[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6743850B2 - Continuous casting method for round slabs - Google Patents

Continuous casting method for round slabs Download PDF

Info

Publication number
JP6743850B2
JP6743850B2 JP2018130140A JP2018130140A JP6743850B2 JP 6743850 B2 JP6743850 B2 JP 6743850B2 JP 2018130140 A JP2018130140 A JP 2018130140A JP 2018130140 A JP2018130140 A JP 2018130140A JP 6743850 B2 JP6743850 B2 JP 6743850B2
Authority
JP
Japan
Prior art keywords
viscosity
powder
round
mold
secondary cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018130140A
Other languages
Japanese (ja)
Other versions
JP2019038033A (en
Inventor
浩起 藤田
浩起 藤田
真行 深見
真行 深見
穣治 市川
穣治 市川
憲司 中谷
憲司 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019038033A publication Critical patent/JP2019038033A/en
Application granted granted Critical
Publication of JP6743850B2 publication Critical patent/JP6743850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、断面形状が円形である丸鋳片の連続鋳造方法に関する。 The present invention relates to a method for continuously casting a round cast slab having a circular cross-sectional shape.

鋼の連続鋳造は、鋳型内の溶鋼表面上にモールドパウダー(以下、単に「パウダー」ということもある。)を供給しつつ行っている。溶鋼表面に供給されたパウダーは溶融して溶融パウダーを形成する。溶融パウダーをモールド(鋳型)と凝固シェル(鋳片)との間に流入させ、鋳型と鋳片の潤滑を十分に行わせることにより、安定して鋼を連続鋳造することができる。 Continuous casting of steel is performed while supplying a mold powder (hereinafter sometimes simply referred to as “powder”) onto the surface of molten steel in a mold. The powder supplied to the molten steel surface is melted to form a molten powder. By allowing the molten powder to flow between the mold (mold) and the solidified shell (slab) to sufficiently lubricate the mold and the slab, it is possible to stably continuously cast steel.

丸鋳片を連続鋳造する場合、矩形の鋳片と比べ、鋳型の内壁と鋳片との接触が不均一化しやすく、冷却が不均一となりやすい。冷却が不均一になると、鋳片の縦割れやブレークアウトが発生したり、そうでなくとも鋳片の断面の真円度が低下するといった問題がある。 When continuously casting a round slab, compared to a rectangular slab, contact between the inner wall of the mold and the slab is likely to be non-uniform, and cooling is likely to be non-uniform. If the cooling is not uniform, there are problems that vertical cracking and breakout of the slab occur, and if not, the roundness of the cross section of the slab decreases.

このような問題に対処する技術として、特許文献1には、モールド内溶鋼表面上にモールドパウダーを供給しながら行う丸鋳片の連続鋳造方法において、前記モールドパウダーを、質量比でCaO/SiO2を0.30〜0.80とし、1573Kにおける粘度を1.0〜3.5Pa・sとし、かつ結晶化しないパウダーとすることを特徴とする丸鋳片の連続鋳造方法が記載されている。この方法は、モールドパウダーを非晶質化して溶融パウダーの不均一流入を抑制することにより、丸鋳片の縦割れや真円度の低下を防止するものであるが、実施例において、粘度が4.0Pa・s以上の非晶質のモールドパウダーでは、粘度が増大すると逆に真円度に悪影響を及ぼす傾向が指摘されている。 As a technique for dealing with such a problem, in Patent Document 1, in a continuous casting method of a round cast piece performed while supplying the mold powder on the molten steel surface in the mold, the mold powder is mixed with CaO/SiO 2 in a mass ratio. Is 0.30 to 0.80, the viscosity at 1573K is 1.0 to 3.5 Pa·s, and the powder does not crystallize, and a continuous casting method for round cast pieces is described. This method is to prevent vertical cracking and roundness reduction of round slabs by suppressing the non-uniform inflow of molten powder by amorphizing the mold powder, but in the examples, the viscosity It has been pointed out that when the viscosity of the amorphous mold powder of 4.0 Pa·s or more is increased, the roundness is adversely affected when the viscosity is increased.

また、特許文献2には、丸鋳片を湾曲型または垂直曲型連続鋳造機で製造するにあたり、連続鋳造鋳型に注入される溶鋼成分の[Al%] および[N%]を[Al%] ×[N%]≦2×10-4に調整するとともに、鋳型から引き抜かれた丸鋳片を、二次冷却比水量0.4L/kg 以上で二次冷却することを特徴とする連続鋳造方法が記載されている。この方法は、2次冷却の比水量を0.4L/kg以上とすることにより真円度の低下を防止するものである。特許文献2では、さらに丸鋳片の反りを防止するために、比水量は1.0L/kg未満が望ましいとされている。 Further, in Patent Document 2, when manufacturing a round cast piece with a curved or vertical curved continuous casting machine, [Al%] and [N%] of molten steel components injected into the continuous casting mold are [Al%]. X [N%] ≤ 2 x 10 -4 , and the continuous casting method is characterized in that the round slab drawn from the mold is secondarily cooled at a secondary cooling specific water amount of 0.4 L/kg or more. Have been described. This method prevents the roundness from decreasing by setting the specific water amount of the secondary cooling to 0.4 L/kg or more. In Patent Document 2, it is said that the specific water content is preferably less than 1.0 L/kg in order to further prevent warpage of the round cast slab.

特許文献3には、モールドパウダーからのメリライトの結晶生成を安定化させて緩冷却化することにより、縦割れや気泡性欠陥を防止する丸鋳片の連続鋳造方法が開示されている。特許文献3では、比水量は、真円度の低下を防止するためには0.2L/kg以上が望ましく、矯正時の表面割れを防止するためには1.6L/kg以下が望ましいとされている。また、粘度3.3〜9.7poiseのガラス質のモールドパウダーを用いて、比水量を1.2L/kgとして連続鋳造した比較例では、縦割れや気泡性欠陥の問題があったとされている。 Patent Document 3 discloses a continuous casting method for a round cast piece which prevents vertical cracking and bubble defects by stabilizing the crystal formation of melilite from mold powder and slowly cooling it. In Patent Document 3, the specific water amount is preferably 0.2 L/kg or more in order to prevent a decrease in roundness and 1.6 L/kg or less in order to prevent surface cracking during straightening. .. Further, it is said that there was a problem of vertical cracks and bubble defects in a comparative example in which a glassy mold powder having a viscosity of 3.3 to 9.7 poise was continuously cast at a specific water content of 1.2 L/kg.

特開2013−151022号公報JP, 2013-151022, A 特開2005−052881号公報JP 2005-052881A 国際公開第2011/004507号公報International Publication No. 2011/004507

丸鋳片の真円度の低下を防止する観点について、特許文献1からは、粘度4.0Pa・s以上(単位変換すると40poise以上)のパウダーが好ましくないこと、換言すると粘度40poise未満のパウダーが好ましいことが読み取れ、また、特許文献2には、2次冷却比水量0.4L/kg以上とすること、特許文献3には、2次冷却比水量0.2L/kg以上とすることが記載されている。しかしながら、本発明者らの検討によると、パウダー粘度や2次冷却比水量を上記範囲に設定して丸鋳片の連続鋳造を行っても、真円度に優れることもあれば劣ることもあり、逆に、パウダー粘度や2次冷却比水量を上記範囲外に設定しても真円度に優れることもあった。すなわち、従来技術からは、良好なビレット形状の丸鋳片を確実に製造するための指針を得ることができないでいた。 From the viewpoint of preventing the roundness of the round cast piece from decreasing, from Patent Document 1, a powder having a viscosity of 4.0 Pa·s or more (40 poise or more when converted into a unit) is not preferable, in other words, a powder having a viscosity of less than 40 poise is preferable. In addition, it is described in Patent Document 2 that the secondary cooling specific water amount is 0.4 L/kg or more, and in Patent Document 3 that the secondary cooling specific water amount is 0.2 L/kg or more. .. However, according to the study by the present inventors, even if the powder viscosity and the secondary cooling specific water amount are set in the above ranges to perform continuous casting of round slabs, the roundness may be excellent or may be inferior. Conversely, even if the powder viscosity and the secondary cooling specific water amount are set outside the above ranges, the roundness may be excellent. That is, it has been impossible to obtain a guideline for reliably manufacturing a good billet-shaped round cast piece from the related art.

真円度の低下は造管時の噛み込み不良など、造管での操業トラブルに繋がる。したがって、真円度はある閾値を設けて管理するのが一般的であり、真円度が所定の閾値を下回る(換言すると不円率が所定の閾値を超えた)鋳片は使用できずに屑化となり、歩留を悪化させる。そのため、本発明者らは、良好なビレット形状の丸鋳片を確実に製造するための指針を得ようとの課題に着目した。 A decrease in roundness leads to operational problems in pipe making, such as defective biting during pipe making. Therefore, the roundness is generally managed by setting a certain threshold value, and a slab with a roundness value lower than a predetermined threshold value (in other words, a circularity ratio exceeding a predetermined threshold value) cannot be used. It becomes scrap and deteriorates the yield. Therefore, the present inventors have paid attention to the problem of obtaining a guideline for reliably manufacturing a good billet-shaped round cast piece.

すなわち本発明は、上記課題に鑑み、良好なビレット形状の丸鋳片を確実に製造することが可能な丸鋳片の連続鋳造方法を提供することを目的とする。 That is, the present invention has been made in view of the above problems, and an object thereof is to provide a continuous casting method for a round billet capable of reliably producing a good billet-shaped round cast piece.

上記課題を解決すべく本発明者らが鋭意検討したところ、丸鋳片の真円度の低下は、モールドパウダーの粘度が高い場合に起きやすい傾向が認められた。その原因について、本発明者らは、高粘度のモールドパウダーを用いる場合ほど、鋳型直下において鋳片表面から溶融パウダー層が剥離しにくく、その結果、2次冷却での冷却効率が低下し、凝固シェルの成長が阻害されるためではないかと考えた。そこで、用いるパウダーの粘度が高いほど、2次冷却での比水量を高く設定して、鋳型直下における鋳片表面からの溶融パウダー層の剥離を促進させて、2次冷却での冷却効率を高め、凝固シェルの成長を促進することで、高い真円度を確実に得られることを想起した。そして、本発明者らは、さらに検討を進め、所定の真円度を得るために必要な、パウダーの粘度と2次冷却の比水量とが満たすべき関係式を見出すことに成功した。 As a result of intensive studies by the present inventors in order to solve the above problems, it was found that a decrease in the roundness of the round cast piece tends to occur when the viscosity of the mold powder is high. Regarding the cause, the inventors of the present invention have found that the higher the viscosity of the mold powder is, the harder the molten powder layer is separated from the surface of the slab immediately below the mold, and as a result, the cooling efficiency in the secondary cooling is decreased, and the solidification is reduced. I thought that it might be because the growth of the shell was hindered. Therefore, the higher the viscosity of the powder to be used, the higher the specific water content in the secondary cooling is set to promote the separation of the molten powder layer from the surface of the slab directly under the mold, thereby increasing the cooling efficiency in the secondary cooling. , It is recalled that high roundness can be surely obtained by promoting the growth of the solidified shell. Then, the present inventors have conducted further studies and succeeded in finding a relational expression that should be satisfied by the viscosity of the powder and the specific water amount of the secondary cooling, which is required to obtain a predetermined roundness.

本発明は、上記の知見に基づき完成されたものであり、その要旨構成は、以下のとおりである。
[1]モールド内の溶鋼表面上にモールドパウダーを供給しながら行う丸鋳片の連続鋳造方法であって、
前記モールドパウダーとして、SiO2含有量に対するCaO含有量の質量比(CaO/SiO2)が0.30〜1.0のモールドパウダーを用い、
前記モールドパウダーの1300℃における粘度η(poise)に応じて、以下の(1)式を満たすように2次冷却比水量W(L/kg)を設定することを特徴とする丸鋳片の連続鋳造方法。
0.2+0.012η ≦ W ・・・(1)
The present invention has been completed based on the above findings, and its gist structure is as follows.
[1] A continuous casting method of a round cast piece, which is performed while supplying a mold powder onto the surface of molten steel in a mold,
As the mold powder, a mass ratio of CaO content to SiO 2 content (CaO/SiO 2 ) of 0.30 to 1.0 is used.
Continuous round slab characterized by setting the secondary cooling specific water amount W (L/kg) so as to satisfy the following formula (1) according to the viscosity η (poise) of the mold powder at 1300°C. Casting method.
0.2+0.012 η ≤ W ・・・(1)

[2]前記モールドパウダーの1300℃における粘度η(poise)に応じて、以下の(2)式も満たすように2次冷却比水量Wを設定する、上記[1]に記載の丸鋳片の連続鋳造方法。
W ≦ 0.8+0.016η ・・・(2)
[2] According to the viscosity η (poise) of the mold powder at 1300° C., the secondary cooling specific water amount W is set so as to satisfy the following expression (2). Continuous casting method.
W ≤ 0.8 + 0.016 η (2)

[3]前記丸鋳片の不円率を2.5%以下とする、上記[1]に記載の丸鋳片の連続鋳造方法。 [3] The continuous casting method for round slabs according to the above [1], wherein the roundness of the round slabs is 2.5% or less.

[4]前記丸鋳片の反りを40mm以下とする、上記[2]に記載の丸鋳片の連続鋳造方法。 [4] The continuous casting method for round slabs according to [2], wherein the warpage of the round slabs is 40 mm or less.

[5]前記モールドパウダーは、1300℃における粘度ηが3.5〜35poiseの範囲内の非晶質モールドパウダーとする、上記[1]〜[4]のいずれか一項に記載の丸鋳片の連続鋳造方法。 [5] The continuous round cast piece according to any one of [1] to [4] above, wherein the mold powder is an amorphous mold powder having a viscosity η at 1300° C. of 3.5 to 35 poise. Casting method.

本発明の丸鋳片の連続鋳造方法によれば、良好なビレット形状の丸鋳片を確実に製造することが可能となる。 According to the continuous casting method for round cast slabs of the present invention, it becomes possible to reliably manufacture good billet-shaped round cast slabs.

実施例1において得られた、モールドパウダーの粘度と丸鋳片の不円率との関係を示すグラフである。3 is a graph showing the relationship between the viscosity of mold powder and the circularity of round slabs obtained in Example 1. 実施例2において得られた、2次冷却の比水量と丸鋳片の不円率との関係を示すグラフである。5 is a graph showing the relationship between the specific water content of secondary cooling and the circularity of round slabs obtained in Example 2. 丸鋳片の反りの定義を説明する図である。It is a figure explaining the definition of the warp of a round cast piece. 実施例3において得られた、モールドパウダーの粘度及び2次冷却の比水量が丸鋳片の不円率に及ぼす影響を示すグラフである。5 is a graph showing the influence of the viscosity of the mold powder and the specific water amount of the secondary cooling, which are obtained in Example 3, on the circularity of the round slab. 実施例3において得られた、モールドパウダーの粘度及び2次冷却の比水量が丸鋳片の反りに及ぼす影響を示すグラフである。7 is a graph showing the influence of the viscosity of the mold powder and the specific water amount of the secondary cooling on the warpage of the round slab obtained in Example 3.

本発明の一実施形態による丸鋳片の連続鋳造方法は、モールド内の溶鋼表面上にモールドパウダーを供給しながら行うものである。 The continuous casting method for round cast slabs according to one embodiment of the present invention is performed while supplying mold powder onto the surface of molten steel in the mold.

本実施形態で用いるモールドパウダーは、SiO2含有量に対するCaO含有量の質量比、いわゆる塩基度(CaO/SiO2)が0.30〜1.0のものとする。これにより、スラグリムの生成によって溶融パウダーが鋳型と凝固シェルとの間に不均一に流入することが抑制され、不均一冷却による縦割れやブレークアウトの抑制が可能となる。塩基度(CaO/SiO2)が0.30未満の場合、溶融パウダーの粘度が高過ぎて、溶融パウダーが鋳型と凝固シェルとの間に流れ込みにくくなるため、円周方向に不均一な流入となって、拘束性のブレークアウトの発生を招きやすい。一方、塩基度(CaO/SiO2)が1.0を超えると、パウダーが結晶化し易くなるため、スラグリムの成長により、溶融パウダーが鋳型と凝固シェルとの間に流れ込む流路が小さくなり、円周方向に不均一な流入となって、鋳造された丸鋳片の断面の真円度が低下するなどの問題が起こりやすい。なお、上記の観点から、塩基度(CaO/SiO2)は、0.50〜0.90とするのが好ましい。 The mold powder used in the present embodiment has a mass ratio of CaO content to SiO 2 content, so-called basicity (CaO/SiO 2 ) of 0.30 to 1.0. As a result, it is possible to prevent the molten powder from flowing nonuniformly between the mold and the solidified shell due to the generation of slugrim, and it is possible to suppress vertical cracking and breakout due to nonuniform cooling. If the basicity (CaO/SiO 2 ) is less than 0.30, the viscosity of the molten powder will be too high, and it will be difficult for the molten powder to flow between the mold and the solidified shell, resulting in uneven flow in the circumferential direction. , It is easy to cause restraint breakout. On the other hand, if the basicity (CaO/SiO 2 ) exceeds 1.0, the powder tends to crystallize, and the growth of slugrim reduces the flow path between the mold and the solidified shell, causing the molten powder to flow in the circumferential direction. In this case, uneven flow is likely to occur, and problems such as a decrease in roundness of the cross section of the cast round cast piece are likely to occur. From the above viewpoint, the basicity (CaO/SiO 2 ) is preferably 0.50 to 0.90.

溶融パウダーの1300℃における粘度は、3.5〜35poiseに調整することが好ましい。1300℃における粘度が3.5poise未満では、溶融パウダーが溶鋼に巻き込まれて介在物欠陥が発生しやすくなる。一方、1300℃における粘度が35poiseを超えると、溶融パウダーが鋳型と凝固シェルとの間に流れ込みにくくなるため、流入した溶融パウダーのフィルムが局所的に薄くなって膜切れが発生することにより、ブレークアウトが発生しやすくなる。なお、溶融パウダーの1300℃における粘度は10〜35poiseとするのがより好ましい。 The viscosity of the molten powder at 1300°C is preferably adjusted to 3.5 to 35 poise. If the viscosity at 1300°C is less than 3.5 poise, the molten powder is easily caught in the molten steel and inclusion defects tend to occur. On the other hand, if the viscosity at 1300°C exceeds 35 poise, the molten powder becomes difficult to flow between the mold and the solidification shell, and the film of the inflowing molten powder becomes locally thin and breaks, causing a break. Out easily occurs. The viscosity of the molten powder at 1300°C is more preferably 10 to 35 poise.

本実施形態で用いるモールドパウダーは、非晶質モールドパウダーとすることが好ましい。これにより、スラグリムの生成によって溶融パウダーが鋳型と凝固シェルとの間に不均一に流入することが抑制され、不均一冷却による縦割れやブレークアウトの抑制が可能となる。ここで、非晶質のモールドパウダーとは、示差熱分析装置を用いてモールドパウダーを加熱溶融後、10K/minで冷却した際に、結晶化による発熱ピークが検出されないモールドパウダーと定義されるものとする。 The mold powder used in this embodiment is preferably an amorphous mold powder. As a result, it is possible to prevent the molten powder from flowing nonuniformly between the mold and the solidified shell due to the generation of slugrim, and it is possible to suppress vertical cracking and breakout due to nonuniform cooling. Here, the amorphous mold powder is defined as a mold powder in which an exothermic peak due to crystallization is not detected when the mold powder is heated and melted using a differential thermal analyzer and cooled at 10 K/min. And

本実施形態では、モールドパウダーの1300℃における粘度η(poise)に応じて、以下の(1)式を満たすように2次冷却比水量W(L/kg)を設定することが肝要である。
0.2+0.012η ≦ W ・・・(1)
In this embodiment, it is important to set the secondary cooling specific water amount W (L/kg) so as to satisfy the following expression (1) according to the viscosity η (poise) of the mold powder at 1300°C.
0.2+0.012 η ≤ W ・・・(1)

すなわち、粘度が高いパウダーの使用によって、鋳型直下でのパウダーの剥離・脱落が阻害され、2次冷却帯での冷却効果が十分に得られないことから、真円度の低下を招くことがある。この場合、1300℃(1573K)におけるパウダー粘度η(Poise)に応じて、上記の(1)式を満たすように2次冷却比水量W(L/kg)を設定する。具体的には、用いるパウダーの粘度ηが大きくなるほど2次冷却比水量Wを増大させるように調整する。これにより、2次冷却、特に鋳型直下を強冷却化することができ、また、溶融パウダー層の剥離・脱落を促進し、鋳片を効果的に冷却することができる。その結果、凝固シェルの成長促進及び強度向上が図られ、真円度の高い、すなわち不円率の低い丸鋳片を得ることができる。 That is, the use of a powder having a high viscosity hinders the peeling and dropping of the powder immediately below the mold, and the cooling effect in the secondary cooling zone cannot be sufficiently obtained, which may result in a decrease in roundness. .. In this case, the secondary cooling specific water amount W (L/kg) is set so as to satisfy the above formula (1) according to the powder viscosity η (Poise) at 1300°C (1573K). Specifically, the secondary cooling specific water amount W is adjusted to increase as the viscosity η of the powder used increases. This makes it possible to perform secondary cooling, particularly strong cooling immediately below the mold, promote peeling and falling of the molten powder layer, and effectively cool the slab. As a result, the growth of the solidified shell is promoted and the strength is enhanced, and a round cast piece having a high roundness, that is, a low non-circularity can be obtained.

ここで、不円率は、鋳造された丸鋳片の直径を円周方向8箇所で測定し、得られた直径のうち最大径から最小径を差し引いた値を、最大径で除した値と定義され、下記(3)式で表わされる。製管加工時の不具合を防止するために、不円率は例えば2.5%といった所定の基準値以下とすることが求められる。また、真円度は下記(4)式で表される。
不円率(%)=(最大径−最小径)/最大径×100 ・・・(3)
真円度(%)=100−不円率 ・・・(4)
Here, the non-circularity is a value obtained by measuring the diameter of a cast round cast piece at eight locations in the circumferential direction and dividing the value obtained by subtracting the minimum diameter from the maximum diameter by the maximum diameter. It is defined and expressed by the following equation (3). In order to prevent problems during pipe manufacturing, the non-circularity is required to be below a predetermined reference value such as 2.5%. The roundness is expressed by the following equation (4).
Non-circularity (%) = (maximum diameter-minimum diameter)/maximum diameter x 100 (3)
Roundness (%) = 100-Revenness rate (4)

上記の(1)式を満たすように2次冷却比水量W(L/kg)を設定することにより、不円率が2.5%以下の丸鋳片を確実に製造することができる。また、2.0%未満という、より不円率が低い丸鋳片を確実に製造したい場合には、以下の(1)’式を満たすように2次冷却比水量W(L/kg)を設定することが好ましい。
0.3+0.012η ≦ W ・・・(1)’
By setting the secondary cooling specific water amount W (L/kg) so as to satisfy the above expression (1), it is possible to reliably manufacture a round cast slab having an asphericity of 2.5% or less. Further, when it is desired to reliably manufacture a round cast slab having a lower non-circularity of less than 2.0%, the secondary cooling specific water amount W (L/kg) is set so as to satisfy the following formula (1)′. It is preferable.
0.3+0.012η ≤ W ・・・(1)'

さらに本実施形態では、モールドパウダーの1300℃における粘度η(poise)に応じて、以下の(2)式も満たすように2次冷却比水量Wを設定することが好ましい。
W ≦ 0.8+0.016η ・・・(2)
Further, in the present embodiment, it is preferable to set the secondary cooling specific water amount W so that the following expression (2) is also satisfied according to the viscosity η (poise) of the mold powder at 1300°C.
W ≤ 0.8 + 0.016 η (2)

すなわち、2次冷却比水量Wが大きすぎると、丸鋳片の反りが大きくなる場合がある。非晶質のモールドパウダーを用いる場合、粘度が高い非晶質パウダーを用いるとパウダーフィルムが鋳片から剥離し難くなり、これが熱抵抗となるため、2次冷却比水量Wをある程度増しても反りの問題は顕著ではない。しかし、低粘度の非晶質パウダーでは、鋳型から引き抜かれた鋳片からパウダーフィルムが剥離し易くなるため、2次冷却比水量Wが大きくなると反りの問題が顕在化し易い傾向にある。このため、1300℃におけるパウダー粘度η(Poise)に応じて、上記の(2)式を満たすように2次冷却比水量W(L/kg)を設定する。具体的には、用いるパウダーの粘度ηが小さくなるほど2次冷却比水量Wを減少させるように調整する。これにより、反りの少ない丸鋳片を確実に製造することができる。 That is, if the secondary cooling specific water amount W is too large, the warpage of the round slab may increase. When using an amorphous mold powder, if a high-viscosity amorphous powder is used, the powder film becomes difficult to peel from the slab, and this becomes thermal resistance, so even if the secondary cooling specific water content W is increased to some extent, it will warp. The problem is not noticeable. However, with a low-viscosity amorphous powder, the powder film is likely to peel off from the slab that has been pulled out of the mold, so that the problem of warpage tends to become apparent when the secondary cooling specific water amount W increases. Therefore, the secondary cooling specific water amount W (L/kg) is set according to the powder viscosity η (Poise) at 1300° C. so as to satisfy the above expression (2). Specifically, the secondary cooling specific water amount W is adjusted to decrease as the viscosity η of the powder used decreases. As a result, it is possible to reliably manufacture a round cast piece with less warpage.

ここで、丸鋳片の反りは、図3に示すように、長さ11mの丸鋳片の両端部を結ぶ線と丸鋳片表面との距離の最大値と定義され、製管加工時の不具合を防止するために、例えば40mm以下といった所定の基準値以下とすることが求められる。 Here, the warpage of the round slab is defined as the maximum value of the distance between the line connecting the both ends of the round slab with a length of 11 m and the surface of the slab, as shown in FIG. In order to prevent problems, it is required to be below a predetermined reference value such as 40 mm or less.

上記の(2)式を満たすように2次冷却比水量W(L/kg)を設定することにより、反りが40mm以下の丸鋳片を確実に製造することができる。また、20mm以下という、より反りが抑制された丸鋳片を確実に製造したい場合には、以下の(2)’式を満たすように2次冷却比水量W(L/kg)を設定することが好ましい。
W ≦ 0.6+0.016η ・・・(2)’
By setting the secondary cooling specific water amount W (L/kg) so as to satisfy the above formula (2), it is possible to reliably manufacture a round cast slab having a warp of 40 mm or less. In addition, if you want to reliably manufacture round cast pieces with a warp of less than 20 mm, set the secondary cooling specific water volume W (L/kg) so as to satisfy the following formula (2)'. Is preferred.
W ≤ 0.6 + 0.016 η (2)'

このように、(1)式及び(2)式を満たすように2次冷却比水量W(L/kg)を設定することにより、モールドパウダー粘度により必要な2次冷却水量が規定され、それにより丸鋳片の真円度確保と反りの抑制を両立した、良好なビレット形状の丸鋳片を確実に製造することが可能となった。 In this way, by setting the secondary cooling specific water amount W (L/kg) so as to satisfy the equations (1) and (2), the required secondary cooling water amount is defined by the viscosity of the mold powder. It has become possible to reliably manufacture a good billet-shaped round slab that achieves both roundness of the round slab and suppression of warpage.

本実施形態では、用いるモールドパウダーの粘度ηを事前に測定する。そして、連続鋳造の操業に際して、測定済みのパウダー粘度ηを(1)式に代入し、好ましくは(2)式にも代入し、(1)式を充足するように、好ましくは(2)式も充足するように、2次冷却比水量Wを決定する。そして、決定した2次冷却比水量Wの条件下で2次冷却を行う。なお、本明細書において「モールドパウダーの1300℃における粘度η」は、回転粘度計を用いて測定し、具体的には、縦型加熱炉を用いて黒鉛坩堝内で1400℃で溶解したパウダーを、炉温制御により1300℃に調整して維持しつつ、溶融パウダー中に浸漬させた黒鉛製の略円柱形の回転子を回転数を複数条件に変更して回転させ、測定した回転数と回転トルクとの関係から、予め複数の標準粘度液を用いて求めた検量線に基づいて粘度を求めた。 In this embodiment, the viscosity η of the mold powder used is measured in advance. Then, in the operation of continuous casting, the measured powder viscosity η is substituted into the equation (1), preferably also into the equation (2), so that the equation (1) is satisfied, preferably the equation (2). The secondary cooling specific water amount W is determined so as to satisfy the above condition. Then, the secondary cooling is performed under the condition of the determined secondary cooling specific water amount W. In the present specification, “viscosity η at 1300° C. of mold powder” is measured using a rotational viscometer, and specifically, a powder melted at 1400° C. in a graphite crucible using a vertical heating furnace. While adjusting and maintaining the temperature to 1300℃ by controlling the furnace temperature, the graphite cylindrical rotor immersed in the molten powder was rotated by changing the rotation speed to multiple conditions. From the relationship with the torque, the viscosity was determined based on a calibration curve previously obtained using a plurality of standard viscosity liquids.

本実施形態で用いるモールドパウダーの成分組成は、塩基度(CaO/SiO2)が0.30〜1.0を満たすようにCaO及びSiO2を主成分として含み、好適には1300℃における粘度は、3.5〜35poiseで非晶質となるように適宜調整すればよく、特に限定されない。溶融パウダーの粘度及び結晶化特性は、パウダー組成のCaO、SiO2とともに、F、Na2O、Li2O、Al2O3、MgOの含有量を変更することで調整できる。また、さらにFe2O3、MnO、TiO2、ZrO2、B2O3等を少量添加した条件においても上記のような溶融パウダー物性の調整が可能である。 The component composition of the mold powder used in the present embodiment contains CaO and SiO 2 as main components so that the basicity (CaO/SiO 2 ) satisfies 0.30 to 1.0, and the viscosity at 1300° C. is preferably 3.5 to 35 poise. It may be appropriately adjusted so that it becomes amorphous, and is not particularly limited. The viscosity and crystallization characteristics of the molten powder can be adjusted by changing the contents of F, Na 2 O, Li 2 O, Al 2 O 3 and MgO together with CaO and SiO 2 in the powder composition. Further, the physical properties of the molten powder can be adjusted as described above even under the condition that Fe 2 O 3 , MnO, TiO 2 , ZrO 2 , B 2 O 3 and the like are added in small amounts.

CaOとSiO2はモールドパウダーの主成分であり、これらの合計量は65〜80質量%程度であることが好ましい。SiO2及びAl2O3は粘度を上昇させ、CaO、Na2O、Li2O、MgO及びFは粘度を低下させる作用を有するので、これらの調整により粘度を調整するが、非晶質とするためには、SiO2及びAl2O3に対してCaO及びMgOを低めにしたうえ、Na2O及びLi2Oを積極的に用いて粘度を調整することが効果的であり、それぞれ質量%で、SiO2は30%以上、50%以下、Al2O3は5%以上、18%以下、CaOは18%以上、35%以下、MgOは1.5%以上、4%以下、Na2Oは2%以上、12%以下、Li2Oは1.5%以上、5%以下、Fは2%以上、8%以下の範囲で調整することが好ましい。 CaO and SiO 2 are the main components of the mold powder, and their total amount is preferably about 65 to 80 mass %. SiO 2 and Al 2 O 3 increase the viscosity, and CaO, Na 2 O, Li 2 O, MgO and F have the effect of decreasing the viscosity, so the viscosity is adjusted by these adjustments. In order to achieve this, it is effective to lower CaO and MgO with respect to SiO 2 and Al 2 O 3 and to adjust the viscosity by actively using Na 2 O and Li 2 O. %, SiO 2 is 30% or more, 50% or less, Al 2 O 3 is 5% or more, 18% or less, CaO is 18% or more, 35% or less, MgO is 1.5% or more, 4% or less, Na 2 O Is preferably 2% or more and 12% or less, Li 2 O is 1.5% or more and 5% or less, and F is preferably 2% or more and 8% or less.

本実施形態の連続鋳造方法の適用対象となる鋼の成分は、特に限定されないが、質量%で、C:0.14〜0.29%、Si:0.14〜0.35%、Mn:0.40〜1.45%、P:0.005〜0.025%、及びS:0.001〜0.015%を含有し、任意でさらに、Cu:0.00〜0.10%、Ni:0.00〜0.20%、Cr:0.00〜1.15%、Mo:0.000〜0.075%、Co:0.000〜0.030%、V:0.000〜0.055%、Ti:0.000〜0.040%、B:0.0000〜0.0030%、Nb:0.000〜0.040%、Al:0.002〜0.070%、Ca:0.0000〜0.0035%、及びN:0.002〜0.008%から選択される1種又は2種以上を含有し、残部がFe及び不可避的不純物からなる成分組成の低合金炭素鋼に好ましく適用することができる。 The components of the steel to which the continuous casting method of the present embodiment is applied are not particularly limited, but in mass %, C: 0.14 to 0.29%, Si: 0.14 to 0.35%, Mn: 0.40 to 1.45%, P: 0.005. To 0.025% and S: 0.001 to 0.015%, optionally further Cu: 0.00 to 0.10%, Ni: 0.00 to 0.20%, Cr: 0.00 to 1.15%, Mo: 0.000 to 0.075%, Co: 0.000 -0.030%, V: 0.000-0.055%, Ti: 0.000-0.040%, B: 0.0000-0.0030%, Nb: 0.000-0.040%, Al: 0.002-0.070%, Ca: 0.0000-0.0035%, and N: 0.002 It can be preferably applied to a low alloy carbon steel containing one or more selected from 0.008% to 0.008% and the balance being Fe and inevitable impurities.

また、本実施形態では連続鋳造の速度は特に限定されないが、生産性の観点から、鋳片引き抜き速度を0.8〜2.4m/minとすることが好ましい。 Further, in the present embodiment, the continuous casting speed is not particularly limited, but from the viewpoint of productivity, it is preferable to set the slab drawing speed to 0.8 to 2.4 m/min.

本実施形態において製造する丸鋳片の直径は特に限定されないが、100〜350mmとすることが好ましく、170〜300mmとすることがより好ましい。 The diameter of the round cast piece manufactured in the present embodiment is not particularly limited, but is preferably 100 to 350 mm, more preferably 170 to 300 mm.

表1に示す諸元の5種類のモールドパウダーA〜Eを用いて、以下の実施例1〜3の実験を行った。 The experiments of Examples 1 to 3 below were performed using the five types of mold powders A to E having the specifications shown in Table 1.

Figure 0006743850
Figure 0006743850

以下の実施例1〜3では、質量%で、C:0.12%、Si:0.20%、Mn:0.50%、P:0.020%、及びS:0.008%を含有し、残部がFe及び不可避的不純物である成分組成を有する溶鋼を円形断面の湾曲水冷鋳型に注湯し、鋳造速度2.0m/minで連続鋳造し、直径210mmの丸鋳片にした。湾曲鋳型及びストランドの湾曲部の曲率半径は約10.5mとした。 In the following Examples 1 to 3, C: 0.12%, Si: 0.20%, Mn: 0.50%, P: 0.020%, and S: 0.008% by mass%, and the balance being Fe and inevitable impurities. Molten steel having a certain composition was poured into a curved water-cooled mold having a circular cross section and continuously cast at a casting speed of 2.0 m/min to form a round cast piece having a diameter of 210 mm. The radius of curvature of the curved mold and the curved portion of the strand was about 10.5 m.

(実施例1)
2次冷却の比水量を0.6L/kgで一定とする条件で、表1に示す5種類のモールドパウダー(1300℃における粘度が1.9〜35Poise)を用いて連続鋳造を行い、得られた丸鋳片の不円率を測定した。これは、モールドパウダーの粘度が不円率に及ぼす影響を調査したものであり、結果を表2及び図1に示す。表2及び図1から明らかなように、1.9〜35Poiseの粘度範囲において、モールドパウダーの粘度が上昇するに従って、不円率が次第に増加する傾向にあることが分かり、(1)式を外れる条件では、不円率が基準値の2.5%よりも増加した。
(Example 1)
Round casting obtained by continuous casting using the five types of mold powders shown in Table 1 (viscosity at 1300°C is 1.9 to 35 Poise) under the condition that the specific water volume for secondary cooling is constant at 0.6 L/kg. The circularity of one piece was measured. This is an investigation of the influence of the viscosity of the mold powder on the circularity, and the results are shown in Table 2 and FIG. As is clear from Table 2 and FIG. 1, in the viscosity range of 1.9 to 35 Poise, it is found that the non-circularity tends to gradually increase as the viscosity of the mold powder increases. , The non-circularity increased more than the standard value of 2.5%.

Figure 0006743850
Figure 0006743850

(実施例2)
モールドパウダーの1300℃における粘度を20Poiseで一定とする(すなわち、モールドパウダーDを用いる)条件で、2次冷却の比水量を0.4〜1.1L/kgで変更して連続鋳造を行い、得られた丸鋳片の不円率を測定した。これは、2次冷却の比水量が不円率に及ぼす影響を調査したものであり、結果を表3及び図2に示す。表3及び図2から明らかなように、(1)式を外れる条件では、不円率が基準値の2.5%よりも増加した。
(Example 2)
It was obtained by continuous casting while changing the specific water amount of the secondary cooling to 0.4 to 1.1 L/kg under the condition that the viscosity of the mold powder at 1300° C. is constant at 20 Poise (that is, the mold powder D is used). The circularity of the round slab was measured. This is an investigation of the influence of the secondary cooling specific water content on the circularity, and the results are shown in Table 3 and FIG. As is clear from Table 3 and FIG. 2, the non-circularity increased more than the standard value of 2.5% under the condition that the formula (1) was not satisfied.

Figure 0006743850
Figure 0006743850

(実施例3)
モールドパウダーの1300℃における粘度を3.5〜35Poise、2次冷却比水量を0.20〜1.40L/kgの範囲で種々変更して連続鋳造を行い、得られた丸鋳片の不円率と、図3で定義される反りを測定した。各水準でのパウダー粘度、2次冷却比水量、(1)式左辺の値、(2)式右辺の値、並びに、不円率及び反りの評価結果を表4に示した。表4では、不円率2.0%未満を「○」、不円率2.0%〜2.5%を「△」、不円率2.5%超えを「×」として表記し、反りは、20mm以下を「○」、20mm超え且つ40mm以下を「△」、40mm超えを「×」として表記している。また、各モールドパウダーの粘度及び比水量の条件における、丸鋳片の不円率の評価を図4に、丸鋳片の反りの評価を図5に示した。
(Example 3)
The viscosity of the mold powder at 1300°C is 3.5 to 35 Poise, and the secondary cooling specific water amount is variously changed in the range of 0.20 to 1.40 L/kg, and continuous casting is performed. The warpage defined by was measured. Table 4 shows the powder viscosity at each level, the secondary cooling specific water content, the value on the left side of the formula (1), the value on the right side of the formula (2), and the evaluation results of the non-circularity and the warp. In Table 4, the circularity rate of less than 2.0% is expressed as "○", the circularity rate of 2.0% to 2.5% is expressed as "△", and the circularity rate of more than 2.5% is expressed as "X". "," above 20 mm and below 40 mm is indicated as "△", and above 40 mm is indicated as "x". Further, the evaluation of the circularity of the round slab under the conditions of the viscosity and the specific water content of each mold powder is shown in FIG. 4, and the evaluation of the warpage of the round slab is shown in FIG.

これら表4及び図4,5から明らかなように、(1)式を満たす条件では不円率が2.5%以下と良好であり、(2)式を満たす条件では反りが40mm以下と良好であるのに対して、(1)式を外れる条件では不円率が2.5%超えと悪化し、(2)式を外れる条件では反りが40mm超えと悪化することが分かる。また、不円率を2.0%未満、及び反りを20mm以下という、より良好なレベルに制御するためには、それぞれ、W≧0.3+0.012η、及びW≦0.6+0.016ηを満たす条件とすることが好ましい。 As is clear from Table 4 and FIGS. 4 and 5, the non-circularity is 2.5% or less when the condition (1) is satisfied, and the warp is 40 mm or less when the condition (2) is satisfied. On the other hand, it can be seen that, under the condition out of the equation (1), the non-circularity deteriorates to over 2.5%, and under the condition out of the equation (2), the warp deteriorates to over 40 mm. Moreover, in order to control the non-circularity to less than 2.0% and the warp to a better level of 20 mm or less, the conditions must satisfy W≧0.3+0.012η and W≦0.6+0.016η, respectively. Is preferred.

Figure 0006743850
Figure 0006743850

以上、実施例1〜3の結果によれば、操業に際して用いるパウダーの粘度に応じて、(1)式を満たすように2次冷却比水量Wを設定することにより、不円率が2.5%以下の丸鋳片を確実に製造することができ、さらに(2)式を満たすように2次冷却比水量Wを設定することにより、反りが40mm以下の丸鋳片を確実に製造することができることが理解できる。 As described above, according to the results of Examples 1 to 3, by setting the secondary cooling specific water amount W so as to satisfy the formula (1) according to the viscosity of the powder used in the operation, the non-circularity is 2.5% or less. It is possible to reliably manufacture a round slab with a warp of 40 mm or less by setting the secondary cooling specific water amount W so as to satisfy the formula (2). Can understand.

本発明の丸鋳片の連続鋳造方法によれば、良好なビレット形状の丸鋳片を確実に製造することが可能となる。 According to the continuous casting method for round cast slabs of the present invention, it becomes possible to reliably manufacture good billet-shaped round cast slabs.

Claims (5)

モールド内の溶鋼表面上にモールドパウダーを供給しながら行う丸鋳片の連続鋳造方法であって、
前記モールドパウダーとして、SiO2含有量に対するCaO含有量の質量比(CaO/SiO2)が0.30〜1.0のモールドパウダーを用い、
前記モールドパウダーの1300℃における粘度η(poise)を事前に測定し、
連続鋳造の操業に際して、測定した粘度ηを以下の(1)式に代入し、前記(1)式を満たすように2次冷却比水量W(L/kg)を決定し、
決定した2次冷却比水量Wの条件下で2次冷却を行うことを特徴とする丸鋳片の連続鋳造方法。
0.2+0.012η ≦ W ・・・(1)
A continuous casting method for round slabs performed while supplying mold powder onto the surface of molten steel in a mold,
As the mold powder, a mass ratio of CaO content to SiO 2 content (CaO/SiO 2 ) of 0.30 to 1.0 is used.
The viscosity η (poise) of the mold powder at 1300° C. is measured in advance,
At the time of continuous casting operation, the measured viscosity η is substituted into the following formula (1), and the secondary cooling specific water amount W (L/kg) is determined so as to satisfy the formula (1) .
A continuous casting method for round cast slabs, characterized in that secondary cooling is performed under the conditions of the determined secondary cooling specific water amount W.
0.2+0.012 η ≤ W ・・・(1)
測定した前記モールドパウダーの1300℃における粘度η(poise)を以下の(2)式に代入し、前記(2)式も満たすように2次冷却比水量Wを決定する、請求項1に記載の丸鋳片の連続鋳造方法。
W ≦ 0.8+0.016η ・・・(2)
The secondary cooling specific water amount W is determined so as to substitute the measured viscosity η(poise) of the mold powder at 1300° C. into the following equation (2) and also satisfy the equation (2). Continuous casting method for round slabs.
W ≤ 0.8 + 0.016 η (2)
前記丸鋳片の不円率を2.5%以下とする、請求項1に記載の丸鋳片の連続鋳造方法。 The method for continuously casting a round cast piece according to claim 1, wherein the circularity of the round cast piece is 2.5% or less. 前記丸鋳片の反りを40mm以下とする、請求項2に記載の丸鋳片の連続鋳造方法。 The method for continuously casting a round cast piece according to claim 2, wherein the warp of the round cast piece is 40 mm or less. 前記モールドパウダーは、1300℃における粘度ηが3.5〜35poiseの範囲内の非晶質モールドパウダーとする、請求項1〜4のいずれか一項に記載の丸鋳片の連続鋳造方法。
The continuous casting method according to any one of claims 1 to 4, wherein the mold powder is an amorphous mold powder having a viscosity η at 1300°C of 3.5 to 35 poise.
JP2018130140A 2017-08-22 2018-07-09 Continuous casting method for round slabs Active JP6743850B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017159614 2017-08-22
JP2017159614 2017-08-22

Publications (2)

Publication Number Publication Date
JP2019038033A JP2019038033A (en) 2019-03-14
JP6743850B2 true JP6743850B2 (en) 2020-08-19

Family

ID=65724932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018130140A Active JP6743850B2 (en) 2017-08-22 2018-07-09 Continuous casting method for round slabs

Country Status (1)

Country Link
JP (1) JP6743850B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112620599B (en) * 2020-12-29 2022-04-08 河南通宇冶材集团有限公司 Ultralow-alkalinity high-vitrification protective slag for bloom medium-high carbon steel and preparation method thereof

Also Published As

Publication number Publication date
JP2019038033A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP5708690B2 (en) Mold flux for continuous casting of steel
JP5018274B2 (en) Mold for continuous casting of round billet slab and continuous casting method
JP6743850B2 (en) Continuous casting method for round slabs
JP2020175394A (en) Chill roll, twin roll type continuous casting device, thin casting piece casting method, and chill roll production method
EP3192594B1 (en) Mold flux for continuous casting of steel
JP3780966B2 (en) Continuous casting powder and continuous casting method using it
JP6213101B2 (en) Scum weir, thin slab manufacturing method and thin slab manufacturing apparatus
JP6510342B2 (en) Continuous casting powder for Al-containing steel and continuous casting method
JP5942712B2 (en) Scum weir, thin slab manufacturing method, thin slab manufacturing equipment
JP2008212972A (en) METHOD FOR MANUFACTURING CAST SLAB OF HIGH Ni STEEL
JP2003225744A (en) Powder for continuous casting and continuous casting method using this powder
JP5929744B2 (en) Continuous casting method for round slabs
JP7425280B2 (en) Method for producing mold powder for continuous casting and continuous casting method for steel
JP4345457B2 (en) High Al steel high speed casting method
JP5387497B2 (en) Manufacturing method of high alloy steel by continuous casting
JP4036033B2 (en) High speed casting method for medium carbon steel
JPH07138709A (en) Stainless steel for wire rod horizontal continuous casting excellent in long time castability
JP4527832B2 (en) Steel continuous casting method
JP3876917B2 (en) Steel continuous casting method
JP5626438B2 (en) Continuous casting method
KR102515295B1 (en) Manufacturing method of thin cast steel
JP5423715B2 (en) Continuous casting method
JP5397213B2 (en) Continuous casting method
JP4609119B2 (en) Steel continuous casting method
JP2005305456A (en) Powder for continuous casting for steel and continuous casting method for steel using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6743850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250