[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6628121B2 - 偏光子の製造方法および電子線照射装置 - Google Patents

偏光子の製造方法および電子線照射装置 Download PDF

Info

Publication number
JP6628121B2
JP6628121B2 JP2015008906A JP2015008906A JP6628121B2 JP 6628121 B2 JP6628121 B2 JP 6628121B2 JP 2015008906 A JP2015008906 A JP 2015008906A JP 2015008906 A JP2015008906 A JP 2015008906A JP 6628121 B2 JP6628121 B2 JP 6628121B2
Authority
JP
Japan
Prior art keywords
electron beam
unit
linear
aperture
resist layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015008906A
Other languages
English (en)
Other versions
JP2016133667A (ja
Inventor
岡 英 範 吉
岡 英 範 吉
本 哲 矢 松
本 哲 矢 松
田 健 児 舛
田 健 児 舛
佐 智 遊
佐 智 遊
澤 英 則 小
澤 英 則 小
野 丞 益 長
野 丞 益 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2015008906A priority Critical patent/JP6628121B2/ja
Publication of JP2016133667A publication Critical patent/JP2016133667A/ja
Application granted granted Critical
Publication of JP6628121B2 publication Critical patent/JP6628121B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)
  • Polarising Elements (AREA)

Description

本発明は、偏光子、その製造方法および電子線照射装置に関する。
偏光子は、一定方向の偏波面の光だけを選択的に通すように設計された部材である。従来の偏光子としては、樹脂フィルムを延伸させた偏光フィルムがある。
これに対し、金属配線とスペースを交互に並べたワイヤグリッド型偏光子が提案されている。ワイヤグリッド型偏光子では、金属配線に垂直に振動する電気ベクトルを持つような偏光を透過し、金属配線に平行に振動する電気ベクトルを持つ偏光を反射または吸収することにより、直線偏光を得ている。このようなワイヤグリッド型偏光子は、凹凸のあるマスター版を用いてリソグラフィ法、2光束干渉法、インプリント法等の様々な製法で製造されている。ただ配線の微細化が求められている現在では、凹凸のあるマスター版は、電子線描画装置によって製造されている。
この電子線描画装置は、矩形の開口部をもつ第1アパーチャを有しており、電子銃より照射される開口部より広範囲の電子線(電子ビーム)を通すことで矩形のビームを成形する。更に、第1アパーチャの下方に矩形の開口部をもつ第2アパーチャが設けられ、第1アパーチャ及び第2アパーチャを任意に重ねることで、自在にサイズ調整された矩形の電子線を成形している。サイズ調整された電子線は縮小レンズ、偏向レンズ、対物レンズを通過し目的の基板上に設けられたレジストの所定の位置へ所定のビームサイズの描画を行っている。
ワイヤグリッド型偏光子の基板を描画する際には、電子線を偏光子の細線もしくは、スペースのサイズの矩形に成形させる。この後、偏向レンズによって、この矩形を一方向に偏向し、電子線をショット毎に照射して長手のパターンを形成させる。他の方向に関しては、ピッチ分偏向した後、同様に一方向に偏向を行う。この動作を偏向レンズの稼働範囲内で行う。偏向レンズの稼働範囲での描画が終了したら、適時ステージを動かして次の位置で、同様の作業を行い、ワイヤグリッド型偏光子の基板全体に対して、描画を行っている。
上述した電子線描画方法では、1回のショットについて1つの矩形形状しか描画できないため、多段および多列に配置された矩形形状をもつワイヤグリッド型偏光子を製造する場合、長時間を必要とし、効率が悪い。
このような場合、電子線を一括して照射することにより描画することも考えられるが、ショット毎に周期的な位置変動に伴なう欠陥が生じることも考えられる。
特開昭62−260322号公報
本発明はこのような点を考慮してなされたものであり、精度の高い偏光子を短時間で製造することが可能な偏光子、その製造方法および電子線照射装置を提供することを目的とする。
本発明は、透明基板と、透明基板上に互いに平行に設けられた複数の細線とを有する偏光子の製造方法において、前記透明基板と細線用材料層とを有する積層体を準備する工程と、前記積層体上にレジスト層を形成する工程と、前記レジスト層上に電子線を照射して露光し、現像を施して、前記レジスト層にパターンを形成する工程と、前記レジスト層を介して前記積層体をエッチング加工する工程と、を備え、前記電子線を照射する工程は、電子線を矩形状の開口をもつ第1アパーチャを通過させる工程と、前記第1アパーチャを通過した電子線を複数の線状開口を有する第2アパーチャを通過させる工程と、前記第2アパーチャを通過した線状電子線を前記レジスト層に対してショット毎に照射しながら前記レジスト層に照射された複数の線状電子線を含む矩形状の単位領域を形成するとともに、前記線状電子線を偏光させて前記単位領域を多列および多段に形成する工程と、を有することを特徴とする偏光子の製造方法である。
本発明は、前記単位領域は単位領域の一辺に直交する方向に沿って多列に、かつ単位領域の一辺に平行する方向に沿って多段に形成され、各段の隣り合う単位領域間の境界は、隣り合う段との間で互いに相違することを特徴とする偏光子の製造方法である。
本発明は、各段の隣り合う単位領域間の境界は、隣り合う段との間で規則性をもって互いに相違することを特徴とする偏光子の製造方法である。
本発明は、各段の隣り合う単位領域間の境界は、隣り合う段との間で不規則な状態で互いに相違することを特徴とする偏光子の製造方法である。
本発明は、前記第2アパーチャを通過した線状電子線のショット毎の数を変化させ、単位領域を複数のショットの線状電子線により形成したことを特徴とする偏光子の製造方法である。
本発明は、前記単位領域はこの単位領域の一辺に対して傾斜する方向に沿って多列および多段に形成されていることを特徴とする偏光子の製造方法である。
本発明は、前記レジスト層の単位領域に対応して、複数の細線を含む単位細線領域が形成され、細線に平行する方向に互いに隣接する単位細線領域間の細線同士が連続することを特徴とする偏光子の製造方法である。
本発明は、透明基板と、透明基板上に互いに平行に設けられた複数の細線とを有する偏光子を製造する電子線照射装置において、電子線を生成する電子銃と、電子線源からの電子線を通過させる矩形状の開口をもつ第1アパーチャと、前記第1アパーチャを通過した電子線を通過させる複数の線状開口を有する第2アパーチャと、前記第2アパーチャを通過した線状電子線を前記レジスト層に対してショット毎に照射しながら前記レジスト層に照射された複数の線状電子線を含む単位領域を形成するとともに、前記線状電子線を偏光させて前記単位領域を多列および多段に形成する偏向手段と、を備えたことを特徴とする偏光子の製造装置である。
本発明は、透明基板と、透明基板上に互いに平行に設けられた複数の細線とを備えた偏光子において、前記細線は複数の線状開口を有するアパーチャを通過した線状電子線を透明基板上の細線用材料層に設けられたレジスト層に対してショット毎に照射しながら複数の電子線を含む単位領域を形成することにより得られ、単位領域に対応する単位細線領域内の細線の間隙は、隣り合う単位細線領域間の境界の幅と異なることを特徴とする偏光子である。
以上のように本発明によれば、偏光子を精度良くかつ短時間で製造することができる。
図1は本発明の第1の実施の形態による偏光子の製造方法に用いられる電子線照射方法の概略を示す図。 図2はレジスト層に形成される電子線の単位領域を示す図。 図3は偏光子の製造方法に用いられる電子線照射装置を示す図。 図4(a)は偏光子の一例を示す平面図であり、図4(b)は図4(a)のA−A線断面図。 図5(a)(b)(c)(d)は偏光子の製造方法を示す図。 図6(e)(f)(g)(h)は偏光子の製造方法を示す図。 図7は本発明の第2の実施の形態における電子線の単位領域を示す図。 図8は本発明の第3の実施の形態における電子線の単位領域を示す図。 図9は本発明の第4の実施の形態における電子線の単位領域を示す図。 図10は本発明の第5の実施の形態における電子線の単位領域を示す図。
<第1の実施の形態>
以下、本発明の第1の実施の形態に係る偏光子、その製造方法、およびその製造装置について説明する。
<偏光子>
まず、本発明に係る偏光子について説明する。
本発明に係る偏光子は、透過性を有する透明基板の上に、複数本の細線が並列に配置された偏光子であって、前記細線が配置された偏光領域の外側に、前記紫外光を遮光する遮光膜が形成されている。
図4は、本発明に係る偏光子の一例を示す図であり、図4(a)はその概略平面図、図4(b)は図4(a)のA−A線断面図である。
図4(a)(b)に示すように、偏光子10は、透明基板1と、透明基板1上に互いに平行に設けられた複数本の細線2とを有している。複数の細線2は偏光領域3を構成し、この偏光領域3の外周には、遮光膜4が形成されている。
このような構成を有するため、偏光子10においては、遮光膜4が形成されている領域を挟持することができる。
すなわち、偏光子10においては、細線2が形成されている領域(偏光領域3)を挟持することなく、偏光子10を光配向装置に固定することができ、それゆえ、挟持した部分から細線2の破損を連鎖的に引き起こしてしまうという不具合や、破損した細線部分から異物が発生してしまうという不具合を解消することができる。
また、上記のように、細線2が配置された偏光領域3の外周には、遮光膜4が形成されているため、偏光子10においては、偏光領域3の外側の領域から、入射光、特に入射光のS波成分が透過してしまうことを抑制でき、消光比が大きく低下してしまうという不具合を抑制することができる。
以下、本発明に係る偏光子の各構成について詳細に説明する。
(透明基板)
透明基板1としては、細線2を安定的に支持することができ、紫外光透過性に優れたものであり、露光光による劣化の少ないものとすることができるものであれば、特に限定されるものではない。例えば、光学研磨された合成石英ガラス、蛍石、フッ化カルシウムなどを用いることができるが、中でも合成石英ガラスを好ましく用いることができる。品質が安定しており、また、短波長の光、すなわち、高エネルギーの露光光を用いた場合であっても劣化が少ないからである。
透明基板1の厚みとしては、偏光子10の用途やサイズ等に応じて適宜選択することができる。
(細線)
細線2は、偏光子10において、入射光のP波成分を効率良く透過し、入射光のS波成分の透過率を低く抑える作用を奏するものであり、透明基板1の上に直線状に複数形成され、かつ、平行に配置されるものである。
細線2を構成する材料は、所望の消光比およびP波透過率を得ることができるものであれば特に限定されるものではないが、例えば、アルミニウム、チタン、モリブデン、シリコン、クロム、タンタル、ルテニウム、ニオブ、ハフニウム、ニッケル、金、銀、白金、パラジウム、ロジウム、コバルト、マンガン、鉄、インジウム等の金属や合金、および、これらの酸化物、窒化物、または酸窒化物のいずれかを含有する材料を挙げることができる。中でも、モリブデンシリサイドを含有する材料から構成されていることが好ましい。
紫外線領域の短波長においても、消光比およびP波透過率を優れたものとすることができ、耐熱性、耐光性にも優れるからである。
モリブデンシリサイドを含有する材料としては、例えば、モリブデンシリサイド(MoSi)、モリブデンシリサイド酸化物(MoSiO)、モリブデンシリサイド窒化物(MoSiN)、モリブデンシリサイド酸化窒化物(MoSiON)等を挙げることができる。
なお、細線2は、複数種の材料から構成されていてもよく、また、材料が異なる複数層から構成されていても良い。
細線2の厚みとしては、所望の消光比およびP波透過率を得ることができるものであれば特に限定されるものではないが、例えば、60nm以上であることが好ましく、なかでも60nm〜160nmの範囲内であることが好ましく、特に80nm〜140nmの範囲内であることが好ましい。上記範囲であることにより、消光比およびP波透過率を優れたものとすることができるからである。
なお、上記細線の厚みは、断面視において、細線の長手方向および幅方向に垂直な方向の厚みのうち最大の厚みをいうものであり、細線が複数層から構成される場合には、全ての層を含む厚みをいうものである。
また、上記細線の厚みは一の偏光子内に異なる厚みのものを含むものであっても良いが、通常、同一の厚みで形成される。
細線2の本数および長さとしては、所望の消光比およびP波透過率を得ることができるものであれば特に限定されるものではなく、偏光子10の用途等に応じて適宜設定されるものである。
細線2のピッチ(図4(a)に示すP1)としては、所望の消光比およびP波透過率を得ることができるものであれば特に限定されるものではなく、直線偏光の生成に用いる光の波長等に応じて異なるものであるが、例えば、60nm以上140nm以下の範囲内とすることができ、なかでも80nm以上120nm以下の範囲内であることが好ましく、特に90nm以上110nm以下の範囲内であることが好ましい。上記ピッチであることにより、消光比およびP波透過率に優れたものとすることができるからである。
なお、上記細線のピッチは、幅方向に隣接する細線問のピッチの最大ピッチをいうものであり、細線が複数層から構成される場合には、全ての層を含むピッチをいうものである。
また、上記細線のピッチは一の偏光子内に異なるピッチのものを含むものであっても良いが、通常、同一ピッチで形成される。
上記細線のデューティー比、すなわち、細線のピッチに対する幅の比(幅/ピッチ)としては、所望の消光比およびP波透過率を得ることができるものであれば特に限定されるものではないが、例えば、0.3以上0.6以下の範囲内とすることができ、なかでも0.35以上0.45以下の範囲内であることが好ましい。上記デューティー比であることにより、高いP波透過率を有したまま消光比に優れた偏光子とすることができ、さらに細線加工を容易にすることができるからである。
なお、上記細線の幅は、平面視において、細線の長手方向に垂直方向の長さをいうものであり、細線が複数層から構成される場合には、全ての層を含む幅をいうものである。
また、上記細線の幅は一の偏光子内に異なる幅のものを含むものであっても良いが、通常、同一幅で形成される。
(偏光領域)
偏光領域3は、多数の細線が配置された領域であり、図4(a)(b)に示す偏光子10においては、遮光膜4によって周りを囲まれている。また、遮光膜4によって規定された領域が入射光が透過する領域であり、図4(a)(b)に示す偏光子10においては、入射光が透過する領域と偏光領域3が平面視で一致している。
本発明において、入射光が透過する領域を、偏光領域3よりも大きな領域とすることも可能である。より具体的には、細線2が、その長手方向(図4(a)に示すY方向)において遮光膜4に接続していない形態であっても良い。
また、細線2の配列方向(平面視において、細線2の長手方向に垂直な方向、すなわち、図4(a)に示すX方向)において、末端の細線2と遮光膜4との問隔は、細線2同士の問隔よりも大きなサイズであってもよい。より具体的には、図4(a)(b)において、図中右側末端の細線2の左側のエッジと遮光膜4の内縁側のエッジとの距離P2は、
細線2同士のピッチP1よりも大きなサイズであってもよい。
しかしながら、高い消光比を得るためには、図4(a)(b)に示す偏光子10のように、細線2は、その長手方向において遮光膜4に接続している形態であることが好ましい。偏光領域3の外側の細線2が存在しない領域、すなわち、入射光が透過するが偏光されない領域を、より小さくすることができ、入射光のS波成分が透過してしまうことを、より抑制できるからである。
また、細線2の配列方向における末端の細線2と遮光膜4との問隔は、細線2同士の問隔と同じ大きさであることが好ましい。
より具体的には、図4(a)(b)において、図中右側末端の細線2の左側のエッジと遮光膜4の内縁側のエッジとの距離P2は、細線2同士のピッチP1と同じ大きさであることが好ましい。同様に、図4(a)(b)において、図中左側末端の細線2の右側のエッジと遮光膜4の内縁側のエッジとの問隔は、細線2同士の問隔P1と同じ大きさであることが好ましい。より高い消光比を得ることができるからである。
本発明においては、例えば、細線2を形成する工程と遮光膜4を形成する工程を同一工程にすることで、遮光膜4と細線2の位置関係を精度良く作製でき、遮光膜4のエッジの方向と細線2の方向を高精度に平行、または垂直に作製することができる。
なお、上記のように、遮光膜4に細線2が接続している形態であれば、偏光子に照射される光により細線2に蓄積する熱を遮光膜4に分散させることや、帯電防止の効果を奏することもできる。
また、遮光膜4に細線2が接続している形態であれば、偏光子10の製造工程において、細線2を形成するための細いレジストパターン(細線パターン)を、遮光膜4を形成するための大面積のレジストパターン(遮光膜パターン)に接続させることができ、細線2を形成するための細いレジストパターン(細線パターン)が製造工程中で倒壊したり、剥離したりする不具合を、抑制することもできる。
(遮光膜)
遮光膜4は、偏光領域3の外側に形成され、入射光、特に入射光のS波成分が透過してしまうことを抑制するものである。
本発明において、遮光膜4は、240nm以上380nm以下の波長の紫外光に対し、光学濃度が2.8以上の遮光性を有することが好ましい。
光配向膜に配向規制力を付与するために照射される紫外光の波長範囲で、遮光膜4が高い遮光性を有することにより、消光比に優れた偏光子を提供することができるからである。
遮光膜4を構成する材料は、所望の光学濃度を得ることができるものであれば特に限定されるものではなく、例えば、アルミニウム、チタン、モリブデン、シリコン、クロム、タンタル、ルテニウム、ニオブ、ハフニウム、ニッケル、金、銀、白金、パラジウム、ロジウム、コバルト、マンガン、鉄、インジウム等の金属や合金、および、これらの酸化物、窒化物、または酸窒化物のいずれかを含有する材料を挙げることができる。中でも、モリブデンシリサイドを含有する材料を好適に挙げることができる。
遮光膜4を構成する材料が、モリブデンシリサイドを含有する材料から構成されている場合、遮光膜4の厚みが60nm以上であれば、240nm以上380nm以下の波長の紫外光に対し、光学濃度が2.8以上の遮光性を有することができるからである。
なお、遮光膜4は、複数種の材料から構成されていてもよく、また、材料が異なる複数層から構成されていても良い。
また、遮光膜4を構成する材料は、細線2を構成する材料を含有することが好ましい。
遮光膜4を構成する材料が細線2を構成する材料を含有する場合、細線2を形成する工程で使用する装置や材料を、遮光膜4を形成する工程にも使用することができ、製造コストの削減になるからである。さらに、細線2を形成する工程と遮光膜4を形成する工程を同一工程にすることで、細線2と遮光膜4の相対位置精度を向上させることもできる。
さらに、遮光膜4を構成する材料と細線2を構成する材料が、いずれもモリブデンシリサイドを含有する材料から構成されている場合は、遮光膜4において高い遮光性を有し、かつ、消光比およびP波透過率に優れた偏光子とすることができる。
<偏光子の製造方法>
次に、本発明に係る偏光子の製造方法について説明する。
本発明に係る偏光子の製造方法は、透過性を有する透明基板の上に、複数本の細線、および、紫外光を遮光する遮光膜を有する偏光子の製造方法であって、前記透明基板の上に細線用材料層を形成した積層体を準備する工程と、前記細線用材料層の上にレジスト層を形成する工程と、細線パターンと遮光膜パターンを有するレジストパターンを形成する工程と、前記レジストパターンをエッチングマスクとして用いて前記積層体をエッチング加工する工程と、を備えるものである。
本発明においては、細線パターンと遮光膜パターンを有するレジストパターンを形成し、エッチングする、細線2を形成する工程と遮光膜4を形成する工程を同一工程にすることで、製造工程を短縮することができ、かつ、細線2と遮光膜4の相対位置精度を向上させることができる。
また、細線2と遮光膜4を、同じ材料から構成することで、製造コストを低く抑えることもできる。
図5および図6は、本発明に係る偏光子の製造方法の一例を示す概略工程図である。
例えば、本発明に係る偏光子の製造方法を用いて偏光子10を製造するには、図5(a)に示すように、まず、透明基板1の上に、細線2および遮光膜4を構成する材料からなる偏光材料層(細線用材料層)31、および、偏光材料層31をエッチング加工する際のハードマスクとして作用するハードマスク材料層32を、順次形成した積層体1Aを準備する。
次に、積層体1A上に、レジスト成膜装置においてレジスト層33を形成し(図5(b))、電子線照射装置において電子線40を照射し(図5(c))、現像装置にて現像を施して、細線パターン34aと遮光膜パターン34bを有するレジストパターン34を形成する(図5(d))。
本発明においては、後述のように例えば、半導体リソグラフィ用フォトマスクの製造に用いられる電子線描画装置を用いて、細線パターン34aと遮光膜パターン34b、さらに上記のアライメントマーク等を同一工程で作製することで、電子線描画装置の高精度な位置精度管理下でそれらの相対位置を制御できる。
次に、エッチング装置において、レジストパターン34をエッチングマスクに用いてハードマスク材料層32をエッチング加工して、ハードマスクパターン32Pを形成する(図6(e))。例えば、ハードマスク材料層32の材料にクロムを用いた場合には、塩素と酸素の混合ガスを用いたドライエッチングにより、ハードマスクパターン32Pを形成することができる。
次に、エッチング装置において、レジストパターン34およびハードマスクパターン32Pをエッチングマスクに用いて、偏光材料層31をエッチング加工して、細線2と遮光膜4を有する偏光材料パターン31Pを形成する(図6(f))。例えば、偏光材料層31の材料にモリブデンシリサイドを用いた場合には、SF6ガスを用いたドライエッチングにより、偏光材料パターン31Pを形成することができる。
次に、剥離装置において、レジストパターン34を除去し(図6(g))、次いで、ハードマスクパターン32Pを除去して、透明基板1の上に、複数本の細線2と遮光膜4を有する偏光子10を得る(図6(h))。
なお、図5および図6に示す例においては省略しているが、本発明においては、大面積の透明基板1上に複数本の細線2と遮光膜4を形成し、その後、細線2が配置された偏光領域3の外側を切断して、所望のサイズおよび形態に切り出した偏光子10を得ても良い。
また、上記においては、レジストパターン34を残した状態で偏光材料層31をエッチング加工しているが、本発明においては、図6(e)に示すハードマスクパターン32Pを形成する工程の後、レジストパターン34を除去し、ハードマスクパターン32Pのみをエッチングマスクに用いて偏光材料層31をエッチング加工して偏光材料パターン31Pを形成してもよい。
また、上記においては、得られる偏光子10として、ハードマスクパターン32Pを除去した形態について説明したが、本発明においては、必要に応じてハードマスクパターン32Pを全面又は部分的に残しておいても良い。
例えば、図6(g)に示す形態のように、ハードマスクパターン32Pを全面に残した形態を、最終的に得られる偏光子の形態としてもよい。この場合、ハードマスクパターン32Pを除去する工程を省くことができ、工程短縮の効果を奏することができる。
また、上記においては、偏光材料層31の上にハードマスク材料層32を設ける形態について説明したが、本発明においては、ハードマスク材料層32を設けずに、偏光材料層31の上にレジスト層33を形成し、レジストパターン34をエッチングマスクに用いて偏光材料層31をエッチング加工して、細線2と遮光膜4を有する偏光材料パターン31Pを形成してもよい。
<電子線照射方法>
ここで、上記の図5(c)で示したレジストパターン34の形成に用いる方法は、所望の細線パターン34aと遮光膜パターン34bを有するレジストパターン34を形成することができる方法であれば用いることができるが、中でも、電子線を照射する方法が好ましい。
電子線を照射する方法によるレジストパターン形成は、半導体用のフォトマスク製造等で実績があり、例えば、ピッチが60nm以上140nm以下の範囲の細線パターンを、所望の領域に精度良く形成することができるからである。また、細線パターン34aと遮光膜パターン34bの相対位置精度も、半導体用のフォトマスク製造に求められる、ナノメートルレベルの精度とすることができるからである。
また、本発明においては、レジスト層33が、ポジ型の電子線レジストから構成されており、細線パターン34aと遮光膜パターン34bを有するレジストパターン34を形成する工程が、所望の細線と所望の遮光膜が形成される位置以外のレジスト層33に電子線を照射する工程であることが好ましい。
より具体的には、細線パターン34aがラインアンドスペースパターンを構成しており、上記のラインアンドスペースパターンのスペースパターン部となる位置のレジスト層33に電子線を照射する工程であることが好ましい。
上記の位置に電子線を照射する方法であれば、電子線を照射する面積を小さくすることができ、電子線照射工程の時問を短くすることができるからである。
上記について、より詳しく説明する。
例えば、図4(a)(b)に示す偏光子10の細線2の幅が、細線2のピッチの半分の大きさである場合、ネガ型の電子線レジストを用いて、偏光子10の細線パターンと遮光膜パターンを得ようとする場合、電子線照射する面積は、細線2全てを合わせた面積に遮光膜4の面積を加えた面積となる。
一方、ポジ型の電子線レジストを用いた場合、電子線照射する面積は、細線2のスペース部分の全てを合わせた面積、すなわち、概ね、細線2全てを合わせた面積で済み、遮光膜4の面積を照射する時問を削減できる。
次に図1乃至図3により電子線照射方法について更に説明する。図1乃至図3に示すように、レジスト層33に細線パターン34aと遮光膜パターン34bとを有するレジストパターン34を形成するため、電子線照射装置を用いた電子線照射方法が使用される。
このような電子線照射装置11は、図1乃至図3に示すように、電子線40を生成する電子銃12と、電子銃12から生成された電子線40を通過させる矩形状開口13aをもつ第1アパーチャ13と、第1アパーチャ13を通過した電子線40を偏向させる第1偏向器14と、第1偏向器14により偏向された電子線40を通過させる複数の線状開口15aをもつ第2アパーチャ15と、第2アパーチャ15を通過した電子線40を偏向させ、偏向した電子線40を、上述した積層体1Aの偏光材料層31上に設けられたレジスト層33に照射する第2偏向器16とを備えている。
このうち第1アパーチャ13は、単一の矩形状の開口13aをもち、第2アパーチャ15は、複数の線状開口15aと、線状開口15a間の線状マスク15bとを有する。
一般に電子銃12から生成された電子線40は、その中心付近のエネルギが大きく、周縁付近のエネルギは小さくなっている。
このため電子銃12から生成された電子線40が矩形状の開口13aをもつ第1アパーチャ13を通過することにより、電子線40のうち、エネルギが大きい中心付近の電子線40のみを使用することができる。
次に第1アパーチャ13を通過した電子線40が複数の線状開口15aを有する第2アパーチャ15を通過することにより、第2アパーチャ15により複数の線状電子線40aを得ることができ、このようにして得られた線状電子線40aを積層体1A上に設けられたレジスト層33に照射することができる。
次にこのような構成からなる電子線照射装置11を用いた電子線照射方法について説明する。
図1乃至図3に示すように、電子銃12から生成された電子線40は第1アパーチャ13の矩形状の開口13aを通過し、電子線40のうちエネルギの大きな中心付近の電子線40のみが選択される。
次に第1アパーチャ13を通過した電子線40は第1偏向器14によって偏向されて第2アパーチャ15に入る。次に電子線40は第2アパーチャ15の線状開口15aを通過し、複数の線状電子線40aを形成する。次に線状電子線40aは第2偏向器16を経て偏向され、積層体1A上に設けられたレジスト層33に対して照射される。
この際、線状電子線40aは、レジスト層33にショット毎に照射され、ショット毎に照射された線状電子線40aは、レジスト層33上において、所定の数の線状電子線40aを含む矩形状の電子線の単位領域40Aを形成する(図2参照)。
この場合、電子線の単位領域40Aに含まれる線状電子線40aは、レジスト層33の電子レジストの型によって、細線2または細線2間のスペースに対応する。
図2において、レジスト層33に形成された電子線の単位領域40に含まれる線状電子線40aは、偏光子10の細線2に対応して示されている。
また電子線の単位領域40Aは、偏光子10の複数の細線2を含む単位細線領域2Aに対応している。
ところで第2アパーチャ15の線状開口15aにより形成された線状電子線40aは、レジスト層33上にショット毎に照射されて、電子線の単位領域40Aを形成する。この場合、線状電子線40aを照射する毎に第2偏向器16により線状電子線40aを偏向させることにより、単位領域40Aをレジスト層33上に図2の横方向に沿って(線状電子線40aに直交する方向に)多列に設けることができ、かつ図2の上下方向に沿って(線状電子線40aに平行に)多段に設けることができる。この場合、単位領域40Aは単位領域40Aの一辺40b、例えば左辺または右辺に直交する方向に多列に、かつ左辺または右辺に平行する方向に多段に配置されるということもできる。
図2に示すように、電子線の単位領域40Aは、ショット毎に矩形状に形成され、各々の単位領域40Aは仮想上の垂直方向線40Vおよび水平方向線40Hにより区画され、各単位領域40Aが多段および多列に格子状に配置されている。
また偏光子10の各細線2は、上述のように線状電子線40Aにより形成され、また単位領域40Aに対応して、複数の細線2を含む単位細線領域2Aが形成される。この場合、細線2に平行する方向(図2の上下方向)に隣り合う単位細線領域2A間の細線2は互いに連続して、上下方向に延びる一本の細線2を構成している。
以上のように本実施の形態によれば、第1アパーチャ13を通った電子線40が複数の線状開口15aを有する第2アパーチャ15を通ることにより線状電子線40aが生成され、この線状電子線40aを積層体1A上のレジスト層33にショット毎に照射して複数の線状電子線40aを含む電子線の単位領域40Aを形成するとともに、第2偏向器16によって線状電子線40aを偏向させることにより単位領域40Aを多列および多段に形成した。このことにより、レジスト層上に矩形状の単一の線状電子線を照射し、この単一の線状電子線を偏向させる場合に比べて偏光子10の製造時間を大幅に削減することができる。
<第2の実施の形態>
次に本発明の第2の実施の形態について図7により説明する。
図1乃至図6に示す第1の実施の形態において、積層体1A上に設けられたレジスト層33に、垂直方向線40Vと水平方向線40Hにより区画され、複数の線状電子線40aを含む矩形状の電子線の単位領域40Aを形成するとともに、この単位領域40Aを多列および多段に配置される例を示したが、これに限らず各段の隣り合う単位領域40A間の境界40Bを隣り合う段との間で互いに変えてもよい。
図1乃至図6に示す第1の実施の形態において、矩形状の電子線の単位領域40Aは垂直方向線40Vと水平方向線40Hにより区画されているため、各段の隣り合う単位領域40A間の境界は垂直方向線40Vに一致する。
これに対して図7に示すように、各段の隣り合う単位領域40Aの境界40Bの位置を1段目、2段目、3段目、・・・に応じて徐々に右側へずらしてもよい。
図7において、各段の隣り合う単位領域40Aの境界40Bの位置は隣り合う段、すなわち上下方向に隣接する段との間で徐々にずらされている。
上述のように単位領域40Aは、レジスト層33にショット毎に照射された複数の線状電子線40aからなるため、単位領域40A内において線状電子線40a間の間隔は基本的に一定となる。
これに対して単位領域40Aの境界40Bにおける線状電子線40a間の間隔は、線状電子線40aのショット間で異なることがあり、単位領域40A間の境界40Bの幅は単位領域40A内の線状電子線40a間の間隔に対して多少変化する、例えば大きくなることがある。
このような場合、単位領域40A間の境界40Bは、細線2間のスペース2Bに対応しており、この境界40Bが図7の上下方向に直線状に並ぶと、得られた偏光子10の細線2間に単位領域40Aの境界40Bに起因して上下方向に延びる直線状の幅広スペース2Bが形成され、この細線2間の幅広スペース2Bにより偏光子10の偏光機能に支障が生じてしまう。
本実施の形態によれば、各段の隣り合う列間の単位領域40Aの境界40Bの位置を隣り合う段との間で徐々に変化させることができ、このことにより、偏光子10の細線2間に上下方向に延びる直線状の幅広スペース2Bが形成されることを未然に防ぐことができる。また、単位領域40A同士が同一の線状電子線40aのパターンを有するため、ショット毎に照射する線状電子線40aの本数を異ならせる必要がなく、露光データの作成が容易である。
なお、ここでは、隣り合う単位領域40A間の境界40Bにおける線状電子線40a間の間隔が、単位領域40A内の線状電子線40a間の間隔に対して大きくなる例について、説明したが、これに限られず、境界40Bにおける線状電子線40a間の間隔が、単位領域40A内の線状電子線40a間の間隔よりも小さくなる場合、また、変わらない場合もある。このような単位領域40A内と単位領域40A間の境界40Bとにおける線状電子線40a間の間隔の違いは、作製された偏光子10においては、外観検査した際に細線2間の間隔の違い(単位領域40同士のつなぎ部)として検出される。したがって、隣り合う単位領域40A間の境界40Bの位置は、外観検査により認識し得る。第2の実施の形態においては、各段の隣り合う単位領域40A間の境界40Bの位置を1段目、2段目、3段目、・・・毎に規則的にずらしているため、外観検査をすると、上下方向に隣接する段との間で規則的なつなぎ部が検出され得る。
<第3の実施の形態>
次に本発明の第3の実施の形態について図8により説明する。
図1乃至図6に示す第1の実施の形態において、積層体1A上に設けられたレジスト層33に、垂直方向線40Vと水平方向線40Hにより区画され、複数の線状電子線40aを含む矩形状の電子線の単位領域40Aを形成するとともに、この単位領域40Aを多列および多段に配置される例を示したが、これに限らず各段の隣り合う単位領域40A間の境界40Bを隣り合う段との間で互いに変えてもよい。
図1乃至図6に示す第1の実施の形態において、矩形状の電子線の単位領域40Aは垂直方向線40Vと水平方向線40Hにより区画されているため、各段の隣り合う単位領域40A間の境界は垂直方向線40Vに一致する。
これに対して図8に示すように、各段の隣り合う単位領域40A間の境界40Bの位置を1段目、2段目、3段目、・・・毎に不規則な状態でずらしてもよい。
図8において、各段の隣り合う単位領域40Aの境界40Bの位置は隣り合う段、すなわち上下方向に隣接する段との間で不規則な状態でずらされている。
上述のように単位領域40Aは、レジスト層33にショット毎に照射された複数の線状電子線40aからなるため、単位領域40A内において線状電子線40a間の間隔は基本的に一定となる。
これに対して単位領域40Aの境界40Bの幅は、線状電子線40aのショット間で異なることがあり、単位領域40A間の境界40Bの幅は単位領域40A内の線状電子線40a間の間隔に対して多少変化する、例えば大きくなることがある。
このような場合、単位領域40A間の境界40Bは細線2間のスペース2Bに対応しており、この境界40Bが図8の上下方向に直線状に並ぶと、得られた偏光子10の細線2間に単位領域40Aの境界40Bに起因して上下方向に延びる直線状の幅広スペース2Bが形成され、この細線2間の幅広スペース2Bにより偏光子10の偏光機能に支障が生じてしまう。
本実施の形態によれば、各段の隣り合う単位領域40Aの境界40Bの位置を隣り合う段との間で不規則な状態に変化させることができ、このことにより、偏光子10の細線2間に上下方向に延びる直線状の幅広スペースが形成されていることをより確実に防ぐことができる。なお、ここでは、隣り合う単位領域40A間の境界40Bにおける線状電子線40a間の間隔が、単位領域40A内の線状電子線40a間の間隔に対して大きくなる例について、説明したが、第2の実施の形態と同様に、境界40Bにおける線状電子線40a間の間隔が、単位領域40A内の線状電子線40a間の間隔よりも小さくなる、あるいは変わらなくてもよい。また、第3の実施形態により形成した偏光子10においては、各段の隣り合う単位領域40Aの境界40Bの位置は隣り合う段、すなわち上下方向に隣接する段との間で不規則な状態でずらされているから、外観検査をすると、上下方向に隣接する段との間で単位領域40同士のつなぎ部が検出され得る。
<第4の実施の形態>
次に本発明の第4の実施の形態について図9により説明する。
図1乃至図6に示す第1の実施の形態において、積層体1A上に設けられたレジスト層33に、垂直方向線40Vと水平方向線40Hにより区画され、複数の線状電子線40aを含む矩形状の電子線の単位領域40Aを形成するとともに、この単位領域40Aを単位領域の左辺または右辺に直交する方向に多列に、かつ単位領域40Aの左辺または右辺に平行する方向に多段に配置される例を示したが、これに限らず単位領域40Aの一辺の45°の傾斜をもった方向に多列に、単位領域40Aの一辺に対して45°の傾斜をもった方向に多段に配置してもよい。
図9において、レジスト層33に複数の線状電子線40aをショット毎に照射することにより、矩形状の電子線の単位領域40Aが形成される。単位領域40Aは4辺により区画されており、この場合、単位領域40の4辺はショット毎の切れ目40Sに対応している。
図2に示す実施の形態において、単位領域40Aは、単位領域40Aの一辺40b、例えば左辺または右辺に直交する方向に多列に、左辺または右辺に平行する方向に多段に配置されているが、図9に示す実施の形態において、単位領域40Aは単位領域の一辺、例えば一本の切れ目40Sに対して45°だけ傾斜した方向に多列に、かつ切れ目40Sに対して45°だけ傾斜した方向に多段に配置されている。
このように単位領域40Aの一辺、例えば一本の切れ目40Sに対して45°だけ傾斜する方向に単位領域40Aを多列かつ多段に配置することにより、単位領域40Aを区画する切れ目40Sが図9において線状電子線40aに平行する上下方向に連続して延びることはない。このため偏光子10の細線2間に、単位領域40Aの切れ目40Sに起因して上下方向に延びる直線状の幅広スペースが形成されることを確実に防止することができる。
<第5の実施の形態>
次に本発明の第5の実施の形態について図10により説明する。
図1乃至図6に示す第1の実施の形態において、積層体1A上に設けられたレジスト層33に、複数の線状電子線40aをショット毎に照射することにより、複数の線状電子線40aを含む矩形状の電子線の単位領域40Aを形成するとともに、この単位領域40Aを多列および多段に配置される例を示したが、これに限らず線状電子線40aの各ショットと、単位領域40Aは必ずしも対応する必要はない。
図10に示すように、電子線の単位領域40Aが横方向に多列に配置されている。また図示していないが、単位領域40Aは上下方向に多段に配置されている。
図10において、複数の線状電子線40aをレジスト層33上に照射することにより電子線の単位領域40Aが形成されるが、本実施例においては線状電子線40aの一回のショットは単位領域40に必ずしも対応していない。
例えば線状電子線40aの1回目のショットにより線状電子線40aの第1のグループ41が形成され、この第1のグループ41の線状電子線40aにより、図10の左端から1つ目の単位領域40A全体が得られる。
次に線状電子線40aの2回目のショットにより、線状電子線40aの第2グループ42が得られる。この第2グループ42は少ない本数の線状電子線40aを含むため、図10の左端から2つ目の単位領域40Aの一部のみを構成する。
次に線状電子線40aの第3回目のショットにより、線状電子線40aの第3グループ43が得られる。この第3グループ42も少ない本数の線状電子線40aを含むため、左端から2つ目の単位領域40Aの一部を構成する。
次に線状電子線40aの第4回目のショットにより、線状電子線40aの第4グループ44が得られる。この第4グループ44は多数本の線状電子線40aを含んでおり、左端から2つ目の単為領域40Aから3つ目の単位領域40Aまでまたいで延びている。
次に線状電子線40aの第4回目のショットにより、線状電子線40aの第5グループ45が得られる。この第5グループの線状電子線40aは中程度の本数の線状電子線40aを含み、左端から3つ目の単位領域40Aの残部を埋める。
なお、線状電子線40aをショット毎に照射する際、第1アパーチャ13を通過する電子線40を第1偏向器14を用いて偏向させ偏向した電子線40を第2アパーチャ15に向けることによってショット毎の線状電子線40aの本数を調整することができる。この場合、各ショット毎に形成される線状電子線40aの形状および間隔は互いに等しくなっている。
以上のように本実施の形態によれば、ショット毎の線状電子線40aの数を変化させ、単位領域40Aを複数のショットの線状電子線40aにより形成したので、ショット毎の線状電子線40aの間隙をより目立たなくすることができる。また線状電子線40の第4グループ44は隣り合う2つの単位領域40Aをまたいで形成されるため、隣り合う2つの単位領域40Aの境界40Bの幅が広がったり、これに伴って細線2間のスペース2Bが過度に拡がることはない。
なお、第4、第5の実施の形態においても、隣り合う単位領域40A間の境界40Bにおける線状電子線40a間の間隔は、単位領域40A内の線状電子線40a間の間隔に対して幅広に限られず、幅が狭い、または同じ場合もある。また、各段の隣り合う単位領域40Aの境界40Bの位置は、作製された偏光子10の外観検査において、細線2間の間隔の変化(単位領域40同士のつなぎ部)として検出され得る。
1 透明基板
1A 積層体
2 細線
2A 単位細線領域
3 偏光領域
4 遮光膜
10 偏光子
11 電子線照射装置
12 電子銃
13 第1アパーチャ
13a 矩形状の開口
14 第1偏向器
15 第2アパーチャ
15a 線状開口
16 第2偏向器
40 電子線
40a 線状電子線
40b 一辺
40A 電子線の単位領域
40B 境界
40H 水平方向線
40S ショットの切れ目
40V 垂直方向線

Claims (6)

  1. 透明基板と、透明基板上に互いに平行に設けられた複数の細線とを有する偏光子の製造方法において、
    前記透明基板と細線用材料層とを有する積層体を準備する工程と、
    前記積層体上にレジスト層を形成する工程と、
    前記レジスト層上に電子線を照射して露光し、現像を施して、前記レジスト層にパターンを形成する工程と、
    前記レジスト層を介して前記積層体をエッチング加工する工程と、を備え、
    前記電子線を照射する工程は、
    電子線を矩形状の開口をもつ第1アパーチャを通過させる工程と、
    前記第1アパーチャを通過した電子線を複数の線状開口を有する第2アパーチャを通過させる工程と、
    前記第2アパーチャを通過した線状電子線を前記レジスト層に対してショット毎に照射しながら前記レジスト層に照射された複数の線状電子線で形成された露光パターンを含む矩形状の単位領域を形成するとともに、前記線状電子線を偏向させて前記単位領域を多列および多段に形成する工程と、
    を有し、
    前記単位領域は単位領域の一辺に直交する方向に沿って多列に、かつ単位領域の一辺に平行する方向に沿って多段に形成され、
    各段の隣り合う単位領域間の境界は、隣り合う段との間で互いに相違し、
    前記第2アパーチャを通過した線状電子線のショット毎の数を変化させ、単位領域を複数のショットの線状電子線により形成したことを特徴とする偏光子の製造方法。
  2. 各段の隣り合う単位領域間の境界は、隣り合う段との間で規則性をもって互いに相違することを特徴とする請求項1記載の偏光子の製造方法。
  3. 各段の隣り合う単位領域間の境界は、隣り合う段との間で不規則な状態で互いに相違することを特徴とする請求項1記載の偏光子の製造方法。
  4. 透明基板と、透明基板上に互いに平行に設けられた複数の細線とを有する偏光子の製造方法において、
    前記透明基板と細線用材料層とを有する積層体を準備する工程と、
    前記積層体上にレジスト層を形成する工程と、
    前記レジスト層上に電子線を照射して露光し、現像を施して、前記レジスト層にパターンを形成する工程と、
    前記レジスト層を介して前記積層体をエッチング加工する工程と、を備え、
    前記電子線を照射する工程は、
    電子線を矩形状の開口をもつ第1アパーチャを通過させる工程と、
    前記第1アパーチャを通過した電子線を複数の線状開口を有する第2アパーチャを通過させる工程と、
    前記第2アパーチャを通過した線状電子線を前記レジスト層に対してショット毎に照射しながら前記レジスト層に照射された複数の線状電子線で形成された露光パターンを含む矩形状の単位領域を形成するとともに、前記線状電子線を偏向させて前記単位領域を多列および多段に形成する工程と、
    を有し、前記単位領域はこの単位領域の一辺に対して傾斜する方向に沿って多列および多段に形成されていることを特徴とする偏光子の製造方法。
  5. 前記レジスト層の単位領域に対応して、複数の細線を含む単位細線領域が形成され、細線に平行する方向に互いに隣接する単位細線領域間の細線同士が連続することを特徴とする請求項1または4記載の偏光子の製造方法。
  6. 透明基板と、透明基板上に互いに平行に設けられた複数の細線とを有する偏光子を製造する電子線照射装置において、
    電子線を生成する電子銃と、
    前記電子銃からの電子線を通過させる矩形状の開口をもつ第1アパーチャと、
    前記第1アパーチャを通過した電子線を通過させる複数の線状開口を有する第2アパーチャと、
    前記第2アパーチャを通過した線状電子線をレジスト層に対してショット毎に照射しながら前記レジスト層に照射された複数の線状電子線で形成された露光パターンを含む単位領域を形成するとともに、前記線状電子線を偏向させて前記単位領域を多列および多段に形成する偏向手段と、を備え、
    前記単位領域は単位領域の一辺に直交する方向に沿って多列に、かつ単位領域の一辺に平行する方向に沿って多段に形成され、
    各段の隣り合う単位領域間の境界は、隣り合う段との間で互いに相違し、
    前記第2アパーチャを通過した線状電子線のショット毎の数を変化させ、単位領域を複数のショットの線状電子線により形成したことを特徴とする電子線照射装置。
JP2015008906A 2015-01-20 2015-01-20 偏光子の製造方法および電子線照射装置 Active JP6628121B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015008906A JP6628121B2 (ja) 2015-01-20 2015-01-20 偏光子の製造方法および電子線照射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015008906A JP6628121B2 (ja) 2015-01-20 2015-01-20 偏光子の製造方法および電子線照射装置

Publications (2)

Publication Number Publication Date
JP2016133667A JP2016133667A (ja) 2016-07-25
JP6628121B2 true JP6628121B2 (ja) 2020-01-08

Family

ID=56426228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015008906A Active JP6628121B2 (ja) 2015-01-20 2015-01-20 偏光子の製造方法および電子線照射装置

Country Status (1)

Country Link
JP (1) JP6628121B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568720B (zh) * 2019-08-27 2023-11-17 清华大学深圳研究生院 一种微偏振片模板制作方法
KR20230050588A (ko) 2021-10-08 2023-04-17 한국과학기술원 스티칭 노광 공정용 마스크

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118060A (ja) * 2000-07-27 2002-04-19 Toshiba Corp 荷電ビーム露光装置、荷電ビーム露光方法、露光データ作成方法、露光データを作成するプログラムを記録したコンピュータ読取り可能な記録媒体、及び、露光データを記録したコンピュータ読取り可能な記録媒体
JP2002050569A (ja) * 2000-08-02 2002-02-15 Hitachi Ltd パターン形成方法
JP5503237B2 (ja) * 2009-09-24 2014-05-28 旭化成イーマテリアルズ株式会社 パタン形成基板
JP2012103468A (ja) * 2010-11-10 2012-05-31 Asahi Kasei Corp 光学素子および投射型液晶表示装置

Also Published As

Publication number Publication date
JP2016133667A (ja) 2016-07-25

Similar Documents

Publication Publication Date Title
US20060083996A1 (en) Apparatus for exposing a substrate, photomask and modified illuminating system of the apparatus, and method of forming a pattern on a substrate using the apparatus
JP6620854B2 (ja) 偏光子、偏光子の製造方法、光配向装置および偏光子の装着方法
JP6953109B2 (ja) 基板上構造体の製造方法
JP2019008318A5 (ja)
TWI293719B (en) Photolithography scattering bar and method
JP6628121B2 (ja) 偏光子の製造方法および電子線照射装置
US9005850B2 (en) Mask for exposure and method of fabricating substrate using said mask
JP6661454B2 (ja) 表示装置、表示板の製造方法
US11150561B2 (en) Method and apparatus for collecting information used in image-error compensation
JP6372205B2 (ja) 偏光子、偏光子の製造方法、および光配向装置
JP5767140B2 (ja) フォトマスク、パターン転写方法、及びペリクル
JP6471447B2 (ja) ワイヤーグリッド偏光子の製造用部材の修正方法とワイヤーグリッド偏光子の製造方法および露光方法
JP2006276260A (ja) 光強度分布シミュレーションシステム、光強度分布シミュレーション方法、マスクパターン補正方法、及び光強度分布シミュレーションプログラム
CN107111236A (zh) 传达方向选择性光衰减的设备和方法
US11635679B1 (en) Alternating phase shift mask
JP2015108762A (ja) ガラスマスクおよび半導体装置の製造方法
KR101200484B1 (ko) 프로젝션 어블레이션용 마스크의 제조 방법
US20160154309A1 (en) Method of manufacturing structure on substrate
JP6884501B2 (ja) 偏光子
JP6409295B2 (ja) 偏光子および光配向装置
JP2014191323A (ja) プロキシミティ露光用フォトマスクおよびそれを用いるパターン露光方法
KR101095049B1 (ko) 노광 마스크
JP5434547B2 (ja) レチクルを用いた複数パターンの形成方法
JPH07325387A (ja) ホトマスク及びその形成方法
JP2007078856A (ja) パターン露光方法および露光マスク

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191121

R150 Certificate of patent or registration of utility model

Ref document number: 6628121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150