JP6618114B2 - Construction method of mountain retaining wall by the retaining wall and parent pile sheet pile method - Google Patents
Construction method of mountain retaining wall by the retaining wall and parent pile sheet pile method Download PDFInfo
- Publication number
- JP6618114B2 JP6618114B2 JP2015254004A JP2015254004A JP6618114B2 JP 6618114 B2 JP6618114 B2 JP 6618114B2 JP 2015254004 A JP2015254004 A JP 2015254004A JP 2015254004 A JP2015254004 A JP 2015254004A JP 6618114 B2 JP6618114 B2 JP 6618114B2
- Authority
- JP
- Japan
- Prior art keywords
- parent
- sheet pile
- pile
- wall
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Bulkheads Adapted To Foundation Construction (AREA)
Description
本発明は、山留め壁及び親杭横矢板工法による山留め壁の構築方法に関する。 The present invention relates to a mountain retaining wall and a method for constructing a mountain retaining wall by a parent pile sheet pile method.
建築物の基礎を造るために土地を掘削して空間を形成する根切り工事においては、周囲の土壌が当該掘削部内に崩落しないように山留め壁を構築する。
このとき掘削部の底部(根切り底)よりも高いレベルに地下水位がある場合には、ソイルセメント柱列壁や鋼矢板等の止水壁を構築することが一般的である。
これに対して、親杭矢板工法を用いて止水壁を構築する工法として次のものがある。
(1)親杭横矢板工法による山留め壁の構築とは別に当該山留め壁の背面地盤にゲル状の止水材を圧入して止水部を構築する工法(特許文献1)。
(2)山留め壁の鋼板と地盤との隙間に地上から圧送ポンプなどを用いて止水材を注入・充填し、凝固させる工法(特許文献2)。
In the root cutting work to excavate the land to form the foundation of the building to form a space, the retaining wall is constructed so that the surrounding soil does not collapse into the excavated part.
At this time, when there is a groundwater level at a level higher than the bottom of the excavation part (root cutting bottom), it is general to construct a water blocking wall such as a soil cement column wall or a steel sheet pile.
On the other hand, there are the following methods for constructing a water blocking wall using the parent pile sheet pile method.
(1) A construction method (Patent Document 1) in which a gel-like water-stopping material is pressed into the back ground of the mountain retaining wall separately from the construction of the mountain retaining wall by the parent pile side sheet pile method.
(2) A method of injecting and filling a water-stopping material into the gap between the steel plate and ground of the retaining wall from the ground using a pressure pump or the like and solidifying it (Patent Document 2).
特許文献1の公報では山留め工事の他に重機を用いた薬液注入工事が必要となり、工期と工費とが増大してしまうという課題がある。
特許文献2の工法では、止水材の調整・ポンプによる圧送などの施工手間が大きいという課題がある。
他方、山留め工事では掘削面の高さ方向の一部のみに帯水層が存在し、この帯水層の存在する位置にだけ遮水措置を施せば十分に水の流れを遮ることができる場合もある。
In the gazette of patent document 1, the chemical | medical solution injection | pouring construction using a heavy machine other than a mountain retaining construction is needed, and there exists a subject that a construction period and construction cost will increase.
In the construction method of Patent Document 2, there is a problem that construction work such as adjustment of the water stop material and pumping by a pump is large.
On the other hand, when aquifers exist in only a part of the height direction of the excavation surface, the flow of water can be sufficiently blocked by applying water shielding measures only to the location where these aquifers exist. There is also.
本発明の目的は、山留め工事の現場の地下水位が根切り底より高いレベルにあるときに、より簡易に構築できかつ遮水性能を十分に発揮できる山留め壁及び親杭横矢板工法による山留め壁の構築方法を提供することである。 The purpose of the present invention is a mountain retaining wall that can be constructed more easily and can sufficiently exhibit water shielding performance when the groundwater level at the site of the mountain retaining work is at a level higher than the root bottom, and a mountain retaining wall by the parent pile side sheet pile method It is to provide a construction method.
第1の手段は、 上下両側の不透水層で挟まれた帯水層を含む地盤に適用される山留め壁であって、
上記地盤中に一列に建て込まれた一連の親杭と、
隣り合う親杭同士の間に形成される壁体とを具備し、
上記親杭は、上記壁体の表面側に形成される掘削部側に表れる表側フランジ部とこの表側フランジ部の幅方向中間部に連結されたウェブ部とを有しており、
各壁体は、
それら親杭の表側フランジ部の間に、前記掘削部に露出するように架設された複数の横矢板と、
上記横矢板の裏面に密接させた状態で当該裏面と地盤とに形成された裏込め層と、
を有しており、
上記裏込め層は、隣接する親杭の間に、上方から見て、両親杭のウェブ部の内面の一方から他方まで延びる平らな溝底を有する平溝部を形成して、それら一対のウェブ部の内面と横矢板の裏面と上記溝底とで囲まれる空間に土壌を投入することで構成されており、
上記裏込め層のうち少なくとも帯水層に接する部分が、親杭同士の間の領域内で水の流れを遮断する遮水壁部であり、
当該遮水壁部は、裏込め土に膨潤性を有する遮水材料を混入させることで形成されており、
この遮水壁部が帯水層の被掘削面の略全体を覆う。
The first means is a retaining wall applied to the ground including an aquifer sandwiched between impermeable layers on both upper and lower sides,
A series of parent piles built in a row in the ground,
Comprising a wall formed between adjacent parent piles,
The parent pile has a front flange portion that appears on the excavation portion side formed on the surface side of the wall body and a web portion that is connected to the intermediate portion in the width direction of the front flange portion,
Each wall is
Between the front side flange portion thereof parent pile, and a plurality of transverse sheet pile construction has been so exposed to the drilling unit,
A backfill layer formed on the back surface and the ground in close contact with the back surface of the sheet pile,
Have
The backfill layer forms a flat groove portion having a flat groove bottom extending from one side of the inner surface of the web portion of the parent pile between the adjacent parent piles when viewed from above, and the pair of web portions. It is composed by throwing soil into the space surrounded by the inner surface of and the back of the sheet pile and the groove bottom,
Of the backfill layer, at least the part in contact with the aquifer is a water-impervious wall that blocks the flow of water within the region between the parent piles,
The water-impervious wall is formed by mixing a water-impervious material having swelling property into the backfill soil,
This impermeable wall covers substantially the entire excavated surface of the aquifer.
本手段では、上下両側を不透水層4で挟まれる帯水層3を含む地盤に適用される、親杭横矢板工法で構成される山留め壁10であって、横矢板22の裏側の裏込め層24のうち少なくとも上記帯水層3に接する部分を、当該帯水層3の被掘削面全体を覆う遮水壁部26に形成したものを提案する(図1参照)。遮水壁部26は裏込め土に遮水材料を混入してなる。 This means is a mountain retaining wall 10 composed of a parent pile lateral sheet pile method applied to the ground including the aquifer 3 sandwiched between the impermeable layers 4 on both upper and lower sides. It is proposed that at least a portion of the layer 24 that is in contact with the aquifer 3 is formed on the impermeable wall 26 that covers the entire excavated surface of the aquifer 3 (see FIG. 1). The impermeable wall portion 26 is formed by mixing a impermeable material into the backfill soil.
「遮水材料」とは、土壌と混合させることができ、かつ混合状態で遮水性能を発揮できる材料をいう。好適な一例として、“吸水により膨張する不透水性材料”、特にベントナイトが好ましい。
本明細書において「遮水」とは、従来技術のソイルセメント柱列壁の如く完全に水を止める「止水」よりも広い概念であり、透水係数を十分に低い数値(例えば2.0×E−06m/s程度)にすることができれば足りる。
“Water-impervious material” refers to a material that can be mixed with soil and exhibit water-impervious performance in a mixed state. As a preferred example, “an impermeable material that expands by absorbing water”, particularly bentonite, is preferable.
In this specification, “water-blocking” is a broader concept than “water-stopping” in which water is completely stopped like a conventional soil cement column wall, and a sufficiently low numerical value (for example, 2.0 × E-06m / s) is sufficient.
第2の手段は、第1の手段を有し、
上記遮水壁部は、帯水層と接する範囲をカバーするコア部と、不透水層のうち帯水層と隣接する部分の端面を遮蔽するラップ部とを有する。
The second means has the first means,
The said water-impervious wall part has a core part which covers the range which touches an aquifer, and a wrap part which shields the end surface of the part adjacent to an aquifer layer among impermeable layers.
本手段においては、図1に示すように、前記遮水壁部26が、帯水層3と接する範囲をカバーするコア部26aの他に、不透水層のうち帯水層と隣接する部分の端面を遮蔽するラップ部26bを有している。このラップ部26bを設けることによって、帯水層3の被掘削面からの漏水を有効に抑制できる。
「ラップ部」は、遮水性能を十分に発揮できる程度に不透水層とラップする長さ(ラップ長)を有する。このラップ長は、少なくとも帯水層の端面から遮水壁部のラップ部の裏面及び遮水壁部の周端面とを迂回して掘削部に至る経路の透水係数が遮水壁部を貫通する経路の透水係数より大となるように設定することが望ましい(図6参照)。
In this means, as shown in FIG. 1, in addition to the core portion 26 a that covers the area where the impermeable wall portion 26 is in contact with the aquifer 3, the portion of the impermeable layer that is adjacent to the aquifer layer. It has the lap | wrap part 26b which shields an end surface. By providing this wrap part 26b, the water leakage from the excavated surface of the aquifer 3 can be effectively suppressed.
The “wrap portion” has a length (wrap length) for wrapping with the impermeable layer to such an extent that the water shielding performance can be sufficiently exhibited. This wrap length is such that the permeability coefficient of the path from at least the end surface of the aquifer to the excavation portion bypassing the back surface of the wrap portion of the impermeable wall portion and the peripheral end surface of the impermeable wall portion penetrates the impermeable wall portion. It is desirable to set so as to be larger than the hydraulic conductivity of the route (see FIG. 6).
第3の手段は、第1の手段又は第2の手段を有し、
上記横矢板の水平方向の長さは、隣り合う親杭のウェブ部同士の距離より短く、かつ隣り合う親杭の表側フランジの対向端部同士の距離より長いものとし、
上記横矢板の水平方向の両端部は、裏込め層と表側フランジとの間に挟まれた状態で係止されており、
横矢板の水平方向の端部とウェブとの間に形成される隙間が裏込め層の一部で充填された。
The third means has the first means or the second means,
The horizontal length of the horizontal sheet pile is shorter than the distance between the web portions of the adjacent parent piles and longer than the distance between the opposed end portions of the front side flanges of the adjacent parent piles,
Both ends of the horizontal sheet pile in the horizontal direction are locked in a state of being sandwiched between the backfill layer and the front flange,
A gap formed between the horizontal end of the horizontal sheet pile and the web was filled with a part of the backfill layer.
本手段では、横断面図である図2に示すように、上記横矢板の水平方向の長さは、隣り合う親杭のウェブ部同士の距離より短く、かつ隣り合う親杭の表側フランジの対向端部同士の距離より長いものとして、横矢板の水平方向の端部とウェブとの間に隙間Gが形成されるように設け、この隙間Gが裏込め層の一部で充填されるように設けている。これにより遮水性能がさらに向上する。 In this means, as shown in FIG. 2 which is a cross-sectional view, the horizontal length of the horizontal sheet pile is shorter than the distance between the web portions of the adjacent parent piles, and is opposed to the front side flange of the adjacent parent piles. The gap G is formed so as to be longer than the distance between the ends, so that a gap G is formed between the horizontal end of the sheet pile and the web, and the gap G is filled with a part of the backfill layer. Provided. This further improves the water shielding performance.
第4の手段は、 上下両側の不透水層で挟まれた帯水層を含む地盤に山留め壁を構築する方法であって、
一定の地盤部分の境界線に沿って複数の親杭を地盤中に打ち込む第1の工程と、
上記地盤部分を掘削して、掘削部を形成する第2の工程と、
掘削部に露出した親杭部分の間の地盤部分の表面側を壁厚相当代だけ切り崩して溝底が平らな平溝部を形成する第3の工程と、
上記平溝部の内部の掘削部寄りに、隣り合う親杭に両端部を係止させて横矢板を嵌め込むとともに、上記横矢板の裏面と平溝部の溝底との隙間内に裏込め層を形成する第4の工程と、
からなり、
上記親杭は、上記壁体の表面側に形成される掘削部側に表れる表側フランジ部とこの表側フランジ部の幅方向中間部に連結されたウェブ部とを有しており、
かつ隣合う親杭の表側フランジ部の間に前記横矢板を架設しており、
上記裏込め層は、隣接する親杭の間に、上方から見て、両親杭のウェブ部の内面の一方から他方まで延びる平らな溝底を有する平溝部を形成して、それら一対のウェブ部の内面と横矢板の裏面と上記溝底とで囲まれる空間に土壌を投入することで構成されており、
裏込め層のうち上記帯水層をカバーする部分を形成する段階で、上記土壌に膨潤性を有する遮水材料を混入させることによって、当該部分を遮水壁部に形成した。
The fourth means is a method of constructing a retaining wall on the ground including an aquifer sandwiched between impermeable layers on both upper and lower sides,
A first step of driving a plurality of parent piles into the ground along a boundary line of a certain ground portion;
A second step of excavating the ground part to form an excavation part;
A third step of cutting the surface side of the ground part between the parent pile parts exposed in the excavation part by a wall thickness equivalent to form a flat groove part with a flat groove bottom;
Near the excavation part inside the flat groove part, both ends are locked to adjacent parent piles and a horizontal sheet pile is fitted, and a backfill layer is placed in the gap between the back surface of the horizontal sheet pile and the groove bottom of the flat groove part. A fourth step of forming;
Consists of
The parent pile has a front flange portion that appears on the excavation portion side formed on the surface side of the wall body and a web portion that is connected to the intermediate portion in the width direction of the front flange portion,
And the said horizontal sheet pile is constructed between the front side flange parts of the adjacent parent pile,
The backfill layer forms a flat groove portion having a flat groove bottom extending from one side of the inner surface of the web portion of the parent pile between the adjacent parent piles when viewed from above, and the pair of web portions. It is composed by throwing soil into the space surrounded by the inner surface of and the back of the sheet pile and the groove bottom ,
In the step of forming the portion of the backfill layer that covers the aquifer, the portion was formed on the water-impervious wall by mixing a water-impervious material having swelling property into the soil.
本手段は、遮水性能を向上させた親杭横矢板工法による山留め壁の構築工法を提案する。具体的には横矢板22の裏側に裏込め層24を形成するときに、地盤の帯水層3に接する箇所について、裏込め土に遮水材料を混入して遮水壁部26を構成するものである。裏込め作業の際に作業員が帯水層を確認して遮水壁部26を形成するので、別途に地盤に薬剤を注入する場合と比較して、効率的に遮水壁部26を形成することができる。また地表面からの作業が必要である従来技術に比べて工期を短縮できる。 This means proposes the construction method of the retaining wall by the parent pile horizontal sheet pile method with improved water shielding performance. Specifically, when the backfill layer 24 is formed on the back side of the horizontal sheet pile 22, the water-impervious material is mixed into the backfill soil for the portion in contact with the aquifer 3 of the ground to constitute the water-impervious wall portion 26. Is. Since the worker confirms the aquifer during the backfilling operation and forms the impermeable wall portion 26, the impermeable wall portion 26 is formed more efficiently than in the case of separately injecting a chemical into the ground. can do. In addition, the construction period can be shortened compared to the prior art that requires work from the ground surface.
第1の手段に係る発明によれば、帯水層に接する箇所において裏込め土部分を遮水壁部としており、当該遮水壁部は裏込め土に遮水材料を混合してなるから、特別な機械(大型重機など)を必要とせずに簡単に形成することができる。
第2の手段に係る発明によれば、遮水壁部が、帯水層と隣接する不透水層部分の端面を遮蔽するラップ部を有するから、より遮水性能が高まる。
第3の手段に係る発明によれば、横矢板の水平方向の端部とウェブとの間に形成される隙間が裏込め層の一部で充填されているから、さらに遮水性能が向上する。
第4の手段に係る発明によれば、横矢板の嵌め込み及び裏込め層の形成の段階において、土壌に遮水材料を混入させることによって、裏込め層のうち帯水層と接する部分を遮水壁部に形成するから、帯水層の位置を目視により確認して、より確実に遮水壁部を形成することができ、また地表面からの作業が必要である従来技術に比べて工期を短縮できる。
According to the invention relating to the first means, the backfill soil portion is a water-impervious wall portion in contact with the aquifer, and the water-impervious wall portion is formed by mixing a water-impervious material with the backfill soil, It can be easily formed without the need for special machines (such as large heavy machinery).
According to the invention relating to the second means, since the impermeable wall has the wrap portion that shields the end surface of the impermeable layer adjacent to the aquifer, the impermeable performance is further enhanced.
According to the invention relating to the third means, the gap formed between the horizontal end of the sheet pile and the web is filled with a part of the backfill layer, so that the water shielding performance is further improved. .
According to the fourth aspect of the invention, in the step of inserting the sheet piles and forming the backfill layer, a portion of the backfill layer that is in contact with the aquifer layer is water shielded by mixing the water shield material into the soil. Since it is formed on the wall, the position of the aquifer can be confirmed by visual observation, and the impermeable wall can be formed more reliably, and the construction period is shorter than the conventional technology that requires work from the ground surface. Can be shortened.
図1から図9は、本発明の第1実施形態に係る山留め壁及び山留め壁の構築方法を示している。 1 to 9 show a retaining wall and a method for constructing the retaining wall according to the first embodiment of the present invention.
縦断面図である図1において、符号2は、地盤を表しており、この地盤は、上下一対の不透水層4,4によって挟まれた帯水層3を有する。
符号8は、掘削部であり、この掘削部を囲むように山留め壁10が形成されている。
In FIG. 1, which is a longitudinal sectional view, reference numeral 2 represents a ground, and this ground has an aquifer 3 sandwiched between a pair of upper and lower impermeable layers 4, 4.
Reference numeral 8 denotes an excavation part, and a retaining wall 10 is formed so as to surround the excavation part.
山留め壁10は、複数の親杭12と壁体20とで構成されている。 The mountain retaining wall 10 includes a plurality of parent piles 12 and a wall body 20.
上記親杭12は、掘削予定箇所の境界線に沿って好ましくは一定間隔で地盤2中に打ち込まれている。親杭12は、本実施形態では、ウェブ部14の両端部に表側フランジ部16及び裏側フランジ部18が付設されてなるH型鋼である。もっとも裏側フランジ部18を省略してT型鋼にしても構わない。 The parent pile 12 is driven into the ground 2 preferably at regular intervals along the boundary line of the planned excavation location. In this embodiment, the main pile 12 is H-shaped steel in which a front flange portion 16 and a back flange portion 18 are attached to both ends of the web portion 14. Of course, the rear flange portion 18 may be omitted to form a T-shaped steel.
なお、各親杭の下部を地盤への定着部分として残して、隣り合う親杭12同士の間には、土壌部分を作業員が掘削して形成された平溝部6が形成されている。この平溝部6はほぼ平らな垂直面である溝底6aを有する。
上記壁体20は、隣り合う親杭12同士の間の平溝部6内にそれぞれ形成されている。各壁体20は、複数の横矢板22と、これら横矢板22の裏面に形成された裏込め層24とからなる。
In addition, the flat groove part 6 formed by the operator excavating the soil part between the adjacent parent piles 12 is formed, leaving the lower part of each parent pile as a fixing part to the ground. The flat groove portion 6 has a groove bottom 6a is substantially flat et vertical plane.
The wall bodies 20 are respectively formed in the flat groove portions 6 between the adjacent parent piles 12. Each wall 20 includes a plurality of horizontal sheet piles 22 and a backfill layer 24 formed on the back surface of the horizontal sheet piles 22.
上記横矢板22の横方向の両端部は、両側の親杭12の表側フランジ部16の裏面に当接され、かつ係止されている。こうした横矢板22が上下方向に複数連ねられ、山留め壁10の壁面が形成されている。図2に示す通り、横矢板22の横幅は、隣り合う親杭のウェブ部同士の対向面の間の距離よりも短く、そして横矢板22の各端面とウェブ部14との間には、幅Δgを有する隙間Gがそれぞれ形成されている。 Both lateral ends of the horizontal sheet pile 22 are in contact with and locked to the back surfaces of the front flange portions 16 of the parent piles 12 on both sides. A plurality of such horizontal sheet piles 22 are connected in the vertical direction, and the wall surface of the retaining wall 10 is formed. As shown in FIG. 2, the lateral width of the lateral sheet pile 22 is shorter than the distance between the facing surfaces of the web portions of adjacent parent piles, and the width between each end surface of the lateral sheet pile 22 and the web portion 14 is A gap G having Δg is formed.
上述の如く上下方向に連なる複数の横矢板22の裏面と平溝部6の溝底6aと一対のウェブ部の内面とで囲まれる空間には、裏込め層24が形成されている。この裏込め層24は、上記空間内に作業員が裏込め材(主として裏込め土)を投入するとともに、締め固めることによりなる。 As described above, the backfill layer 24 is formed in the space surrounded by the back surfaces of the plurality of horizontal sheet piles 22 extending in the vertical direction, the groove bottom 6a of the flat groove portion 6, and the inner surfaces of the pair of web portions . The backfill layer 24 is formed by an operator putting backfill material (mainly backfill soil) into the space and compacting.
本発明においては、裏込め層24のうち少なくとも帯水層3に接する部分を遮水壁部26に形成している。遮水壁部26は、裏込め土と遮水材料とを混合撹拌したものを裏込め材として、当該裏込め材を作業員が上記空間に投入して締め固めてなる。
遮水材料を含む裏込め材の一部は、図2に示す隙間Gへ充填され、締固め作業により横矢板22の端面及び表側フランジ部16の裏面に密着するため、遮水性能が著しく向上する。
遮水材料は、例えばベントナイトのように吸水により膨張して遮水性能を発揮する材料を用いるとよい。
また裏込め土はもともとそこにあった土壌(原位置土)を用いるとよい。
そうすることで本発明を実施するために準備するべき材料はベントナイトなどの遮水材料だけで足りることになる。そして当該材料は水ガラス系の薬剤と比較して安価であり、また当該材料を使用する場所も帯水層の位置に対応した箇所に限られるので、山留め壁の構築コストを効果的に低減できる。
In the present invention, at least a portion of the backfill layer 24 that is in contact with the aquifer 3 is formed in the impermeable wall portion 26. The water-impervious wall portion 26 is formed by mixing and stirring the backfill soil and the water-impervious material as a backfill material, and the worker puts the backfill material into the space and compacts it.
A part of the backfill material including the water shielding material is filled in the gap G shown in FIG. 2 and is closely attached to the end surface of the lateral sheet pile 22 and the back surface of the front flange portion 16 by the compacting operation, so that the water shielding performance is remarkably improved. To do.
As the water shielding material, for example, a material that expands by water absorption and exhibits water shielding performance, such as bentonite, may be used.
The backfill soil should be the soil that was originally there (in-situ soil).
By doing so, a material to be prepared for carrying out the present invention is only a water shielding material such as bentonite. And since the said material is cheap compared with a water glass type | system | group chemical | medical agent, since the place which uses the said material is limited to the location corresponding to the position of an aquifer, the construction cost of a retaining wall can be reduced effectively. .
本発明の遮水壁部26は、隣り合う親杭12同士の間の領域(平溝部6)内で遮水する機能を有する。
特許文献1の如く山留め壁よりも裏側に別個に止水部を設ける技術と比較して、親杭横矢板工法の裏込め工程の一環として遮水壁部26を形成することができるので、親杭の打設以外に地表面からの作業が必要なく、従来技術に比べて工期を短縮できる。
また上記裏込め作業を行う際に作業員は帯水層3の位置を目視で確認して、帯水層の位置に対応して遮水壁部26を形成するので、作業が著しく簡略化される。また横矢板22の裏面と平溝部6の溝底6aとの間に裏込め材を投入するときにも、例えば図9に示すように作業員Mが横矢板22に裏込め材Bの充填状況を視認することができる。特に上記隙間G内にも裏込め材がしっかりと入っていることを直接目視した後に締固めすることができるので、簡易な構成でありながら、遮水効果を十分に達成することができる。
The water-impervious wall portion 26 of the present invention has a function of shielding water in a region (flat groove portion 6) between adjacent parent piles 12.
Compared to the technique of providing a water stop separately on the back side of the retaining wall as in Patent Document 1, the water shielding wall 26 can be formed as part of the backfilling process of the parent pile sheet pile method. Work from the ground surface is not required other than driving piles, and the construction period can be shortened compared to the prior art.
Further, when performing the backfilling operation, the worker visually confirms the position of the aquifer 3 and forms the water-impervious wall portion 26 corresponding to the position of the aquifer, so that the operation is remarkably simplified. The Further, when the backfill material is introduced between the back surface of the lateral sheet pile 22 and the groove bottom 6a of the flat groove portion 6, for example, as shown in FIG. 9, the worker M fills the lateral sheet pile 22 with the backfill material B. Can be visually recognized. In particular, since it can be compacted after directly observing that the backfill material is firmly contained in the gap G, a water shielding effect can be sufficiently achieved with a simple configuration.
図4は、硬化材料の作用を説明する概念図である。
同図中、第1列は、ベントナイトの配合比が0の状態を示す。同列の上段は不飽和の状態であり(A−1)、純粋な山砂が描かれている。同列の中段は通水直後の未飽和の状態であり(A−2)、不飽和部は通水されないので見かけの透水係数は小さい。同列の下段は通水から時間が十分経過した飽和状態であり(A−3)、飽和されることで水みちが増え透水係数が大きくなる。
同図中、第2列は、ベントナイトの配合比が5〜10%の状態を示す。同列の上段は不飽和の状態であり(B−1)、ベントナイトの混合比は少ない。同列の中段は通水直後の未飽和の状態であり(B−2)、不飽和部は通水されないので見かけの透水係数は小さい。同列の下段は通水から時間が十分経過した飽和状態であり(B−3)、ベントナイトは膨潤するが水みちの閉塞には至らない。
同図中、第3列は、ベントナイトの配合比が15〜20%の状態を示す。同列の上段は不飽和の状態であり(C−1)、ベントナイトの混合比は多い。同列の中段は通水直後の未飽和の状態であり(C−2)、ベントナイト未膨張部が水みちとなり通水される。同列の下段は通水から時間が十分経過した飽和状態であり(C−3)、ベントナイトの膨潤により水みちが閉塞される。
以上のことから、本発明の好適な一実施例として、原位置土の含水比は20%程度のものを使い、ベントナイトは原位置土の乾燥質量に対して質量比15%程度を混合撹拌するとよい。もっとも帯水層の通水量等によって要求される遮水性能や現場の諸条件に応じて上記の数値を適宜変更できることはもちろんである。
FIG. 4 is a conceptual diagram illustrating the action of the curable material.
In the figure, the first column shows a state where the blending ratio of bentonite is zero. The upper part of the row is in an unsaturated state (A-1), and pure mountain sand is drawn. The middle row in the row is in an unsaturated state immediately after passing water (A-2), and since the unsaturated portion is not passed, the apparent permeability coefficient is small. The lower part of the row is a saturated state in which sufficient time has passed since the passage of water (A-3), and when saturated, the water path increases and the hydraulic conductivity increases.
In the figure, the second column shows a state where the blending ratio of bentonite is 5 to 10%. The upper row in the same row is in an unsaturated state (B-1), and the bentonite mixing ratio is small. The middle row in the row is in an unsaturated state immediately after passing water (B-2), and since the unsaturated portion is not passed, the apparent permeability coefficient is small. The lower part of the row is in a saturated state after a sufficient amount of time has passed since passing water (B-3), and bentonite swells but does not block the water channel.
In the figure, the third column shows a state where the blending ratio of bentonite is 15 to 20%. The upper row in the same row is in an unsaturated state (C-1), and the mixing ratio of bentonite is large. The middle row in the row is in an unsaturated state immediately after water flow (C-2), and the bentonite unexpanded portion becomes a water channel and water is passed. The lower part of the row is in a saturated state after a sufficient amount of time has passed since passing water (C-3), and the water channel is blocked by the swelling of bentonite.
From the above, as a preferred embodiment of the present invention, the water content of the in situ soil is about 20%, and bentonite is mixed and stirred at a mass ratio of about 15% with respect to the dry mass of the in situ soil. Good. Of course, the above numerical values can be appropriately changed according to the water shielding performance required by the amount of water passing through the aquifer and various conditions at the site.
上述の混合撹拌は、掘削に使用する重機(例えば小型のバックホウ)を使用することができるため、他の重機(特に大型重機)を準備する必要がなく、安価で容易にソイルベントナイト(遮水壁部26)を形成することができる。 Since the above-mentioned mixed agitation can use heavy machinery (for example, small backhoe) used for excavation, there is no need to prepare other heavy machinery (especially large heavy machinery), and soil bentonite (water-impervious wall) can be easily and inexpensively prepared. Part 26) can be formed.
本実施形態では、遮水壁部26が地盤2中の帯水層3に接する範囲だけでなく、その上下の不透水層4のうち帯水層3と隣接する部分まで延長し、オーバーラップさせるように構成されている。本明細書では、遮水壁部26のうち帯水層3の端面に覆う部分をコア部26aと称し、また不透水層4の端面を覆う部分をラップ部26bというものとする。このような構成とすることにより、帯水層3を通る地下水が遮水壁部26の回りを迂回して掘削部8へ到達することを防止している。遮水壁部26が帯水層3の端面を超えて不透水層側へ延長する長さを、ラップ部26bのラップ長というものとする。上下の不透水層へのラップ長は基本的には後述の界面透水試験により定めることが望ましいが、そうでない場合には20cmを標準とする。 In the present embodiment, not only the range in which the impermeable wall portion 26 is in contact with the aquifer 3 in the ground 2 but also the portion of the upper and lower impermeable layers 4 adjacent to the aquifer 3 is overlapped. It is configured as follows. In the present specification, a portion of the impermeable wall portion 26 that covers the end surface of the aquifer 3 is referred to as a core portion 26a, and a portion that covers the end surface of the impermeable layer 4 is referred to as a wrap portion 26b. With such a configuration, groundwater passing through the aquifer 3 is prevented from bypassing the impermeable wall portion 26 and reaching the excavation portion 8. The length of the impermeable wall portion 26 extending beyond the end surface of the aquifer 3 to the impermeable layer side is referred to as a wrap length of the wrap portion 26b. Basically, the wrap length to the upper and lower impermeable layers is desirably determined by the interfacial permeability test described later, but otherwise 20 cm is the standard.
図5及び図6は、上述のラップ長の設計方法を示すための説明図である。
図5は、上下の不透水層で挟まれた帯水層を含む地盤をより抽象化した地盤モデルを表している。すなわち、地盤中の帯水層は一本の水みちとして表され、その流量をQとする。そしてその水みちを閉塞するために円盤状の遮水壁部26を想定する。遮水壁部26の回りには円環状の裏込め層24部分が広がっているものとする。
5 and 6 are explanatory diagrams for illustrating the above-described wrap length design method.
FIG. 5 shows a ground model in which the ground including an aquifer sandwiched between upper and lower impermeable layers is more abstracted. That is, the aquifer in the ground is represented as a single water path, and the flow rate is Q. A disk-shaped impermeable wall 26 is assumed to close the water channel. It is assumed that an annular backfill layer 24 extends around the impermeable wall portion 26.
上述の設計方法の基本的な考え方は、図6に示すように帯水層を通る地下水が遮水壁部及び円環状の裏込め層部分を直交方向で透過するときの流量(Qv)よりも、遮水壁部の裏面に沿って円環状の裏込め層部分との境界線へ至る迂回路を通過するときの流量(Qh)が小さくとなるようにラップ長を定めるということである。そうすると、一般にQvは十分小さくなるように設計されるので、Qhも十分に小さいと考えることができる。 As shown in FIG. 6, the basic idea of the design method described above is more than the flow rate (Qv) when groundwater passing through the aquifer passes through the impermeable wall and the annular backfill layer in the orthogonal direction. In other words, the wrap length is determined so that the flow rate (Qh) when passing through the detour along the back surface of the water-impervious wall portion to the boundary line with the annular backfill layer portion becomes small. Then, since Qv is generally designed to be sufficiently small, it can be considered that Qh is also sufficiently small.
図5に示すように、上記水みちは、遮水壁部を透過する流れ(流量Qs)、遮水壁部と裏込め層24との境界線を透過する流れ(流量Qb)、裏込め層24を透過する流れ(流量Qc)とに分岐するものと想定する。そうすると、各流量には次の関係がある。
[数式1]Q=Qs+Qb+Qc
次に各流量はダルシーの法則によりそれぞれ次のように数式化される。但し、遮水壁部及び裏込め層の面積の和をA、この面積内での透水係数をk、動圧勾配をiとし、遮水壁部の透水係数をks、円環状の裏込め層の透水係数をkcとし、遮水壁部と裏込め層との間の境界流れ係数をαとする。また便宜的に遮水壁部の直径を、円環状の裏込め層の直径の半分とする。さらにQbの境界長さ(水みちの終点から遮水壁部の裏面及び遮水壁部の周面を通る迂回路の長さ)をLとする。
[数式2]Q=k・i・A
[数式3]Qs=ks・i・(1/4)A
[数式4]Qb=α・i・L
[数式5]Qc=kc・i・(3/4)A
そして数式1に数式2〜5を代入して整理すると、
[数式6]Qb=Q−Qs−Qc
=i・A[k−(3/4)×kc−(1/4)×ks]
また境界面の透水量を境界長さLと境界流係数αで表現すると
Qb=α×i×L
これを数式6に代入してαを求めると
[数式6]α=(A/L)×[k−(3/4)×kc−(1/4)×ks] (m2/s)
As shown in FIG. 5, the water channel passes through the impermeable wall (flow rate Qs), flows through the boundary between the impermeable wall and the backfill layer 24 (flow rate Qb), and the backfill layer. 24 is assumed to branch to a flow (flow rate Qc) that permeates 24. Then, each flow rate has the following relationship.
[Formula 1] Q = Qs + Qb + Qc
Next, each flow rate is expressed as follows by Darcy's law. However, the sum of the area of the impermeable wall and the backfill layer is A, the permeability coefficient within this area is k, the dynamic pressure gradient is i, the permeability coefficient of the impermeable wall is ks, and the annular backfill layer And kc, and the boundary flow coefficient between the impermeable wall and the backfill layer is α. For the sake of convenience, the diameter of the water-impervious wall is half the diameter of the annular backfill layer. Further, L is defined as the boundary length of Qb (the length of the detour passing from the end point of the water path to the back surface of the impermeable wall portion and the peripheral surface of the impermeable wall portion).
[Formula 2] Q = k · i · A
[Formula 3] Qs = ks · i · (1/4) A
[Formula 4] Qb = α · i · L
[Formula 5] Qc = kc · i · (3/4) A
And when substituting Formulas 2-5 into Formula 1,
[Formula 6] Qb = Q−Qs−Qc
= I · A [k− (3/4) × kc− (1/4) × ks]
Moreover, when the amount of water permeation on the boundary surface is expressed by the boundary length L and the boundary flow coefficient α, Qb = α × i × L
When α is calculated by substituting this into Formula 6, [Formula 6] α = (A / L) × [k− (3/4) × kc− (1/4) × ks] (m 2 / s)
図6に示す遮水壁部及び円環状の裏込め層部分を通過する流れの流量Qhと遮水壁部を迂回する流れの流量Qvとの関係を考える。前述の通り、
[数式7]Qv>Qh
計算を簡単にするために後者を垂直方向の境界流量と近似して、それぞれ式で表す。
帯水層中の流れの水圧をWpとし、遮水壁部の厚さをt1とする。距離t1を進む間の圧力降下はWpであるから、動圧勾配(Wp/t1)であり、前述のダルシーの法則から、
[数式8]Qh=k・(Wp/t1)・A
次に遮水壁部の半径(このモデルではラップ長に相当する)をt2とすると、遮水壁部の裏面を半径方向に流れるとき、距離t2を進む間の圧力降下は(Wp/t2)であるから、境界長さをLとすると、
[数式9]Qv=α・(Wp/t2)・L
Consider the relationship between the flow rate Qh of the flow passing through the impermeable wall portion and the annular backfill layer portion shown in FIG. 6 and the flow rate Qv of the flow bypassing the impermeable wall portion. As mentioned above,
[Formula 7] Qv> Qh
In order to simplify the calculation, the latter is approximated to the boundary flow rate in the vertical direction, and each is expressed by an equation.
The pressure of the flow of the aquifer and Wp, the thickness of the water shield wall and t 1. Since the pressure drop while traveling the distance t 1 is Wp, it is a dynamic pressure gradient (Wp / t 1 ). From Darcy's law described above,
[Formula 8] Qh = k · (Wp / t 1 ) · A
Next, assuming that the radius of the impermeable wall portion (corresponding to the lap length in this model) is t 2 , the pressure drop while traveling the distance t 2 is (Wp / t 2 ), so that the boundary length is L,
[Formula 9] Qv = α · (Wp / t 2 ) · L
数式7〜9から
k・(Wp/t1)・A>α・(Wp/t2)・L
次に図3に示すような実際の山留め壁の構造に戻り、ラップ長さをt2、横方向の長さをLとして、その単位巾を想定すると、A=L×t2 L=1であるので
[数式9] t2>[(α/k)×t1]^0.5
これに対し、界面透水試験結果を代入し、t1=0.05mに対する必要ラップ長さを計算する。また、施工時には10倍程度の安全率を見込みラップ長を設定する。
From Expressions 7 to 9 k · (Wp / t 1 ) · A> α · (Wp / t2) · L
Next, returning to the structure of an actual retaining wall as shown in FIG. 3, assuming that the lap length is t 2 , the lateral length is L, and the unit width is A = L × t 2 L = 1, [Formula 9] t 2 > [(α / k) × t 1 ] ^ 0.5
On the other hand, a necessary wrap length for t 1 = 0.05 m is calculated by substituting the interfacial permeability test result. At the time of construction, the expected wrap length is set to a safety factor of about 10 times.
図7〜図9は、親杭横矢板工法による本発明の山留め壁の構築方法を示している。
一般的な横杭横矢板工法による山留め壁の構築方法では、次の工程からなる。
(1)掘削予定箇所である一定の地盤部分の境界線に沿って好ましくは一定間隔で複数の親杭を打ち込む工程。
具体的には、アースオーガー機にて境界線に掘削孔を穿設して親杭を建て込めばよい。
(2)上記地盤部分を掘削して、掘削部8を形成する工程。
掘削部8を形成するときには比較的小型の重機Eを用いる。或る程度の深さを有する掘削部8であっても、図9に示すように掘削予定深さを複数の階層に分けて掘削することで比較的小型の重機Eでも対応できる。
(3)掘削部8に露出した、隣接する親杭同士の間の地盤部分の表面側を壁厚相当分だけ切り崩す工程。
上記地盤部分の表面側を切り崩す作業は、作業員が行うことができる。切り崩した後には、ほぼ平らな垂直面である溝底6aを有する平溝部6が形成される。
(4)隣同士の親杭の間に、上下方向に連ねられた状態となるように複数の横矢板22を架設するとともに、横矢板の裏面と平溝部の溝底との間に裏込め層を形成する工程。
親杭としてH型鋼を用いるときには、表側フランジ部16の裏面に横矢板22の両端部が係止されるように架設する。なお、横矢板の端部は、表側フランジ部16の裏面と裏込めそうとの間に挟まれて固定される。
7-9 has shown the construction method of the retaining wall of this invention by the parent pile cross-sheet pile method.
In the construction method of the retaining wall by the general horizontal pile horizontal sheet pile method, it consists of the following steps.
(1) A step of driving a plurality of parent piles preferably at regular intervals along a boundary line of a certain ground portion that is a planned excavation location.
Specifically, a main pile may be built by drilling a hole in the boundary line with an earth auger machine.
(2) A step of excavating the ground portion to form the excavation portion 8.
When forming the excavation part 8, a relatively small heavy machine E is used. Even the excavation part 8 having a certain depth can be handled by a relatively small heavy machine E by excavating the planned excavation depth into a plurality of layers as shown in FIG.
(3) A step of cutting the surface side of the ground portion between adjacent parent piles exposed to the excavation part 8 by an amount corresponding to the wall thickness.
An operator can perform the operation of cutting the surface side of the ground portion. After the cutting, the flat groove portion 6 having the groove bottom 6a which is a substantially flat vertical surface is formed.
(4) A plurality of horizontal sheet piles 22 are installed between adjacent parent piles so as to be connected in the vertical direction, and a backfill layer is provided between the back surface of the horizontal sheet pile and the groove bottom of the flat groove portion. Forming.
When H-shaped steel is used as the parent pile, it is installed so that both end portions of the lateral sheet pile 22 are locked to the back surface of the front flange portion 16. In addition, the edge part of a horizontal sheet pile is fixed by being pinched | interposed between the back surface of the front side flange part 16, and a backfill.
本実施形態では、掘削部8の第1階層に関しては通常通りの親杭横矢板工法で山留め壁を形成し、第2階層以下で掘削部に表れた地盤に帯水層が現れた場合を想定して、本発明の山留め壁の構築方法を図7〜図8に基づいて解説する。もっとも第1階層に帯水層3が現れた場合でも同様に対処できる。 In this embodiment, regarding the first level of the excavation part 8, it is assumed that the retaining wall is formed by the normal pile pile sheet pile method as usual, and the aquifer appears on the ground that appears in the excavation part below the second level. The method for constructing the retaining wall according to the present invention will be described with reference to FIGS. However, even when the aquifer 3 appears in the first layer, it can be dealt with similarly.
図7の[1S]及び[1P]は、第2階層に山留め壁を構築する前の状態をそれぞれ平面図及び側面図で表している。
図7の[2S]及び[2P]は、親杭12の内側を重機(図示せず)で掘削して掘削部8の第2階層分を掘削した状態を表している。
親杭12の内側を掘削した後に掘削部8に作業員が入り、隣接する親杭12同士の間の地盤部分の表面側を一定の幅だけ切り崩すと、前述の平溝部6が形成される。
切り崩した土壌は後に裏込め土として利用するために、所定の場所に貯留しておく。
なお、第2階層まで掘削された掘削部8に作業員が入った段階で、新たに掘削部に表れた地盤の表面を観察して帯水層3の存在及び位置を視認できる。帯水層3は、不透水層4に比べて湿気を帯びており、外観が異なるのが通常だからである。仮に外観から判別できなくても、切り崩しの作業で土壌に直接触るので、帯水層3であることに容易に気づくことができる。
図7の[3S]及び[3P]は、この階層のうち帯水層3の下側に山留め壁を構築する工程を表している。
具体的には、掘削部8の底から帯水層3の下端付近まで横矢板22a、22bを順次親杭12同士の間に架設するとともに、横矢板22の裏側に裏込め土を充填して締め固める。裏込め土の土壌の上面の高さは、帯水層3の下端よりラップ長さ分だけ低くする。遮水壁部26のラップ部26bを形成するスペースを確保するためである。
図7の[4S]及び[4P]は、帯水層3の下半部と向かい合う位置に横矢板22cを架設するとともに横矢板22cの裏側に裏込め材料を投入する段階を表している。
裏込め材料は、図7の[2P]の段階で地盤を切り崩して得た土壌とベントナイトとを機械撹拌により混合して製造する。
機械撹拌には掘削に利用した重機を用いるので、別に重機を必要とすることがない。
なお、数量によっては、機械撹拌に代えて人力による撹拌とすることも可能である。
[1S] and [1P] in FIG. 7 represent a state before a mountain retaining wall is constructed in the second layer, respectively, in a plan view and a side view.
[2S] and [2P] in FIG. 7 represent a state in which the inside of the main pile 12 is excavated by a heavy machine (not shown) and the second layer of the excavation unit 8 is excavated.
When an operator enters the excavation part 8 after excavating the inner side of the parent pile 12 and cuts the surface side of the ground portion between the adjacent parent piles 12 by a certain width, the above-described flat groove part 6 is formed.
The cut soil is stored in a predetermined place for later use as backfill soil.
In addition, when an operator enters the excavation part 8 excavated to the second level, the presence and position of the aquifer 3 can be visually confirmed by observing the surface of the ground newly appearing in the excavation part. This is because the aquifer 3 is damper than the impermeable layer 4 and usually has a different appearance. Even if it cannot be discriminated from the appearance, it can be easily noticed that it is an aquifer 3 because it is in direct contact with the soil during the cutting operation.
[3S] and [3P] in FIG. 7 represent a process of constructing a retaining wall below the aquifer 3 in this hierarchy.
Specifically, the horizontal sheet piles 22a and 22b are sequentially installed between the main piles 12 from the bottom of the excavation part 8 to the vicinity of the lower end of the aquifer 3, and the back side of the horizontal sheet pile 22 is filled with backfill soil. Compact. The height of the upper surface of the backfill soil is set lower than the lower end of the aquifer 3 by the wrap length. This is to secure a space for forming the wrap portion 26b of the water shielding wall portion 26.
[4S] and [4P] in FIG. 7 represent a stage in which a horizontal sheet pile 22c is installed at a position facing the lower half of the aquifer 3 and a backfill material is put on the back side of the horizontal sheet pile 22c.
The backfill material is manufactured by mixing the soil obtained by cutting the ground at the stage of [2P] in FIG. 7 and bentonite by mechanical stirring.
Since the heavy machinery used for excavation is used for mechanical stirring, no separate heavy machinery is required.
Depending on the quantity, it is also possible to use manual stirring instead of mechanical stirring.
図8の[5S]及び[5P]は、帯水層3の下半部と向かい合う横矢板22cの裏側に投入された裏込め層24を締め固める段階を表している。
図8の[6S]及び[6P]は、帯水層3の上半部と向かい合う位置に横矢板22dを架設する段階を表している。
図8の[7S]及び[7P]は、帯水層3の上半部と向かい合う横矢板22dの裏側に裏込め材料を投入し、締め固めて裏込め層とする段階を表している。
図8の[8S]及び[8P]は、この階層での最後の横矢板22e及び裏込め層の形成の段階を表している。この段階では、まず裏込め材料を平溝部6の溝底6aに一定の厚さで付着させ、その次に横矢板22eを架設する。順番を逆にすると、裏込め材料を横矢板22eの裏側へ充填することが難しいからである。
[5S] and [5P] in FIG. 8 represent a stage in which the backfill layer 24 put on the back side of the lateral sheet pile 22c facing the lower half of the aquifer 3 is compacted.
[6S] and [6P] in FIG. 8 represent a stage in which a cross sheet pile 22d is installed at a position facing the upper half of the aquifer 3.
[7S] and [7P] in FIG. 8 represent a stage in which a backfilling material is charged on the back side of the lateral sheet pile 22d facing the upper half of the aquifer 3 and compacted to form a backfill layer.
[8S] and [8P] in FIG. 8 represent the stage of formation of the last lateral sheet pile 22e and the backfill layer in this hierarchy. In this stage, first, the backfill material is attached to the groove bottom 6a of the flat groove portion 6 with a certain thickness, and then the cross sheet pile 22e is installed. This is because if the order is reversed, it is difficult to fill the backfill material into the back side of the lateral sheet pile 22e.
図10は、透水試験の実施例を示すものである。
同図(A)は裏込め土にベントナイトを混合撹拌して形成した裏込め材料の透水試験の結果を示す。同図(B)は、試験結果である透水係数の大きさを理解するために示した、各種土壌の透水係数の資料である。
上記の試験では、所定の土壌を原材料とし、含水比、含Bt(ベントナイト)比を変更して6回実験を行っている。この原材料を用いた場合には、含水比を15%、含Bt比を15%としたときに、2.0E−09m/sという結果が得られた。この程度の透水係数であれば本発明の裏込め材料として十分に使用できる。
FIG. 10 shows an example of a water permeability test.
FIG. 4A shows the result of a water permeability test of a backfilling material formed by mixing and stirring bentonite with the backfilling soil. The figure (B) is the data of the hydraulic conductivity of various soils shown in order to understand the magnitude of the hydraulic conductivity as the test result.
In the above test, the experiment was performed six times using a predetermined soil as a raw material and changing the water content ratio and the Bt (bentonite) ratio. When this raw material was used, a result of 2.0E-09 m / s was obtained when the water content ratio was 15% and the Bt content ratio was 15%. Such a permeability coefficient can be sufficiently used as the backfill material of the present invention.
なお、本発明の実施形態は好適な実施例に過ぎず、本発明の精神に反しない限り、その実施の態様を適宜変更することができる。 It should be noted that the embodiment of the present invention is only a preferred example, and the mode of the embodiment can be appropriately changed as long as it does not contradict the spirit of the present invention.
2…地盤 3…帯水層 4…不透水層 6…平溝部 6a…溝底
8…掘削部
10…山留め壁 12…親杭 14…ウェブ部 16…表側フランジ部
18…裏側フランジ部
20…壁体 22,22a,22b,22c,22d,22e,22f…横矢板
24…裏込め層 26…遮水壁部 26a…コア部 26b…ラップ部
E…重機 G…隙間 M…作業員
DESCRIPTION OF SYMBOLS 2 ... Ground 3 ... Aquifer 4 ... Impervious layer 6 ... Flat groove part 6a ... Groove bottom 8 ... Excavation part 10 ... Mountain retaining wall 12 ... Master pile 14 ... Web part 16 ... Front side flange part
18 ... Back side flange
DESCRIPTION OF SYMBOLS 20 ... Wall body 22,22a, 22b, 22c, 22d, 22e, 22f ... Lateral sheet pile 24 ... Back-filling layer 26 ... Water shielding wall part 26a ... Core part 26b ... Lap part E ... Heavy machine G ... Gap M ... Worker
Claims (4)
上記地盤中に一列に建て込まれた一連の親杭と、
隣り合う親杭同士の間に形成される壁体とを具備し、
上記親杭は、上記壁体の表面側に形成される掘削部側に表れる表側フランジ部とこの表側フランジ部の幅方向中間部に連結されたウェブ部とを有しており、
各壁体は、
それら親杭の表側フランジ部の間に、前記掘削部に露出するように架設された複数の横矢板と、
上記横矢板の裏面に密接させた状態で当該裏面と地盤とに形成された裏込め層と、
を有しており、
上記裏込め層は、隣接する親杭の間に、上方から見て、両親杭のウェブ部の内面の一方から他方まで延びる平らな溝底を有する平溝部を形成して、それら一対のウェブ部の内面と横矢板の裏面と上記溝底とで囲まれる空間に土壌を投入することで構成されており、
上記裏込め層のうち少なくとも帯水層に接する部分が、親杭同士の間の領域内で水の流れを遮断する遮水壁部であり、
当該遮水壁部は、裏込め土に膨潤性を有する遮水材料を混入させることで形成されており、
この遮水壁部が帯水層の被掘削面の略全体を覆うことを特徴とする、山留め壁。 A retaining wall applied to the ground including an aquifer sandwiched between upper and lower impermeable layers,
A series of parent piles built in a row in the ground,
Comprising a wall formed between adjacent parent piles,
The parent pile has a front flange portion that appears on the excavation portion side formed on the surface side of the wall body and a web portion that is connected to the intermediate portion in the width direction of the front flange portion,
Each wall is
Between the front side flange portion thereof parent pile, and a plurality of transverse sheet pile construction has been so exposed to the drilling unit,
A backfill layer formed on the back surface and the ground in close contact with the back surface of the sheet pile,
Have
The backfill layer forms a flat groove portion having a flat groove bottom extending from one side of the inner surface of the web portion of the parent pile between the adjacent parent piles when viewed from above, and the pair of web portions. It is composed by throwing soil into the space surrounded by the inner surface of and the back of the sheet pile and the groove bottom,
Of the backfill layer, at least the part in contact with the aquifer is a water-impervious wall that blocks the flow of water within the region between the parent piles,
The water-impervious wall is formed by mixing a water-impervious material having swelling property into the backfill soil,
A mountain retaining wall, wherein the impermeable wall covers substantially the entire excavated surface of the aquifer.
上記横矢板の水平方向の両端部は、裏込め層と表側フランジとの間に挟まれた状態で係止されており、
横矢板の水平方向の端部とウェブとの間に形成される隙間が裏込め層の一部で充填されたことを特徴とする、請求項1又は請求項2記載の山留め壁。 The horizontal length of the horizontal sheet pile is shorter than the distance between the web portions of the adjacent parent piles and longer than the distance between the opposed end portions of the front side flanges of the adjacent parent piles,
Both ends of the horizontal sheet pile in the horizontal direction are locked in a state of being sandwiched between the backfill layer and the front flange,
The mountain retaining wall according to claim 1 or 2, wherein a gap formed between a horizontal end portion of the horizontal sheet pile and the web is filled with a part of the backfill layer.
一定の地盤部分の境界線に沿って複数の親杭を地盤中に打ち込む第1の工程と、
上記地盤部分を掘削して、掘削部を形成する第2の工程と、
掘削部に露出した親杭部分の間の地盤部分の表面側を壁厚相当代だけ切り崩して溝底が平らな平溝部を形成する第3の工程と、
上記平溝部の内部の掘削部寄りに、隣り合う親杭に両端部を係止させて横矢板を嵌め込むとともに、上記横矢板の裏面と平溝部の溝底との隙間内に裏込め層を形成する第4の工程と、
からなり、
上記親杭は、上記壁体の表面側に形成される掘削部側に表れる表側フランジ部とこの表側フランジ部の幅方向中間部に連結されたウェブ部とを有しており、
かつ隣合う親杭の表側フランジ部の間に前記横矢板を架設しており、
上記裏込め層は、隣接する親杭の間に、上方から見て、両親杭のウェブ部の内面の一方から他方まで延びる平らな溝底を有する平溝部を形成して、それら一対のウェブ部の内面と横矢板の裏面と上記溝底とで囲まれる空間に土壌を投入することで構成されており、
裏込め層のうち上記帯水層をカバーする部分を形成する段階で、上記土壌に膨潤性を有する遮水材料を混入させることによって、当該部分を遮水壁部に形成したことを特徴とする、親杭横矢板工法による山留め壁の構築方法。 A method of constructing a retaining wall on the ground including an aquifer sandwiched between impermeable layers on both upper and lower sides,
A first step of driving a plurality of parent piles into the ground along a boundary line of a certain ground portion;
A second step of excavating the ground part to form an excavation part;
A third step of cutting the surface side of the ground part between the parent pile parts exposed in the excavation part by a wall thickness equivalent to form a flat groove part with a flat groove bottom;
Near the excavation part inside the flat groove part, both ends are locked to adjacent parent piles and a horizontal sheet pile is fitted, and a backfill layer is placed in the gap between the back surface of the horizontal sheet pile and the groove bottom of the flat groove part. A fourth step of forming;
Consists of
The parent pile has a front flange portion that appears on the excavation portion side formed on the surface side of the wall body and a web portion that is connected to the intermediate portion in the width direction of the front flange portion,
And the said horizontal sheet pile is constructed between the front side flange parts of the adjacent parent pile,
The backfill layer forms a flat groove portion having a flat groove bottom extending from one side of the inner surface of the web portion of the parent pile between the adjacent parent piles when viewed from above, and the pair of web portions. It is composed by throwing soil into the space surrounded by the inner surface of and the back of the sheet pile and the groove bottom ,
In the step of forming the portion of the backfill layer that covers the aquifer, the portion is formed on the water-impervious wall by mixing the soil with a water-impervious material having swelling properties. The construction method of the retaining wall by the parent pile side sheet pile method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015254004A JP6618114B2 (en) | 2015-12-25 | 2015-12-25 | Construction method of mountain retaining wall by the retaining wall and parent pile sheet pile method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015254004A JP6618114B2 (en) | 2015-12-25 | 2015-12-25 | Construction method of mountain retaining wall by the retaining wall and parent pile sheet pile method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017115498A JP2017115498A (en) | 2017-06-29 |
JP6618114B2 true JP6618114B2 (en) | 2019-12-11 |
Family
ID=59234094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015254004A Active JP6618114B2 (en) | 2015-12-25 | 2015-12-25 | Construction method of mountain retaining wall by the retaining wall and parent pile sheet pile method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6618114B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7012504B2 (en) * | 2017-10-31 | 2022-01-28 | 株式会社竹中工務店 | How to build a jig for soil removal and a retaining wall |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62280421A (en) * | 1986-05-28 | 1987-12-05 | Fujita Corp | Sheathing work |
JP2818843B2 (en) * | 1990-10-04 | 1998-10-30 | 清水建設株式会社 | Suspended water method for retaining walls |
JPH0699908B2 (en) * | 1992-11-30 | 1994-12-07 | ▲高▼松建設株式会社 | Yamadome method |
JP2007023656A (en) * | 2005-07-19 | 2007-02-01 | Shimizu Corp | Support structure and support method of tunnel |
JP4888293B2 (en) * | 2007-09-11 | 2012-02-29 | 株式会社大林組 | Earth retaining wall made of parent pile sheet pile, water stop structure of earth retaining wall made of parent pile side sheet pile, construction method of earth retaining wall made of parent pile side sheet pile, and retaining wall of earth retaining wall made of parent pile side sheet pile Water method |
KR20100068597A (en) * | 2008-12-15 | 2010-06-24 | 유진지오 주식회사 | A shoring method using arch plate pile and h-pile |
JP6340248B2 (en) * | 2014-05-23 | 2018-06-06 | 鹿島建設株式会社 | Mountain retaining wall, how to construct a mountain retaining wall |
-
2015
- 2015-12-25 JP JP2015254004A patent/JP6618114B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017115498A (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6093453B2 (en) | Ground improvement method | |
CN210104706U (en) | Construction structure for treating deep and thick soft foundation by vacuum combined preloading | |
CN104099943A (en) | Underground diaphragm wall and deserted underground civil air defense engineering intersection processing method | |
CN204080789U (en) | The preparing structure of underground continuous wall width breach | |
CN110424434A (en) | For filling out the stirring pile water stopping curtain and construction method in the deep area Kuai Shi in sea | |
KR101021915B1 (en) | A method for constructing cut-off temporary structure for sheathing work | |
CN107687175A (en) | The vertical antifouling isolation wall construction of both sides ground local stiffening type and method | |
CN103061348B (en) | Sand-bag and steel sheet pile combined cofferdam for hard formation and construction method of cofferdam | |
JP6618114B2 (en) | Construction method of mountain retaining wall by the retaining wall and parent pile sheet pile method | |
CN108104109A (en) | For the permeable concrete pipe piles PRB systems and construction method of groundwater remediation | |
JP2019015100A (en) | Removing method of earth retaining wall | |
JP2004204581A (en) | Water sealing method for controlled revetment | |
CN109469042A (en) | Seepage-proofing karst cave processing structure for storage yard field area | |
CN105586978B (en) | Soil removal and replacement stirring water-stop curtain construction method based on gravel | |
JP6277755B2 (en) | Ground improvement method and ground improvement system | |
KR101021913B1 (en) | A method for constructing cut-off temporary structure for sheathing work | |
CN104695478A (en) | Ultra-deep underground diaphragm wall built-in buried pipe structure and construction method thereof | |
KR101569870B1 (en) | Apparatus for reinforcing and waterproof grouting of cip, and method for waterproof-reinforce grouting ground | |
CN104594368B (en) | Bamboo raft pile oversized cofferdam and construction method for sea reclamation by adopting same | |
JP6340248B2 (en) | Mountain retaining wall, how to construct a mountain retaining wall | |
JP6245741B2 (en) | Construction method for buried structures | |
CN207244657U (en) | A kind of vertical antifouling isolation wall construction of both sides ground local stiffening type | |
CN208533543U (en) | Improve the structure and foundation pit SMW supporting construction of foundation pit side-wall waterproof performance | |
CN112709605A (en) | Seepage control construction method for underground water seal cave depot | |
JP4982632B2 (en) | Liquefaction countermeasure method under breakwater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190703 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6618114 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |