[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6759926B2 - 結晶育成装置 - Google Patents

結晶育成装置 Download PDF

Info

Publication number
JP6759926B2
JP6759926B2 JP2016186244A JP2016186244A JP6759926B2 JP 6759926 B2 JP6759926 B2 JP 6759926B2 JP 2016186244 A JP2016186244 A JP 2016186244A JP 2016186244 A JP2016186244 A JP 2016186244A JP 6759926 B2 JP6759926 B2 JP 6759926B2
Authority
JP
Japan
Prior art keywords
elevating
heating means
crucible
crystal
work coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016186244A
Other languages
English (en)
Other versions
JP2018048054A (ja
Inventor
彰 渡辺
彰 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016186244A priority Critical patent/JP6759926B2/ja
Publication of JP2018048054A publication Critical patent/JP2018048054A/ja
Application granted granted Critical
Publication of JP6759926B2 publication Critical patent/JP6759926B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、結晶育成装置に関し、特に、チョコラルスキー法での結晶育成に適した結晶育成装置に関する。
原料を充填した坩堝を高温に加熱して原料を溶融し、坩堝内の原料融液の液面に上方から種結晶を接触させた後に上昇させることにより単結晶を育成する、いわゆるチョクラルスキー法と呼ばれる単結晶育成方法が従来から実施されている。チョクラルスキー法による単結晶育成では、坩堝周囲に高周波電源を流すワークコイルが配置されており、このワークコイルに高周波電源を流すことにより生じる誘導加熱によって坩堝が発熱し、坩堝内の原料が溶融される。チョクラルスキー法では種結晶の上昇に伴い、原料融液からの引き上げに応じて単結晶が成長する。単結晶の上部は、引き上げが進むにつれて坩堝から遠ざかって行くため、遠ざかった部分には坩堝からの熱は伝わり難く、発熱体が坩堝のみである場合は、成長中の単結晶の温度差分布が大きくなり、単結晶の割れ等の不具合が発生する場合がある。この不具合を改善するため、坩堝上部のホットゾーンにアフターヒーターを設けた機構も知られている(例えば、特許文献1参照)。
特許文献1には、ワークコイルを上下方向に分割し、それぞれの分割コイルを個別に制御可能にするとともに、それぞれの分割コイルに位相を逆にした高周波発振器を接続した構成のサファイア単結晶育成装置が記載されている。かかる特許文献1に記載されたサファイア単結晶育成装置は、坩堝内の融液低下を防ぐとともに、結晶の成長に従って各分割コイルの高周波電流を制御し、液面の位置と坩堝の位置関係によって生じるメルトの加熱状況及びアフターヒーターの加熱状況を最適に保つことを意図した構成となっている。
特開2014−125404号公報
しかしながら、上述の特許文献1に記載の構成では、分割コイル同士の間の領域や、上方の分割コイルの上端よりも高い位置に単結晶の上端が来た場合には、その部分に熱が伝わり難くなり、単結晶の均一性が確保できず、高品質の単結晶を育成できない場合があるという問題があった。また、そのような熱の伝わり難い部分が存在するため、単結晶の長尺化が困難な場合があった。また、それぞれの分割コイルに位相を逆にした高周波発振を使用し制御しているため、装置も高価であった。
近年では、大量の需要がある酸化物単結晶の低コスト化の要求が強い。中でも、特に、生産性向上も期待できる単結晶における育成長さをより長くすることが、強く要求されている。これに対応するために結晶育成装置においても様々な工夫を実施しているが、同時に結晶育成装置の低コスト化の要求も強い。
そこで、本発明は、成長中の単結晶の上部を確実に加熱できるとともに、低コストで結晶育成長さの長尺化に対応できる単結晶育成装置を提供することを目的とする。
上記目的を達成するため、本発明の一態様に係る結晶育成装置は、原料融液を保持可能な坩堝と、
該坩堝の周囲に配置された第1の加熱手段と、
該第1の加熱手段を昇降させる第1の昇降機構と、
前記坩堝よりも上方に配置された第2の加熱手段と、
該第2の加熱手段を昇降させる第2の昇降機構と、を有し、
前記第1及び第2の加熱手段は誘導加熱コイルからなり、前記第1の加熱手段である第1の誘導加熱コイルの方が前記第2の加熱手段である第2の誘導加熱コイルよりも巻き数が多い。
本発明によれば、成長中の単結晶の上部を確実に加熱でき、低コストで結晶育成長さの長尺化に対応できる単結晶育成装置を提供することができる。
本発明の実施形態に係る結晶育成装置の一例を示した概要図である。 本発明の実施形態に係る結晶育成装置のワークコイルの昇降機構の一例を示した詳細図である。
以下、図面を参照して、本発明を実施するための形態の説明を行う。
本発明の実施形態に係るチョコラスキー式結晶育成装置は、大気中または不活性ガス雰囲気中で育成される、ニオブ酸リチウムLiNbO(以下LN)、タンタル酸リチウムLiTaO(以下LT)、イットリウムアルミニウムガーネットYAl12(以下YAG)などの酸化物単結晶の製造に用いる結晶育成装置である。チョコラルスキー法は、ある結晶方位に従って切り出された種と呼ばれる、通常は断面の一辺が数mm程度の直方体単結晶の先端を、同一組成の融液に浸潤し、回転させながら徐々に引上げることによって、種結晶の性質を伝播しながら大口径化して単結晶を製造する方法である。
図1は、本発明の実施形態に係る結晶育成装置の一例を示した概要図である。図1に示されるように、本実施形態に係る結晶育成装置は、坩堝10と、坩堝台20と、リフレクター30と、アフターヒーター40と、断熱材50と、セラミック製耐火物60と、引き上げ軸70と、加熱手段100と、電源130と、制御手段140とを備える。なお、加熱手段100は、坩堝を加熱するメインワークコイル80と坩堝の上方部を加熱するサブワークコイル90の2つの加熱手段を有する。また、電源130においても、メインワークコイルに電源を供給するメイン電源110とサブワークコイルに電源を供給するサブ電源120の2つの電源がある。
本実施形態に係る結晶育成装置において、坩堝10は坩堝台20の上に載置される。坩堝10の上方には、リフレクター30を介して、アフターヒーター40が設置されている。坩堝10を取り囲むように断熱材50が設置されている。また、断熱材の外側50にはセラミック製耐火物60が設けられ、坩堝10の周囲全体を覆っている。セラミック製耐火物60の側面の外側には、加熱手段100が配置されている。坩堝10の水平方向の周囲をメインワークコイル80が取り囲んでいる。また、アフターヒーター40の水平方向の周囲をサブワークコイル90が取り囲んでいる。更に、メインワークコイル80とサブワークコイル90からなる加熱手段100の周囲をチャンバー(図示せず)で覆い、坩堝10周辺及び加熱手段100が、チャンバーに収容されるように構成してもよい。なお、坩堝10及びその周囲に設けられた断熱材50は、ホットゾーン部を構成する。また、坩堝10の上方には、引き上げ軸70が設けられている。引き上げ軸70は、下端に種結晶保持部71を有し、引き上げ軸駆動部72により昇降可能に構成されている。更に、図示しないチャンバーの周辺の外部に、制御手段140及び電源130が設けられる。また、図1において、関連構成要素として、種結晶150と、原料融液160と、単結晶170が示されている。
次に、本実施形態に係る結晶育成装置の個々の構成要素について説明する。
坩堝10は、結晶原料を保持し、結晶を育成するための容器である。結晶原料は、結晶化する金属等が溶融した融液の状態で保持される。坩堝の材質は、結晶原料にもよるが耐熱性のあるモリブデン、インジウム等で作製される。
坩堝台20は、坩堝10を支持するための支持台である。坩堝台20は、坩堝10を上面に載置して支持できれば、種々の材料から構成されてよく、また種々の形状を有してよいが、坩堝10の重量が重いため、強度の高い材料が用いられる。
リフレクター30は、メインワークコイル80の誘導加熱により発熱した坩堝10の発熱を、上方に逃さずに反射して下方に戻すための反射板である。リフレクター30は必須ではなく、必要に応じて設けるようにしてよいが、加熱効率を高める観点からは、設けた方が好ましい。なお、図1においては、坩堝10の上端から内側に入り込むように円環状のリフレクター30が設けられているが、リフレクター30の形状及び配置は、用途に応じて種々変更することができる。
アフターヒーター40は、単結晶の上部が冷却するのを防止するための加熱手段又は保温手段である。つまり、単結晶170の引き上げが進むにつれて、単結晶170の上部が坩堝10から遠ざかって行くため、単結晶170の温度分布が大きくなり、単結晶170の上部に割れ等の不具合が発生する場合がある。これを改善するため、坩堝上部のホットゾーンにアフターヒーター40を設置して適切な温度分布を維持することを意図している。アフターヒーター40の形状は、内径が得ようとする酸化物単結晶170の直径より大きく、坩堝10の直径より小さくする。全長は、得ようとする酸化物単結晶170の全長の半分より長く、二倍より短い円筒状である。材質はイリジウム等の誘電体で作製される。なお、アフターヒーター40は、名前はヒータであるが、アフターヒーター40自体が加熱機構を必ずしも備える必要はない。例えば、サブワークコイル90の誘導加熱により発熱し、ヒータとして機能してもよいし、誘導加熱を用いずに、電熱線等の通常のヒータを用いて加熱する場合には、保温性の高い部材を用いて、単結晶の上部の保温が効果的に行われるように構成されてもよい。即ち、アフターヒーター40は、少なくとも保温部材として機能し、誘導加熱を行う際には、発熱体又は発熱部材としても機能する。
断熱材50は、坩堝10を囲むように設置され、坩堝10から発生する熱の外部への放出を防ぐ機能を有する。
セラミック製耐火物60は、坩堝10を含む全体を囲む手段であり、坩堝10を含む全体を収容可能な容器に類似した構成を有する。なお、セラミック製耐火物60は、文字通りセラミックからなる。
引き上げ軸70は、種結晶150を保持し、坩堝10に保持された結晶原料(融液)160の表面に種結晶150を接触させ、回転しながら単結晶170を引き上げるための手段である。引き上げ軸70は、種結晶150を保持する種結晶保持部71を下端部に有するとともに、回転機構であるモーター等を用いた引き上げ軸駆動部72を備える。なお、モーターは、単結晶170の引き上げの際、単結晶170を回転させながら引き上げる動作を行うための回転駆動機構である。
加熱手段100は、坩堝10やアフターヒーター40を加熱するための手段であり、坩堝10及びアフターヒーター40を囲むように配置される。加熱手段100は、坩堝10やアフターヒーター40を加熱できれば態様は問わないが、例えば、高周波加熱コイルからなる高周波誘導加熱装置を用いるようにしてもよい。この場合には、電源130に高周波電源を用いて加熱する。なお、加熱手段100は、坩堝10を加熱するメインワークコイル80と坩堝10の上方部を加熱するサブワークコイル90の2つの加熱手段を有している。なお後述するが、メインワークコイル80とサブワークコイル90は、上下方向に個々に昇降する機構を有している。
電源130は、加熱手段100を含めて結晶育成装置に電源供給を行う。メインワークコイル80に電源を供給するメイン電源110とサブワークコイル90に電源を供給するサブ電源120の2つの電源がある。
図示しないチャンバーは、ホットゾーン部、即ち坩堝10及び加熱手段100の高熱を遮断するとともに、これらを収容する機能を有する。
制御手段140は、結晶育成装置全体の制御を行うための手段であり、結晶育成プロセスを含めて結晶育成装置全体の動作を制御する。制御手段は、例えば、CPU(Central Processing Unit、中央処理装置、及びROM(Read Only Memory)、RAM(Random Access Memory)等のメモリを備え、プログラムにより動作するマイクロコンピュータから構成されてもよいし、特定の用途のために開発されたASIC(Application Specific Integrated Circuit)等の電子回路から構成されてもよい。
次に本発明の実施形態に係る結晶育成装置の特徴である、加熱手段100を構成するメインワークコイル80及びサブワークコイル90の昇降機構について説明する。
本発明の実施形態に係る結晶育成装置の特徴は、加熱手段100が、メインワークコイル80とサブワークコイル90の2つの加熱手段を有し、かつメインワークコイル80及びサブワークコイル90が個々に上下に昇降することである。
単結晶170の育成の過程では、単結晶170の成長に合わせて、坩堝10内の原料融液170の液量は減少し、結晶育成が行われる固液界面は、徐々に低下するので、メインワークコイル80を単結晶170の成長に合わせて、自動制御で徐々に低下させる。これによって、固液界面の状態は最適に保たれ、欠陥の少ない単結晶170を得ることが出来る。
また、単結晶170の成長に合わせて、単結晶170の上端は徐々に上昇するので、単結晶上部の保温を一定に保つため、サブワークコイル90を自動制御で徐々に上昇させる。これによって、単結晶上部の保温が最適に行われ、単結晶上部と固液界面の温度差が大きくなることによる熱歪みを抑制し、単結晶170が割れるなどの不具合を回避することが出来る。よって、メインワークコイル80とサブワークコイル90は、単結晶170の育成状況に合わせ、個々に反対方向(メインワークコイル80は下方、サブワークコイル90は上方)に昇降させ、その速度も単結晶170の温度勾配等に応じて個別に調整することができる。メインワークコイル80及びサブワークコイル90の昇降動作を適切に制御することで、単結晶170の割れ等の不具合がなく、従来よりも育成長さの長い結晶を育成することが可能となる。メインワークコイル80及びサブワークコイル90を昇降させる手段は、それぞれ、個別にモーター等に接続された上下昇降機構を用いている。
図2は、本発明の実施形態に係る結晶育成装置のワークコイル80、90の昇降機構85、95の一例を示した詳細図である。メインワークコイル80及びサブワークコイル90は、メインワークサポート81及びサブワークコイルサポート91を介して、個別に駆動モーター82、92に接続されている。昇降機構駆動85、95では、駆動モーター82、92の回転を、ウォームギア83、93及びボールネジ84、94等を用いて上下方向の駆動力に変換し、ワークコイル80、90を昇降している。
図2の個々の構成要素について、以下、より詳細に説明する。
メインワークコイル80及びサブワークコイル90は、高周波電力の供給により、電磁誘導作用を発生させるための高周波誘導加熱コイルである。電磁誘導作用により、坩堝10及びアフターヒーター40が発熱する。メインワークコイル80の方が、サブワークコイル90よりも強い加熱力が要求されるので、図2においては、メインワークコイル80がコイル巻き数8、サブワークコイル90がコイル巻き数3として構成されているが、これらは一例に過ぎず、用途により種々の構成を有してよい。また、本実施形態においては、加熱手段100を、誘導加熱を用いたワークコイル80、90として構成した例を挙げているが、他の形態のヒータであっても、適用可能である。加熱手段100を上下に分割して個別に設け、各々を個別に昇降可能に構成すれば、他のヒータであっても、固液界面と単結晶上部の温度差を低減させるという効果は得られるからである。
メインワークコイルサポート81は、メインワークコイル80を支持するための支持手段である。メインワークコイルサポート81は、メインワークコイル80を上下動可能に支持できれば、種々の構成を有してよい。
同様に、サブワークコイルサポート91は、サブワークコイル90を支持するための支持手段である。サブワークコイルサポート91も、サブワークコイル90を上下動可能に支持できれば、種々の構成を有してよい。
メインワークコイル駆動モーター82は、メインワークコイル80を上下動させるための駆動手段である。水平方向に回転軸を有するメインワークコイル駆動モーター82の軸周りの回転駆動力は、ウォームギア83により垂直に延びたボールネジ84を回転させる駆動力に変換される。ボールネジ84は、ねじ軸84a及びナット84bを有し、ねじ軸84aの回転により、螺合するナット84bが上下動し、メインワークコイルサポート81を介して、メインワークコイル80を昇降させることができる。なお、メインワークコイルサポート81、ウォームギア83及びボールネジ84は、メインワークコイル80の直径方向に対向して一対設けられ、両側からメインワークコイル80を支持及び昇降するように構成されている。
これらの構成は、サブワークコイル90の昇降機構95においても同様であり、サブワークコイル駆動モーター92の駆動力を、一対のウォームギア93、ボールネジ94、サブワークコイルサポート91により上下動の駆動力としてサブワークコイル90に伝達し、サブワークコイル90を昇降させる。ボールネジ94が、ねじ軸94a及びナット94bを有し、サブワークコイルサポート91を上下動させる点もメインワークコイル80の昇降機構85と同様である。
なお、結晶育成の際のメインワークコイル80及びサブワークコイル90の昇降動作は、制御部140により制御される。制御部140は、引き上げ軸駆動部72の引き上げ動作を制御しているので、この引き上げ動作に連動させてメインワークコイル80及びサブワークコイル90の昇降動作を行うようにする。例えば、引き上げ軸70の引き上げ動作が開始、引き上げられた単結晶170が上方に移動するにつれて、サブワークコイル90が、単結晶170の上端をカバーする水平位置に来るように、サブワークコイル90の昇降動作を制御する。同様に、原料融液160の液面、つまり固液界面が低下するにつれて、サブワークコイル80は、固液界面をカバーする水平位置に来るようにメインワークコイル80の昇降動作を制御する。昇降動作の制御は、制御部140が、駆動モーター82、92の回転動作を制御することにより、制御することができる。
このように、本実施形態に係る結晶育成装置は、メインワークコイル80及びサブワークコイル90を独立して個別に昇降させる昇降機構85、95を備えることにより、温度分布の差の小さい結晶育成動作を行い、割れ等の不具合の発生を防止することができる。
なお、メインワークコイル80の昇降ストロークと、サブワークコイル90の昇降ストロークは、用途に応じて種々の設定とすることができるが、例えば、メインワークコイル80の昇降ストロークを130〜170mm、サブワークコイル90の昇降ストロークを80〜120mmの範囲に設定し、メインワークコイル80の昇降ストロークの方がサブワークコイルの昇降ストロークよりも大きくなるように設定してもよい。好ましくは、メインワークコイル80の昇降ストロークを150mm前後、サブワークコイル90の昇降ストロークを100mm前後に設定するようにしてもよい。
また、図2においては、メインワークコイル80及びサブワークコイル90の下方に昇降機構85、95を設けた構成としている。かかる構成により、チャンバーを載置する図示しない架台の内部に昇降機構85、95収納することが可能である。但し、昇降機構85、95の設置位置は、用途に応じて種々の配置としてよい。
また、図2に示したメインワークコイル80及びサブワークコイル90の昇降機構85、95は一例に過ぎず、メインワークコイル80及びサブワークコイル90を独立に昇降できれば、種々の昇降機構85、95を用いてよい。
次に、メイン電源110及びサブ電源120についてより詳細に説明する。
本発明の実施形態に係る結晶育成装置では、メイン電源110とサブ電源120の周波数が、五倍以上の差があるように高周波電源130を具備することを特徴とする。一般に、高周波コイルを複数直列に配すると、それぞれのコイルが互いに干渉し、別のコイルによる誘導電流が流れる。その影響を十分小さくするために、メイン電源110とサブ電源120の周波数の比が5倍以上に設定する。かかる設定においても、若干の干渉は残留するが、結晶育成中の高周波電源130の操作量は、十分小さく、また、干渉を含んだままでも、結晶の育成状況に合わせての電源130の制御は可能である。メイン電源110とサブ電源120がそれぞれ別の周波数を採用しているため、坩堝10やアフターヒーター40などとの電源周波数のマッチングをそれぞれの電源110、120で実施できるので、誘導加熱に効率の良い周波数に微調整することが可能で、誘導加熱用の電力を低減することが出来る。
本発明の実施形態に係る結晶育成装置に用いる高周波電源110、120は、周波数の比率を5倍以上にするだけであり、位相の制御などは必要ないので特許文献1で用いられる電源に比して十分小さいコストで調達することが出来る。
このように、本実施形態に係る結晶育成装置は、2つの加熱手段80、90を設け、各々を個別に昇降可能とする昇降機構85、95を設け、結晶育成中に加熱手段80、90を昇降させることにより、固液界面及び単結晶上部の温度低下を抑制でき、割れ等の不具合の発生を防止するとともに、均一性の高い単結晶170を育成することができる。また、温度状態を良好に維持した状態で結晶育成を行うことができるため、育成長の長い酸化物単結晶170を育成することができる。
次に、本発明の実施例について説明する。なお、理解の容易のため、今まで説明した構成要素に対応する構成要素には、同一の参照符号を付す。
本実施例に係る結晶育成装置は、融点が1800℃程度の原料を用いて、直径200mm程度の酸化物単結晶170を得る装置とした。結晶育成装置は、種結晶150を懸架し回転機能を具備した引き上げ軸70、坩堝10、断熱材50及び加熱手段100からなるホットゾーン、ホットゾーンを覆い内部の雰囲気を置換したり、ホットゾーンの高熱を遮断したりする機能を有するチャンバー、昇降機構85、95を収納するとともにチャンバーを支持する架台から構成されている。また、坩堝10の上方にアフターヒーター40を設置した。加熱手段100は、坩堝10の水平方向の周囲にメインワークコイル80、アフターヒーター40の水平方向の周囲にサブワークコイル90を配置した。
メインワークコイル80とサブワークコイル90の昇降範囲は、互いに重ならないように、メインワークコイル80の上限値とサブワークコイル90の下限値との間において、少なくとも10mm以上隔離した設定とした。メインワークコイル80の昇降ストロークは150mmとした。サブワークコイル90の昇降ストロークは100mmとした。
電源130は、メインワークコイル80に電源を供給するメイン電源110とサブワークコイル90に電源を供給するサブ電源120の2つを設置した。メイン電源110から供給される高周波電力の周波数は7kHzとし、サブ電源120から供給される高周波電力の周波数は50kHzとし、メイン電源110の高周波電力の周波数の約7倍とした。
かかる結晶育成装置を使用し、従来よりも育成長の長い酸化物結晶を育成することができた。
以上、本発明の好ましい実施形態及び実施例について詳説したが、本発明は、上述した実施形態及び実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施形態及び実施例に種々の変形及び置換を加えることができる。
10 坩堝
40 アフターヒーター
70 引き上げ軸
71 種結晶保持部
72 引き上げ軸駆動部
80 メインワークコイル
81 メインワークコイルサポート
82、92 駆動モーター
83、93 ウォームギア
84、94 ボールネジ
85、95 昇降機構
90 サブワークコイル
91 サブワークコイルサポート
110 メイン電源
120 サブ電源
140 制御部
150 種結晶
160 原料融液
170 単結晶

Claims (7)

  1. 原料融液を保持可能な坩堝と、
    該坩堝の周囲に配置された第1の加熱手段と、
    該第1の加熱手段を昇降させる第1の昇降機構と、
    前記坩堝よりも上方に配置された第2の加熱手段と、
    該第2の加熱手段を昇降させる第2の昇降機構と、を有し、
    前記第1及び第2の加熱手段は誘導加熱コイルからなり、前記第1の加熱手段である第1の誘導加熱コイルの方が前記第2の加熱手段である第2の誘導加熱コイルよりも巻き数が多い結晶育成装置。
  2. 前記第1及び第2の昇降機構は、それぞれ個別にモーターを有する請求項1に記載の結晶育成装置。
  3. 前記坩堝の上方にはアフターヒーターが設けられ、
    前記第2の加熱手段は、該アフターヒーターの周囲に設けられた請求項1又は2に記載の結晶育成装置。
  4. 原料融液を保持可能な坩堝と、
    該坩堝の周囲に配置された第1の加熱手段と、
    該第1の加熱手段を昇降させる第1の昇降機構と、
    前記坩堝よりも上方に配置された第2の加熱手段と、
    該第2の加熱手段を昇降させる第2の昇降機構と、を有し、
    前記第1及び第2の加熱手段は誘導加熱コイルからなり、
    前記第1の加熱手段に接続された第1の高周波電源と、
    前記第2の加熱手段に接続された第2の高周波電源と、を有し、
    前記第1の高周波電源と前記第2の高周波電源の周波数は、5倍以上の差を有する結晶育成装置。
  5. 下端に種結晶を保持し、該種結晶を前記坩堝に保持された前記原料融液の液面に接触させることにより単結晶を引き上げ可能な引き上げ軸と、
    該引き上げ軸、前記第1の昇降機構及び前記第2の昇降機構の昇降動作を制御する制御手段と、を更に有し、
    該制御手段は、前記引き上げ軸の引き上げ動作に連動させて、前記第1の昇降機構及び前記第2の昇降機構の前記昇降動作を制御する請求項1乃至4のいずれか一項に記載の結晶育成装置。
  6. 前記制御手段は、前記第2の加熱手段が、前記単結晶の上端を囲む位置となるように前記第2の昇降機構の前記昇降動作を制御する請求項5に記載の結晶育成装置。
  7. 前記制御手段は、前記第1の加熱手段が、前記原料融液の液面を囲む位置となるように前記第1の昇降機構の前記昇降動作を制御する請求項5又は6に記載の結晶育成装置。
JP2016186244A 2016-09-23 2016-09-23 結晶育成装置 Active JP6759926B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016186244A JP6759926B2 (ja) 2016-09-23 2016-09-23 結晶育成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186244A JP6759926B2 (ja) 2016-09-23 2016-09-23 結晶育成装置

Publications (2)

Publication Number Publication Date
JP2018048054A JP2018048054A (ja) 2018-03-29
JP6759926B2 true JP6759926B2 (ja) 2020-09-23

Family

ID=61767229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186244A Active JP6759926B2 (ja) 2016-09-23 2016-09-23 結晶育成装置

Country Status (1)

Country Link
JP (1) JP6759926B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930795A (ja) * 1982-08-10 1984-02-18 Sumitomo Electric Ind Ltd 単結晶引上装置
JPH10324592A (ja) * 1997-05-26 1998-12-08 Sumitomo Metal Ind Ltd 単結晶引き上げ装置

Also Published As

Publication number Publication date
JP2018048054A (ja) 2018-03-29

Similar Documents

Publication Publication Date Title
JPH09286692A (ja) 半導体単結晶製造装置及び半導体単結晶製造方法
JP6790927B2 (ja) 結晶育成装置
KR20160075498A (ko) 실리콘 단결정 인상장치
JP2020066555A (ja) 単結晶育成装置及び単結晶育成方法
JP6790698B2 (ja) 結晶育成装置及び結晶育成方法
JP5163386B2 (ja) シリコン融液形成装置
JPH0772116B2 (ja) 単結晶引上装置
JP6759926B2 (ja) 結晶育成装置
JP2019147698A (ja) 結晶育成装置及び結晶育成方法
KR101376923B1 (ko) 잉곳 성장 장치 및 방법
JP6834493B2 (ja) 酸化物単結晶の育成装置及び育成方法
JP7115252B2 (ja) 酸化物単結晶の製造方法及び結晶育成装置
JP5004881B2 (ja) 単結晶育成装置用坩堝、単結晶育成方法、および単結晶育成装置
JP6805886B2 (ja) 結晶育成装置
JP6977319B2 (ja) 結晶育成装置及びこれを用いた結晶育成方法
JP6169673B2 (ja) 浮遊帯から単結晶を結晶化させることによって単結晶を成長させる方法
JP6750550B2 (ja) 結晶育成装置
JP2008019129A (ja) 単結晶製造装置、単結晶の製造方法および単結晶
JP6992488B2 (ja) 単結晶育成用ルツボ
JP7056173B2 (ja) 結晶育成装置
JP2018156750A (ja) 発熱体モジュール及び発熱体モジュールを含む育成装置
JP2022025994A (ja) 単結晶育成装置と単結晶育成方法
JP2019189488A (ja) 単結晶の製造方法
JP2018193277A (ja) 結晶育成装置
JP2021100900A (ja) 単結晶育成装置と単結晶育成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6759926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150