JP6570393B2 - 形状測定装置の制御方法 - Google Patents
形状測定装置の制御方法 Download PDFInfo
- Publication number
- JP6570393B2 JP6570393B2 JP2015188167A JP2015188167A JP6570393B2 JP 6570393 B2 JP6570393 B2 JP 6570393B2 JP 2015188167 A JP2015188167 A JP 2015188167A JP 2015188167 A JP2015188167 A JP 2015188167A JP 6570393 B2 JP6570393 B2 JP 6570393B2
- Authority
- JP
- Japan
- Prior art keywords
- vector
- probe
- measuring apparatus
- shape measuring
- trajectory correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/20—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/401—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/004—Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
- G01B5/008—Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/004—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
- G01B7/008—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points using coordinate measuring machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/23—Pc programming
- G05B2219/23385—Programming pencil, touch probe
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Algebra (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- A Measuring Device Byusing Mechanical Method (AREA)
Description
倣い測定にあたっては、倣い測定の経路を生成しておく必要がある。特許文献1に記載の装置では、CADデータ等に基づいた設計値(例えばNURBS(Non−UniformRationalB−Spline:非一様有理Bスプライン)データ)を所定次数の多項式曲線群に変換する。
この手順を簡単に説明すると、まず、外部のCADシステム等から経路情報を含んだCADデータ(例えばNURBSデータ)を受け取り、このCADデータを点群のデータに変換する。各点のデータは、座標値(x、y、z)と法線方向(P、Q、R)とを組み合わせたデータである(つまり、(x、y、z、P、Q、R)である。)本明細書では、以後の説明のため、(x、y、z、P、Q、R)の情報をもつ点群のデータを輪郭点データと称することにする。
ここでは、多項式として三次関数を用い、PCC曲線群(ParametricCubicCurves)とする。このPCC曲線を元にワークを測定する経路を生成する。さらに、PCC曲線を分割して分割PCC曲線群とする。
(例えば分割PCC曲線群の各セグメントの曲率などに基づいてプローブの移動速度(移動ベクトル)を設定する。)
このように算出された移動速度に基づいてプローブを移動させ、被測定物の表面に倣って測定子を移動させる(パッシブ設計値倣い測定)。
ここでは、このような設計値倣いを「アクティブ設計値倣い測定」と称することにする。
「アクティブ設計値倣い測定」では、次の(式1)で表わされる合成ベクトルVをプローブの移動指令とする。
プローブが合成ベクトルVに基づく移動を行うと、プローブ(測定子)はPCC曲線に沿うように移動しつつ、押込み量を一定としたワーク表面倣い測定、つまり、「アクティブ設計値倣い測定」が実現される。
図1において、設計データ(輪郭点データ)から所定量(測定子半径r―基準押込み量E0)オフセットしたところにPCC曲線(つまり、倣い経路)がある。また、図1においては、実際のワークが設計データから少しずれている。
(押込み修正ベクトルVeは、必然的に、ワーク表面の法線に平行となる。)
Gf、Ge、Gcはそれぞれ倣い駆動ゲイン、押込み方向修正ゲイン、軌道修正ゲインである。
例えば、図1のケースでは軌道修正ベクトルVcと押込み修正ベクトルVeとが逆方向を向いている。そのためプローブ230の動きが振動的になるという問題がある。
しかし、振動的挙動を抑えるべくGeあるいはGcを小さくしてしまうと、当然のことながら、合成ベクトルVが小さくなってしまう。すると、今度は軌道修正能力や押込み修正能力が小さくなってしまうという別の問題が発生する。
したがって、軌道修正能力と制御の安定性とを両立させることはできなかった。
先端に測定子を有するプローブと、前記プローブを移動させる移動機構と、を備え、前記測定子とワーク表面との接触を検知して前記ワークの形状を測定する形状測定装置の制御方法であって、
前記ワークの設計データに基づいて前記測定子を移動させる倣い経路を求め、前記プローブの前記ワークへの押込み量を基準押込み量に保つように制御しながら前記測定子を前記倣い経路に沿って移動させるにあたって、
プローブの移動指令を次の式で表される合成速度ベクトルVに従って生成する
ことを特徴とする。
合成速度ベクトルV=Gf・Vf+Ge・Ve+Gc・Vc2
ここで、
経路速度ベクトルVfは、前記倣い経路に沿って前記プローブを移動させるためのベクトルである。
押込み修正ベクトルVeは、前記プローブの前記ワークへの押込み量を基準押込み量に保つためのベクトルである。
第2軌道修正ベクトルVc2は(Vc1・q)qで表わされる。
第1軌道修正ベクトルVc1は、測定子が倣い軌道に向かうようにプローブ位置を修正するためのベクトルである。
軌道修正方向ベクトルqは、ワーク表面の法線と経路速度ベクトルVfとの外積で与えられるベクトルである。
Gf、GeおよびGcは任意の係数である。
押込み修正ベクトルVeは、K(|Ep|−E0)euで与えられる
ことが好ましい。
Epは、プローブのセンサ出力である。
E0は基準押込み量である。
euはプローブの変位方向を有する単位ベクトルである。
軌道修正方向ベクトルqは、
eu×vf/|eu×vf| または vf×eu/|vf×eu|
で表わされる
ことが好ましい。
前記形状測定装置の制御方法をコンピュータに実行させる
ことを特徴とする。
(第1実施形態)
本発明の第1実施形態を説明する。
アクティブ設計値倣い測定の基本的な動作手順はすでに他の文献(例えば特許文献1の図3等)にも開示されているので以下の説明では本明発の主たる特徴である速度合成ベクトルVの生成について説明することとする。
図2は、形状測定システム100の全体構成を示す図である。
形状測定システム100は、三次元測定機200と、三次元測定機200の駆動を制御するモーションコントローラ300と、モーションコントローラ300を制御すると共に必要なデータ処理を実行するホストコンピュータ500と、を備える。
モーションコントローラ300からの駆動制御信号によって各駆動モータが駆動制御される。
エンコーダは、Yスライダ221、Xスライダ222およびZスピンドル224それぞれの移動量を検出し、検出値をモーションコントローラ300に出力する。
Zスピンドル224の下端にプローブ230が取り付けられている。
測定子232は、球状であって、被測定物Wに接触する。
さらに、支持部233は、スタイラス231の各軸方向の位置をそれぞれ検出するためのプローブセンサー(不図示)を備える。プローブセンサは検出値をモーションコントローラ300に出力する。
図3は、モーションコントローラ300およびホストコンピュータ500の機能ブロック図である。
モーションコントローラ300は、PCC取得部310と、カウンタ部320と、移動指令生成部330と、駆動制御部340と、を備える。
カウンタ部320は、エンコーダから出力される検出信号をカウントして各スライダの変位量を計測するとともに、各プローブ230センサから出力される検出信号をカウントしてプローブ230(スタイラス231)の変位量を計測する。
計測されたスライダおよびプローブ230の変位から測定子232の座標位置PP(以下、プローブ位置PP)が得られる。
また、カウンタ部320にて計測されたスタイラス231の変位(プローブセンサの検出値(Px,Py,Pz))から、測定子232の押込み量(ベクトルEpの絶対値)が得られる。
移動指令生成部330は、各測定方式(測定モード)に応じた経路を算出する機能部をそれぞれ具備している。
具体的には、パッシブ設計値倣い測定、アクティブ設計値倣い測定、自律倣い測定、ポイント測定、の4つがある。本実施形態に関係するのは、アクティブ設計値倣い測定である。
手動コントローラ400は、ジョイスティックおよび各種ボタンを有し、ユーザからの手動入力操作を受け付け、ユーザの操作指令をモーションコントローラ300に送る。
この場合、モーションコントローラ300(駆動制御部340)は、ユーザの操作指令に応じて各スライダを駆動制御する。
ホストコンピュータ500は、CPU511(CentralProcessingUnit)やメモリ等を備えて構成され、モーションコントローラ300を介して三次元測定機200を制御する。
ホストコンピュータ500は、さらに、記憶部520と、形状解析部530と、を備える。
記憶部520は、被測定物(ワーク)Wの形状に関する設計データ(CADデータや、NURBSデータ等)、測定で得られた測定データ、および、測定動作全体を制御する測定制御プログラムを格納する。
また、形状解析部530は、設計データ(CADデータや、NURBSデータ等)からPCC曲線への変換等の演算処理も担う。
図4は、アクティブ設計値倣い測定の全体制御フローチャートである。
ホストコンピュータ500にてPCC曲線が生成され、生成されたPCC曲線はモーションコントローラ300に送られる(ST100)。
そして、モーションコントローラ300は、このPCC曲線に沿った経路でワーク表面をアクティブ設計値倣い測定するための移動指令である速度合成ベクトルVを生成していく(ST200)。
図5は、速度合成ベクトルVを生成する手順を説明するためのフローチャートである。
速度合成ベクトルVは、経路速度ベクトルVf(ST210)と、押込み修正ベクトルVe(ST220)と、第2軌道修正ベクトルVc2(ST230)と、を合成したものである。
ここで、従来技術と本発明との差は、第2軌道修正ベクトルVc2(ST230)にある。
経路(PCC曲線)上に補間点iと次の補間点(i+1)があるとして、経路速度ベクトルVfの向きは、点iから点(i+1)に向かう方向として与えられる(図6参照)。
また、経路速度ベクトルVfの大きさは、例えば点iにおけるPCC曲線の曲率に応じて設定される(特許文献:特開2014−21004)
なお、PCC曲線上にある点Pについては後述する。
押込み修正ベクトルVeは次の式で表される。
Ep=(xp、yp、zp)
したがって、プローブの押込み量|Ep|は、次のようになる。
なおKは、任意の係数である。
図7は、第2軌道修正ベクトルVc2を生成する手順を説明するためのフローチャートである。図7のフローチャートに沿って第2軌道修正ベクトルVc2について説明する。
第2軌道修正ベクトルVc2を求めるにあたって、まずは、第1軌道修正ベクトルVc1を算出しておく。
この第1軌道修正ベクトルVc1は従来(特開2013−238573)における軌道修正ベクトルVcと同じで、説明のために名称を変更しただけである。
プローブ位置Ppから経路(PCC曲線)に垂線を下ろす(図6参照)。垂線の足をPとする。
プローブ位置Ppから点Pに向かう方向のベクトルが第1軌道修正ベクトルVc1である。
ST232において、プローブ変位方向の単位ベクトルeuを取得する。プローブ変位方向の単位ベクトルeuについては、押込み修正ベクトルVeの生成にあたって説明済みである。
次にST233において、経路速度ベクトルVfを取得する。経路変数ベクトルVfもST210で説明済みである。
軌道修正方向ベクトルqとは、プローブ変位方向の単位ベクトルeuと経路速度ベクトルVfとの外積に平行な単位ベクトルである。
図6において、経路速度ベクトルVfとプローブ変位方向の単位ベクトルeuとが紙面上にあるとすると、軌道修正方向ベクトルqは紙面に垂直な方向となる。
すなわち、第1軌道修正ベクトルVc1と軌道修正方向ベクトルqとの内積を(Vc1・q)で表すと、第2軌道修正ベクトルVc2は次のように表される(ST235)。
すなわち、第1軌道修正ベクトルVc1と軌道修正方向ベクトルqとの内積を(Vc1・q)で表すと、第2軌道修正ベクトルVc2は次のように表される(ST235)。
従来のごとく第1軌道修正ベクトルVc1を用いた制御は、軌道修正として最も素直であり、計算量も少ないのであるが、プローブ230の挙動が振動的になる場合があり得た。
例えば、図1や図8を見てわかるように、第1軌道修正ベクトルVc1は、押込み修正ベクトルVeや経路速度ベクトルVfに対して逆向きの成分を持つ場合があり得る。
実際の場面では、第1軌道修正ベクトルVc1と押込み修正ベクトルVeとが逆向きになって互いに干渉することが多い。押込み修正ベクトルVeはワーク表面の凹凸に応じて時々刻々と向きが変わるからである。
ここでゲインGf、Ge、Gcをうまく調整して、第1軌道修正ベクトルVc1、押込み修正ベクトルVeおよび経路速度ベクトルVfの相互干渉ができる限り小さくなるようにすることも考えられる。
しかし、互いの干渉が小さくなるようにゲインGf、Ge、Gcのうちのいずれかを小さくしてしまうと、合成速度ベクトルV自体が小さくなってしまうのであるから、必然的に軌道修正能力が小さくなってしまうことになる。
したがって、第2軌道修正ベクトルVc2が押込み修正ベクトルVeと干渉することはもはやなく、制御が安定する。
なお、第2軌道修正ベクトルVc2を採用してもアクティブ設計値倣い測定が実現できることは実験的に確認済みである。
本発明の効果がより明瞭になると思うので、対比例をひとつ紹介しておく。
この対比例は、第1軌道修正ベクトルVc1の改良として一度は検討したが、別の問題が判明したために実施に至らなかったものである。
対比例としては、第1軌道修正ベクトルVc1を準軌道修正ベクトルVc1'としたものである。
準軌道修正ベクトルVc1'は、第1軌道修正ベクトルVc1のうちのプローブ変位方向単位ベクトルeuに直交する成分を抽出したものである。
図9の破線囲み内に各ベクトルの方向の一例を示した。
式として表現すると次のようになる。
例えば図9のように坂を登るような場合が典型的であるが、準軌道修正ベクトルVc1'が経路速度ベクトルVfと反対方向の成分を持ってしまう場合があり得る。
ワークと設計値とのズレがやや大きかったり、坂の傾斜が大きかったりすると、準軌道修正ベクトルVc1'が経路速度ベクトルVfよりも大きくなってしまい、プローブ230が坂を乗り越えられないおそれがある。例えば、登り坂の傾斜が20°を越えると制御が難しくなる。
200…三次元測定機、210…定盤、
220…移動機構、221…Yスライダ、222…Xスライダ、223…Z軸コラム、224…Zスピンドル、
230…プローブ、231…スタイラス、232…測定子、233…支持部、
300…モーションコントローラ、310…PCC取得部、320…カウンタ部、330…移動指令生成部、340…駆動制御部、
400…手動コントローラ、
500…ホストコンピュータ、520…記憶部、530…形状解析部。
Claims (4)
- 先端に測定子を有するプローブと、前記プローブを移動させる移動機構と、を備え、前記測定子とワーク表面との接触を検知して前記ワークの形状を測定する形状測定装置の制御方法であって、
前記ワークの設計データに基づいて前記測定子を移動させる倣い経路を求め、前記プローブの前記ワークへの押込み量を基準押込み量に保つように制御しながら前記測定子を前記倣い経路に沿って移動させるにあたって、
プローブの移動指令を次の式で表される合成速度ベクトルVに従って生成する
ことを特徴とする形状測定装置の制御方法。
合成速度ベクトルV=Gf・Vf+Ge・Ve+Gc・Vc2
ここで、
経路速度ベクトルVfは、前記倣い経路に沿って前記プローブを移動させるためのベクトルである。
押込み修正ベクトルVeは、前記プローブの前記ワークへの押込み量を基準押込み量に保つためのベクトルである。
第2軌道修正ベクトルVc2は(Vc1・q)qで表わされる。
第1軌道修正ベクトルVc1は、測定子が倣い軌道に向かうようにプローブ位置を修正するためのベクトルである。
軌道修正方向ベクトルqは、ワーク表面の法線と経路速度ベクトルVfとの外積で与えられるベクトルである。
Gf、GeおよびGcは任意の係数である。 - 請求項1に記載の形状測定装置の制御方法において、
押込み修正ベクトルVeは、K(|Ep|−E0)euで与えられる
ことを特徴とする形状測定装置の制御方法。
Epは、プローブのセンサ出力である。
E0は基準押込み量である。
euはプローブの変位方向を有する単位ベクトルである。 - 請求項2に記載の形状測定装置の制御方法において、
軌道修正方向ベクトルqは、
eu×vf/|eu×vf| または vf×eu/|vf×eu|
で表わされる
ことを特徴とする形状測定装置の制御方法。 - 請求項1から請求項3のいずれかに記載の形状測定装置の制御方法をコンピュータに実行させる形状測定装置の制御プログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015188167A JP6570393B2 (ja) | 2015-09-25 | 2015-09-25 | 形状測定装置の制御方法 |
EP16188980.3A EP3147625B1 (en) | 2015-09-25 | 2016-09-15 | Method for controlling shape measuring apparatus |
US15/271,824 US10379520B2 (en) | 2015-09-25 | 2016-09-21 | Method for controlling shape measuring apparatus |
CN201610846221.XA CN106802141B (zh) | 2015-09-25 | 2016-09-23 | 形状测量设备的控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015188167A JP6570393B2 (ja) | 2015-09-25 | 2015-09-25 | 形状測定装置の制御方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017062194A JP2017062194A (ja) | 2017-03-30 |
JP6570393B2 true JP6570393B2 (ja) | 2019-09-04 |
Family
ID=56985460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015188167A Active JP6570393B2 (ja) | 2015-09-25 | 2015-09-25 | 形状測定装置の制御方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10379520B2 (ja) |
EP (1) | EP3147625B1 (ja) |
JP (1) | JP6570393B2 (ja) |
CN (1) | CN106802141B (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6774240B2 (ja) * | 2016-07-14 | 2020-10-21 | 株式会社ミツトヨ | 形状測定装置の制御方法 |
JP7002892B2 (ja) * | 2017-09-08 | 2022-01-20 | 株式会社ミツトヨ | 形状測定装置の制御方法 |
JP6932585B2 (ja) * | 2017-09-08 | 2021-09-08 | 株式会社ミツトヨ | 形状測定装置の制御方法 |
JP2019049462A (ja) * | 2017-09-08 | 2019-03-28 | 株式会社ミツトヨ | 形状測定装置の制御方法 |
EP4001827A1 (de) * | 2020-11-11 | 2022-05-25 | Klingelnberg GmbH | Verfahren zum vermessen eines werkstücks |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3523188A1 (de) * | 1985-06-28 | 1987-01-08 | Zeiss Carl Fa | Steuerung fuer koordinatenmessgeraete |
GB0508395D0 (en) * | 2005-04-26 | 2005-06-01 | Renishaw Plc | Method for scanning the surface of a workpiece |
JP4260180B2 (ja) * | 2006-11-02 | 2009-04-30 | パナソニック株式会社 | 三次元形状測定装置及び三次元形状測定装置用プローブ |
JP5274782B2 (ja) * | 2007-03-27 | 2013-08-28 | 株式会社ミツトヨ | 表面性状測定装置、表面性状測定方法及び表面性状測定プログラム |
JP4474443B2 (ja) * | 2007-07-17 | 2010-06-02 | キヤノン株式会社 | 形状測定装置および方法 |
US11325029B2 (en) * | 2007-09-14 | 2022-05-10 | National Institute Of Advanced Industrial Science And Technology | Virtual reality environment generating apparatus and controller apparatus |
JP5089428B2 (ja) * | 2008-02-21 | 2012-12-05 | 株式会社ミツトヨ | 倣い測定装置 |
US9610628B2 (en) * | 2009-05-04 | 2017-04-04 | Orametrix, Inc. | Apparatus and method for customized shaping of orthodontic archwires and other medical devices |
JP5260703B2 (ja) * | 2011-06-10 | 2013-08-14 | パナソニック株式会社 | 3次元測定方法 |
JP6113963B2 (ja) * | 2012-04-26 | 2017-04-12 | 株式会社ミツトヨ | 形状測定方法、及び形状測定装置 |
JP6030339B2 (ja) * | 2012-05-17 | 2016-11-24 | 株式会社ミツトヨ | 形状測定装置 |
JP6063161B2 (ja) | 2012-07-20 | 2017-01-18 | 株式会社ミツトヨ | 形状測定装置及び形状測定装置の制御方法 |
JP5747180B2 (ja) * | 2012-12-06 | 2015-07-08 | パナソニックIpマネジメント株式会社 | 形状測定方法および形状測定装置 |
EP2998696B1 (en) * | 2014-09-18 | 2021-01-06 | Hexagon Technology Center GmbH | Method for compensating lobing behaviour of a CMM touch probe |
-
2015
- 2015-09-25 JP JP2015188167A patent/JP6570393B2/ja active Active
-
2016
- 2016-09-15 EP EP16188980.3A patent/EP3147625B1/en active Active
- 2016-09-21 US US15/271,824 patent/US10379520B2/en active Active
- 2016-09-23 CN CN201610846221.XA patent/CN106802141B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017062194A (ja) | 2017-03-30 |
US20170090455A1 (en) | 2017-03-30 |
EP3147625A1 (en) | 2017-03-29 |
US10379520B2 (en) | 2019-08-13 |
EP3147625B1 (en) | 2020-09-02 |
CN106802141A (zh) | 2017-06-06 |
CN106802141B (zh) | 2020-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6030339B2 (ja) | 形状測定装置 | |
JP6570393B2 (ja) | 形状測定装置の制御方法 | |
CN105588533B (zh) | 形状测定装置以及形状测定方法 | |
CN105277148B (zh) | 形状测定装置的测定误差的校正方法以及形状测定装置 | |
JP2018009905A (ja) | 形状測定装置の制御方法 | |
JP5612386B2 (ja) | 形状測定装置 | |
US9091522B2 (en) | Shape measuring machine and method of correcting shape measurement error | |
JP5221004B2 (ja) | 測定装置、表面性状測定方法、及び表面性状測定プログラム | |
JP5192283B2 (ja) | 三次元測定機 | |
JP4474443B2 (ja) | 形状測定装置および方法 | |
JP5089428B2 (ja) | 倣い測定装置 | |
US9366522B2 (en) | Form measuring apparatus and form measurement method | |
US20180149458A1 (en) | Control method of shape measuring apparatus | |
JP6474587B2 (ja) | 測定値補正方法、測定値補正プログラム及び測定装置 | |
JP6363436B2 (ja) | 形状測定装置、及び形状測定方法 | |
JP2021025978A (ja) | 形状測定装置 | |
JP2019158385A (ja) | 測定装置 | |
JP6474216B2 (ja) | 形状測定装置、及び形状測定方法 | |
JP6564171B2 (ja) | 形状測定装置、及び形状測定方法 | |
JP2021063709A (ja) | 形状測定装置の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160822 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180807 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190716 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190806 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6570393 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |