JP6602228B2 - Method for producing concrete for slip foam method and slip foam method - Google Patents
Method for producing concrete for slip foam method and slip foam method Download PDFInfo
- Publication number
- JP6602228B2 JP6602228B2 JP2016031748A JP2016031748A JP6602228B2 JP 6602228 B2 JP6602228 B2 JP 6602228B2 JP 2016031748 A JP2016031748 A JP 2016031748A JP 2016031748 A JP2016031748 A JP 2016031748A JP 6602228 B2 JP6602228 B2 JP 6602228B2
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- reducing agent
- water reducing
- slip foam
- slip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004567 concrete Substances 0.000 title claims description 59
- 238000000034 method Methods 0.000 title claims description 36
- 239000006260 foam Substances 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 67
- 239000003638 chemical reducing agent Substances 0.000 claims description 52
- 238000010276 construction Methods 0.000 claims description 23
- 239000002253 acid Substances 0.000 claims description 22
- 239000004568 cement Substances 0.000 claims description 20
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 claims description 19
- 238000004898 kneading Methods 0.000 claims description 13
- 238000009415 formwork Methods 0.000 claims description 7
- 239000011381 foam concrete Substances 0.000 claims 1
- 238000007665 sagging Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 239000002352 surface water Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 238000009751 slip forming Methods 0.000 description 4
- 235000019738 Limestone Nutrition 0.000 description 3
- 239000011398 Portland cement Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000006028 limestone Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011044 quartzite Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Bridges Or Land Bridges (AREA)
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は、主に、土木・建築業界等において使用されるスリップフォーム工法用コンクリートの製造方法およびそれを用いたスリップフォーム工法に関する。 The present invention mainly relates to a method for producing concrete for a slip form method used in the civil engineering / architecture industry and the like, and a slip form method using the same.
スリップフォーム工法とは、道路の中央分離帯、円形水路、側溝、管巻き、立壁などの道路関連施設、土木用構造物等の長寸法で同一断面形状を有するコンクリート構造物の施工に適した方法であり、締固め装置と整形装置を備えた自走式施工機械を用い、長寸法コンクリートを所定の同一断面形状に締固めて整形しながら型枠(モールド)をスリップさせ、連続的にコンクリート構造物を施工する工法である。 The slip form method is a method suitable for construction of concrete structures having the same cross-sectional shape with long dimensions, such as road-related facilities such as road median strips, circular waterways, gutters, pipe windings, standing walls, and civil engineering structures. Using a self-propelled construction machine equipped with a compacting device and a shaping device, the mold is slipped while shaping and compacting the long-dimension concrete into the same cross-sectional shape as a continuous concrete structure It is a construction method for constructing objects.
スリップフォーム工法に用いられるコンクリートは、製造、運搬及び施工に必要な流動性を保持し、かつ、振動成形後において速やかに型枠をスリップできるように、打設されたコンクリートが自重によるダレやハラミが生じない、変形抵抗性を有することが要求されている。 The concrete used in the slip-form method retains the fluidity necessary for manufacturing, transportation and construction, and the placed concrete can be sag and struck by its own weight so that the formwork can slip quickly after vibration molding. Is required to have deformation resistance.
従来、スリップフォーム工法に用いられるコンクリートについては、自重によるハラミの発生を防止するために、スランプの小さい硬練りコンクリートが使用されている。このような硬練りコンクリートは、流動性が悪いために、生コン工場で製造してアジテータ車で運搬するとき、出荷時のホッパー閉塞、工事現場到着時の排出困難等の問題点を抱える。一方、ダンプトラック輸送としても、運搬時に品質劣化の虞があるという問題点を抱えている。 Conventionally, as for the concrete used in the slip form method, a kneaded concrete with a small slump is used in order to prevent the occurrence of harami due to its own weight. Since such hard concrete has poor fluidity, when it is manufactured at a ready-mixed factory and transported by an agitator car, it has problems such as hopper blockage at the time of shipment and difficulty in discharging when arriving at the construction site. On the other hand, dump truck transportation also has a problem that quality may be deteriorated during transportation.
このため、減水剤と天然多糖類および/または水溶性アクリル系高分子とを特定の割合で配合したセメント添加剤を現場で添加する方法等が提案されている(特許文献1)。しかしながら、有機系の増粘剤や粘性調整剤を現場で添加する方法では、コンクリートの粘性が高くなり作業性が低下するうえ、型枠にコンクリートが付着しやすくなり仕上がりが悪く美観が損なわれるという課題があった。また、骨材の表面水量が増加すると、ダレやハラミが大きくなるという課題があった。 For this reason, a method of adding a cement additive in which a water reducing agent and a natural polysaccharide and / or a water-soluble acrylic polymer are blended at a specific ratio has been proposed (Patent Document 1). However, in the method of adding an organic thickener or viscosity modifier on site, the viscosity of the concrete increases and workability decreases, and the concrete tends to adhere to the formwork, resulting in poor finish and impaired aesthetics. There was a problem. Moreover, when the surface water amount of the aggregate increases, there is a problem that sagging and harassment increase.
そこで、本発明では、スリップフォーム工法施工後にダレやハラミの発生を抑制でき、型枠へ付着せず美観に優れる構造物を製造できるスリップフォーム工法用コンクリートの製造方法を提供する。 Therefore, the present invention provides a method for producing concrete for a slip form method, which can suppress the occurrence of sagging and harassment after construction of the slip form method, and can produce a structure that does not adhere to a mold and has an excellent appearance.
本発明者らは、前記目的を達成するために、鋭意検討した結果、本発明を完成した。すなわち、本発明は、以下の[1]〜[3]を提供するものである。 The inventors of the present invention have completed the present invention as a result of intensive studies in order to achieve the above object. That is, the present invention provides the following [1] to [3].
[1] 少なくとも、セメント、ポリカルボン酸系減水剤、ナフタレンスルホン酸系減水剤、骨材、及び混練水を混練してなるスリップフォーム工法用コンクリートの製造方法であって、
ポリカルボン酸系減水剤もしくはナフタレンスルホン酸系減水剤のいずれか一方と、セメント、骨材、及び混練水を混練しておき、施工現場でスリップフォーム型枠に打設する前に、もう一方の減水剤を加えて混練することを特徴とするスリップフォーム工法用コンクリートの製造方法、を提供する。
[2]ポリカルボン酸系減水剤を含むコンクリートを混練しておき、施工現場において、ナフタレンスルホン酸系減水剤を後添加する[1]記載のスリップフォーム工法用コンクリートの製造方法、を提供する。
[3] [1]又は[2]に記載の方法で製造されたスリップフォーム工法用コンクリートを用いてなるスリップフォーム工法、を提供する。
[1] A method for producing concrete for a slip foam method comprising kneading at least cement, a polycarboxylic acid-based water reducing agent, a naphthalenesulfonic acid-based water reducing agent, an aggregate, and kneaded water,
Either one of polycarboxylic acid-based water reducing agent or naphthalene sulfonic acid-based water reducing agent is mixed with cement, aggregate, and kneaded water, and before placing on the slip foam formwork at the construction site, the other There is provided a method for producing concrete for a slip foam method, characterized by adding a water reducing agent and kneading.
[2] A method for producing concrete for a slip foam method according to [1], in which concrete containing a polycarboxylic acid-based water reducing agent is kneaded and a naphthalene sulfonic acid-based water reducing agent is post-added at a construction site.
[3] A slip foam method using the concrete for slip foam method manufactured by the method according to [1] or [2] is provided.
図1は、スリップフォーム工法の概念図を示す。コンクリート20を施工面11に打設しながら、スリップ型枠12で成型する工法であり、その正面図(a)、平面図(b)、側面図(c)を示した。側面図(c)は、矢印方向へスリップ型枠が通り過ぎても変形のない成型後のコンクリート20を表現している。実際は、破線で表現するように、エッジスランプ(垂直方向の変化量A)、膨らみ(水平方向の変化量B)が生ずる。ここで、スリップ型枠とは、成型機に取り付けた型枠(モールド)のことである。また、本発明における「部」や「%」は特に規定しない限り質量基準で示す単位である。また、本発明におけるコンクリートとは、モルタルを含むものである。 FIG. 1 shows a conceptual diagram of the slip form method. It is a construction method in which the concrete 20 is cast on the construction surface 11 while being cast with the slip mold 12, and its front view (a), plan view (b), and side view (c) are shown. The side view (c) represents the concrete 20 after molding without deformation even if the slip mold passes in the direction of the arrow. Actually, as represented by a broken line, an edge slump (vertical change amount A) and a bulge (horizontal change amount B) occur. Here, the slip mold is a mold (mold) attached to a molding machine. In the present invention, “parts” and “%” are units based on mass unless otherwise specified. The concrete in the present invention includes mortar.
本発明のスリップフォーム工法用コンクリートの製造方法は、少なくとも、セメント、ポリカルボン酸系減水剤、ナフタレンスルホン酸系減水剤、骨材、及び混練水を混練してなるスリップフォーム工法用コンクリートの製造方法であって、ポリカルボン酸系減水剤もしくはナフタレンスルホン酸系減水剤のいずれか一方と、セメント、骨材、及び混練水を混練しておき、施工現場でスリップフォーム型枠に打設する前に、もう一方の減水剤を加えて混練する。 The method for producing the concrete for the slip foam method according to the present invention is a method for producing the concrete for the slip foam method comprising kneading at least cement, a polycarboxylic acid-based water reducing agent, a naphthalenesulfonic acid-based water reducing agent, an aggregate, and kneaded water. Before kneading either a polycarboxylic acid-based water reducing agent or a naphthalene sulfonic acid-based water reducing agent, cement, aggregate, and kneaded water, and placing them on a slip form at the construction site Add another water reducing agent and knead.
ポリカルボン酸系減水剤もしくはナフタレンスルホン酸系減水剤のいずれか一方を添加したコンクリートの混練方法は限定するものではなく、例えば、全材料をミキサに一括投入して混練することができる。また、混練装置は限定するものではなく、例えば、オムニミキサ、パン型ミキサ、二軸ミキサ等を使用することができる。なお、当該コンクリートは、生コン工場で混練しても良いし、施工現場で混練しても良い。 The method of kneading the concrete to which either the polycarboxylic acid-based water reducing agent or the naphthalene sulfonic acid-based water reducing agent is added is not limited. For example, all the materials can be put into a mixer and kneaded. Further, the kneading apparatus is not limited, and for example, an omni mixer, a pan type mixer, a biaxial mixer or the like can be used. In addition, the said concrete may be knead | mixed in a ready-mixed factory, and may be kneaded | mixed at a construction site.
施工現場でもう一方の減水剤を加えて混練するコンクリートは、スリップフォーム工法施工後のダレやハラミの発生を抑制する観点から、スリップフォーム型枠に打設する前5分から20分以内(より好ましくは5分から10分以内)に混練することが好ましい。施工現場での混練は、例えば、施工現場に設置したミキサ(パン型ミキサ、二軸ミキサ等)で混練しても良いし、生コン工場で最初のコンクリートを製造した場合は、トラックアジテータで混練しても良い。 The concrete to be kneaded by adding the other water reducing agent at the construction site is within 5 to 20 minutes before being placed on the slip foam form (more preferably) from the viewpoint of suppressing the occurrence of sagging and harassment after the slip form construction. Is preferably kneaded within 5 to 10 minutes. The kneading at the construction site may be carried out with, for example, a mixer (pan-type mixer, biaxial mixer, etc.) installed at the construction site, or when the first concrete is produced at a ready-mixed plant, kneading with a track agitator. May be.
本発明においては、最初に混練したコンクリートの作業性や流動性保持等の観点から、ポリカルボン酸系減水剤を含むコンクリートを混練しておき、当該コンクリートにナフタレンスルホン酸系減水剤を後添加することが好ましい。
ポリカルボン酸系減水剤としては、市販されているポリカルボン酸系高性能減水剤又は高性能AE減水剤を使用することができる。なお、本発明においてポリカルボン酸系減水剤はポリカルボン酸エーテル系減水剤を含む。ナフタレンスルホン酸系減水剤としては、市販されているナフタレンスルホン酸系高性能減水剤又は高性能AE減水剤を使用することができる。
In the present invention, from the viewpoint of workability and fluidity maintenance of the first kneaded concrete, the concrete containing a polycarboxylic acid-based water reducing agent is kneaded, and a naphthalene sulfonic acid-based water reducing agent is post-added to the concrete. It is preferable.
As the polycarboxylic acid water reducing agent, a commercially available polycarboxylic acid high water reducing agent or high performance AE water reducing agent can be used. In the present invention, the polycarboxylic acid-based water reducing agent includes a polycarboxylic acid ether-based water reducing agent. As the naphthalene sulfonic acid water reducing agent, a commercially available naphthalene sulfonic acid high water reducing agent or high performance AE water reducing agent can be used.
本発明において、ポリカルボン酸系減水剤を含むコンクリートを混練しておき、当該コンクリートにナフタレンスルホン酸系減水剤を後添加する場合は、スリップフォーム工法施工後のダレやハラミの発生を抑制する観点やコンクリートの作業性や流動性保持等の観点から、から、ポリカルボン酸系減水剤は、セメントに対して0.2〜1.5%(より好ましくは0.3〜1.4%)添加することが好ましく、ナフタレンスルホン酸系減水剤は、ポリカルボン酸系減水剤の1〜10倍量(より好ましくは2〜9倍量)添加することが好ましい。 In the present invention, when a concrete containing a polycarboxylic acid-based water reducing agent is kneaded and a naphthalene sulfonic acid-based water reducing agent is added to the concrete afterwards, the viewpoint of suppressing the occurrence of sag and harami after the slip-form construction method From the standpoints of workability and fluidity maintenance of concrete and concrete, the polycarboxylic acid water reducing agent is added in an amount of 0.2 to 1.5% (more preferably 0.3 to 1.4%) to the cement. The naphthalene sulfonic acid water reducing agent is preferably added in an amount of 1 to 10 times (more preferably 2 to 9 times) the polycarboxylic acid water reducing agent.
また、ポリカルボン酸系減水剤を含むコンクリートを混練しておき、当該コンクリートにナフタレンスルホン酸系減水剤を後添加する場合は、コンクリートの作業性等の観点から、初めに混練したポリカルボン酸系減水剤を含むコンクリートのスランプは4.0〜12.0cm(より好ましくは5.0〜11.0cm)であることが好ましい。さらに、スリップフォーム工法施工時の作業性や施工後のダレやハラミの発生を抑制する観点から、ナフタレンスルホン酸系減水剤を後添加したコンクリートのスランプは2.0〜6.0cm(より好ましくは2.5〜5.5cm)であることが好ましい。
なお、当該コンクリートは、耐久性等の観点から、空気量が3.0〜7.0体積%、より好ましくは3.5〜6.5体積%である。
In addition, when concrete containing a polycarboxylic acid-based water reducing agent is kneaded and a naphthalene sulfonic acid-based water reducing agent is added afterwards to the concrete, the polycarboxylic acid type kneaded first from the viewpoint of workability of the concrete, etc. The concrete slump containing the water reducing agent is preferably 4.0 to 12.0 cm (more preferably 5.0 to 11.0 cm). Furthermore, from the viewpoint of suppressing workability during construction of the slip form construction method and occurrence of sagging and harassment after construction, the concrete slump after the addition of a naphthalene sulfonic acid-based water reducing agent is 2.0 to 6.0 cm (more preferably 2.5 to 5.5 cm) is preferable.
The concrete has an air amount of 3.0 to 7.0% by volume, more preferably 3.5 to 6.5% by volume from the viewpoint of durability and the like.
本発明で使用するセメントは、普通、早強、超早強、低熱、及び中庸熱等の各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石粉末や高炉徐冷スラグ微粉末等を混合したフィラーセメント、並びに、普通エコセメントが挙げられ、これらのうちの一種又は二種以上が使用可能である。 The cement used in the present invention includes various portland cements such as normal, early strength, very early strength, low heat, and moderate heat, various mixed cements obtained by mixing blast furnace slag, fly ash, or silica with these portland cements, limestone. Examples thereof include filler cement mixed with powder, blast furnace slow-cooled slag fine powder, etc., and ordinary ecocement, and one or more of these can be used.
本発明で使用する骨材とは、細骨材や粗骨材を総称するものである。
骨材は、石灰石系やケイ石系の天然骨材のほか、各種のスラグ系骨材、比重が2.8以上の重量骨材、及び再生骨材等、いかなる骨材も使用可能である。
The aggregate used in the present invention is a general term for fine aggregate and coarse aggregate.
As the aggregate, any aggregate such as limestone or quartzite-based natural aggregate, various slag aggregates, heavy aggregate having a specific gravity of 2.8 or more, and recycled aggregate can be used.
混練水は、水道水が使用可能であるが、これに限定されない。 As the kneading water, tap water can be used, but is not limited thereto.
本発明では、上記材料のほかに、膨張材、急硬材、AE剤、増粘剤、収縮低減剤、ポリマー、ベントナイトなどの粘土鉱物、高炉水砕スラグ粉末、石灰石微粉末、フライアッシュ、シリカフューム、及び再生骨材を製造する際に発生する再生微粉末等の混和材料や繊維等のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で併用することが可能である。 In the present invention, in addition to the above materials, expansion materials, rapid hardening materials, AE agents, thickening agents, shrinkage reducing agents, polymers, clay minerals such as bentonite, blast furnace granulated slag powder, fine limestone powder, fly ash, silica fume In addition, it is possible to use one or more of admixture materials such as regenerated fine powder and fibers generated when producing regenerated aggregate, or two or more of them in a range that does not substantially impair the object of the present invention. is there.
本発明で製造されるスリップフォーム工法用コンクリートは、作業性や強度発現性、さらにはスリップフォーム工法施工後のダレやハラミの発生を抑制する観点等から、単位セメント量が250〜680kg/m3、水/セメント比が0.25〜0.50、単位粗骨材かさ容積が0.60〜0.85m3/m3であることが好ましい。 The concrete for the slip foam method manufactured according to the present invention has a unit cement amount of 250 to 680 kg / m 3 from the viewpoint of workability and strength development, and also the suppression of sagging and harassment after the slip foam method is applied. it is preferable water / cement ratio of 0.25 to 0.50, a unit coarse aggregate bulk volume is 0.60~0.85m 3 / m 3.
本発明の製造方法で製造したスリップフォーム工法用コンクリートを使用することにより、スリップフォーム工法施工後にダレやハラミの発生を抑制できる。更に、骨材の表面水量が変動した場合でも、ダレやハラミの発生を抑制することができる。また、当該コンクリートは、型枠へ付着せず美観に優れる構造物を製造できる。 By using the concrete for slip foam method manufactured by the manufacturing method of this invention, generation | occurrence | production of a sagging and a shampoo can be suppressed after slip form method construction construction. Furthermore, even when the surface water amount of the aggregate fluctuates, it is possible to suppress the occurrence of sagging and harassment. Moreover, the said concrete can manufacture the structure which does not adhere to a formwork but is excellent in aesthetics.
(1)使用材料
セメント:普通ポルトランドセメント(太平洋セメント社製)
細骨材:山砂(静岡県掛川市産、表乾密度2.57g/cm3)
粗骨材:砂岩砕石2005(茨城県桜川市産、表乾密度2.65g/cm3、実積率59.6%)
水:水道水
化学混和剤:ポリカルボン酸系高性能AE減水剤(BASFジャパン社製「マスターグレニウムSP8SV」)
ナフタレンスルホン酸系高性能減水剤(花王社製「マイティ150」)
AE剤(BASFジャパン社製「マスターエア202」)
AE減水剤(BASFジャパン社製「マスターポゾリスNo.70」)
(2)配合条件
単位水量:140kg/m3
水セメント比:42%
単位粗骨材かさ容積:0.73m3/m3
スランプ(型枠に打ち込み時):4.0±1.5cm
空気量:5.0±1.5体積%
に調製した。
(1) Material cement: Ordinary Portland cement (manufactured by Taiheiyo Cement)
Fine aggregate: mountain sand (produced in Kakegawa City, Shizuoka Prefecture, surface dry density 2.57g / cm 3 )
Coarse aggregate: sandstone crushed stone 2005 (produced from Sakuragawa City, Ibaraki Prefecture, surface dry density 2.65 g / cm 3 , actual volume ratio 59.6%)
Water: Tap water Chemical admixture: Polycarboxylic acid-based high-performance AE water reducing agent ("Master Glenium SP8SV" manufactured by BASF Japan)
Naphthalenesulfonic acid high-performance water reducing agent (“Mighty 150” manufactured by Kao)
AE agent ("Master Air 202" manufactured by BASF Japan)
AE water reducing agent ("Master Pozzolith No. 70" manufactured by BASF Japan)
(2) Compounding conditions Unit water amount: 140 kg / m 3
Water cement ratio: 42%
Unit coarse aggregate bulk volume: 0.73 m 3 / m 3
Slump (when driven into the mold): 4.0 ± 1.5cm
Air volume: 5.0 ± 1.5% by volume
Prepared.
コンクリートの配合
上記コンクリート配合(試料1基準、試料2基準、試料3基準)のほかに、細骨材の表面水の変動(表面水が多くなった場合)を想定して、各基準配合に更に水を15kg/m3および30kg/m3それぞれ外割り混入した練混ぜを実施した。
コンクリートの製造方法
実施例:パン型ミキサを使用して、セメント、細骨材、粗骨材、水、AE剤及びポリカルボン酸系高性能AE減水剤を一括してミキサに投入して2分間練混ぜた後に、ミキサ内にナフタレンスルホン酸系高性能減水剤を添加して1分間練混ぜた。
比較例:パン型ミキサを使用して、セメント、細骨材、粗骨材、水、AE剤及びAE減水剤を一括してミキサに投入して2分間練混ぜた。
Concrete mix In addition to the above concrete mix (sample 1 standard, sample 2 standard, sample 3 standard), assuming the fluctuation of surface water of fine aggregate (when surface water increases), each standard mix is further water was performed kneading mixed outer split each 15 kg / m 3 and 30kg / m 3.
Example of concrete production method: Using a pan mixer, cement, fine aggregate, coarse aggregate, water, AE agent and polycarboxylic acid-based high-performance AE water reducing agent are charged all at once into the mixer for 2 minutes. After kneading, a naphthalene sulfonic acid high-performance water reducing agent was added to the mixer and kneaded for 1 minute.
Comparative Example: Using a pan-type mixer, cement, fine aggregate, coarse aggregate, water, AE agent and AE water reducing agent were all put into the mixer and mixed for 2 minutes.
コンクリートの試験方法
1.練混ぜたコンクリートを15×15×53cmの型枠に打ち込み、棒状バイブレータにて6点、5秒ずつ振動を加えて締め固めた。
2.締固め後ただちに片側の側板をスリップさせて取り外した。
3.型枠取り外した面の中心付近(26.5cmの位置)の沈下量(エッジスランプ)と膨らみを測定した。図1において、側面図の一部拡大表示に示すとおり、エッジスランプは、垂直方向の変化量A、膨らみは、水平方向の変化量Bである。測定結果(mm)と評価結果を表2、表3に示した。
Test method for concrete The kneaded concrete was poured into a 15 × 15 × 53 cm formwork, and compacted by applying vibrations at 6 points for 5 seconds with a rod-like vibrator.
2. Immediately after compaction, one side plate was slipped and removed.
3. The amount of subsidence (edge slump) and swelling near the center of the surface from which the mold was removed (position of 26.5 cm) were measured. In FIG. 1, as shown in the partially enlarged display of the side view, the edge slump is the change amount A in the vertical direction, and the bulge is the change amount B in the horizontal direction. Tables 2 and 3 show the measurement results (mm) and the evaluation results.
上記表に示す通り、本発明の製造方法で製造したコンクリートでは、水を追加した場合(細骨材の表面水量の変動を想定)も含めて、スリップフォーム工法施工後のダレやハラミの発生を抑制できていることがわかる。なお、本発明の製造方法で製造したコンクリートの型枠への付着は認められなかった。
一方、比較例のAE減水剤を使用したコンクリートでは、水を追加した場合(細骨材の表面水量の変動によっては)、スリップフォーム工法施工後のダレやハラミが大きくなることがわかった。
As shown in the above table, in the concrete produced by the production method of the present invention, including the case of adding water (assuming fluctuations in the surface water volume of fine aggregate), the occurrence of sagging and harassment after construction of the slip form method It turns out that it has suppressed. In addition, adhesion to the formwork of the concrete manufactured with the manufacturing method of this invention was not recognized.
On the other hand, in the concrete using the AE water reducing agent of the comparative example, it was found that when water was added (depending on the fluctuation of the surface water amount of the fine aggregate), sagging and harassment after construction of the slip foam method increased.
11 施工面
12 スリップ型枠
20 コンクリート
11 Construction surface 12 Slip form 20 Concrete
Claims (3)
ポリカルボン酸系減水剤もしくはナフタレンスルホン酸系減水剤のいずれか一方と、セメント、骨材、及び混練水を混練しておき、施工現場でスリップフォーム型枠に打設する前に、もう一方の減水剤を加えて混練することを特徴とするスリップフォーム工法用コンクリートの製造方法。 Unit cement content is 250~680kg / m 3, water-cement ratio is 0.25 to 0.50, the horizontal self-propelled unit coarse aggregate bulk volume 0.60~0.85m 3 / m 3 for slipform method A method for producing concrete, at least kneading cement, polycarboxylic acid-based water reducing agent, naphthalenesulfonic acid-based water reducing agent, aggregate, and kneaded water ,
Either one of polycarboxylic acid-based water reducing agent or naphthalene sulfonic acid-based water reducing agent is mixed with cement, aggregate, and kneaded water, and before placing on the slip foam formwork at the construction site, the other A method for producing concrete for a slip foam method, comprising adding a water reducing agent and kneading.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016031748A JP6602228B2 (en) | 2016-02-23 | 2016-02-23 | Method for producing concrete for slip foam method and slip foam method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016031748A JP6602228B2 (en) | 2016-02-23 | 2016-02-23 | Method for producing concrete for slip foam method and slip foam method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017148983A JP2017148983A (en) | 2017-08-31 |
JP6602228B2 true JP6602228B2 (en) | 2019-11-06 |
Family
ID=59740245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016031748A Active JP6602228B2 (en) | 2016-02-23 | 2016-02-23 | Method for producing concrete for slip foam method and slip foam method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6602228B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006168305A (en) * | 2004-12-20 | 2006-06-29 | Taiheiyo Material Kk | Adding method of water reducing agent for cement |
JP5537965B2 (en) * | 2010-01-19 | 2014-07-02 | 株式会社大林組 | Slip form method |
JP2011201126A (en) * | 2010-03-25 | 2011-10-13 | Sumitomo Osaka Cement Co Ltd | Method of manufacturing uncured cement composition |
-
2016
- 2016-02-23 JP JP2016031748A patent/JP6602228B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017148983A (en) | 2017-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100999404A (en) | Clean water autodensing concrete almixture | |
KR100917117B1 (en) | Filler for Iron reinforcing rod joint and construction method for filling-up of iron reinforcing rod joint using the same | |
JP2022069599A (en) | Polymer cement mortar | |
KR100867250B1 (en) | Ultra high strength concrete containing non-sintering binder | |
JP4809575B2 (en) | Cement composition for civil engineering structure and concrete product using the same | |
JP2011136864A (en) | Admixture for porous concrete and porous concrete | |
JP6924646B2 (en) | Cement composition for immediate demolding method and manufacturing method of precast concrete molded product using it | |
JP4188378B2 (en) | Method for manufacturing specimen for bending strength test | |
JP5574758B2 (en) | Cement-containing powder composition and hydraulic composition | |
JP6602228B2 (en) | Method for producing concrete for slip foam method and slip foam method | |
JP3665770B2 (en) | Strength improving material for hardened cement body and hardened cement body containing the same | |
JP5399969B2 (en) | Slump loss reduction method for expanded concrete | |
Huseien et al. | Performance of self-compacting concrete with different sizes of recycled ceramic aggregates | |
JP2001226161A (en) | Reusable precast member for concrete structure | |
JP3806420B2 (en) | Low strength mortar filler using shirasu | |
JP6525326B2 (en) | Slip form method | |
JP2012041762A (en) | Construction method of block pavement body | |
RU2547532C1 (en) | Dry mix for preparation of non-autoclave foam concrete (versions) | |
JP4926387B2 (en) | Cured polymer cement mortar | |
Sam et al. | Self compacting concrete with recycled coarse aggregates | |
Manju et al. | Binary, ternary and quaternary effect of fillers on fresh and hardened properties of self compacting concrete (SCC) | |
JP2017133255A (en) | Construction method of drainage pavement | |
JP2001207794A (en) | Concrete-made segment | |
JP5974534B2 (en) | Lightweight immediate demolding block and manufacturing method thereof | |
JP2000102912A (en) | Method for decreasing air bubble on surface of high flow concrete molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190513 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190611 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190918 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191008 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6602228 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |