JP6610443B2 - Surface defect inspection method for semiconductor silicon wafer - Google Patents
Surface defect inspection method for semiconductor silicon wafer Download PDFInfo
- Publication number
- JP6610443B2 JP6610443B2 JP2016113602A JP2016113602A JP6610443B2 JP 6610443 B2 JP6610443 B2 JP 6610443B2 JP 2016113602 A JP2016113602 A JP 2016113602A JP 2016113602 A JP2016113602 A JP 2016113602A JP 6610443 B2 JP6610443 B2 JP 6610443B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon wafer
- semiconductor silicon
- oxide film
- defects
- wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007547 defect Effects 0.000 title claims description 128
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 95
- 229910052710 silicon Inorganic materials 0.000 title claims description 95
- 239000010703 silicon Substances 0.000 title claims description 95
- 239000004065 semiconductor Substances 0.000 title claims description 85
- 238000000034 method Methods 0.000 title claims description 54
- 238000007689 inspection Methods 0.000 title claims description 44
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 22
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 18
- 238000004140 cleaning Methods 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 17
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 14
- 239000011259 mixed solution Substances 0.000 claims description 12
- 238000000790 scattering method Methods 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 119
- 229960002050 hydrofluoric acid Drugs 0.000 description 24
- 238000004381 surface treatment Methods 0.000 description 21
- 239000000126 substance Substances 0.000 description 19
- 238000005530 etching Methods 0.000 description 16
- 238000005259 measurement Methods 0.000 description 16
- 238000011282 treatment Methods 0.000 description 16
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 10
- 235000011114 ammonium hydroxide Nutrition 0.000 description 10
- 239000013078 crystal Substances 0.000 description 10
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 230000003746 surface roughness Effects 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000008155 medical solution Substances 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
Images
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Description
本発明は、半導体シリコンウェーハの表面欠陥検査方法に関する。 The present invention relates to a surface defect inspection method for a semiconductor silicon wafer.
一般に、半導体シリコンウェーハの製造方法は、チョクラルスキー法(CZ法)やフローティングゾーン法(FZ法)等の方法により単結晶インゴットを育成する単結晶製造プロセスと、製造した単結晶をスライスし、そのウェーハをラッピング、エッチング、研削、研磨等を行い、そのウェーハの表面を鏡面化し、さらにその表面を洗浄する加工プロセスがある。 In general, a semiconductor silicon wafer manufacturing method includes a single crystal manufacturing process for growing a single crystal ingot by a method such as a Czochralski method (CZ method) or a floating zone method (FZ method), and slicing the manufactured single crystal. There is a processing process in which the wafer is lapped, etched, ground, polished, etc., the surface of the wafer is mirror-finished, and the surface is cleaned.
また、鏡面研磨したウェーハは更にエピタキシャル成長を行うプロセスもある。これらのプロセスで製造されたウェーハは更にデバイス製造プロセスで処理され、メモリーやIC等が製造される。 In addition, there is a process in which the mirror-polished wafer is further epitaxially grown. Wafers manufactured by these processes are further processed by a device manufacturing process to manufacture memories, ICs, and the like.
このデバイスを形成する前のシリコンウェーハの品質として、低欠陥が要求されており、特にウェーハ表面において欠陥が少ないことが望まれている。 Low quality is required as a quality of the silicon wafer before forming this device, and it is desired that there are few defects especially on the wafer surface.
半導体シリコンウェーハの表面欠陥の検査方法の一つとして、アンモニア水と過酸化水素水と純水を混合して作製した検査液によって、被検査用半導体シリコンウェーハの表面エッチングを行うことで、半導体シリコンウェーハの表面に形成された欠陥をレーザー散乱方式のウェーハ表面欠陥検査装置で計測して、計測された欠陥数や面内分布によって半導体シリコンウェーハの良品と不良品の判定を行う方法が行われている(特許文献1)。 As one method for inspecting the surface defects of semiconductor silicon wafers, the surface of a semiconductor silicon wafer for inspection is etched with an inspection solution prepared by mixing ammonia water, hydrogen peroxide water, and pure water. Defects formed on the surface of the wafer are measured with a laser scattering type wafer surface defect inspection system, and a method for determining whether a semiconductor silicon wafer is good or defective based on the measured number of defects and in-plane distribution is performed. (Patent Document 1).
上述したように、従来の表面欠陥検査方法では、アンモニア水と過酸化水素水と純水の混合液を使用するため、混合液による半導体シリコンウェーハの表面エッチングによって面荒れが生じてしまう。この結果、レーザー散乱方式の表面欠陥検査装置で表面エッチング前にできていた微小なサイズの欠陥計測が、表面エッチング後には面荒れのためにできないという現象が発生している。 As described above, since the conventional surface defect inspection method uses a mixed solution of ammonia water, hydrogen peroxide solution, and pure water, surface roughness is caused by surface etching of the semiconductor silicon wafer using the mixed solution. As a result, there has been a phenomenon in which minute size defect measurement that has been performed before surface etching by the laser scattering type surface defect inspection apparatus cannot be performed after surface etching due to surface roughness.
本発明は、上記問題点に鑑みてなされたものであって、高感度な半導体シリコンウェーハの表面欠陥の検査方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a highly sensitive inspection method for surface defects of a semiconductor silicon wafer.
上記目的を達成するために、本発明は、半導体シリコンウェーハの表面欠陥の検査方法であって、前記半導体シリコンウェーハの表面に、自然酸化膜の形成とフッ酸洗浄による前記自然酸化膜の剥離とを交互に繰り返して行うことによって、前記半導体シリコンウェーハ表面に存在する欠陥を顕在化させ、該顕在化させた前記半導体ウェーハ表面の欠陥を、レーザー散乱方式のウェーハ表面欠陥検査装置により計測することを特徴とする半導体シリコンウェーハの表面欠陥検査方法を提供する。 In order to achieve the above object, the present invention is a method for inspecting a surface defect of a semiconductor silicon wafer, wherein a natural oxide film is formed on the surface of the semiconductor silicon wafer and the natural oxide film is peeled off by hydrofluoric acid cleaning. By alternately and repeatedly exposing the defects present on the surface of the semiconductor silicon wafer, and measuring the revealed defects on the surface of the semiconductor wafer using a laser scattering type wafer surface defect inspection apparatus. A surface defect inspection method for a semiconductor silicon wafer is provided.
このような半導体シリコンウェーハの表面欠陥検査方法であれば、アンモニア水と過酸化水素水と純水の混合液によるエッチングのような面荒れを起こさずに、半導体シリコンウェーハ表面に存在する欠陥を顕在化させることが可能となる。従って、従来法よりも微小なサイズからの欠陥計測が可能となり、高感度で半導体シリコンウェーハの表面欠陥を検査することが可能となる。 Such a method for inspecting surface defects of a semiconductor silicon wafer reveals defects present on the surface of the semiconductor silicon wafer without causing surface roughness such as etching by a mixed solution of ammonia water, hydrogen peroxide water and pure water. It becomes possible to make it. Therefore, it is possible to measure a defect from a size smaller than that of the conventional method, and to inspect a surface defect of the semiconductor silicon wafer with high sensitivity.
またこのとき、前記半導体シリコンウェーハの表面欠陥検査方法において、前記半導体シリコンウェーハの表面に、前記自然酸化膜の形成と前記フッ酸洗浄による前記自然酸化膜の剥離とを、交互に10回以上繰り返して行うことが好ましい。 Further, at this time, in the surface defect inspection method for the semiconductor silicon wafer, the formation of the natural oxide film and the peeling of the natural oxide film by the hydrofluoric acid cleaning are alternately repeated 10 times or more on the surface of the semiconductor silicon wafer. It is preferable to carry out.
このように、自然酸化膜の形成とフッ酸洗浄による自然酸化膜の剥離とを、交互に10回以上繰り返して行うことで、より高感度に半導体シリコンウェーハの表面欠陥を計測することが可能となる。 In this way, it is possible to measure the surface defects of the semiconductor silicon wafer with higher sensitivity by alternately repeating the formation of the natural oxide film and the peeling of the natural oxide film by hydrofluoric acid cleaning 10 times or more. Become.
また、前記半導体シリコンウェーハ表面への自然酸化膜の形成を、オゾン水、過酸化水素水、及び、塩酸と過酸化水素水と純水の混合液のうちのいずれかを使用して行うことが好ましい。 In addition, the formation of the natural oxide film on the surface of the semiconductor silicon wafer may be performed using any one of ozone water, hydrogen peroxide solution, and a mixed solution of hydrochloric acid, hydrogen peroxide solution, and pure water. preferable.
このように、オゾン水、過酸化水素水、及び、塩酸と過酸化水素水と純水の混合液のうちのいずれかを使用して自然酸化膜を形成することで、より高感度に半導体シリコンウェーハの表面欠陥を計測することが可能となる。 In this way, by forming a natural oxide film using any one of ozone water, hydrogen peroxide water, and a mixed solution of hydrochloric acid, hydrogen peroxide water, and pure water, semiconductor silicon can be formed with higher sensitivity. It becomes possible to measure the surface defects of the wafer.
本発明の半導体シリコンウェーハの表面欠陥検査方法であれば、半導体シリコンウェーハの表面の欠陥、特に微小な欠陥の計測を、従来法より高感度で行うことが可能となる。従って、この検査方法により、従来法では計測できなかった微小な欠陥まで検査された、高品質の半導体シリコンウェーハを得ることが可能となる。 With the surface defect inspection method for a semiconductor silicon wafer according to the present invention, it is possible to measure the surface defects of the semiconductor silicon wafer, particularly minute defects, with higher sensitivity than the conventional method. Therefore, by this inspection method, it is possible to obtain a high-quality semiconductor silicon wafer in which even minute defects that cannot be measured by the conventional method are inspected.
上述したように、従来の半導体シリコンウェーハの表面欠陥検査方法では、欠陥検査装置による欠陥の計測前に行うアンモニア水と過酸化水素水と純水の混合液による表面エッチングにより、シリコンウェーハに面荒れが生じるために、表面エッチング後に微小なサイズの欠陥計測ができない問題があった。そして、本発明者らは、表面処理(表面エッチング)後に、表面処理(表面エッチング)前に計測できていた微小なサイズの欠陥計測が可能となれば、より感度の高い半導体シリコンウェーハの表面欠陥検査を行うことができることを知見した。 As described above, in the conventional method for inspecting surface defects of a semiconductor silicon wafer, the surface of the silicon wafer is roughened by surface etching with a mixed solution of ammonia water, hydrogen peroxide water and pure water before the defect is measured by the defect inspection apparatus. For this reason, there is a problem in that it is impossible to measure a minute size defect after surface etching. And if the present inventors can measure the defect of the minute size which had been able to be measured after the surface treatment (surface etching) and before the surface treatment (surface etching), the surface defects of the semiconductor silicon wafer with higher sensitivity can be obtained. It was found that the inspection can be performed.
そして、本発明者らは上記の目的を達成するために鋭意検討を重ねた結果、欠陥検査装置による欠陥計測前の前処理として、自然酸化膜の形成とフッ酸洗浄による自然酸化膜の剥離とを交互に繰り返して行うことによって、半導体シリコンウェーハに面荒れを起こさずに、前記半導体シリコンウェーハ表面に存在する欠陥を顕在化させることができることを見出し、本発明に到達した。 And as a result of repeated earnest studies to achieve the above object, the present inventors, as a pretreatment before defect measurement by the defect inspection apparatus, formed a natural oxide film and stripped the natural oxide film by hydrofluoric acid cleaning. By alternately repeating the above, it was found that defects existing on the surface of the semiconductor silicon wafer can be revealed without causing surface roughness of the semiconductor silicon wafer, and the present invention has been achieved.
即ち、本発明は、半導体シリコンウェーハの表面欠陥の検査方法であって、前記半導体シリコンウェーハの表面に、自然酸化膜の形成とフッ酸洗浄による前記自然酸化膜の剥離とを交互に繰り返して行うことによって、前記半導体シリコンウェーハ表面に存在する欠陥を顕在化させ、該顕在化させた前記半導体ウェーハ表面の欠陥を、レーザー散乱方式のウェーハ表面欠陥検査装置により計測することを特徴とする半導体シリコンウェーハの表面欠陥検査方法である。 That is, the present invention is a method for inspecting a surface defect of a semiconductor silicon wafer, wherein a natural oxide film is formed on the surface of the semiconductor silicon wafer and the natural oxide film is peeled off alternately by hydrofluoric acid cleaning. A semiconductor silicon wafer characterized by revealing defects present on the surface of the semiconductor silicon wafer and measuring the revealed defects on the surface of the semiconductor wafer with a laser scattering type wafer surface defect inspection apparatus This is a surface defect inspection method.
以下、本発明の半導体シリコンウェーハの表面欠陥検査方法を、図1に示した工程フロー図を用いて説明する。 Hereinafter, the surface defect inspection method for a semiconductor silicon wafer according to the present invention will be described with reference to the process flow diagram shown in FIG.
まず、検査の対象となる被検査用半導体シリコンウェーハを準備する(図1(A))。準備する半導体シリコンウェーハとしては、特に限定されず、鏡面研磨後の半導体シリコンウェーハ、エピタキシャルウェーハ等が挙げられる。 First, an inspected semiconductor silicon wafer to be inspected is prepared (FIG. 1A). The semiconductor silicon wafer to be prepared is not particularly limited, and examples thereof include a semiconductor silicon wafer after mirror polishing and an epitaxial wafer.
次に、半導体シリコンウェーハの表面に、自然酸化膜を形成する(図1(B))。尚、この自然酸化膜形成前に、フッ酸により予め半導体シリコンウェーハを洗浄しても良い。 Next, a natural oxide film is formed on the surface of the semiconductor silicon wafer (FIG. 1B). Note that the semiconductor silicon wafer may be cleaned in advance with hydrofluoric acid before the natural oxide film is formed.
本発明において形成する「自然酸化膜」とは、酸化性雰囲気下での熱処理によって形成される熱酸化膜(膜厚:数百nm〜1μm程度)ではない、例えば洗浄等により形成される酸化膜を意味する。本発明において一回ごとに形成する自然酸化膜の膜厚は、特に限定されないが、例えば、0.9nm〜1.1nmとすることができる。 The “natural oxide film” formed in the present invention is not a thermal oxide film (thickness: about several hundred nm to 1 μm) formed by heat treatment in an oxidizing atmosphere, for example, an oxide film formed by cleaning or the like. Means. In the present invention, the thickness of the natural oxide film formed every time is not particularly limited, but may be, for example, 0.9 nm to 1.1 nm.
また、自然酸化膜の形成は、オゾン水、過酸化水素水、及び、塩酸と過酸化水素水と純水の混合液のうちのいずれかを使用して行うことが好ましい。オゾン水としては、例えば、オゾン濃度が5ppmより高濃度であれば、表面欠陥をより高感度に計測することが可能となるため、好ましい。また、過酸化水素水としては、濃度が0.1〜30wt%が好ましい。また、塩酸と過酸化水素水と純水の混合液としては、例えば、体積比(塩酸:過酸化水素水:純水)で1:1:10〜1:1:5のものが好ましい。なお、過酸化水素水、及び、塩酸と過酸化水素水と純水の混合液の温度は60℃以上が好ましく、80℃に温調するのがより好ましい。 The natural oxide film is preferably formed using any one of ozone water, hydrogen peroxide water, and a mixed solution of hydrochloric acid, hydrogen peroxide water, and pure water. As the ozone water, for example, if the ozone concentration is higher than 5 ppm, it is preferable because surface defects can be measured with higher sensitivity. The hydrogen peroxide solution preferably has a concentration of 0.1 to 30 wt%. Moreover, as a mixed liquid of hydrochloric acid, hydrogen peroxide solution, and pure water, for example, a volume ratio (hydrochloric acid: hydrogen peroxide solution: pure water) of 1: 1: 10 to 1: 1: 5 is preferable. The temperature of the hydrogen peroxide solution and the mixed solution of hydrochloric acid, hydrogen peroxide solution, and pure water is preferably 60 ° C. or higher, and more preferably adjusted to 80 ° C.
次いで、このように形成した自然酸化膜を、フッ酸洗浄により剥離する(図1(C))。フッ酸のHF濃度は、特に限定されないが、例えば0.5〜5.0wt%とすることができる。尚、HF濃度は、濃い程半導体シリコンウェーハ表面の自然酸化膜の剥離時間が短時間で済む。このフッ酸洗浄では、図1(B)で形成した自然酸化膜は除去されるが、半導体シリコンウェーハはエッチングされない。 Next, the natural oxide film thus formed is peeled off by hydrofluoric acid cleaning (FIG. 1C). The HF concentration of hydrofluoric acid is not particularly limited, but can be, for example, 0.5 to 5.0 wt%. It should be noted that the higher the HF concentration, the shorter the stripping time of the natural oxide film on the semiconductor silicon wafer surface. In this hydrofluoric acid cleaning, the natural oxide film formed in FIG. 1B is removed, but the semiconductor silicon wafer is not etched.
そして、本発明においては、この自然酸化膜の形成(図1(B))と、フッ酸洗浄による自然酸化膜の剥離(図1(C))とを、交互に繰り返すことを特徴とする。 In the present invention, the formation of the natural oxide film (FIG. 1B) and the peeling of the natural oxide film by hydrofluoric acid cleaning (FIG. 1C) are repeated alternately.
このように、自然酸化膜の形成(図1(B))と、フッ酸洗浄による自然酸化膜の剥離(図1(C))とを、交互に繰り返す処理を行うことによって、アンモニア水と過酸化水素水と純水の混合液によるエッチングのような面荒れを起こさずに、半導体シリコンウェーハ表面に存在する欠陥を顕在化させる処理をすることができる。この結果、半導体シリコンウェーハ表面に自然酸化膜の形成とフッ酸洗浄による自然酸化膜剥離を行う処理後においても、半導体シリコンウェーハ表面に面荒れを起こさず、処理前と同様な微小なサイズの欠陥計測が可能となる。 In this manner, the process of alternately repeating the formation of the natural oxide film (FIG. 1 (B)) and the peeling of the natural oxide film by the hydrofluoric acid cleaning (FIG. 1 (C)) allows the aqueous ammonia and hydrogen peroxide to be removed. Without causing surface roughness such as etching with a mixed solution of hydrogen oxide water and pure water, it is possible to perform a process of revealing defects present on the surface of the semiconductor silicon wafer. As a result, even after processing to form a natural oxide film on the surface of the semiconductor silicon wafer and remove the natural oxide film by fluoric acid cleaning, the surface of the semiconductor silicon wafer is not roughened, and the defects are as small as before the processing. Measurement is possible.
自然酸化膜の形成とフッ酸洗浄による自然酸化膜の剥離との繰り返し回数は特に限定されないが、交互に10回以上、50回以下繰り返して行うことで、より高感度な欠陥検査を行うことができるため好ましい。 The number of repetitions of the formation of the natural oxide film and the peeling of the natural oxide film by the hydrofluoric acid cleaning is not particularly limited, but it is possible to perform a more sensitive defect inspection by alternately repeating 10 times or more and 50 times or less. This is preferable because it is possible.
また、半導体シリコンウェーハ表面への自然酸化膜の形成(図1(B))とフッ酸洗浄による自然酸化膜剥離(図1(C))は、処理槽に半導体シリコンウェーハを浸漬するバッチ方式と、半導体シリコンウェーハを回転保持させながら交互に薬液を塗布する枚葉スピン方式のいずれを用いても可能である。 In addition, the formation of a natural oxide film on the surface of a semiconductor silicon wafer (FIG. 1B) and the removal of the natural oxide film by cleaning with hydrofluoric acid (FIG. 1C) include a batch method in which a semiconductor silicon wafer is immersed in a treatment tank. Any one of the single wafer spin methods in which a chemical solution is alternately applied while rotating and holding a semiconductor silicon wafer can be used.
次いで、レーザー散乱方式のウェーハ表面欠陥検査装置でウェーハ表面の欠陥を計測する(図1(D))。レーザー散乱方式のウェーハ表面欠陥検査装置としては、例えば、ウェーハ表面欠陥検査装置KLA−Tencor社製Surfscan SP3が挙げられる。 Next, the wafer surface defects are measured with a laser scattering type wafer surface defect inspection apparatus (FIG. 1D). Examples of the laser scattering type wafer surface defect inspection apparatus include a wafer surface defect inspection apparatus Surfscan SP3 manufactured by KLA-Tencor.
本発明の表面欠陥検査方法によれば、アンモニア水と過酸化水素水と純水の混合液による表面処理を行う方法では計測できなかった、例えば30nm〜の小さい欠陥サイズからの計測が可能となる。従って、この検査方法により、従来法では計測できなかった微小な欠陥まで検査された、高品質の半導体シリコンウェーハを得ることが可能となる。 According to the surface defect inspection method of the present invention, measurement from a small defect size of, for example, 30 nm or less, which cannot be measured by the method of performing surface treatment with a mixed solution of ammonia water, hydrogen peroxide solution, and pure water, becomes possible. . Therefore, by this inspection method, it is possible to obtain a high-quality semiconductor silicon wafer in which even minute defects that cannot be measured by the conventional method are inspected.
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these Examples.
(実施例1)
図2に示すフローに従い、半導体シリコンウェーハにバッチ方式表面処理方法により表面処理を行い、表面欠陥の検査を行った。
Example 1
According to the flow shown in FIG. 2, the semiconductor silicon wafer was subjected to surface treatment by a batch surface treatment method, and surface defects were inspected.
まず、直径が300mmの両面を鏡面で仕上げたシリコン単結晶の半導体シリコンウェーハ(PW1(低欠陥品)、PW2(低欠陥品)、PW3(欠陥有品))、エピタキシャルウェーハ(EPW1)を準備する(図2(1))。次に、この半導体シリコンウェーハの欠陥検査前の欠陥数を計測するために、ウェーハ表面欠陥検査装置(KLA−Tencor社製Surfscan SP3)による≧32nmの欠陥計測を行った(図2(2))。計測の結果、検査前の欠陥個数は、全て50個以下で、特徴的なパターンも無く、良好な結果であった。 First, a silicon single crystal semiconductor silicon wafer (PW1 (low defect product), PW2 (low defect product), PW3 (defective product)), and epitaxial wafer (EPW1), both surfaces of which are 300 mm in diameter and finished with mirror surfaces, are prepared. (FIG. 2 (1)). Next, in order to measure the number of defects before defect inspection of this semiconductor silicon wafer, a defect measurement of ≧ 32 nm was performed by a wafer surface defect inspection apparatus (Surfscan SP3 manufactured by KLA-Tencor) (FIG. 2 (2)). . As a result of the measurement, the number of defects before the inspection was all 50 or less, and there were no characteristic patterns.
次に、以下のようにして、バッチ方式表面処理方法による表面処理を実施した。上記欠陥計測後の各半導体シリコンウェーハに対してフッ酸洗浄を施し(図2(3))、純水リンス(図2(4))、オゾン水処理(図2(5))を行い、その後、フッ酸洗浄(図2(3))〜オゾン水処理(図2(5))を繰り返して行った。各半導体シリコンウェーハに対する処理内容(酸化膜剥離回数)を表1に示す。また、薬液の浸漬時間は各処理槽ともに1分間とした。 Next, the surface treatment by the batch type surface treatment method was performed as follows. Each semiconductor silicon wafer after the defect measurement is cleaned with hydrofluoric acid (FIG. 2 (3)), rinsed with pure water (FIG. 2 (4)), and treated with ozone water (FIG. 2 (5)). The hydrofluoric acid cleaning (FIG. 2 (3)) to the ozone water treatment (FIG. 2 (5)) were repeated. Table 1 shows the processing contents (the number of oxide film separations) for each semiconductor silicon wafer. Further, the immersion time of the chemical solution was set to 1 minute for each treatment tank.
薬液処理条件として、フッ酸のHF濃度は1.0wt%、オゾン水のオゾン濃度は10ppmとした。HF濃度は濃い程半導体シリコンウェーハ表面の自然酸化膜の剥離時間が短時間で済む効果がある。オゾン水濃度は5ppmより高濃度であれば、より高感度に表面欠陥の計測を行うことができる。ただし、オゾン水の場合、濃いほど効果が得られるというものではないため、実施例1では10ppmで行った。 As chemical treatment conditions, the HF concentration of hydrofluoric acid was 1.0 wt% and the ozone concentration of ozone water was 10 ppm. The higher the HF concentration, the shorter the time required for stripping the natural oxide film on the semiconductor silicon wafer surface. If the ozone water concentration is higher than 5 ppm, surface defects can be measured with higher sensitivity. However, in the case of ozone water, the effect is not obtained as the concentration increases, so in Example 1, it was performed at 10 ppm.
フッ酸とオゾン水の繰り返しによるシリコンウェーハ表面処理においては、オゾン水でウェーハ表面に形成された自然酸化膜のみがフッ酸で除去されるため、1回の薬液処理で1.0nmの表面エッチングを行うことになる。つまり、10回の酸化膜剥離を行うことでシリコンウェーハ表面を10nmエッチングしたことになり、以下同様に、20回の酸化膜剥離で20nm、30回の酸化膜剥離で30nm、50回の酸化膜剥離で50nmをエッチングしたことになる。 In silicon wafer surface treatment by repetitive hydrofluoric acid and ozone water, only the natural oxide film formed on the wafer surface with ozone water is removed with hydrofluoric acid, so 1.0 nm surface etching is performed with one chemical treatment. Will do. In other words, the surface of the silicon wafer was etched by 10 nm by performing 10 times of oxide film peeling. Similarly, 20 nm after 20 times of oxide film peeling, 30 nm after 30 times of oxide film peeling, and 50 times of oxide film. 50 nm is etched by peeling.
また、実施例1においては、薬液浸漬時に半導体シリコンウェーハを収納するカセットは使用せず、半導体シリコンウェーハのみを浸漬するカセットレス自動処理装置を使用した。このカセットレス自動処理装置に半導体シリコンウェーハの薬液浸漬プログラムを設定して実験を行った。 Moreover, in Example 1, the cassetteless automatic processing apparatus which immerses only a semiconductor silicon wafer was used without using the cassette which accommodates a semiconductor silicon wafer at the time of chemical | medical solution immersion. An experiment was conducted by setting a chemical silicon wafer chemical immersion program in this cassetteless automatic processing apparatus.
このような表面処理後の各半導体シリコンウェーハに対して、純水リンス(図2(6))、乾燥(図2(7))を行い、ウェーハ表面欠陥検査装置(KLA−Tencor社製Surfscan SP3)を用いて≧32nmの欠陥計測を行った(図2(8))。表2にバッチ方式表面処理方法を用いた場合の欠陥計測結果を示す。 Each semiconductor silicon wafer after such surface treatment is rinsed with pure water (FIG. 2 (6)) and dried (FIG. 2 (7)), and a wafer surface defect inspection apparatus (Surfscan SP3 manufactured by KLA-Tencor) ) Was used to measure defects of ≧ 32 nm (FIG. 2 (8)). Table 2 shows the defect measurement results when the batch surface treatment method is used.
上記結果から、ウェーハ表面欠陥が無いEPW1は、酸化膜剥離回数を増加させても欠陥個数の増加は認められなかったが、結晶欠陥や加工起因の欠陥のあるPW1〜3は、その欠陥レベルによって、欠陥増加個数に差が現われた。PW1とPW2は加工起因の欠陥、PW3は結晶起因の欠陥によって欠陥個数の増加が認められた。 From the above results, EPW1 having no wafer surface defects did not increase in the number of defects even when the number of oxide film separations was increased. However, PW1 to PW3 having crystal defects and defects caused by processing depend on the defect level. A difference in the number of defects increased. PW1 and PW2 were found to have increased defects due to processing-induced defects, and PW3 was found to have increased defects due to crystals.
(実施例2)
図2に示すフローに従い、半導体シリコンウェーハに枚葉スピン方式表面処理方法で表面処理を行い、表面欠陥の検査を行った。
(Example 2)
According to the flow shown in FIG. 2, the semiconductor silicon wafer was subjected to surface treatment by a single wafer spin method surface treatment method, and surface defects were inspected.
直径が300mmの両面を鏡面で仕上げたシリコン単結晶の半導体シリコンウェーハ(PW4(低欠陥品)、PW5(低欠陥品)、PW6(欠陥有品))、エピタキシャルウェーハ(EPW2)を準備する(図2(1))。次に、この半導体シリコンウェーハの欠陥検査前の欠陥数を計測するために、ウェーハ表面欠陥検査装置(KLA−Tencor社製Surfscan SP3)による≧32nmの欠陥計測を行った。計測の結果、検査前の欠陥個数は、全て50個以下で、特徴的なパターンも無く、良好な結果であった。 A silicon single crystal semiconductor silicon wafer (PW4 (low defect product), PW5 (low defect product), PW6 (defective product)), and epitaxial wafer (EPW2) having a mirror finished surface with a diameter of 300 mm are prepared (see FIG. 2 (1)). Next, in order to measure the number of defects before defect inspection of this semiconductor silicon wafer, defect measurement of ≧ 32 nm was performed by a wafer surface defect inspection apparatus (Surfscan SP3 manufactured by KLA-Tencor). As a result of the measurement, the number of defects before the inspection was all 50 or less, and there were no characteristic patterns.
次に、枚葉スピン方式表面処理方法による表面処理を実施した。上記欠陥計測後の各半導体シリコンウェーハに対してフッ酸洗浄を施し(図2(3))、純水リンス(図2(4))、オゾン水処理(図2(5))を行い、その後、フッ酸洗浄(図2(3))〜オゾン水処理(図2(5))を繰り返して行った。各半導体シリコンウェーハに対する処理内容(酸化膜剥離回数)を表3に示す。また、薬液による処理時間は、フッ酸洗浄時間が1分間、純水リンス時間が10秒間、オゾン水処理時間が1分間とした。 Next, the surface treatment by the single wafer spin method surface treatment method was performed. Each semiconductor silicon wafer after the defect measurement is cleaned with hydrofluoric acid (FIG. 2 (3)), rinsed with pure water (FIG. 2 (4)), and treated with ozone water (FIG. 2 (5)). The hydrofluoric acid cleaning (FIG. 2 (3)) to the ozone water treatment (FIG. 2 (5)) were repeated. Table 3 shows the processing contents (the number of oxide film separations) for each semiconductor silicon wafer. Further, the treatment time with the chemical solution was such that the hydrofluoric acid cleaning time was 1 minute, the pure water rinse time was 10 seconds, and the ozone water treatment time was 1 minute.
また、薬液処理条件として、HF濃度は1.0wt%、オゾン水濃度は10ppmとした。HF濃度は濃い程半導体シリコンウェーハ表面の自然酸化膜の剥離時間が短時間で済む効果がある。オゾン水濃度は5ppmより高濃度であれば、より高感度に表面欠陥の計測を行うことができる。ただし、オゾン水の場合、濃いほど効果が得られるというものではないため、実施例2では10ppmで行った。フッ酸とオゾン水の繰り返しによるシリコンウェーハ表面処理においては、オゾン水でウェーハ表面に形成された自然酸化膜のみがフッ酸で除去されるため、1回の薬液処理で1.0nmの表面エッチングを行うことになる。つまり、10回の酸化膜剥離を行うことでシリコンウェーハ表面を10nmエッチングしたことになり、以下同様に、20回の酸化膜剥離で20nm、30回の酸化膜剥離で30nm、50回の酸化膜剥離で50nmをエッチングしたことになる。また、実施例2では枚葉スピン自動処理装置を使用したが、この枚葉スピン自動処理装置に半導体シリコンウェーハの処理プログラムを設定して実験を行った。 Moreover, as chemical | medical solution processing conditions, HF density | concentration was 1.0 wt% and ozone water density | concentration was 10 ppm. The higher the HF concentration, the shorter the time required for stripping the natural oxide film on the surface of the semiconductor silicon wafer. If the ozone water concentration is higher than 5 ppm, surface defects can be measured with higher sensitivity. However, in the case of ozone water, the effect is not obtained as the concentration increases, so in Example 2, it was performed at 10 ppm. In silicon wafer surface treatment by repetitive hydrofluoric acid and ozone water, only the natural oxide film formed on the wafer surface with ozone water is removed with hydrofluoric acid, so 1.0 nm surface etching is performed with one chemical treatment. Will do. In other words, the surface of the silicon wafer was etched by 10 nm by performing 10 times of oxide film peeling. Similarly, 20 nm after 20 times of oxide film peeling, 30 nm after 30 times of oxide film peeling, and 50 times of oxide film. 50 nm is etched by peeling. In Example 2, an automatic single wafer spin processing apparatus was used, but an experiment was performed by setting a semiconductor silicon wafer processing program in the single wafer spin automatic processing apparatus.
このような表面処理後の各半導体シリコンウェーハに対して、純水リンス(図2(6))、乾燥(図2(7))を行い、ウェーハ表面欠陥検査装置(KLA−Tencor社製Surfscan SP3)を用いて≧32nmの欠陥計測を行った(図2(8))。表4に枚葉スピン方式表面処理方法を用いた場合の欠陥計測結果を示す。 Each semiconductor silicon wafer after such surface treatment is rinsed with pure water (FIG. 2 (6)) and dried (FIG. 2 (7)), and a wafer surface defect inspection apparatus (Surfscan SP3 manufactured by KLA-Tencor) ) Was used to measure defects of ≧ 32 nm (FIG. 2 (8)). Table 4 shows the defect measurement results when the single wafer spin method surface treatment method is used.
上記結果から、ウェーハ表面欠陥が無いEPW2は、酸化膜剥離回数を増加させても欠陥個数の増加は認められなかったが、結晶欠陥や加工起因の欠陥のあるPW4〜6は、その欠陥レベルによって、欠陥増加個数に差が現われた。PW4とPW5は加工起因の欠陥、PW6は結晶起因の欠陥によって欠陥個数の増加が認められた。 From the above results, EPW2 having no wafer surface defects did not increase the number of defects even when the number of oxide film peeling was increased, but PW4 to 6 having crystal defects or processing-induced defects depend on the defect level. A difference in the number of defects increased. PW4 and PW5 were found to increase in the number of defects due to processing-induced defects, and PW6 was found to be due to crystal-induced defects.
(比較例)
比較例として、特開2000−208578号公報に記載されているアンモニア水と過酸化水素水と純水の混合液を用いて、図3に示すフローに従い、半導体シリコンウェーハの表面処理を行い、表面欠陥検査を行った。
(Comparative example)
As a comparative example, surface treatment of a semiconductor silicon wafer is performed according to the flow shown in FIG. 3 using a mixed solution of ammonia water, hydrogen peroxide water and pure water described in JP-A-2000-208578. Defect inspection was performed.
まず、直径が300mmの両面を鏡面で仕上げたシリコン単結晶の半導体シリコンウェーハ(PW7(低欠陥品)、PW8(低欠陥品)、PW9(欠陥有品))、エピタキシャルウェーハ(EPW3)を準備する(図3(1))。次に、この半導体シリコンウェーハの欠陥検査前の欠陥数を計測するために、ウェーハ表面欠陥検査装置(KLA−Tencor社製Surfscan SP3)による≧32nmの欠陥計測を行った(図3(2))。計測の結果、検査前の欠陥個数は、全て50個以下で、特徴的なパターンも無く、良好な結果であった。 First, a silicon single crystal semiconductor silicon wafer (PW7 (low defect product), PW8 (low defect product), PW9 (defective product)), and epitaxial wafer (EPW3) having a mirror finished surface with a diameter of 300 mm are prepared. (FIG. 3 (1)). Next, in order to measure the number of defects before the defect inspection of this semiconductor silicon wafer, a defect measurement of ≧ 32 nm was performed by a wafer surface defect inspection apparatus (Surfscan SP3 manufactured by KLA-Tencor) (FIG. 3 (2)). . As a result of the measurement, the number of defects before the inspection was all 50 or less, and there were no characteristic patterns.
次に、アンモニア水と過酸化水素水の濃度が各々アンモニア3.0wt%、過酸化水素0.6wt%になるように薬液を作製し、この薬液によりバッチ方式表面処理方法で表面処理を実施し(図3(3))、その後純水リンス(図3(4))を行い、これを1〜5回行った。この時の薬液温度は70℃、処理時間は6分30秒間で行った。尚、実施例との比較がし易いように、1回の薬液処理のエッチング量を10nmとし、そのため1回の薬液処理時間を6分30秒間とした。尚、このアンモニア水と過酸化水素水混合液の条件のシリコンウェーハ表面エッチング速度は、1.5nm/minであるため、1回の処理によるエッチング量が10nmとなるように処理時間を設定した。各半導体シリコンウェーハに対する処理内容を表5に示す。 Next, a chemical solution is prepared so that the concentrations of ammonia water and hydrogen peroxide water are 3.0 wt% ammonia and 0.6 wt% hydrogen peroxide, respectively, and surface treatment is performed with this chemical solution by a batch surface treatment method. (FIG. 3 (3)) and then a pure water rinse (FIG. 3 (4)) was performed, and this was performed 1 to 5 times. The chemical temperature at this time was 70 ° C., and the treatment time was 6 minutes and 30 seconds. For easy comparison with the examples, the etching amount for one chemical treatment was set to 10 nm, and therefore the time for one chemical treatment was set to 6 minutes 30 seconds. Since the etching rate of the silicon wafer surface under the condition of the ammonia water and hydrogen peroxide solution mixture is 1.5 nm / min, the processing time was set so that the etching amount by one processing becomes 10 nm. Table 5 shows the processing contents for each semiconductor silicon wafer.
比較例の薬液処理1回あたりのシリコンウェーハ表面のエッチング量は10nmであり、以下同様に、2回の薬液処理で20nm、3回の薬液処理で30nm、5回の薬液処理で50nmをエッチングしたことになる。 The etching amount of the silicon wafer surface per chemical solution treatment in the comparative example is 10 nm, and similarly, 20 nm is obtained by two chemical treatments, 30 nm is obtained by three chemical treatments, and 50 nm is etched by five chemical treatments. It will be.
このような表面処理後の各半導体シリコンウェーハに対して、乾燥(図3(5))を行い、ウェーハ表面欠陥検査装置(KLA−Tencor社製Surfscan SP3)を用いて≧32nmの欠陥計測を行った(図3(6))。表6に比較例による欠陥計測結果を示す。 Each semiconductor silicon wafer after such surface treatment is dried (FIG. 3 (5)), and a defect measurement of ≧ 32 nm is performed using a wafer surface defect inspection apparatus (Surfscan SP3 manufactured by KLA-Tencor). (FIG. 3 (6)). Table 6 shows the defect measurement results of the comparative example.
上記結果より、2回目までの結果においては、実施例と同様に、ウェーハ表面欠陥が無いEPW3は、酸化膜剥離回数を増加させても欠陥個数の増加は認められなかったが、PW7(低欠陥品)、PW8(低欠陥品)、PW9(欠陥有品)では欠陥の増加が認められた。しかしながら、3回目以降の実験結果において、アンモニア水と過酸化水素水のエッチングによるシリコンウェーハ表面の面荒れのため、ウェーハ表面欠陥の測定ができなかった。 From the above results, in the results up to the second time, as in the example, EPW3 without wafer surface defects did not increase in the number of defects even when the number of oxide film peeling was increased, but PW7 (low defect Product), PW8 (low defect product), and PW9 (defective product), an increase in defects was observed. However, in the third and subsequent experimental results, the wafer surface defect could not be measured due to surface roughness of the silicon wafer surface caused by etching with ammonia water and hydrogen peroxide solution.
以上により、実施例1及び実施例2による半導体シリコンウェーハの表面欠陥の検査方法では、比較例に比べ、半導体シリコンウェーハの表面欠陥を高感度に計測することができた。 As described above, in the method for inspecting the surface defect of the semiconductor silicon wafer according to Example 1 and Example 2, it was possible to measure the surface defect of the semiconductor silicon wafer with higher sensitivity than in the comparative example.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
Claims (3)
前記半導体シリコンウェーハの表面に、自然酸化膜の形成とフッ酸洗浄による前記自然酸化膜の剥離とを交互に繰り返して行うことによって、前記半導体シリコンウェーハ表面に存在する欠陥を顕在化させる処理を行い、
該欠陥を顕在化させる処理に次いで、前記半導体ウェーハ表面の欠陥を、レーザー散乱方式のウェーハ表面欠陥検査装置により計測することを特徴とする半導体シリコンウェーハの表面欠陥検査方法。 A method for inspecting a surface defect of a semiconductor silicon wafer,
The surface of the semiconductor silicon wafer by performing alternately repeated a release of the natural oxide film by forming and hydrofluoric acid cleaning of a native oxide film, a process Ru is actualized defects present in the semiconductor silicon wafer surface Done
Following the processing of Ru is manifested the defects, the defects of the semiconductor wafer surface, a surface defect inspection method of a semiconductor silicon wafer, comprising measuring the wafer surface defect inspection apparatus of a laser scattering method.
The natural oxide film is formed on the surface of the semiconductor silicon wafer using any one of ozone water, hydrogen peroxide solution, and a mixed solution of hydrochloric acid, hydrogen peroxide solution, and pure water. A method for inspecting a surface defect of a semiconductor silicon wafer according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016113602A JP6610443B2 (en) | 2016-06-07 | 2016-06-07 | Surface defect inspection method for semiconductor silicon wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016113602A JP6610443B2 (en) | 2016-06-07 | 2016-06-07 | Surface defect inspection method for semiconductor silicon wafer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017219409A JP2017219409A (en) | 2017-12-14 |
JP6610443B2 true JP6610443B2 (en) | 2019-11-27 |
Family
ID=60656009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016113602A Active JP6610443B2 (en) | 2016-06-07 | 2016-06-07 | Surface defect inspection method for semiconductor silicon wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6610443B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019049641A1 (en) * | 2017-09-06 | 2019-03-14 | 信越半導体株式会社 | Silicon wafer evaluation method and silicon wafer manufacturing method |
JP6988761B2 (en) * | 2018-10-11 | 2022-01-05 | 信越半導体株式会社 | Cleaning processing equipment and cleaning method for semiconductor silicon wafers |
TWI770906B (en) | 2021-03-26 | 2022-07-11 | 環球晶圓股份有限公司 | Wafer surface defect inspection method and apparatus thereof |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1187449A (en) * | 1997-09-01 | 1999-03-30 | Matsushita Electron Corp | Crystal evaluation method |
JP3439332B2 (en) * | 1997-10-24 | 2003-08-25 | Necエレクトロニクス株式会社 | How to measure crystal defects |
JP2002228596A (en) * | 2001-01-31 | 2002-08-14 | Shin Etsu Handotai Co Ltd | Measurement method for semiconductor wafer and manufacturing method for semiconductor wafer |
JP4003943B2 (en) * | 2002-01-09 | 2007-11-07 | コバレントマテリアル株式会社 | Evaluation method of octahedral voids in silicon wafer |
US20070105247A1 (en) * | 2002-01-30 | 2007-05-10 | Advanced Micro Devices | Method And Apparatus For Detecting The Endpoint Of A Chemical-Mechanical Polishing Operation |
JP2004343013A (en) * | 2003-05-19 | 2004-12-02 | Shin Etsu Handotai Co Ltd | Etching method of silicon material |
JP4419712B2 (en) * | 2004-06-25 | 2010-02-24 | 信越半導体株式会社 | Evaluation method of SOI wafer |
JP2006073902A (en) * | 2004-09-03 | 2006-03-16 | Sony Corp | Method of detecting foreign material on substrate surface and method of treating substrate surface |
JP5900305B2 (en) * | 2012-12-11 | 2016-04-06 | 信越半導体株式会社 | Method for measuring resistivity of N-type silicon epitaxial layer |
JP5638098B2 (en) * | 2013-01-28 | 2014-12-10 | 株式会社日立ハイテクノロジーズ | Inspection device and inspection condition acquisition method |
JP2015220284A (en) * | 2014-05-15 | 2015-12-07 | 信越半導体株式会社 | Wafer cleaning method |
-
2016
- 2016-06-07 JP JP2016113602A patent/JP6610443B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017219409A (en) | 2017-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6933187B2 (en) | Method for removing metal impurities from semiconductor silicon wafers | |
JP6610443B2 (en) | Surface defect inspection method for semiconductor silicon wafer | |
WO2005057645A1 (en) | Silicon wafer processing method | |
JP4817887B2 (en) | Semiconductor substrate cleaning method | |
TWI767046B (en) | Evaluation method of silicon wafer and manufacturing method of silicon wafer | |
JP6651134B2 (en) | Method for detecting crystal defects in semiconductor single crystal substrate | |
JP3717691B2 (en) | Silicon wafer evaluation method | |
JP6731161B2 (en) | Method for identifying defect region of silicon single crystal | |
JP3651440B2 (en) | Silicon wafer evaluation method and etching solution thereof | |
KR20110036990A (en) | Method of growing uniform oxide layer and method of cleaning substrate | |
JP6536502B2 (en) | Method of manufacturing wafer for particle counter calibration | |
JP7279753B2 (en) | Silicon wafer cleaning method and manufacturing method | |
JP6520777B2 (en) | Evaluation method of silicon single crystal wafer | |
JP2985583B2 (en) | Inspection method of damaged layer on mirror-finished surface of silicon wafer and thickness measurement method | |
JP7484808B2 (en) | Method for evaluating crystal defects in semiconductor single crystal substrate | |
WO2019049641A1 (en) | Silicon wafer evaluation method and silicon wafer manufacturing method | |
JP2894154B2 (en) | Method for measuring the depth of the affected layer on the silicon wafer surface | |
JP7571691B2 (en) | Silicon wafer cleaning method and manufacturing method, and method for evaluating hydrogen peroxide concentration in cleaning solution and method for managing hydrogen peroxide concentration | |
JP7484825B2 (en) | Methods for evaluating the cleaning and drying processes | |
JP2007123486A (en) | Surface treatment method of sapphire substrate | |
JP5742739B2 (en) | Screening method of silicon substrate for metal contamination assessment | |
JP2024078489A (en) | Method for removing device pattern and method for evaluating crystal defect in silicon wafers using the same | |
JP2022138089A (en) | Method of cleaning silicon wafer, method of manufacturing silicon wafer, and silicon wafer | |
TW202300237A (en) | Method for cleaning silicon wafer, method for producing silicon wafer, and silicon wafer | |
JPH11330042A (en) | Inspection for specularly beveled part of silicon wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180618 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190313 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190409 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191014 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6610443 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |