium carbonate powder are weighed and mixed so that Li / (Ni + Co + Mn + Zr) = 1.13, then fired in an air atmosphere at 690 ° C. for 5 hours, and further in an air atmosphere at 925 ° C. for 6 hours. It was fired to obtain the desired positive electrode active material 3 for a lithium secondary battery.

2.リチウム二次電池用正極活物質3の評価
リチウム二次電池用正極活物質3の組成分析を行い、一般式(1)に対応させたところ、MがZr、x=0.06、y=0.328、z=0.354、w=0.003であった。
2. 2. Evaluation of positive electrode active material 3 for lithium secondary batteries
When the composition of the positive electrode active material 3 for the lithium secondary battery was analyzed and made to correspond to the general formula (1), M was Zr, x = 0.06, y = 0.328, z = 0.354, w =. It was 0.003.

リチウム二次電池用正極活物質3の平均圧壊強度は57.6MPa、BET比表面積は2.4m/g、平均粒子径D50は3.5μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.021、半値幅Aが0.133、半値幅Bが0.161であった。 The average crushing strength of the positive electrode active material 3 for a lithium secondary battery is 57.6 MPa, the BET specific surface area is 2.4 m 2 / g, the average particle size D 50 is 3.5 μm, and the half width of 2θ = 18.7 ± 1 °. A × B, which is the product of A and the half width B of 2θ = 44.4 ± 1 °, was 0.021, the half width A was 0.133, and the half width B was 0.161.

リチウム二次電池用正極活物質3の残留リチウム定量を行い、炭酸リチウムが0.15質量%、水酸化リチウムが0.12質量%であった。 The residual lithium of the positive electrode active material 3 for the lithium secondary battery was quantified, and lithium carbonate was 0.15% by mass and lithium hydroxide was 0.12% by mass.

3.リチウム二次電池の評価
リチウム二次電池用正極活物質3を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ170.5mAh/g、160.2mAh/g、94.0%であった。
3. 3. Evaluation of lithium secondary battery
A coin-shaped half cell was prepared using the positive electrode active material 3 for a lithium secondary battery, and the initial charge / discharge test was carried out. The initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency were 170.5 mAh / g, 160.2 mAh / g, and 94.0%, respectively.

リチウム二次電池用正極活物質3を用いて、コイン型フルセルを作製し、−15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ298Ω、271Ωであった。 A coin-shaped full cell was prepared using the positive electrode active material 3 for a lithium secondary battery, and a low-temperature discharge test at −15 ° C. was conducted. The DC resistance at SOC 15% and SOC 50% was 298Ω and 271Ω, respectively.

(実施例4)
1.リチウム二次電池用正極活物質4の製造
酸素濃度が2.1%、反応槽内の溶液のpHが11.2となるように操作したこと以外は実施例1と同様に実施し、ニッケルコバルトマンガン複合水酸化物2を得た。
(Example 4)
1. 1. Manufacture of positive electrode active material 4 for lithium secondary battery
The same procedure as in Example 1 was carried out except that the operation was performed so that the oxygen concentration was 2.1% and the pH of the solution in the reaction vessel was 11.2, to obtain a nickel cobalt-manganese composite hydroxide 2.

ニッケルコバルトマンガン複合水酸化物2と、Mg/(Ni+Co+Mn+Mg)=0.003となるようにMgOを添加し、混合してMgO含有混合粉を得た。この混合粉と炭酸リチウム粉末とを、Li/(Ni+Co+Mn+Mg)=1.08となるように秤量して混合した後、大気雰囲気下690℃で5時間焼成し、さらに大気雰囲気下950℃で6時間焼成して、目的のリチウム二次電池用正極活物質4を得た。 Nickel-cobalt-manganese composite hydroxide 2 and MgO were added so that Mg / (Ni + Co + Mn + Mg) = 0.003 and mixed to obtain an MgO-containing mixed powder. This mixed powder and lithium carbonate powder are weighed and mixed so that Li / (Ni + Co + Mn + Mg) = 1.08, then fired at 690 ° C. for 5 hours in an air atmosphere, and further at 950 ° C. for 6 hours in an air atmosphere. It was fired to obtain the desired positive electrode active material 4 for a lithium secondary battery.

2.リチウム二次電池用正極活物質4の評価
リチウム二次電池用正極活物質4の組成分析を行い、一般式(1)に対応させたところ、MがMg、x=0.04、y=0.328、z=0.355、w=0.003であった。
2. 2. Evaluation of positive electrode active material 4 for lithium secondary battery
When the composition of the positive electrode active material 4 for the lithium secondary battery was analyzed and made to correspond to the general formula (1), M was Mg, x = 0.04, y = 0.328, z = 0.355, w =. It was 0.003.

リチウム二次電池用正極活物質4の平均圧壊強度は92.6MPa、BET比表面積は1.1m/g、平均粒子径D50は9.8μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.019、半値幅Aが0.133、半値幅Bが0.142であった。 The average crushing strength of the positive electrode active material 4 for a lithium secondary battery is 92.6 MPa, the BET specific surface area is 1.1 m 2 / g, the average particle size D 50 is 9.8 μm, and the half width of 2θ = 18.7 ± 1 °. A × B, which is the product of A and the half width B of 2θ = 44.4 ± 1 °, was 0.019, the half width A was 0.133, and the half width B was 0.142.

リチウム二次電池用正極活物質4の残留リチウム定量を行い、炭酸リチウムが0.04質量%、水酸化リチウムが0.10質量%であった。 The residual lithium of the positive electrode active material 4 for the lithium secondary battery was quantified, and lithium carbonate was 0.04% by mass and lithium hydroxide was 0.10% by mass.

3.リチウム二次電池の評価
リチウム二次電池用正極活物質4を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ173.4mAh/g、157.1mAh/g、90.6%であった。
3. 3. Evaluation of lithium secondary battery
A coin-type half cell was prepared using the positive electrode active material 4 for a lithium secondary battery, and the initial charge / discharge test was carried out. The initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency were 173.4 mAh / g, 157.1 mAh / g, and 90.6%, respectively.

リチウム二次電池用正極活物質4を用いて、コイン型フルセルを作製し、−15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ480Ω、332Ωであった。 A coin-type full cell was prepared using the positive electrode active material 4 for a lithium secondary battery, and a low-temperature discharge test at −15 ° C. was conducted. The DC resistance at SOC 15% and SOC 50% was 480Ω and 332Ω, respectively.

(実施例5)
1.リチウム二次電池用正極活物質5の製造
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
(Example 5)
1. 1. Manufacture of positive electrode active material 5 for lithium secondary battery
After putting water in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to maintain the liquid temperature at 50 ° C.

硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.510:0.225:0.265となるように混合して、混合原料液を調整した。 The nickel sulfate aqueous solution, the cobalt sulfate aqueous solution, and the manganese sulfate aqueous solution are mixed so that the atomic ratio of the nickel atom, the cobalt atom, and the manganese atom is 0.510: 0.225: 0.265 to prepare a mixed raw material solution. It was adjusted.

次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、酸素濃度が8.3%となるように窒素ガスに空気を混合して得た酸素含有ガスを連続通気させた。反応槽内の溶液のpHが12.2になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物3を得た。 Next, in the reaction vessel, the mixed raw material solution and the ammonium sulfate aqueous solution were continuously added as a complexing agent under stirring, and air was mixed with nitrogen gas so that the oxygen concentration became 8.3%. The oxygen-containing gas was continuously ventilated. An aqueous sodium hydroxide solution was added dropwise at appropriate times so that the pH of the solution in the reaction vessel became 12.2 to obtain nickel-cobalt-manganese composite hydroxide particles, which were washed and then dehydrated with a centrifuge, washed, dehydrated. The nickel cobalt-manganese composite hydroxide 3 was obtained by isolating and drying at 105 ° C.

ニッケルコバルトマンガン複合水酸化物3と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.06となるように秤量して混合した後、大気雰囲気下720℃で3時間焼成し、さらに大気雰囲気下875℃で10時間焼成して、目的のリチウム二次電池用正極活物質5を得た。 Nickel-cobalt-manganese composite hydroxide 3 and lithium carbonate powder are weighed and mixed so that Li / (Ni + Co + Mn) = 1.06, and then calcined at 720 ° C. for 3 hours in an air atmosphere. The target positive electrode active material 5 for a lithium secondary battery was obtained by firing at 875 ° C. for 10 hours.

2.リチウム二次電池用正極活物質5の評価
リチウム二次電池用正極活物質5の組成分析を行い、一般式(1)に対応させたところ、x=0.03、y=0.222、z=0.267、w=0であった。
2. 2. Evaluation of Positive Electrode Active Material 5 for Lithium Secondary Battery
When the composition of the positive electrode active material 5 for the lithium secondary battery was analyzed and corresponded to the general formula (1), it was x = 0.03, y = 0.222, z = 0.267, w = 0. ..

リチウム二次電池用正極活物質5の平均圧壊強度は71.8MPa、BET比表面積は1.3m/g、平均粒子径D50は7.8μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.015、半値幅Aが0.120、半値幅Bが0.125であった。 The average crushing strength of the positive electrode active material 5 for a lithium secondary battery is 71.8 MPa, the BET specific surface area is 1.3 m 2 / g, the average particle size D 50 is 7.8 μm, and the half width of 2θ = 18.7 ± 1 °. A × B, which is the product of A and the half width B of 2θ = 44.4 ± 1 °, was 0.015, the half width A was 0.120, and the half width B was 0.125.

リチウム二次電池用正極活物質5の残留リチウム定量を行い、炭酸リチウムが0.15質量%、水酸化リチウムが0.19質量%であった。 The residual lithium of the positive electrode active material 5 for the lithium secondary battery was quantified, and lithium carbonate was 0.15% by mass and lithium hydroxide was 0.19% by mass.

3.リチウム二次電池の評価
リチウム二次電池用正極活物質5を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ189.6mAh/g、174.1mAh/g、91.8%であった。
3. 3. Evaluation of lithium secondary battery
A coin-shaped half cell was prepared using the positive electrode active material 5 for a lithium secondary battery, and the initial charge / discharge test was carried out. The initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency were 189.6 mAh / g and 174.1 mAh / g, respectively, and 91.8%.

リチウム二次電池用正極活物質5を用いて、コイン型フルセルを作製し、−15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ340Ω、301Ωであった。 A coin-shaped full cell was prepared using the positive electrode active material 5 for a lithium secondary battery, and a low-temperature discharge test at −15 ° C. was conducted. The DC resistance at SOC 15% and SOC 50% was 340Ω and 301Ω, respectively.

(実施例6)
1.リチウム二次電池用正極活物質6の製造
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
(Example 6)
1. 1. Production of positive electrode active material 6 for lithium secondary batteries
After putting water in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to maintain the liquid temperature at 50 ° C.

硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.550:0.210:0.240となるように混合して、混合原料液を調整した。 The nickel sulfate aqueous solution, the cobalt sulfate aqueous solution, and the manganese sulfate aqueous solution are mixed so that the atomic ratio of the nickel atom, the cobalt atom, and the manganese atom is 0.550: 0.210: 0.240 to prepare a mixed raw material solution. It was adjusted.

次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、酸素濃度が9.5%となるように窒素ガスに空気を混合して得た酸素含有ガスを連続通気させた。反応槽内の溶液のpHが12.5になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物4を得た。 Next, in the reaction vessel, the mixed raw material solution and the ammonium sulfate aqueous solution were continuously added as a complexing agent under stirring, and air was mixed with nitrogen gas so that the oxygen concentration became 9.5%. The oxygen-containing gas was continuously ventilated. An aqueous sodium hydroxide solution was added dropwise at appropriate times so that the pH of the solution in the reaction vessel became 12.5 to obtain nickel-cobalt-manganese composite hydroxide particles, which were washed, then dehydrated with a centrifuge, washed, and dehydrated. The nickel cobalt-manganese composite hydroxide 4 was obtained by isolating and drying at 105 ° C.

ニッケルコバルトマンガン複合水酸化物4と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.06となるように秤量して混合した後、大気雰囲気下790℃で3時間焼成し、さらに酸素雰囲気下830℃で10時間焼成して、目的のリチウム二次電池用正極活物質6を得た。 Nickel cobalt manganese composite hydroxide 4 and lithium carbonate powder are weighed and mixed so that Li / (Ni + Co + Mn) = 1.06, then fired at 790 ° C. for 3 hours in an air atmosphere, and further in an oxygen atmosphere. The target positive electrode active material 6 for a lithium secondary battery was obtained by firing at 830 ° C. for 10 hours.

2.リチウム二次電池用正極活物質6の評価
リチウム二次電池用正極活物質6の組成分析を行い、一般式(1)に対応させたところ、x=0.03、y=0.208、z=0.242、w=0であった。
2. 2. Evaluation of Positive Electrode Active Material 6 for Lithium Secondary Battery
When the composition of the positive electrode active material 6 for the lithium secondary battery was analyzed and corresponded to the general formula (1), it was x = 0.03, y = 0.208, z = 0.242, w = 0. ..

リチウム二次電池用正極活物質6の平均圧壊強度は13.6MPa、BET比表面積は2.8m/g、平均粒子径D50は2.5μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.028、半値幅Aが0.160、半値幅Bが0.175であった。 The average crushing strength of the positive electrode active material 6 for a lithium secondary battery is 13.6 MPa, the BET specific surface area is 2.8 m 2 / g, the average particle size D 50 is 2.5 μm, and the half width of 2θ = 18.7 ± 1 °. A × B, which is the product of A and the half width B of 2θ = 44.4 ± 1 °, was 0.028, the half width A was 0.160, and the half width B was 0.175.

リチウム二次電池用正極活物質6の残留リチウム定量を行い、炭酸リチウムが0.16質量%、水酸化リチウムが0.11質量%であった。 Residual lithium of the positive electrode active material 6 for a lithium secondary battery was quantified, and lithium carbonate was 0.16% by mass and lithium hydroxide was 0.11% by mass.

3.リチウム二次電池の評価
リチウム二次電池用正極活物質6を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ192.3mAh/g、175.8mAh/g、91.4%であった。
3. 3. Evaluation of lithium secondary battery
A coin-shaped half cell was prepared using the positive electrode active material 6 for a lithium secondary battery, and the initial charge / discharge test was carried out. The initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency were 192.3 mAh / g and 175.8 mAh / g, respectively, and 91.4%.

リチウム二次電池用正極活物質6を用いて、コイン型フルセルを作製し、−15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ463Ω、413Ωであった。 A coin-type full cell was prepared using the positive electrode active material 6 for a lithium secondary battery, and a low temperature discharge test at −15 ° C. was conducted. The DC resistance at SOC 15% and SOC 50% was 463Ω and 413Ω, respectively.

(実施例7)
1.リチウム二次電池用正極活物質7の製造
実施例6と同様にしてニッケルコバルトマンガン複合水酸化物4を得た。
(Example 7)
1. 1. Manufacture of positive electrode active material 7 for lithium secondary batteries
Nickel cobalt manganese composite hydroxide 4 was obtained in the same manner as in Example 6.

WOを61g/Lで溶解したLiOH水溶液を作製した。作製したW溶解LiOH水溶液をレディゲミキサーにてW/(Ni+Co+Mn+W)=0.003となるよう、ニッケルコバルトマンガン複合水酸化物4に被着させた。Wが被着したニッケルコバルトマンガン複合水酸化物と炭酸リチウム粉末とを、Li/(Ni+Co+Mn+W)=1.08となるように秤量して混合した後、大気雰囲気下790℃で3時間焼成し、さらに酸素雰囲気下860℃で10時間焼成して、目的のリチウム二次電池用正極活物質7を得た。 A LiOH aqueous solution in which WO 3 was dissolved at 61 g / L was prepared. The prepared W-dissolved LiOH aqueous solution was adhered to nickel-cobalt-manganese composite hydroxide 4 so that W / (Ni + Co + Mn + W) = 0.003 with a Ladyge mixer. The nickel-cobalt-manganese composite hydroxide on which W was adhered and the lithium carbonate powder were weighed and mixed so that Li / (Ni + Co + Mn + W) = 1.08, and then fired at 790 ° C. for 3 hours in an air atmosphere. Further, it was fired at 860 ° C. for 10 hours in an oxygen atmosphere to obtain the target positive electrode active material 7 for a lithium secondary battery.

2.リチウム二次電池用正極活物質7の評価
リチウム二次電池用正極活物質7の組成分析を行い、一般式(1)に対応させたところ、MがW、x=0.04、y=0.208、z=0.241、w=0.003であった。
2. 2. Evaluation of positive electrode active material 7 for lithium secondary battery
When the composition of the positive electrode active material 7 for the lithium secondary battery was analyzed and made to correspond to the general formula (1), M was W, x = 0.04, y = 0.208, z = 0.241, w =. It was 0.003.

リチウム二次電池用正極活物質7の平均圧壊強度は23.9MPa、BET比表面積は2.0m/g、平均粒子径D50は3.4μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.023、半値幅Aが0.142、半値幅Bが0.163であった。 The average crushing strength of the positive electrode active material 7 for a lithium secondary battery is 23.9 MPa, the BET specific surface area is 2.0 m 2 / g, the average particle size D 50 is 3.4 μm, and the half width of 2θ = 18.7 ± 1 °. A × B, which is the product of A and the half width B of 2θ = 44.4 ± 1 °, was 0.023, the half width A was 0.142, and the half width B was 0.163.

リチウム二次電池用正極活物質7の残留リチウム定量を行い、炭酸リチウムが0.29質量%、水酸化リチウムが0.30質量%であった。 The residual lithium of the positive electrode active material 7 for the lithium secondary battery was quantified, and lithium carbonate was 0.29% by mass and lithium hydroxide was 0.30% by mass.

3.リチウム二次電池の評価
リチウム二次電池用正極活物質7を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ191.6mAh/g、184.1mAh/g、96.1%であった。
3. 3. Evaluation of lithium secondary battery
A coin-shaped half cell was prepared using the positive electrode active material 7 for a lithium secondary battery, and the initial charge / discharge test was carried out. The initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency were 191.6 mAh / g, 184.1 mAh / g, and 96.1%, respectively.

リチウム二次電池用正極活物質7を用いて、コイン型フルセルを作製し、−15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ328Ω、269Ωであった。 A coin-type full cell was prepared using the positive electrode active material 7 for a lithium secondary battery, and a low-temperature discharge test at −15 ° C. was conducted. The DC resistance at SOC 15% and SOC 50% was 328Ω and 269Ω, respectively.

(実施例8)
1.リチウム二次電池用正極活物質8の製造
攪拌器およびオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を60℃に保持した。
(Example 8)
1. 1. Manufacture of positive electrode active material 8 for lithium secondary battery
After putting water in a reaction vessel equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added to maintain the liquid temperature at 60 ° C.

硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子との原子比が0.750:0.150:0.100となるように混合して、混合原料液を調整した。 An aqueous solution of nickel sulfate, an aqueous solution of cobalt sulfate, and an aqueous solution of manganese sulfate are mixed so that the atomic ratio of nickel atom, cobalt atom, and manganese atom is 0.750: 0.150: 0.100 to prepare a mixed raw material solution. It was adjusted.

次に、反応槽内に、攪拌下、この混合原料溶液と硫酸アンモニウム水溶液を錯化剤として連続的に添加し、酸素濃度が7.5%となるように窒素ガスに空気を混合して得た酸素含有ガスを連続通気させた。反応槽内の溶液のpHが11.0になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物5を得た。 Next, in the reaction vessel, the mixed raw material solution and the ammonium sulfate aqueous solution were continuously added as a complexing agent under stirring, and air was mixed with nitrogen gas so that the oxygen concentration became 7.5%. The oxygen-containing gas was continuously ventilated. An aqueous sodium hydroxide solution was added dropwise at appropriate times so that the pH of the solution in the reaction vessel became 11.0 to obtain nickel-cobalt-manganese composite hydroxide particles, which were washed and then dehydrated with a centrifuge, washed, dehydrated. The nickel-cobalt-manganese composite hydroxide 5 was obtained by isolating and drying at 105 ° C.

ニッケルコバルトマンガン複合水酸化物5と、Al/(Ni+Co+Mn+Al)=0.05となるようにAlを添加し、混合してAl含有混合粉を得た。この混合粉と炭酸リチウム粉末とを、Li/(Ni+Co+Mn+Al)=1.02となるように秤量して混合した後、酸素雰囲気下750℃で5時間焼成し、さらに酸素雰囲気下800℃で5時間焼成して、目的のリチウム二次電池用正極活物質8を得た。 Nickel-cobalt-manganese composite hydroxide 5 and Al 2 O 3 were added so that Al / (Ni + Co + Mn + Al) = 0.05 and mixed to obtain an Al 2 O 3- containing mixed powder. This mixed powder and lithium carbonate powder are weighed and mixed so that Li / (Ni + Co + Mn + Al) = 1.02, then fired at 750 ° C. for 5 hours in an oxygen atmosphere, and further at 800 ° C. for 5 hours in an oxygen atmosphere. It was fired to obtain the desired positive electrode active material 8 for a lithium secondary battery.

2.リチウム二次電池用正極活物質8の評価
リチウム二次電池用正極活物質8の組成分析を行い、一般式(1)に対応させたところ、MがAl、x=0.01、y=0.142、z=0.095、w=0.05であった。
2. 2. Evaluation of Positive Electrode Active Material 8 for Lithium Secondary Battery
When the composition of the positive electrode active material 8 for the lithium secondary battery was analyzed and made to correspond to the general formula (1), M was Al, x = 0.01, y = 0.142, z = 0.095, w =. It was 0.05.

リチウム二次電池用正極活物質8の平均圧壊強度は30.1MPa、BET比表面積は1.5m/g、平均粒子径D50は6.2μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.018、半値幅Aが0.134、半値幅Bが0.138であった。 The average crushing strength of the positive electrode active material 8 for a lithium secondary battery is 30.1 MPa, the BET specific surface area is 1.5 m 2 / g, the average particle size D 50 is 6.2 μm, and the half width of 2θ = 18.7 ± 1 °. A × B, which is the product of A and the half width B of 2θ = 44.4 ± 1 °, was 0.018, the half width A was 0.134, and the half width B was 0.138.

リチウム二次電池用正極活物質8の残留リチウム定量を行い、炭酸リチウムが0.36質量%、水酸化リチウムが0.34質量%であった。 The residual lithium of the positive electrode active material 8 for the lithium secondary battery was quantified, and lithium carbonate was 0.36% by mass and lithium hydroxide was 0.34% by mass.

3.リチウム二次電池の評価
リチウム二次電池用正極活物質8を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ205.4mAh/g、197.6mAh/g、96.2%であった。
3. 3. Evaluation of lithium secondary battery
A coin-shaped half cell was prepared using the positive electrode active material 8 for a lithium secondary battery, and the initial charge / discharge test was carried out. The initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency were 205.4 mAh / g, 197.6 mAh / g, and 96.2%, respectively.

リチウム二次電池用正極活物質8を用いて、コイン型フルセルを作製し、−15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ301Ω、262Ωであった。 A coin-type full cell was prepared using the positive electrode active material 8 for a lithium secondary battery, and a low-temperature discharge test at −15 ° C. was conducted. The DC resistance at SOC 15% and SOC 50% was 301Ω and 262Ω, respectively.

(比較例1)
1.リチウム二次電池用正極活物質9の製造
実施例1と同様にしてニッケルコバルトマンガン複合水酸化物1を得た。
(Comparative Example 1)
1. 1. Manufacture of positive electrode active material 9 for lithium secondary battery
Nickel cobalt manganese composite hydroxide 1 was obtained in the same manner as in Example 1.

ニッケルコバルトマンガン複合水酸化物1と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.00となるように秤量して混合した後、大気雰囲気下690℃で5時間焼成し、さらに大気雰囲気下850℃で6時間焼成して、目的のリチウム二次電池用正極活物質9を得た。 Nickel cobalt manganese composite hydroxide 1 and lithium carbonate powder are weighed and mixed so that Li / (Ni + Co + Mn) = 1.00, calcined at 690 ° C. for 5 hours in an air atmosphere, and further air atmosphere. The target positive electrode active material 9 for a lithium secondary battery was obtained by firing at 850 ° C. for 6 hours.

2.リチウム二次電池用正極活物質9の評価
リチウム二次電池用正極活物質9の組成分析を行い、一般式(1)に対応させたところ、x=0.00、y=0.328、z=0.356、w=0であった。
2. 2. Evaluation of positive electrode active material 9 for lithium secondary battery
When the composition of the positive electrode active material 9 for the lithium secondary battery was analyzed and corresponded to the general formula (1), it was x = 0.00, y = 0.328, z = 0.356, w = 0. ..

リチウム二次電池用正極活物質9の平均圧壊強度は7.5MPa、BET比表面積は3.6m/g、平均粒子径D50は3.0μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.031、半値幅Aが0.165、半値幅Bが0.185であった。 The average crushing strength of the positive electrode active material 9 for a lithium secondary battery is 7.5 MPa, the BET specific surface area is 3.6 m 2 / g, the average particle size D 50 is 3.0 μm, and the half width of 2θ = 18.7 ± 1 °. A × B, which is the product of A and the half width B of 2θ = 44.4 ± 1 °, was 0.031, the half width A was 0.165, and the half width B was 0.185.

リチウム二次電池用正極活物質9の残留リチウム定量を行い、炭酸リチウムが0.41質量%、水酸化リチウムが0.45質量%であった。 Residual lithium of the positive electrode active material 9 for a lithium secondary battery was quantified, and lithium carbonate was 0.41% by mass and lithium hydroxide was 0.45% by mass.

3.リチウム二次電池の評価
リチウム二次電池用正極活物質9を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ172.4mAh/g、153.3mAh/g、88.9%であった。
3. 3. Evaluation of lithium secondary battery
A coin-type half cell was prepared using the positive electrode active material 9 for a lithium secondary battery, and the initial charge / discharge test was carried out. The initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency were 172.4 mAh / g, 153.3 mAh / g, and 88.9%, respectively.

リチウム二次電池用正極活物質9を用いて、コイン型フルセルを作製し、−15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ710Ω、651Ωであった。 A coin-shaped full cell was prepared using the positive electrode active material 9 for a lithium secondary battery, and a low temperature discharge test at −15 ° C. was conducted. The DC resistance at SOC 15% and SOC 50% was 710Ω and 651Ω, respectively.

(比較例2)
1.リチウム二次電池用正極活物質10の製造
実施例1と同様にしてニッケルコバルトマンガン複合水酸化物1を得た。
(Comparative Example 2)
1. 1. Manufacture of positive electrode active material 10 for lithium secondary battery
Nickel cobalt manganese composite hydroxide 1 was obtained in the same manner as in Example 1.

ニッケルコバルトマンガン複合水酸化物1と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.00となるように秤量して混合した後、大気雰囲気下690℃で5時間焼成し、さらに大気雰囲気下980℃で6時間焼成して、目的のリチウム二次電池用正極活物質10を得た。 Nickel cobalt manganese composite hydroxide 1 and lithium carbonate powder are weighed and mixed so that Li / (Ni + Co + Mn) = 1.00, calcined at 690 ° C. for 5 hours in an air atmosphere, and further air atmosphere. The target positive electrode active material 10 for a lithium secondary battery was obtained by firing at 980 ° C. for 6 hours.

2.リチウム二次電池用正極活物質10の評価
リチウム二次電池用正極活物質10の組成分析を行い、一般式(1)に対応させたところ、x=0、y=0.329、z=0.356、w=0であった。
2. 2. Evaluation of Positive Electrode Active Material 10 for Lithium Secondary Battery
When the composition of the positive electrode active material 10 for the lithium secondary battery was analyzed and made to correspond to the general formula (1), it was found that x = 0, y = 0.329, z = 0.356, and w = 0.

リチウム二次電池用正極活物質10平均圧壊強度は62.1MPa、BET比表面積は0.8m/g、平均粒子径D50は3.2μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.017、半値幅Aが0.128、半値幅Bが0.132であった。 Positive electrode active material for lithium secondary battery 10 Average crush strength is 62.1 MPa, BET specific surface area is 0.8 m 2 / g, average particle size D 50 is 3.2 μm, 2θ = 18.7 ± 1 ° half width A A × B, which is the product of the half width B of 2θ = 44.4 ± 1 °, was 0.017, the half width A was 0.128, and the half width B was 0.132.

リチウム二次電池用正極活物質10の残留リチウム定量を行い、炭酸リチウムが0.18質量%、水酸化リチウムが0.11質量%であった。 Residual lithium of the positive electrode active material 10 for a lithium secondary battery was quantified, and lithium carbonate was 0.18% by mass and lithium hydroxide was 0.11% by mass.

3.リチウム二次電池の評価
リチウム二次電池用正極活物質10を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ172.9mAh/g、154.4mAh/g、89.3%であった。
3. 3. Evaluation of lithium secondary battery
A coin-shaped half cell was prepared using the positive electrode active material 10 for a lithium secondary battery, and the initial charge / discharge test was carried out. The initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency were 172.9 mAh / g, 154.4 mAh / g, and 89.3%, respectively.

リチウム二次電池用正極活物質10を用いて、コイン型フルセルを作製し、−15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ621Ω、532Ωであった。 A coin-shaped full cell was prepared using the positive electrode active material 10 for a lithium secondary battery, and a low-temperature discharge test at −15 ° C. was conducted. The DC resistance at SOC 15% and SOC 50% was 621Ω and 532Ω, respectively.

(比較例3)
1.リチウム二次電池用正極活物質11の製造
反応槽内の酸素濃度を6.2%、反応槽内の溶液のpHを12.4としたこと以外は、実施例5と同様にして、ニッケルコバルトマンガン複合水酸化物6を得た。
(Comparative Example 3)
1. 1. Manufacture of positive electrode active material 11 for lithium secondary battery
Nickel cobalt manganese composite hydroxide 6 was obtained in the same manner as in Example 5 except that the oxygen concentration in the reaction vessel was 6.2% and the pH of the solution in the reaction vessel was 12.4.

ニッケルコバルトマンガン複合水酸化物6と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.00となるように秤量して混合した後、大気雰囲気下720℃で3時間焼成し、さらに大気雰囲気下875℃で10時間焼成して、目的のリチウム二次電池用正極活物質11を得た。 Nickel cobalt manganese composite hydroxide 6 and lithium carbonate powder are weighed and mixed so that Li / (Ni + Co + Mn) = 1.00, calcined at 720 ° C. for 3 hours in an air atmosphere, and further air atmosphere. The target positive electrode active material 11 for a lithium secondary battery was obtained by firing at 875 ° C. for 10 hours.

2.リチウム二次電池用正極活物質11の評価
リチウム二次電池用正極活物質11の組成分析を行い、一般式(1)に対応させたところ、x=0、y=0.222、z=0.266、w=0であった。
2. 2. Evaluation of Positive Electrode Active Material 11 for Lithium Secondary Battery
When the composition of the positive electrode active material 11 for the lithium secondary battery was analyzed and corresponded to the general formula (1), it was x = 0, y = 0.222, z = 0.266, w = 0.

リチウム二次電池用正極活物質11の平均圧壊強度は105.3MPa、BET比表面積は1.4m/g、平均粒子径D50は5.2μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.019、半値幅Aが0.133、半値幅Bが0.144であった。 The average crushing strength of the positive electrode active material 11 for a lithium secondary battery is 105.3 MPa, the BET specific surface area is 1.4 m 2 / g, the average particle size D 50 is 5.2 μm, and the half width of 2θ = 18.7 ± 1 °. A × B, which is the product of A and the half width B of 2θ = 44.4 ± 1 °, was 0.019, the half width A was 0.133, and the half width B was 0.144.

リチウム二次電池用正極活物質11の残留リチウム定量を行い、炭酸リチウムが0.21質量%、水酸化リチウムが0.18質量%であった。 The residual lithium of the positive electrode active material 11 for the lithium secondary battery was quantified, and lithium carbonate was 0.21% by mass and lithium hydroxide was 0.18% by mass.

3.リチウム二次電池の評価
リチウム二次電池用正極活物質11を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ192.7mAh/g、171.6mAh/g、89.1%であった。
3. 3. Evaluation of lithium secondary battery
A coin-type half cell was prepared using the positive electrode active material 11 for a lithium secondary battery, and the initial charge / discharge test was carried out. The initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency were 192.7 mAh / g, 171.6 mAh / g, and 89.1%, respectively.

リチウム二次電池用正極活物質11を用いて、コイン型フルセルを作製し、−15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ532Ω、503Ωであった。 A coin-shaped full cell was prepared using the positive electrode active material 11 for a lithium secondary battery, and a low temperature discharge test at −15 ° C. was conducted. The DC resistance at SOC 15% and SOC 50% was 532Ω and 503Ω, respectively.

(比較例4)
1.リチウム二次電池用正極活物質12の製造
反応槽内の液温を60℃、酸素濃度を0%、反応槽内の溶液のpHを11.5としたこと以外は実施例5と同様にして、ニッケルコバルトマンガン複合水酸化物7を得た。
(Comparative Example 4)
1. 1. Manufacture of positive electrode active material 12 for lithium secondary battery
Nickel-cobalt-manganese composite hydroxide 7 was obtained in the same manner as in Example 5 except that the liquid temperature in the reaction vessel was 60 ° C., the oxygen concentration was 0%, and the pH of the solution in the reaction vessel was 11.5. It was.

ニッケルコバルトマンガン複合水酸化物7と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.04となるように秤量して混合した後、大気雰囲気下720℃で3時間焼成し、さらに大気雰囲気下900℃で10時間焼成して、目的のリチウム二次電池用正極活物質12を得た。 Nickel-cobalt-manganese composite hydroxide 7 and lithium carbonate powder are weighed and mixed so that Li / (Ni + Co + Mn) = 1.04, and then calcined at 720 ° C. for 3 hours in an air atmosphere. The target positive electrode active material 12 for a lithium secondary battery was obtained by firing at 900 ° C. for 10 hours.

2.リチウム二次電池用正極活物質12の評価
リチウム二次電池用正極活物質12の組成分析を行い、一般式(1)に対応させたところ、x=0.02、y=0.221、z=0.265、w=0であった。
2. 2. Evaluation of Positive Electrode Active Material 12 for Lithium Secondary Battery
When the composition of the positive electrode active material 12 for a lithium secondary battery was analyzed and made to correspond to the general formula (1), it was x = 0.02, y = 0.221, z = 0.265, w = 0. ..

リチウム二次電池用正極活物質12平均圧壊強度は146.2MPa、BET比表面積は0.2m/g、平均粒子径D50は11.2μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.014、半値幅Aが0.116、半値幅Bが0.121であった。 Positive electrode active material for lithium secondary battery 12 Average crush strength is 146.2 MPa, BET specific surface area is 0.2 m 2 / g, average particle size D 50 is 11.2 μm, 2θ = 18.7 ± 1 ° half width A A × B, which is the product of the half-value width B of 2θ = 44.4 ± 1 °, was 0.014, the half-value width A was 0.116, and the half-value width B was 0.121.

リチウム二次電池用正極活物質12の残留リチウム定量を行い、炭酸リチウムが0.18質量%、水酸化リチウムが0.26質量%であった。 Residual lithium of the positive electrode active material 12 for a lithium secondary battery was quantified, and lithium carbonate was 0.18% by mass and lithium hydroxide was 0.26% by mass.

3.リチウム二次電池の評価
リチウム二次電池用正極活物質12を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ194.7mAh/g、169.2mAh/g、86.9%であった。
3. 3. Evaluation of lithium secondary battery
A coin-shaped half cell was prepared using the positive electrode active material 12 for a lithium secondary battery, and the initial charge / discharge test was carried out. The initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency were 194.7 mAh / g, 169.2 mAh / g, and 86.9%, respectively.

リチウム二次電池用正極活物質12を用いて、コイン型フルセルを作製し、−15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ854Ω、621Ωであった。 A coin-shaped full cell was prepared using the positive electrode active material 12 for a lithium secondary battery, and a low temperature discharge test at −15 ° C. was conducted. The DC resistance at SOC 15% and SOC 50% was 854Ω and 621Ω, respectively.

(比較例5)
1.リチウム二次電池用正極活物質13の製造
反応槽内の液温を60℃、酸素濃度を0%、反応槽内の溶液のpHを11.5としたこと以外は実施例6と同様にして、ニッケルコバルトマンガン複合水酸化物8を得た。
(Comparative Example 5)
1. 1. Manufacture of positive electrode active material 13 for lithium secondary battery
Nickel-cobalt-manganese composite hydroxide 8 was obtained in the same manner as in Example 6 except that the liquid temperature in the reaction vessel was 60 ° C., the oxygen concentration was 0%, and the pH of the solution in the reaction vessel was 11.5. It was.

ニッケルコバルトマンガン複合水酸化物8と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.04となるように秤量して混合した後、大気雰囲気下790℃で3時間焼成し、さらに酸素雰囲気下850℃で10時間焼成して、目的のリチウム二次電池用正極活物質13を得た。 Nickel cobalt manganese composite hydroxide 8 and lithium carbonate powder are weighed and mixed so that Li / (Ni + Co + Mn) = 1.04, then fired at 790 ° C. for 3 hours in an air atmosphere, and further in an oxygen atmosphere. The target positive electrode active material 13 for a lithium secondary battery was obtained by firing at 850 ° C. for 10 hours.

2.リチウム二次電池用正極活物質13の評価
リチウム二次電池用正極活物質13の組成分析を行い、一般式(1)に対応させたところ、x=0.02、y=0.209、z=0.241、w=0であった。
2. 2. Evaluation of Positive Electrode Active Material 13 for Lithium Secondary Battery
When the composition of the positive electrode active material 13 for the lithium secondary battery was analyzed and corresponded to the general formula (1), it was x = 0.02, y = 0.209, z = 0.241, w = 0. ..

リチウム二次電池用正極活物質13の平均圧壊強度は115.6MPa、BET比表面積は3.2m/g、平均粒子径D50は10.8μm、2θ=18.7±1°の半値幅Aと2θ=44.4±1°の半値幅Bの積であるA×Bが0.015、半値幅Aが0.119、半値幅Bが0.123であった。 The average crushing strength of the positive electrode active material 13 for a lithium secondary battery is 115.6 MPa, the BET specific surface area is 3.2 m 2 / g, the average particle size D 50 is 10.8 μm, and the half width of 2θ = 18.7 ± 1 °. A × B, which is the product of A and the half width B of 2θ = 44.4 ± 1 °, was 0.015, the half width A was 0.119, and the half width B was 0.123.

リチウム二次電池用正極活物質13の残留リチウム定量を行い、炭酸リチウムが0.23質量%、水酸化リチウムが0.27質量%であった。 The residual lithium of the positive electrode active material 13 for the lithium secondary battery was quantified, and lithium carbonate was 0.23% by mass and lithium hydroxide was 0.27% by mass.

3.リチウム二次電池の評価
リチウム二次電池用正極活物質13を用いて、コイン型ハーフセルを作製し、初回充放電試験を実施した。初回充電容量、初回放電容量、初回充放電効率は、それぞれ195.5mAh/g、172.4mAh/g、88.2%であった。
3. 3. Evaluation of lithium secondary battery
A coin-shaped half cell was prepared using the positive electrode active material 13 for a lithium secondary battery, and the initial charge / discharge test was carried out. The initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency were 195.5 mAh / g, 172.4 mAh / g, and 88.2%, respectively.

リチウム二次電池用正極活物質13を用いて、コイン型フルセルを作製し、−15℃の低温放電試験を行った。SOC15%、SOC50%における直流抵抗は、それぞれ583Ω、552Ωであった。 A coin-shaped full cell was prepared using the positive electrode active material 13 for a lithium secondary battery, and a low temperature discharge test at −15 ° C. was conducted. The DC resistance at SOC 15% and SOC 50% was 583Ω and 552Ω, respectively.

下記表1に、実施例1〜8、比較例1〜5の正極活物質の組成、平均圧壊強度、BET比表面積、粉末X線回折ピークの半値幅、残存リチウム量、初回充放電容量、初回放電容量、初回放電効率、−15℃直流抵抗の値をまとめて記載する。 Table 1 below shows the composition of the positive electrode active materials of Examples 1 to 8 and Comparative Examples 1 to 5, average crushing strength, BET specific surface area, half width of powder X-ray diffraction peak, residual lithium amount, initial charge / discharge capacity, and initial charge / discharge capacity. The discharge capacity, initial discharge efficiency, and -15 ° C DC resistance values are listed together.

実施例2の二次粒子断面SEM像を図3に示す。 The SEM image of the secondary particle cross section of Example 2 is shown in FIG.

比較例4の二次粒子断面SEM像を図4に示す。 The SEM image of the secondary particle cross section of Comparative Example 4 is shown in FIG.

上記結果に示したとおり、本発明を適用した実施例1〜8は、初回充放電効率がいずれも90%以上と高い結果であった。これに加え、本発明を適用した実施例1〜8は、低温放電試験の結果において、低温時でも直流抵抗が低かった。
図3に示す結果の通り、本発明を適用した実施例2の二次粒子は、断面図を観察すると、空隙の多い粒子であることが明らかであった。
これに対し、本発明を適用しない比較例1〜5は、初回充放電効率がいずれも90%以下と低い結果であった。また、低温放電試験において、低温時では直流抵抗が高くなってしまった。
図4に示す結果のとおり、本発明を適用しない比較例4の二次粒子は、断面図を観察すると、空隙がほとんどなく、緻密な粒子であることが明らかであった。
As shown in the above results, in Examples 1 to 8 to which the present invention was applied, the initial charge / discharge efficiency was as high as 90% or more. In addition to this, in Examples 1 to 8 to which the present invention was applied, the DC resistance was low even at a low temperature in the results of the low temperature discharge test.
As shown in the results shown in FIG. 3, it was clear from the cross-sectional view that the secondary particles of Example 2 to which the present invention was applied were particles having many voids.
On the other hand, in Comparative Examples 1 to 5 to which the present invention was not applied, the initial charge / discharge efficiency was as low as 90% or less. Moreover, in the low temperature discharge test, the DC resistance became high at low temperature.
As shown in the results shown in FIG. 4, it was clear from the cross-sectional view that the secondary particles of Comparative Example 4 to which the present invention was not applied were dense particles with almost no voids.

1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード 1 ... Separator, 2 ... Positive electrode, 3 ... Negative electrode, 4 ... Electrode group, 5 ... Battery can, 6 ... Electrolyte, 7 ... Top insulator, 8 ... Seal, 10 ... Lithium secondary battery, 21 ... Positive lead, 31 … Negative lead

Claims (9)

一般式(1)で表されるリチウム金属複合酸化物粉末からなるリチウム二次電池用正極活物質の製造方法であって、
前記リチウム金属複合酸化物粉末が一次粒子と、該一次粒子が凝集して形成された二次粒子と、から構成され、
前記リチウム金属複合酸化物粉末のBET比表面積が1m/g以上3m/g以下であり、
前記二次粒子の平均圧壊強度は10MPa以上100MPa以下であり、
ニッケル塩溶液、コバルト塩溶液及びマンガン塩溶液を含む混合原料液を調製する工程と、
前記混合原料液と錯化剤を連続的に反応槽へ供給しつつ、前記反応槽に酸素濃度が2.1%以上となるように窒素ガスに空気を混合して得た酸素含有ガスを連続的に通気させて、金属複合化合物を得る工程と、
得られた金属複合化合物に含まれる、ニッケル、コバルト、マンガン及び元素Mの合計量(Ni+Co+Mn+M)に対するリチウムの比(Li/(Ni+Co+Mn+M))が1.02以上となるように、金属複合化合物とリチウム化合物とを混合する工程と、混合した混合粉を焼成する工程と、を備えることを特徴とするリチウム二次電池用正極活物質の製造方法。
Li[Li(Ni(1−y−z−w)CoMn1−x]O(1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属元素であり、−0.1≦x≦0.2、0<y≦0.4、0<z≦0.4、0≦w≦0.1、0.25<y+z+wを満たす。)
A method for producing a positive electrode active material for a lithium secondary battery, which is made of a lithium metal composite oxide powder represented by the general formula (1).
The lithium metal composite oxide powder is composed of primary particles and secondary particles formed by aggregating the primary particles.
The BET specific surface area of the lithium metal composite oxide powder is 1 m 2 / g or more and 3 m 2 / g or less.
The average crushing strength of the secondary particles is 10 MPa or more and 100 MPa or less.
A step of preparing a mixed raw material solution containing a nickel salt solution, a cobalt salt solution and a manganese salt solution, and
While continuously supplying the mixed raw material liquid and the complexing agent to the reaction tank, the oxygen-containing gas obtained by mixing air with nitrogen gas so that the oxygen concentration becomes 2.1% or more in the reaction tank is continuously supplied. And the process of obtaining a metal composite compound by aeration
The ratio of lithium to the total amount (Ni + Co + Mn + M) of nickel, cobalt, manganese and element M contained in the obtained metal composite compound (Li / (Ni + Co + Mn + M)) is 1.02 or more. A method for producing a positive electrode active material for a lithium secondary battery, which comprises a step of mixing a compound and a step of firing the mixed mixed powder.
Li [Li x (Ni (1 -y-z-w) Co y Mn z M w) 1-x] O 2 (1)
(However, M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V, and −0. .1 ≤ x ≤ 0.2, 0 <y ≤ 0.4, 0 <z ≤ 0.4, 0 ≤ w ≤ 0.1, 0.25 <y + z + w.)
一般式(1)で表されるリチウム金属複合酸化物粉末からなるリチウム二次電池用正極活物質の製造方法であって、 A method for producing a positive electrode active material for a lithium secondary battery, which is made of a lithium metal composite oxide powder represented by the general formula (1).
前記リチウム金属複合酸化物粉末が一次粒子と、該一次粒子が凝集して形成された二次粒子と、から構成され、 The lithium metal composite oxide powder is composed of primary particles and secondary particles formed by aggregating the primary particles.
前記リチウム金属複合酸化物粉末のBET比表面積が1m The BET specific surface area of the lithium metal composite oxide powder is 1 m. 2 /g以上3m/ G or more 3m 2 /g以下であり、It is less than / g
前記二次粒子の平均圧壊強度は10MPa以上100MPa以下であり、 The average crushing strength of the secondary particles is 10 MPa or more and 100 MPa or less.
ニッケル塩溶液、コバルト塩溶液及びマンガン塩溶液を含む混合原料液を調製する工程と、 A step of preparing a mixed raw material solution containing a nickel salt solution, a cobalt salt solution and a manganese salt solution, and
前記混合原料液と錯化剤を連続的に反応槽へ供給しつつ、前記反応槽に酸素濃度が2.1%以上9.5%以下の酸素含有ガスを連続的に通気させて、金属複合化合物を得る工程と、 While continuously supplying the mixed raw material liquid and the complexing agent to the reaction vessel, an oxygen-containing gas having an oxygen concentration of 2.1% or more and 9.5% or less is continuously aerated in the reaction vessel to form a metal composite. The process of obtaining the compound and
得られた金属複合化合物に含まれる、ニッケル、コバルト、マンガン及び元素Mの合計量(Ni+Co+Mn+M)に対するリチウムの比(Li/(Ni+Co+Mn+M))が1.02以上となるように、金属複合化合物とリチウム化合物とを混合する工程と、混合した混合粉を焼成する工程と、を備えることを特徴とするリチウム二次電池用正極活物質の製造方法。 The ratio of lithium (Li / (Ni + Co + Mn + M)) to the total amount (Ni + Co + Mn + M) of nickel, cobalt, manganese and element M contained in the obtained metal composite compound is 1.02 or more. A method for producing a positive electrode active material for a lithium secondary battery, which comprises a step of mixing a compound and a step of firing the mixed mixed powder.
Li[Li Li [Li x (Ni(Ni (1−y−z−w)(1-yz-w) CoCo y MnMn z M w ) 1−x1-x ]O] O 2 (1)(1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属元素であり、−0.1≦x≦0.2、0<y≦0.4、0<z≦0.4、0≦w≦0.1、0.25<y+z+wを満たす。) (However, M is one or more metal elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V, and −0. .1 ≤ x ≤ 0.2, 0 <y ≤ 0.4, 0 <z ≤ 0.4, 0 ≤ w ≤ 0.1, 0.25 <y + z + w.)
前記一般式(1)において、y<zである請求項1又は2に記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to claim 1 or 2 , wherein y <z in the general formula (1). 前記リチウム金属複合酸化物粉末の平均粒子径が2μm以上10μm以下である請求項1〜3のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to any one of claims 1 to 3, wherein the lithium metal composite oxide powder has an average particle size of 2 μm or more and 10 μm or less. CuKα線を使用した粉末X線回折測定において、2θ=18.7±1°の範囲内の回折ピークの半値幅をA、2θ=44.4±1°の範囲内の回折ピークの半値幅をBとしたとき、AとBの積が0.014以上0.030以下である請求項1〜4のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。 In powder X-ray diffraction measurement using CuKα ray, the half-value width of the diffraction peak within the range of 2θ = 18.7 ± 1 ° is A, and the half-value width of the diffraction peak within the range of 2θ = 44.4 ± 1 °. The method for producing a positive electrode active material for a lithium secondary battery according to any one of claims 1 to 4 , wherein the product of A and B is 0.014 or more and 0.030 or less when B is used. 前記半値幅Aの範囲が0.115以上0.165以下である請求項に記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to claim 5 , wherein the range of the half width A is 0.115 or more and 0.165 or less. 前記半値幅Bの範囲が0.120以上0.180以下である請求項5又は6に記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to claim 5 or 6 , wherein the range of the half width B is 0.120 or more and 0.180 or less. 前記リチウム金属複合酸化物粉末に含まれる炭酸リチウム成分が0.4質量%以下である請求項1〜のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to any one of claims 1 to 7 , wherein the lithium carbonate component contained in the lithium metal composite oxide powder is 0.4% by mass or less. 前記リチウム金属複合酸化物粉末に含まれる水酸化リチウム成分が0.35質量%以下である請求項1〜のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to any one of claims 1 to 8 , wherein the lithium hydroxide component contained in the lithium metal composite oxide powder is 0.35% by mass or less.
JP2018020570A 2018-02-07 2018-02-07 Manufacturing method of positive electrode active material for lithium secondary battery Active JP6799551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018020570A JP6799551B2 (en) 2018-02-07 2018-02-07 Manufacturing method of positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018020570A JP6799551B2 (en) 2018-02-07 2018-02-07 Manufacturing method of positive electrode active material for lithium secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016169816A Division JP6337360B2 (en) 2016-08-31 2016-08-31 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Publications (3)

Publication Number Publication Date
JP2018081937A JP2018081937A (en) 2018-05-24
JP2018081937A5 JP2018081937A5 (en) 2019-09-12
JP6799551B2 true JP6799551B2 (en) 2020-12-16

Family

ID=62197278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018020570A Active JP6799551B2 (en) 2018-02-07 2018-02-07 Manufacturing method of positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP6799551B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200051931A (en) * 2018-11-06 2020-05-14 주식회사 포스코 Lithium compound, nickel-based positive active material, method of preparing lithium oxide, mehtod of preparing nickel-based positive active material, and secondary battery using the same
CN115595456B (en) * 2022-10-14 2023-10-27 江西理工大学 Method for extracting lithium from waste lithium cobalt oxide battery anode material through low-temperature vulcanization roasting

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1372202B8 (en) * 2001-03-14 2013-12-18 GS Yuasa International Ltd. Positive electrode active material and nonaqueous electrolyte secondary cell comprising the same
JP4216669B2 (en) * 2003-08-07 2009-01-28 日鉱金属株式会社 Lithium / nickel / manganese / cobalt composite oxide and lithium ion secondary battery using the same as positive electrode active material
WO2005124898A1 (en) * 2004-06-16 2005-12-29 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
JP4996117B2 (en) * 2006-03-23 2012-08-08 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5175826B2 (en) * 2009-12-02 2013-04-03 トヨタ自動車株式会社 Active material particles and use thereof
KR101243907B1 (en) * 2010-09-09 2013-03-14 삼성에스디아이 주식회사 Positive electrode plate, positive electrode and lithium battery comprising the same and preparing method thereof
JP5885020B2 (en) * 2011-12-21 2016-03-15 トヨタ自動車株式会社 Lithium ion secondary battery manufacturing method
JP5682796B2 (en) * 2012-01-12 2015-03-11 トヨタ自動車株式会社 Lithium secondary battery
JP2013206616A (en) * 2012-03-27 2013-10-07 Tanaka Chemical Corp Cathode active material for lithium-ion secondary battery and method for producing the same
JP5701343B2 (en) * 2013-07-10 2015-04-15 株式会社田中化学研究所 Positive electrode active material for lithium secondary battery, positive electrode and secondary battery

Also Published As

Publication number Publication date
JP2018081937A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6549565B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP6836369B2 (en) Method for manufacturing positive electrode active material precursor for lithium secondary battery and positive electrode active material for lithium secondary battery
KR102437198B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP6256956B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6108141B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6871888B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP6542421B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JPWO2016060105A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6879803B2 (en) Method for producing lithium metal composite oxide
KR102436594B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
KR102637217B1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries and lithium secondary batteries
JP6970671B2 (en) Method for manufacturing lithium nickel composite oxide
JPWO2017078136A1 (en) Positive electrode active material for lithium secondary battery, method for producing positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2018172255A (en) Method for producing lithium-nickel composite oxide
JP6966959B2 (en) Lithium metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode and lithium secondary battery
JP2020011892A (en) Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery
JP6799551B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP6843732B2 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2018174161A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP7235650B2 (en) Lithium transition metal composite oxide powder, nickel-containing transition metal composite hydroxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP6360374B2 (en) Method for producing lithium-containing composite metal oxide
JP6640976B1 (en) Lithium transition metal composite oxide powder, nickel-containing transition metal composite hydroxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201120

R150 Certificate of patent or registration of utility model

Ref document number: 6799551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250