JP5397213B2 - Continuous casting method - Google Patents
Continuous casting method Download PDFInfo
- Publication number
- JP5397213B2 JP5397213B2 JP2009292946A JP2009292946A JP5397213B2 JP 5397213 B2 JP5397213 B2 JP 5397213B2 JP 2009292946 A JP2009292946 A JP 2009292946A JP 2009292946 A JP2009292946 A JP 2009292946A JP 5397213 B2 JP5397213 B2 JP 5397213B2
- Authority
- JP
- Japan
- Prior art keywords
- slab
- powder
- mold
- temperature
- casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Continuous Casting (AREA)
Description
本発明は、鋳型に溶鋼を供給して鋳片を製造する連続鋳造方法に関する。 The present invention relates to a continuous casting method for manufacturing a slab by supplying molten steel to a mold.
従来、Siを1.0質量%以上含有する電磁鋼を連続鋳造機で鋳造する際に、二次冷却帯で発生する鋳片の幅方向の不均一冷却に起因した鋳片の表面温度の低下により、鋳片に表面割れが発生している。この割れは、鋳片の過冷却に起因するものであり、通常、二次冷却帯での注水量を減らすことで対応している。しかし、Si含有量が高い電磁鋼では、二次冷却帯での注水量を減らすと、製品の表面欠陥の原因となるロール間のバルジングに起因した鋳片の内部割れが発生する。
このため、二次冷却帯での注水量の調整では、冷却不足に起因する内部割れと過冷却に起因する表面割れの両立が困難であった。なお、鋳片の表面温度を均一化する方法としては、上記した注水量の調整以外に、鋳型直下で鋳片表面からパウダー(モールドパウダー又はモールドフラックスともいう)を剥離させることが、既に知られている。
Conventionally, when electromagnetic steel containing 1.0% by mass or more of Si is cast with a continuous casting machine, the surface temperature of the slab is lowered due to uneven cooling in the width direction of the slab generated in the secondary cooling zone. As a result, surface cracks occur in the slab. This crack is caused by overcooling of the slab and is usually dealt with by reducing the amount of water injected in the secondary cooling zone. However, in electromagnetic steel with a high Si content, when the amount of water injection in the secondary cooling zone is reduced, internal cracks in the slab due to bulging between rolls that cause product surface defects occur.
For this reason, in the adjustment of the water injection amount in the secondary cooling zone, it is difficult to achieve both internal cracks due to insufficient cooling and surface cracks due to supercooling. As a method for making the surface temperature of the slab uniform, it is already known that the powder (also referred to as mold powder or mold flux) is peeled off from the surface of the slab directly under the mold in addition to the adjustment of the water injection amount described above. ing.
例えば、特許文献1には、鋳型から最初のサポートロールまでの間で、鋳片表面に付着したモールドフラックスと酸化皮膜を除去する連続鋳造方法が記載されている。なお、この除去は、高圧スプレーノズルを用いて、鋳片表面に10N/cm2以上の衝突圧で水噴流を衝突させることにより行っている。
また、特許文献2には、鋳型の出側における凝固シェルの表面温度と、鋳型内の溶鋼に投入されるモールドフラックスの凝固温度と、モールドフラックスの化学成分の含有量とを用いて算出されるβ値が、1.5以下又は2.5以上を満足するように鋳造速度を調整して連続鋳造を行う方法が記載されている。
For example, Patent Document 1 describes a continuous casting method in which a mold flux and an oxide film attached to a slab surface are removed between a mold and the first support roll. This removal is performed by causing a water jet to collide with the slab surface at a collision pressure of 10 N / cm 2 or more using a high-pressure spray nozzle.
Further, in Patent Document 2, calculation is performed using the surface temperature of the solidified shell on the exit side of the mold, the solidification temperature of the mold flux introduced into the molten steel in the mold, and the content of the chemical component of the mold flux. A method is described in which continuous casting is performed by adjusting the casting speed so that the β value satisfies 1.5 or less or 2.5 or more.
しかしながら、前記従来の方法には、未だ解決すべき以下のような問題があった。
特許文献1の方法では、高圧スプレーノズルによる10N/cm2以上の注水を行うと、特にSi含有量の高い電磁鋼(例えば、無方向性電磁鋼)などでは、過冷却による鋳片の表面割れが発生する可能性が高く、適用が難しい。
また、特許文献2の方法を用いる場合、鋳型直下ではスプレー水の流量が非常に多いため、鋳型下端で鋳片の表面温度を連続的に測定することが困難である。なお、鋳片の表面温度を鋳造速度で調整すると、Si含有量の高い電磁鋼の場合、凝固シェルのバルジングに伴う内部割れが発生し、製品の表面欠陥の原因となる。
更に、特許文献1、2の方法は、基本的にパウダーが付着することで冷却が阻害されるという考え方に基づいて、パウダーの剥離により高速鋳造(Vc≧2.0m/分)領域での冷却能力の向上を図るものであるため、鋳片の幅方向の不均一冷却による鋳片の表面割れの解決は困難であった。
However, the conventional method still has the following problems to be solved.
In the method of Patent Document 1, when water injection of 10 N / cm 2 or more is performed with a high-pressure spray nozzle, particularly in steels with high Si content (for example, non-directional steels), surface cracks in the slab due to supercooling Is likely to occur and is difficult to apply.
Moreover, when using the method of patent document 2, since the flow rate of spray water is very large just under the mold, it is difficult to continuously measure the surface temperature of the slab at the lower end of the mold. When the surface temperature of the slab is adjusted by the casting speed, in the case of electromagnetic steel having a high Si content, internal cracks occur due to bulging of the solidified shell, which causes surface defects of the product.
Further, the methods of Patent Documents 1 and 2 are based on the idea that cooling is hindered by powder adhesion, and cooling in the high-speed casting (Vc ≧ 2.0 m / min) region by peeling of the powder. In order to improve the capacity, it has been difficult to solve the surface cracks of the slab by uneven cooling in the width direction of the slab.
本発明はかかる事情に鑑みてなされたもので、パウダー自身の剥離性を向上させることにより、鋳片の幅方向の冷却を安定させ、過冷却により発生する鋳片の表面割れを抑制して、良質の鋳片を製造可能な連続鋳造方法を提供することを目的とする。 The present invention was made in view of such circumstances, by improving the peelability of the powder itself, stabilizing the cooling in the width direction of the slab, suppressing the surface cracks of the slab caused by overcooling, An object of the present invention is to provide a continuous casting method capable of producing a high quality slab.
前記目的に沿う本発明に係る連続鋳造方法は、Siを1.0質量%以上含有する溶鋼を鋳型に供給し、該鋳型内に供給するパウダーの消費量を0.2kg/m2以上0.6kg/m2以下にする連続鋳造方法において、
前記パウダーを加熱溶融させた後、温度を降下させる過程で結晶が晶出し始める温度である凝固温度を1050℃以上1200℃以下とし、溶融した前記パウダーを急冷固化させると生成するガラスを焼鈍した際に結晶が析出し始める温度である結晶化温度を500℃以上600℃以下とする。
In the continuous casting method according to the present invention that meets the above object, molten steel containing 1.0% by mass or more of Si is supplied to a mold, and the consumption of powder supplied into the mold is 0.2 kg / m 2 or more and 0.0. In the continuous casting method of 6 kg / m 2 or less,
After the powder is heated and melted, the solidification temperature, which is the temperature at which crystals begin to crystallize in the process of lowering the temperature, is set to 1050 ° C. or more and 1200 ° C. or less, and when the molten powder is rapidly cooled and solidified, the resulting glass is annealed The crystallization temperature, which is the temperature at which crystals begin to precipitate, is set to 500 ° C. or more and 600 ° C. or less .
本発明に係る連続鋳造方法は、鋳型内に供給するパウダーの消費量を0.2kg/m2以上0.6kg/m2以下にするので、パウダーの鋳片への適切な付着厚さを確保し、鋳片の過冷却を防止することができる。
また、パウダーの凝固温度を1050℃以上1200℃以下とし、結晶化温度を500℃以上600℃以下とするので、鋳型と凝固シェルとの間に形成されるスラグフィルムを構成する液相、結晶相、及びガラス相の各厚みを調整できる。これにより、鋳型と凝固シェルとの間からのスラグフィルムの脱落を防止できるので、鋳型と凝固シェルとの焼き付きを抑制できる。
従って、Siを1.0質量%以上含有する溶鋼(例えば、無方向性電磁鋼等の電磁鋼)を連続鋳造するに際し、連続鋳造時の焼き付きによるブレークアウトを防止しつつ、表面割れを抑制でき、高品質の鋳片を安定して製造することができる。
Continuous casting method according to the present invention, since the consumption of powder supplied into the mold to 0.2 kg / m 2 or more 0.6 kg / m 2 or less, ensure proper deposition thickness of the powder slab And overcooling of the slab can be prevented.
Further, since the solidification temperature of the powder is 1050 ° C. or more and 1200 ° C. or less and the crystallization temperature is 500 ° C. or more and 600 ° C. or less, the liquid phase and crystal phase constituting the slag film formed between the mold and the solidification shell And each thickness of a glass phase can be adjusted. Thereby, the slag film can be prevented from falling off between the mold and the solidified shell, so that the seizure between the mold and the solidified shell can be suppressed.
Therefore, when continuously casting molten steel containing 1.0% by mass or more of Si (for example, electromagnetic steel such as non-oriented electrical steel), surface cracks can be suppressed while preventing breakout due to seizure during continuous casting. High quality slabs can be manufactured stably.
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
本発明の一実施の形態に係る連続鋳造方法は、Siを1.0質量%以上含有する溶鋼を鋳型に供給し、鋳型内に供給するパウダーの消費量を0.2kg/m2以上0.6kg/m2以下にする方法であって、パウダーの凝固温度を1050℃以上1200℃以下とし、結晶化温度を500℃以上600℃以下とする方法である。
以下、本発明に想到した経緯について説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
In the continuous casting method according to an embodiment of the present invention, molten steel containing 1.0% by mass or more of Si is supplied to a mold, and the amount of powder consumed in the mold is 0.2 kg / m 2 or more and 0.0. a method for the 6 kg / m 2 or less, the solidification temperature of the powder and 1050 ° C. or higher 1200 ° C. or less, a process for the 500 ° C. or higher 600 ° C. or less crystallization temperature.
Hereinafter, the background to the present invention will be described.
連続鋳造機(以下、連鋳機ともいう)は、鋳型と、鋳型直下から鋳造方向に渡って配置された二次冷却帯とを有し、二次冷却帯には、鋳片を冷却するための複数の冷却用ノズルが配置されている。この連続鋳造機を使用して、Siを1.0質量%以上(上限は、例えば4質量%)含有する電磁鋼を連続鋳造する場合、この電磁鋼は高温で脆化し易いため、二次冷却帯に配置されたロール間で溶鋼静圧により鋳片が膨れる際に発生する歪により、凝固界面で内部割れが発生する。この割れを防止するためには、二次冷却帯に配置された冷却用ノズルからの水量を増やし、凝固シェルの厚みを厚くすることで、ロール間でのバルジングを抑制する必要がある。 A continuous casting machine (hereinafter also referred to as a continuous casting machine) has a mold and a secondary cooling zone disposed from directly under the mold in the casting direction, and the secondary cooling zone is for cooling the slab. A plurality of cooling nozzles are arranged. When continuously casting electromagnetic steel containing 1.0% by mass or more of Si (upper limit is, for example, 4% by mass) using this continuous casting machine, this electromagnetic steel is easily embrittled at a high temperature. Internal cracks occur at the solidification interface due to the strain that occurs when the slab swells due to the static pressure of molten steel between the rolls arranged in the band. In order to prevent this cracking, it is necessary to suppress bulging between rolls by increasing the amount of water from the cooling nozzle disposed in the secondary cooling zone and increasing the thickness of the solidified shell.
しかし、冷却水量を増加すると冷却能が向上し、鋳片に過冷却及び表面割れが発生する。この傾向は、特にSiが2.8質量%以上(更には3.5質量%以上)になると顕著になる。そのため、二次冷却帯における水量調整では、冷却不足に起因する内部割れと過冷却に起因する表面割れの両立が困難である。
そこで、本発明者らは、二次冷却帯での冷却に与える因子として、鋳片表面からのパウダー(モールドパウダー)の剥離性に着目し、鋳片の均一冷却化を図るために必要なパウダー物性の検討を行った。
However, when the amount of cooling water is increased, the cooling performance is improved, and supercooling and surface cracking occur in the slab. This tendency becomes prominent particularly when Si is 2.8% by mass or more (further 3.5% by mass or more). For this reason, it is difficult to adjust both the internal cracks due to insufficient cooling and the surface cracks due to supercooling when adjusting the amount of water in the secondary cooling zone.
Therefore, the present inventors pay attention to the releasability of the powder (mold powder) from the surface of the slab as a factor given to cooling in the secondary cooling zone, and the powder necessary for achieving uniform cooling of the slab. The physical properties were examined.
一般に、溶鋼の接触面側が銅板(銅製又は銅合金製)で構成された鋳型内に供給するパウダーは、SiO2、CaO、F、Na2Oなどからなる人工スラグで、溶鋼上に散布されると溶鋼の熱で溶融する。このように溶融したパウダーは、連続鋳造機の鋳型と凝固シェル(凝固した鋼)との間に流入し、鋳型と凝固シェルとの焼き付きを防止する潤滑剤の役割を果たす。
このパウダーは、鋳片表面に付着した状態で二次冷却帯で冷却されると、鋳片の冷却能力が低下するという報告が多数なされている。これは、鋳片と比べて熱伝導が低いパウダーが熱抵抗になり、鋳片自体の抜熱を阻害することを根拠としていることによる。
Generally, the powder supplied into a mold having a contact surface side of molten steel made of a copper plate (made of copper or copper alloy) is an artificial slag made of SiO 2 , CaO, F, Na 2 O, etc., and is dispersed on the molten steel. It melts with the heat of molten steel. The powder thus melted flows between the mold of the continuous casting machine and the solidified shell (solidified steel), and serves as a lubricant for preventing seizure between the mold and the solidified shell.
There have been many reports that when this powder is cooled in the secondary cooling zone while adhering to the surface of the slab, the cooling capacity of the slab decreases. This is because the powder having a lower thermal conductivity than the slab becomes thermal resistance and inhibits heat removal from the slab itself.
しかし、本発明者らが調査した結果、鋳片表面にパウダーが付着すると、逆に冷却能が向上する場合があることが判明した。以下、本発明者らが、ラボ試験により、パウダー付着の有無が鋳片の冷却能へ及ぼす影響を調査した結果について説明する。
まず、ラボ試験では、熱電対を埋め込んだ鋼材を1200℃以上に加熱した後、これを冷却用ノズルで冷却し、パウダー付着の有無による鋼材の冷却速度の影響を調査した。続いて、このラボ試験の結果と伝熱解析モデルを用いて、パウダー付着の有無が鋳片の冷却能へ及ぼす影響を調査した。なお、使用した伝熱解析モデルは、例えば、鉄と鋼、第60巻(1974年)、1023頁に示される一般的な手法を用いた。
However, as a result of investigations by the present inventors, it has been found that when powder adheres to the surface of the slab, the cooling ability may be improved. Hereinafter, the results of investigation by the present inventors on the influence of the presence or absence of powder adhesion on the cooling ability of the slab by a laboratory test will be described.
First, in the laboratory test, after the steel material in which the thermocouple was embedded was heated to 1200 ° C. or higher, this was cooled with a cooling nozzle, and the influence of the cooling rate of the steel material depending on the presence or absence of powder adhesion was investigated. Subsequently, using the results of this laboratory test and the heat transfer analysis model, the effect of the presence or absence of powder adhesion on the cooling capacity of the slab was investigated. In addition, the heat transfer analysis model used used the general method shown by iron and steel, a 60th volume (1974), p. 1023, for example.
ここで、解析を行った連続鋳造機の構成、鋳造条件、及び冷却条件を、以下に示す。
・連続鋳造機の鋳型直下から鋳造方向に1.2mまでのロールのピッチ:200mm
・鋳型直下から曲げ戻し部までの距離:16m
・鋳造条件:鋳造速度1.3m/分、鋳造幅(鋳片の幅)1300mm、鋳造厚み(鋳片の厚み)250mm
・冷却条件:鋳型直下から、鋳造方向に2.0mまでの範囲で、冷却用ノズルから鋳片に吹き付けられる冷却水の水量密度を、鋳片の表面積1m2あたり、450リットル/分(以下、L/m2/分ともいう)で一定。
Here, the structure of the continuous casting machine which analyzed, casting conditions, and cooling conditions are shown below.
・ Pitch of rolls from directly under the mold of continuous casting machine to 1.2m in casting direction: 200mm
・ Distance from directly under mold to bent back part: 16m
Casting conditions: casting speed 1.3 m / min, casting width (slab width) 1300 mm, casting thickness (slab thickness) 250 mm
- cooling conditions: from the mold immediately below, in the range of up to 2.0m in the casting direction, the water density of the cooling water sprayed onto the cast piece from the cooling nozzle, 2 per surface area of the slab 1 m, 450 l / min (hereinafter, L / m 2 / min)) and constant.
この解析結果を、図1に示す。
図1の横軸は、鋳型直下から鋳造方向の距離(m)を示している。なお、図1においては、鋳型直下(横軸の値が0.0m:鋳片の表面温度が600℃付近)から、鋳造方向の距離が2.0m(鋳片表面温度900℃付近)までの範囲を図示している。
また、図1の縦軸は、パウダーの付着ありを前提とした鋳片を冷却した際に、鋳造方向の距離が1.2m相当位置の鋳片の熱伝達係数を1として、パウダーの付着なし(図1中の実線)と付着あり(図1中の点線)の場合の鋳片の各熱伝達係数を、それぞれ指数化(冷却能指数)した値を図示している。
The analysis result is shown in FIG.
The horizontal axis in FIG. 1 indicates the distance (m) in the casting direction from directly below the mold. In FIG. 1, the distance from the casting direction to 2.0 m (slab surface temperature of 900 ° C.) immediately below the mold (the value of the horizontal axis is 0.0 m: the surface temperature of the slab is approximately 600 ° C.). The range is illustrated.
In addition, the vertical axis in FIG. 1 indicates that when the slab is cooled on the premise that powder adheres, the heat transfer coefficient of the slab where the distance in the casting direction is equivalent to 1.2 m is 1, and no powder adheres. The values obtained by indexing (cooling capacity index) the respective heat transfer coefficients of the slab in the case of (solid line in FIG. 1) and attached (dotted line in FIG. 1) are shown.
まず、図1から得られた知見を以下に示す。
・パウダー付着の有無によらず、鋳造の進行(横軸の増加)と共に、冷却能が低下した。
・パウダー付着の有無による冷却能の大小関係は存在するが、横軸の位置(鋳片の表面温度が異なる位置)によって、大小関係が異なる場合があった。
・鋳型直下付近(例えば、0.2m位置)では、パウダー付着なしは、パウダー付着ありと比べて、冷却能指数が約30%大きくなった。
・鋳型直下から鋳造方向に1.2mの位置を超える(例えば、1.4m位置)と、パウダー付着なしは、パウダー付着ありと比べて、冷却能指数が20%を超えて小さくなった。
First, the knowledge obtained from FIG. 1 is shown below.
-Cooling ability decreased with the progress of casting (increase in the horizontal axis) regardless of the presence or absence of powder adhesion.
-Although there is a magnitude relationship of cooling ability depending on the presence or absence of powder adhesion, the magnitude relationship may differ depending on the position of the horizontal axis (position where the surface temperature of the slab is different).
In the vicinity of the mold (for example, at a position of 0.2 m), the cooling ability index was about 30% larger when no powder was adhered than when powder was adhered.
-When the position of 1.2 m was exceeded in the casting direction from directly under the mold (for example, the position of 1.4 m), the cooling capacity index was smaller than 20% when the powder was not adhered, compared with the powder adhered.
このように、鋳型直下から同じ距離でも、パウダー付着の有無により、交点Aを境として、冷却能の大小関係が変わることが判った。つまり、鋳片表面にパウダーが付着することで、鋳片の表面温度の低下や、幅方向の温度偏差が拡大し、内部割れと表面割れの一方又は双方が発生する。
実機の鋳造試験では、パウダーの消費量が0.2kg/m2未満となると、鋳片の幅方向の温度偏差が大きくなり、鋳片の表面割れが発生した。これは、パウダーの消費量が少なくなると、鋳型直下で鋳片表面に付着するパウダーの厚みが薄くなり、スプレー水の圧力により、鋳片表面から剥離し易くなるためと推定した。また、同じスプレー水量密度でも、パウダーの消費量が0.6kg/m2を超える場合、鋳片の幅方向の温度偏差の抑制効果が飽和してしまうため、それ以上パウダーの消費量を増やす必要性は低い。
Thus, it was found that the magnitude relationship of the cooling capacity changes at the intersection A depending on the presence or absence of powder adhesion even at the same distance from directly under the mold. That is, when powder adheres to the surface of the slab, the surface temperature of the slab decreases and the temperature deviation in the width direction increases, and one or both of internal cracks and surface cracks occur.
In the actual casting test, when the powder consumption was less than 0.2 kg / m 2 , the temperature deviation in the width direction of the slab increased, and the surface crack of the slab occurred. This is presumed that when the amount of powder consumption decreases, the thickness of the powder adhering to the surface of the slab immediately below the mold becomes thin, and the pressure from the spray water makes it easy to peel from the surface of the slab. In addition, even if the spray water density is the same, if the powder consumption exceeds 0.6 kg / m 2 , the effect of suppressing the temperature deviation in the width direction of the slab will be saturated, so it is necessary to increase the powder consumption further. The nature is low.
以上のことから、パウダーの消費量(供給量)を0.2kg/m2以上0.6kg/m2以下(好ましくは、下限を、0.25kg/m2、更には0.3kg/m2、上限を、0.55kg/m2、更には0.5kg/m2)とすることで、鋳片への適切な付着厚さを確保し、鋳片の冷却を安定化させることが可能となる。
このパウダーの消費量の調整は、主にパウダー中のCaO、SiO2、F、Na2Oの量を変化させ、粘度をコントロールすることで実現した。この粘度は、後述する凝固温度や結晶化温度を固定したまま、任意の値に調整することが可能である。
From the above, the consumption of powder of (supply amount) 0.2 kg / m 2 or more 0.6 kg / m 2 or less (preferably, a lower limit, 0.25 kg / m 2, even 0.3 kg / m 2 By setting the upper limit to 0.55 kg / m 2 , and further 0.5 kg / m 2 ), it is possible to secure an appropriate thickness of attachment to the slab and to stabilize the cooling of the slab. Become.
The adjustment of the consumption amount of the powder was realized mainly by changing the amounts of CaO, SiO 2 , F and Na 2 O in the powder and controlling the viscosity. This viscosity can be adjusted to an arbitrary value while fixing a solidification temperature and a crystallization temperature described later.
なお、パウダーの消費量(kg/m2)は、以下のように定義している。
{パウダーの消費量(kg/m2)}
={鋳造時間中にメニスカスへ投入したパウダーの量(kg)}
/{鋳造速度(m/分)×{鋳片の幅(m)+鋳片の厚み(m)}×2×鋳造時間(分)}
ここで、鋳造時間とは、例えば、150〜350トン程度の1チャージの溶鋼を鋳造する時間や、複数チャージの溶鋼を鋳造する時間を意味する。
The powder consumption (kg / m 2 ) is defined as follows.
{Powder consumption (kg / m 2 )}
= {Amount of powder put into meniscus during casting time (kg)}
/ {Casting speed (m / min) × {slab width (m) + slab thickness (m)} × 2 × casting time (min)}
Here, the casting time means, for example, a time for casting one charged molten steel of about 150 to 350 tons or a time for casting a plurality of charged molten steels.
以上に示したように、パウダーの消費量をコントロールすることで、鋳片の幅方向の冷却の均一化は可能になったが、鋳型と凝固シェルとの間の焼き付きが多発するため、安定鋳造という観点から課題が残っていた。
そこで、鋳型と凝固シェルとの間の焼き付き抑制を目的として、パウダー物性の調整を行った。本実施の形態では、パウダーを評価する指標として、凝固温度と結晶化温度を用いた。この凝固温度とは、パウダーを加熱溶融させた後、温度を降下させる過程で、結晶が晶出し始める温度であり、結晶化温度とは、溶融スラグを急冷固化させると生成するガラスを焼鈍した際に、結晶が析出し始める温度である。
As shown above, the powder consumption can be controlled to make the cooling of the slab uniform in the width direction. However, because seizure occurs frequently between the mold and the solidified shell, stable casting is possible. The problem remained from the point of view.
Therefore, powder physical properties were adjusted for the purpose of suppressing seizure between the mold and the solidified shell. In the present embodiment, the solidification temperature and the crystallization temperature are used as indices for evaluating the powder. This solidification temperature is the temperature at which the crystal begins to crystallize in the process of lowering the temperature after the powder is heated and melted, and the crystallization temperature is when the glass produced when the molten slag is rapidly cooled and solidified is annealed. The temperature at which crystals begin to precipitate.
図2(A)、(B)に、連続鋳造機の鋳型(銅板)と凝固シェルとの間に流入した溶融スラグ、即ちスラグフィルムの状態を、模式的に示す。なお、図2(A)、(B)においては、溶鋼のスラグフィルム側に形成される凝固シェルは、図示していない。
図2に示すように、一般的に、スラグフィルムは、鋳型側からガラス相、結晶相、及び液相(溶融状態)の順に、3相に分かれて形成されている。ここで、凝固温度(B.P)は、スラグフィルムを構成する液相と結晶相の境界を、また結晶化温度(Tc)は、スラグフィルムを構成する結晶相とガラス相の境界を、それぞれ表している。
2A and 2B schematically show the state of the molten slag flowing between the mold (copper plate) and the solidified shell of the continuous casting machine, that is, the state of the slag film. 2 (A) and 2 (B), the solidified shell formed on the slag film side of the molten steel is not shown.
As shown in FIG. 2, generally, the slag film is divided into three phases in the order of a glass phase, a crystal phase, and a liquid phase (molten state) from the mold side. Here, the solidification temperature (BP) is the boundary between the liquid phase and the crystal phase constituting the slag film, and the crystallization temperature (Tc) is the boundary between the crystal phase and the glass phase constituting the slag film, respectively. Represents.
そこで、本実施の形態では、液相、結晶相、及びガラス相の3相の厚みをコントロールすることで、高Si鋼の鋳造安定化を図った。なお、結晶化温度及び凝固温度の調整は、パウダー中のCaO、SiO2、F、Na2O、Li2O、Al2O3の配合を変更することで行い、今回、実施した範囲では、粘度、結晶化温度、及び凝固温度を、任意にコントロールすることが可能であった。
まず、はじめに、パウダーの結晶化温度(Tc)を、パウダー中のNa2OとFの量を主として増減させることで調整した。この結晶化温度は、凝固温度に比べ、成分変更により制御できる範囲が小さい。また、図2から明らかなように、凝固温度を一定とした場合、結晶化温度を低下させるとガラス相が減少し、結晶相の厚みが増大する。
Therefore, in the present embodiment, the casting stability of the high-Si steel is achieved by controlling the thickness of the three phases of the liquid phase, the crystal phase, and the glass phase. In addition, adjustment of the crystallization temperature and the solidification temperature is performed by changing the blending of CaO, SiO 2 , F, Na 2 O, Li 2 O, and Al 2 O 3 in the powder. It was possible to arbitrarily control the viscosity, the crystallization temperature, and the solidification temperature.
First, the crystallization temperature (Tc) of the powder was adjusted by mainly increasing or decreasing the amounts of Na 2 O and F in the powder. This crystallization temperature has a smaller range that can be controlled by changing the components than the solidification temperature. As is clear from FIG. 2, when the solidification temperature is constant, the glass phase decreases and the crystal phase thickness increases when the crystallization temperature is lowered.
実機試験の結果では、結晶化温度が500℃よりも低い場合、結晶相の厚みが増大し、結晶相に対する液相の厚みが相対的に減少して、スラグフィルムと鋳片との摩擦抵抗が大きくなるため、例えば、鋳型のオシレーションの際に、鋳型と凝固シェルとの間からスラグフィルムが脱落する。その結果、鋳型と凝固シェルとが接触状態になるため、鋳型内の抜熱挙動が不安定となり、拘束性のブレークアウトなどの操業トラブルが発生した。
一方、結晶化温度が600℃を超えると、結晶相の厚みが薄くなると共にガラス相の厚みが厚くなり、鋳型直下でのパウダーの破砕性が低下するため、鋳片表面からの剥離性が悪化し、鋳片に過冷却が発生した。
以上のことから、結晶化温度を500℃以上600℃以下の範囲に規定して、凝固温度を調整した。
As a result of the actual machine test, when the crystallization temperature is lower than 500 ° C., the thickness of the crystal phase increases, the thickness of the liquid phase with respect to the crystal phase decreases relatively, and the frictional resistance between the slag film and the slab is reduced. For example, when the mold is oscillated, the slag film is dropped from between the mold and the solidified shell. As a result, since the mold and the solidified shell are in contact with each other, the heat removal behavior in the mold becomes unstable, causing operational troubles such as a restraint breakout.
On the other hand, when the crystallization temperature exceeds 600 ° C., the thickness of the crystal phase becomes thin and the glass phase becomes thick. Then, overcooling occurred in the slab.
From the above, the crystallization temperature was regulated in the range of 500 ° C. or more and 600 ° C. or less to adjust the solidification temperature.
パウダーの物性においては、凝固温度が1200℃を超えると、拘束性のブレークアウトが発生する。これは、結晶相が厚くなると共に液相が薄くなるため、鋳型と凝固シェルとの間の潤滑性が悪化し、スラグフィルムの脱落が発生して、鋳型と凝固シェルとが接触状態になるためだと推定される。
また、逆に、凝固温度が1050℃を下回ると、湯面変動が顕著になる上、鋳片の表面割れが多発した。これは、凝固温度が低くなると、液相が厚くなると共に結晶相が薄くなるため、凝固シェルと鋳型との間の輻射伝熱が増大し、鋳型内の冷却能が向上して、初期凝固が不安定化し、凝固シェルの成長が不均一になることによる。
Regarding the physical properties of the powder, if the solidification temperature exceeds 1200 ° C., a constraining breakout occurs. This is because the crystal phase becomes thicker and the liquid phase becomes thinner, so the lubricity between the mold and the solidified shell deteriorates, the slag film falls off, and the mold and the solidified shell come into contact with each other. It is estimated that.
On the other hand, when the solidification temperature was lower than 1050 ° C., the molten metal surface level became remarkable and the surface cracks of the slab were frequently generated. This is because when the solidification temperature is lowered, the liquid phase is thickened and the crystal phase is thinned, so that the radiation heat transfer between the solidified shell and the mold is increased, the cooling capacity in the mold is improved, and the initial solidification is performed. This is due to destabilization and non-uniform growth of the solidified shell.
凝固初期に発生した不均一凝固は、二次冷却帯で助長され、ロール間のバルジングによる湯面変動の原因となる。また、鋳片の表面割れは、液相が厚くなり過ぎると、鋳片表面へのパウダーの付着量が増加し、剥離性が阻害されるためだと推定される。
上記した湯面変動、ブレークアウト、鋳片の表面割れなどの操業トラブルに対しては、鋳造速度を0.6m/分未満まで落とすことで、ある程度抑制することは可能であるが、生産性を阻害する要因となるため問題である。
The uneven solidification that occurs in the early stage of solidification is promoted by the secondary cooling zone, and causes fluctuations in the molten metal surface due to bulging between rolls. Moreover, it is estimated that the surface crack of a slab is because if the liquid phase becomes too thick, the amount of powder attached to the slab surface increases and the peelability is hindered.
For operational troubles such as fluctuations in the molten metal surface, breakout, and surface cracks in the slab, the casting speed can be reduced to less than 0.6 m / min. This is a problem because it becomes an obstructing factor.
そこで、上記した物性のパウダーを適用することで、生産性に影響を及ぼすことなく、0.6m/分以上の鋳造速度で、安定鋳造が可能になる。なお、鋳造速度の上限値については規定していないが、現状では、溶鋼の鋳造速度を3.0m/分にして行った場合もある。
以上のことから、実際の連続鋳造機を用いて実施した試験の結果から、凝固温度を1050℃以上1200℃以下(好ましくは、下限を1080℃、更には1100℃、上限を1170℃、更には1150℃)、結晶化温度を500℃以上600℃以下(好ましくは、下限を520℃、上限を580℃)とすることで、鋳造を安定化できることが判った。
Therefore, by applying the powder having the above physical properties, stable casting can be performed at a casting speed of 0.6 m / min or more without affecting productivity. The upper limit of the casting speed is not specified, but at present, the casting speed of the molten steel may be set at 3.0 m / min.
From the above results, from the results of tests conducted using an actual continuous casting machine, the solidification temperature is 1050 ° C. or higher and 1200 ° C. or lower (preferably, lower limit is 1080 ° C., further 1100 ° C., upper limit is 1170 ° C., 1150 ° C.) and a crystallization temperature of 500 ° C. or more and 600 ° C. or less (preferably, the lower limit is 520 ° C., and the upper limit is 580 ° C.).
Siを1.0質量%以上含有する電磁鋼を連続鋳造機で鋳造するに際しては、凝固シェルに付着するパウダーを効果的に剥離させることで、二次冷却帯において発生する幅方向の不均一冷却に起因する鋳片の表面割れが発生する。
しかし、前記した物性のパウダーを使用することで、矯正点(湾曲部から水平部への矯正を行う位置)での鋳片の表面温度が600〜900℃になり、鋳片表面割れ防止と内部割れ防止の両立が可能になる。これは、鋳片の表面温度が600℃を下回ると、鋳片に表面割れが発生し、一方、900℃を超えると、鋳片の内部割れが、製品に影響を及ぼすレベルまで悪化することによる。
When casting electromagnetic steel containing 1.0% by mass or more of Si with a continuous casting machine, the powder adhering to the solidified shell is effectively peeled off, resulting in non-uniform cooling in the width direction generated in the secondary cooling zone. The surface crack of the slab caused by the occurrence occurs.
However, by using the powder having the above-mentioned physical properties, the surface temperature of the slab at the correction point (position where correction from the curved portion to the horizontal portion) is 600 to 900 ° C. Both crack prevention can be achieved. This is because if the surface temperature of the slab falls below 600 ° C., surface cracks occur in the slab, whereas if it exceeds 900 ° C., the internal crack of the slab deteriorates to a level that affects the product. .
次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、Siを3.0質量%以上含有する電磁鋼を連続鋳造機でテスト鋳造するに際し、凝固温度と結晶化温度を種々変更したパウダーを鋳型内に供給して、その評価を行った。
なお、使用した連続鋳造機は、鋳型の下流側に、鋳造方向に渡って多数の分割ロールが配置された垂直曲げ型のスラブ連続鋳造機である。この鋳型内には、各種パウダーを、その消費量が0.2kg/m2以上0.6kg/m2以下の範囲内になるように供給し、スラブの鋳造速度を0.8〜1.5m/分に調整した。鋳造したスラブの断面サイズは、厚み:252mm、幅:1000〜1500mm、である。
このテスト鋳造に使用したパウダーの種類と鋳造結果を、表1と図3に示す。
Next, examples carried out for confirming the effects of the present invention will be described.
Here, when test casting was carried out on an electromagnetic steel containing 3.0% by mass or more of Si with a continuous casting machine, powders with variously changed solidification temperatures and crystallization temperatures were supplied into the mold and evaluated.
The continuous casting machine used is a vertical bending type slab continuous casting machine in which a number of divided rolls are arranged on the downstream side of the mold in the casting direction. Within this mold, various powders, its consumption is supplied such that 0.2 kg / m 2 or more 0.6 kg / m 2 within the range, the casting speed of the slab 0.8~1.5m / Min. The cross-sectional size of the cast slab is as follows: thickness: 252 mm, width: 1000-1500 mm.
Table 1 and FIG. 3 show the types of powder used in the test casting and the casting results.
この表1において、実施例1〜6のパウダーは、凝固温度を1050℃以上1200℃以下の範囲内で、かつ結晶化温度を500℃以上600℃以下の範囲内に、調整したものである(図3の斜線領域内)。一方、従来例と比較例1〜5の各パウダーは、凝固温度又は結晶化温度が、上記した範囲外のものである(図3の斜線領域外)。なお、従来例のパウダーは既存のパウダーである。 In Table 1, the powders of Examples 1 to 6 were prepared by adjusting the solidification temperature within the range of 1050 ° C. to 1200 ° C. and the crystallization temperature within the range of 500 ° C. to 600 ° C. ( (Within the hatched area in FIG. 3). On the other hand, each powder of the conventional example and Comparative Examples 1 to 5 has a solidification temperature or a crystallization temperature outside the above-described range (outside the shaded area in FIG. 3). The conventional powder is an existing powder.
また、表1には、焼き付き、湯面変動、及び過冷却の各評価結果を示している。この各評価については、連続鋳造を0.6m/分以上の鋳造速度で継続して実施できた場合を「○」印で示し、一方、焼き付き、湯面変動、又は表面割れが発生し、0.6m/分以上の鋳造速度を継続して実施することが困難と判断され、鋳造速度を0.6m/分未満に低下させる必要があった場合を「×」印で示した。
そして、表1に示した判定は、連続鋳造を0.6m/分以上の鋳造速度で継続して実施できた場合を「○」印で、一方、0.6m/分未満の鋳造速度に低下させる必要があった場合を「×」印で、それぞれ示している。
Table 1 shows evaluation results of seizure, hot-water surface fluctuation, and supercooling. For each of these evaluations, a case where continuous casting can be continuously performed at a casting speed of 0.6 m / min or more is indicated by “◯”, while seizure, molten metal surface fluctuation, or surface cracking occurs. A case where it was judged that it was difficult to continuously carry out a casting speed of 6 m / min or more and it was necessary to reduce the casting speed to less than 0.6 m / min was indicated by “x”.
The determination shown in Table 1 indicates that the case where continuous casting can be continuously performed at a casting speed of 0.6 m / min or less is marked with “◯”, while the casting speed is reduced to a casting speed of less than 0.6 m / min. The cases where it is necessary to do so are indicated by “x” marks.
表1と図3より、既存のパウダーを使用した従来例では、鋳片の過冷却によるスラブ割れが発生した。
また、比較例1、2、4、5では、鋳片の表面割れの発生は抑制できたが、鋳型内での焼き付きが発生し、ブレークアウトの前駆現象(溶鋼の鋳片表面への染み出し)の発生が見られる場合もあった。なお、比較例3では、鋳型内での焼き付きの発生はなかったが、湯面変動が大きく操業性が悪かった。
このため、従来例と比較例1〜5では、鋳造速度を0.6m/分未満に低下させる必要があった。
From Table 1 and FIG. 3, in the conventional example using the existing powder, slab cracking due to overcooling of the slab occurred.
Further, in Comparative Examples 1, 2, 4, and 5, the occurrence of surface cracks in the slab was suppressed, but seizure occurred in the mold, and a breakout precursor phenomenon (leaching of molten steel to the slab surface occurred. ) In some cases. In Comparative Example 3, no seizure occurred in the mold, but the molten metal surface fluctuation was large and the operability was poor.
For this reason, in the conventional example and Comparative Examples 1-5, it was necessary to reduce a casting speed to less than 0.6 m / min.
一方、実施例1〜6では、鋳片の過冷却の発生を抑制でき、鋳型抜熱量の変動による操業トラブルも認められず、連続鋳造を0.6m/分以上の鋳造速度で続けることが可能であった。
なお、スラブの幅を1000〜1500mmの範囲でテスト鋳造したが、鋳造速度を変更することなく連続鋳造を実施できた。特に、焼き付きや湯面変動が起こり易い、1200〜1500mmの幅が広いスラブを鋳造した場合の改善効果は著しかった。
以上のことから、本発明の連続鋳造方法を使用することで、焼き付き、湯面変動、過冷却などの操業トラブルを回避し、鋳片の生産性の向上が図れることを確認できた。
On the other hand, in Examples 1 to 6, the occurrence of supercooling of the slab can be suppressed, no operational troubles due to fluctuations in the heat removal from the mold are observed, and continuous casting can be continued at a casting speed of 0.6 m / min or more. Met.
In addition, although test casting was performed in the range of 1000 to 1500 mm in the width of the slab, continuous casting could be carried out without changing the casting speed. In particular, the improvement effect when casting a slab having a wide width of 1200 to 1500 mm, in which seizure and hot-water surface fluctuation easily occur, was remarkable.
From the above, it has been confirmed that by using the continuous casting method of the present invention, operational troubles such as seizure, molten metal surface fluctuation, and supercooling can be avoided and the productivity of the slab can be improved.
以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の連続鋳造方法を構成する場合も本発明の権利範囲に含まれる。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the continuous casting method of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Claims (1)
前記パウダーを加熱溶融させた後、温度を降下させる過程で結晶が晶出し始める温度である凝固温度を1050℃以上1200℃以下とし、溶融した前記パウダーを急冷固化させると生成するガラスを焼鈍した際に結晶が析出し始める温度である結晶化温度を500℃以上600℃以下とすることを特徴とする連続鋳造方法。 Supplying a molten steel containing Si more than 1.0 mass% in a mold in a continuous casting process for the consumption of powder supplied to 0.2 kg / m 2 or more 0.6 kg / m 2 or less in the template,
After the powder is heated and melted, the solidification temperature, which is the temperature at which crystals begin to crystallize in the process of lowering the temperature, is set to 1050 ° C. or more and 1200 ° C. or less, and when the molten powder is rapidly cooled and solidified, the resulting glass is annealed The continuous casting method is characterized in that the crystallization temperature, which is the temperature at which crystals begin to precipitate, is 500 ° C. or more and 600 ° C. or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009292946A JP5397213B2 (en) | 2009-12-24 | 2009-12-24 | Continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009292946A JP5397213B2 (en) | 2009-12-24 | 2009-12-24 | Continuous casting method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013212897A Division JP5626438B2 (en) | 2013-10-10 | 2013-10-10 | Continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011131241A JP2011131241A (en) | 2011-07-07 |
JP5397213B2 true JP5397213B2 (en) | 2014-01-22 |
Family
ID=44344544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009292946A Active JP5397213B2 (en) | 2009-12-24 | 2009-12-24 | Continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5397213B2 (en) |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2913829B2 (en) * | 1990-11-27 | 1999-06-28 | 日本鋼管株式会社 | Steel continuous casting method |
JPH105956A (en) * | 1996-06-27 | 1998-01-13 | Kawasaki Steel Corp | Continuous casting method of steel |
JP3389864B2 (en) * | 1998-09-30 | 2003-03-24 | 日本鋼管株式会社 | Mold powder for continuous casting |
JP2003275852A (en) * | 2002-03-18 | 2003-09-30 | Jfe Steel Kk | Method and apparatus for continuously casting steel |
JP4407371B2 (en) * | 2004-05-13 | 2010-02-03 | Jfeスチール株式会社 | Steel continuous casting method |
JP2006224171A (en) * | 2005-02-21 | 2006-08-31 | Nippon Steel Corp | Method for continuously casting steel |
JP4525553B2 (en) * | 2005-10-13 | 2010-08-18 | 住友金属工業株式会社 | Mold flux for continuous casting of steel and method for producing slab |
JP4751283B2 (en) * | 2006-02-01 | 2011-08-17 | 新日本製鐵株式会社 | Continuous casting powder and steel continuous casting method |
JP4881203B2 (en) * | 2007-03-27 | 2012-02-22 | 新日本製鐵株式会社 | Powder for continuous casting |
JP4871773B2 (en) * | 2007-03-31 | 2012-02-08 | 日鐵住金建材株式会社 | Flux for continuous casting of Ti-containing stainless steel and continuous casting method using the same |
JP4903622B2 (en) * | 2007-04-16 | 2012-03-28 | 新日本製鐵株式会社 | Mold powder for continuous casting of steel and continuous casting method |
JP4932635B2 (en) * | 2007-08-08 | 2012-05-16 | 新日本製鐵株式会社 | Continuous casting powder and steel continuous casting method |
-
2009
- 2009-12-24 JP JP2009292946A patent/JP5397213B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011131241A (en) | 2011-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI547323B (en) | Continuous casting casting and steel continuous casting method | |
JP2008087046A (en) | Continuous casting method for medium-carbon steel | |
KR102245010B1 (en) | Method for continuous casting of steel | |
JP6213101B2 (en) | Scum weir, thin slab manufacturing method and thin slab manufacturing apparatus | |
JP4924104B2 (en) | Method for producing high Ni content steel slab | |
JP6365604B2 (en) | Steel continuous casting method | |
JP5397213B2 (en) | Continuous casting method | |
JP4749997B2 (en) | Continuous casting method | |
JP5626438B2 (en) | Continuous casting method | |
JP5942712B2 (en) | Scum weir, thin slab manufacturing method, thin slab manufacturing equipment | |
JP5423715B2 (en) | Continuous casting method | |
CN109689247B (en) | Method for continuously casting steel | |
JP2005297001A (en) | Continuous casting method for steel | |
JP4527693B2 (en) | Continuous casting method of high Al steel slab | |
JP2004148376A (en) | Powder for continuously casting steel | |
JP6743850B2 (en) | Continuous casting method for round slabs | |
JP4207562B2 (en) | Continuous casting method and continuous cast slab manufactured by the method | |
JP2004122139A (en) | Method for continuously casting extra-low carbon steel and mold powder for continuous casting | |
JP4992459B2 (en) | Mold flux for continuous casting of steel and continuous casting method using the mold flux | |
JP2024035077A (en) | Continuous casting method for casting mold and steel | |
JP2023115783A (en) | Mold for continuous casting, continuous casting machine, and method of continuous casting | |
KR101921939B1 (en) | Mould Flux | |
JP4462052B2 (en) | Continuous casting mold and steel continuous casting method | |
KR101182052B1 (en) | Controlling method for surface defection of stainless steel and stainless steel manufactured using the same | |
JP6146346B2 (en) | Mold for continuous casting of steel and continuous casting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130702 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130829 |
|
TRDD | Decision of grant or rejection written | ||
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130830 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130924 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131007 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5397213 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |