JP6547957B2 - Air compressor device - Google Patents
Air compressor device Download PDFInfo
- Publication number
- JP6547957B2 JP6547957B2 JP2016034004A JP2016034004A JP6547957B2 JP 6547957 B2 JP6547957 B2 JP 6547957B2 JP 2016034004 A JP2016034004 A JP 2016034004A JP 2016034004 A JP2016034004 A JP 2016034004A JP 6547957 B2 JP6547957 B2 JP 6547957B2
- Authority
- JP
- Japan
- Prior art keywords
- air compressor
- fuel cell
- revolutions
- air
- acceleration torque
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
- Fuel Cell (AREA)
Description
本発明は、エアコンプレッサー装置に関する。 The present invention relates to an air compressor device.
従来、燃料ガスである水素と酸化剤ガスである空気中の酸素とを化学反応させて発電を行う燃料電池(以下、FCとも称する)を電源装置として搭載した燃料電池自動車が提案されている。 Conventionally, there has been proposed a fuel cell vehicle equipped with a fuel cell (hereinafter also referred to as FC) which generates electric power by causing a chemical reaction between hydrogen as a fuel gas and oxygen in air as an oxidant gas as a power supply device.
燃料電池に供給される空気は、車載のエアコンプレッサー(以下、ACPとも称する)によって外気から取り込まれて圧送される。エアコンプレッサーは、その駆動源として内蔵したモータが燃料電池の運転状態に応じて回転数制御されることで、燃料電池に供給される空気量が調整されるようになっている。 Air supplied to the fuel cell is taken in from the outside air and pumped by an on-board air compressor (hereinafter also referred to as ACP). The amount of air supplied to the fuel cell is adjusted by controlling the number of revolutions of a motor incorporated as a drive source of the air compressor according to the operating state of the fuel cell.
ところで、燃料電池とエアコンプレッサーは、通常離れており、要求発電量の上昇に伴って、エアコンプレッサーの回転数を高めたとしても、エアコンプレッサーと燃料電池との間で反応ガス(空気)が圧縮されてしまうので、反応ガスがエアコンプレッサーから燃料電池に到達するまでに遅れてしまう。この遅れを考慮して発電電流を制御する技術が下記特許文献1で提案されている。 By the way, the fuel cell and the air compressor are usually separated, and the reaction gas (air) is compressed between the air compressor and the fuel cell even if the rotational speed of the air compressor is increased with the increase of the required power generation amount. The reaction gas is delayed until it reaches the fuel cell from the air compressor. A technology for controlling the generated current in consideration of this delay is proposed in Patent Document 1 below.
ドライバビリティを考慮して上述した空気供給遅れを無くすために、要求されたエアコンプレッサーの回転数と現在の回転数との差が所定値以上の場合(言い換えれば、回転数指令が急変する場合)に、エアコンプレッサーの回転数の変化度合を性能の最大値(例えばエアコンプレッサーが最速で応答する制御)とすることが考えられる。しかし、例えば間欠運転明け時の緩負荷においても回転数指令の変化に対して性能の最大値でエアコンプレッサーを運転してしまうと、エアコンプレッサーでの消費電力が大きくなってしまい、燃費が悪化する。 When the difference between the required number of revolutions of the air compressor and the present number of revolutions is equal to or more than a predetermined value in order to eliminate the air supply delay described above in consideration of drivability (in other words, when the revolution number command suddenly changes) In addition, it is conceivable to set the degree of change in the rotational speed of the air compressor to the maximum value of the performance (for example, control in which the air compressor responds at the fastest). However, for example, if the air compressor is operated at the maximum value of the performance against the change of the rotation speed command even at the slow load after the intermittent operation, the power consumption in the air compressor becomes large, and the fuel efficiency is deteriorated. .
本発明はこのような課題に鑑みてなされたものであり、その目的は、ドライバビリティと燃費の両立を図ることができるエアコンプレッサー装置を提供することにある。 The present invention has been made in view of such problems, and an object thereof is to provide an air compressor device that can achieve both drivability and fuel consumption.
上記課題を解決するために本発明に係るエアコンプレッサー装置は、要求電力を前記燃料電池から出力するために必要な空気供給量を供給するためのエアコンプレッサーの要求回転数と前記エアコンプレッサーの現在の回転数との差、及び前記燃料電池に対するパワー要求値に基づいて、前記エアコンプレッサーのトルク指令値及び回転数を制御する制御部を備え、前記制御部は、前記差が所定値以上、且つ、前記パワー要求値が所定値以上の場合に、第1加速トルクに基づいて前記エアコンプレッサーの回転数を上昇させ、前記差が所定値以上、且つ、前記パワー要求値が所定値未満の場合に、前記第1加速トルクよりも小さい第2加速トルクにより前記エアコンプレッサーの回転数を上昇させる。 In order to solve the above problems, an air compressor device according to the present invention comprises a required number of revolutions of an air compressor for supplying an air supply amount required to output a required power from the fuel cell and a current speed of the air compressor. The air compressor further includes a control unit that controls the torque command value and the number of revolutions of the air compressor based on the difference with the number of revolutions and the required power value for the fuel cell. When the power requirement value is equal to or greater than a predetermined value, the rotational speed of the air compressor is increased based on the first acceleration torque, and the difference is equal to or greater than the predetermined value, and the power requirement value is less than the predetermined value. The rotational speed of the air compressor is increased by a second acceleration torque that is smaller than the first acceleration torque.
かかる構成によれば、エアコンプレッサーの要求回転数とエアコンプレッサーの現在の回転数との差のみではなく、燃料電池に対するパワー要求値の大小も考慮して、要求トルクが小さい場合には、燃費向上を狙い加速トルクを制限して要求回転数に到達するのを遅らせる。このように、燃料電池に対するパワー要求値が所定値以下の場合(例えば間欠運転明け時の緩負荷走行時等)ではエアコンプレッサーの最速応答性は必要ないため、このような場合に加速トルクを制限することによって、エアコンプレッサーの消費電力を抑えている。これにより、燃費とドライバビリティの両立を図ることができる。なお、間欠運転とは、燃料電池システムに要求される出力が所定の閾値以下である場合に、燃料電池における発電を一時的に休止して二次電池から負荷への電力供給を行う運転をいう。 According to this configuration, the fuel efficiency is improved when the required torque is small, considering not only the difference between the required number of revolutions of the air compressor and the present number of revolutions of the air compressor but also the magnitude of the required power value for the fuel cell. Limit the acceleration torque to delay reaching the required speed. As described above, when the power requirement value for the fuel cell is equal to or less than the predetermined value (for example, during slow load traveling after intermittent operation), the fastest response of the air compressor is not necessary. By doing so, the power consumption of the air compressor is reduced. Thereby, coexistence of fuel consumption and drivability can be aimed at. Note that intermittent operation refers to an operation that temporarily suspends power generation in the fuel cell and supplies power from the secondary battery to the load when the output required of the fuel cell system is less than or equal to a predetermined threshold. .
本発明によれば、ドライバビリティと燃費の両立を図ることができるエアコンプレッサー装置を提供することができる。 According to the present invention, it is possible to provide an air compressor device that can achieve both drivability and fuel consumption.
以下添付図面を参照しながら本発明の実施形態について説明する。尚、以下の好ましい実施形態の説明は、例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. The following description of the preferred embodiments is merely an example, and is not intended to limit the present invention, its applications, or its applications.
図1は、燃料電池と酸化ガス供給排出系の一例を示す説明図である。燃料電池システムは、図1に示す酸化ガス供給排出系の他に燃料ガスの供給排出系及び冷却系を備え、図示しない燃料電池車両に搭載されるが、本明細書では、酸化ガス供給排出系についてのみ説明し、燃料ガスの供給排出系、冷却系については説明を省略する。 FIG. 1 is an explanatory view showing an example of a fuel cell and an oxidizing gas supply and discharge system. The fuel cell system includes a fuel gas supply / discharge system and a cooling system in addition to the oxidative gas supply / discharge system shown in FIG. 1 and is mounted on a fuel cell vehicle (not shown). Only the fuel gas supply and discharge system and the cooling system will not be described.
酸化ガス供給排出系300は、酸化剤ガス供給管310と、酸化剤排ガス排出管320と、バイパス管330と、分流弁340と、調圧弁350と、エアコンプレッサー360と、回転数センサ370と、を備える。 The oxidizing gas supply and discharge system 300 includes an oxidant gas supply pipe 310, an oxidant exhaust gas discharge pipe 320, a bypass pipe 330, a diverting valve 340, a pressure regulating valve 350, an air compressor 360, and a rotation number sensor 370. Equipped with
酸化剤ガス供給管310は、燃料電池100に酸化剤ガスを供給するための管であり、酸化剤排ガス排出管320は、燃料電池100からの酸化剤排ガスを排出するための管である。バイパス管330は、酸化剤ガス供給管310と、酸化剤排ガス排出管320とを接続している。酸化剤ガス供給管310とバイパス管330との接続部には、分流弁340が設けられている。分流弁340は、酸化剤ガスを、燃料電池100に供給する酸化剤ガスとバイパス管330に流す酸化剤ガスとに分流する。調圧弁350は、燃料電池100における酸化剤ガスの圧力を調圧する。本実施形態では、酸化剤ガスとして、空気を用いている。エアコンプレッサー360は、空気を圧縮し、酸化剤ガス供給管310を介して燃料電池100に酸化剤ガスとして空気を供給する。制御部200は、例えば、エアコンプレッサー360の回転数指令値を算出したり、エアコンプレッサー360のトルク指令値を算出したりする。制御部200の動作例の詳細は後述する。なお、本発明におけるエアコンプレッサー装置は、エアコンプレッサー360と、制御部200とを備える。 The oxidant gas supply pipe 310 is a pipe for supplying the oxidant gas to the fuel cell 100, and the oxidant exhaust gas discharge pipe 320 is a pipe for discharging the oxidant exhaust gas from the fuel cell 100. The bypass pipe 330 connects the oxidant gas supply pipe 310 and the oxidant exhaust gas discharge pipe 320. A dividing valve 340 is provided at the connection between the oxidant gas supply pipe 310 and the bypass pipe 330. The diverting valve 340 diverts the oxidant gas into the oxidant gas supplied to the fuel cell 100 and the oxidant gas flowing to the bypass pipe 330. The pressure regulator valve 350 regulates the pressure of the oxidant gas in the fuel cell 100. In the present embodiment, air is used as the oxidant gas. The air compressor 360 compresses the air and supplies the air as the oxidant gas to the fuel cell 100 through the oxidant gas supply pipe 310. For example, the control unit 200 calculates a rotation speed command value of the air compressor 360, or calculates a torque command value of the air compressor 360. Details of an operation example of the control unit 200 will be described later. The air compressor according to the present invention includes an air compressor 360 and a control unit 200.
続いて、図2を参照して、制御部200によるエアコンプレッサー360の動作例を説明する。図2は、エアコンプレッサー360の動作例を説明するためのタイムチャートである。 Subsequently, an operation example of the air compressor 360 by the control unit 200 will be described with reference to FIG. FIG. 2 is a time chart for explaining an operation example of the air compressor 360. As shown in FIG.
例えば間欠運転明け時(時刻t1)において、アクセルペダル(図示略)が踏み込まれると、その踏み込み量(アクセル開度)に応じて、燃料電池100に対する要求電力が増加する。 For example, at the time of intermittent operation (time t1), when the accelerator pedal (not shown) is depressed, the required power to the fuel cell 100 is increased according to the depression amount (accelerator opening degree).
制御部200は、要求電力を燃料電池100から出力させるために燃料電池100に供給すべき空気の流量を算出し、この流量の空気を供給するために必要なエアコンプレッサー360の回転数指令値を算出する。そして、制御部200は、エアコンプレッサー360に対する回転数指令値と、回転数センサ370により取得された現在の回転数とを用いて、エアコンプレッサー360に対するトルク指令値(加速トルク)を算出する。 The control unit 200 calculates the flow rate of air to be supplied to the fuel cell 100 in order to output the required power from the fuel cell 100, and the rotational speed command value of the air compressor 360 necessary to supply the air of this flow rate calculate. Then, control unit 200 calculates a torque command value (acceleration torque) for air compressor 360 using the rotation speed command value for air compressor 360 and the current rotation speed acquired by rotation speed sensor 370.
ところで、アクセル開度に基づく要求電力の増加、回転数指令値の増加に応じてトルク指令値を増加させる場合には、燃料電池100の応答性確保のために、エアコンプレッサー360を最速で応答させて燃料電池100への空気供給を早める必要がある。つまり、回転数指令値の変化に応じて、空気が応答性良く燃料電池100に供給されるようにエアコンプレッサー360を制御する必要がある。 By the way, when increasing the torque command value according to the increase of the required power based on the accelerator opening degree and the increase of the rotation speed command value, the air compressor 360 is made to respond at the fastest to secure the responsiveness of the fuel cell 100. It is necessary to accelerate the air supply to the fuel cell 100. That is, it is necessary to control the air compressor 360 so that the air is supplied to the fuel cell 100 with good responsiveness in accordance with the change of the rotational speed command value.
ところが、このようにエアコンプレッサー360が最速で応答するような制御(性能の最大値で運転する制御)を実施すると、燃料電池100に対するパワー要求の少ない状態、例えば低速での間欠運転明け時においても、エアコンプレッサー360を最速で応答することとなり、エアコンプレッサーでの消費電力の損失(ACP損失)が大きくなってしまう。例えば図2に示すように、間欠運転明けから、時刻t2において所定の回転数に到達するように、エアコンプレッサー360を最速で応答する制御を行うと(図2に破線で示す回転数RC、トルク指令TC)、時刻t1〜t2におけるACP損失が大きくなってしまう(図2に破線で示すEC)。なお、図3(エアコンプレッサーの損失特性)に示すように、エアコンプレッサー360の回転数、トルクが高いほど、エアコンプレッサー360での消費電力の損失が大きくなる。 However, if control such that the air compressor 360 responds at the fastest (control operating at the maximum value of the performance) is performed in this way, even in a state where the power demand for the fuel cell 100 is small, for example, after intermittent operation at low speed. As a result, the air compressor 360 responds at the highest speed, and the loss of power consumption (ACP loss) in the air compressor increases. For example, as shown in FIG. 2, after intermittent operation, when control is performed to respond the air compressor 360 at the fastest speed so as to reach a predetermined rotation speed at time t2 (rotation speed R C shown by broken line in FIG. The torque command T c ) and the ACP loss at time t1 to t2 become large (E c indicated by a broken line in FIG. 2). As shown in FIG. 3 (loss characteristics of the air compressor), the loss of power consumption in the air compressor 360 increases as the rotation speed and torque of the air compressor 360 increase.
そこで、本実施形態では、燃料電池100に対するパワー要求が所定値以下の場合には、応答性より燃費を優先するように、エアコンプレッサー360の加速トルクを制御する。 Therefore, in the present embodiment, when the power demand for the fuel cell 100 is equal to or less than a predetermined value, the acceleration torque of the air compressor 360 is controlled so as to give priority to fuel consumption over responsiveness.
具体的には制御部200は、以下のようにエアコンプレッサー360を制御する。すなわち、要求電力を燃料電池100から出力するために必要な空気供給量を供給するためのエアコンプレッサー360の要求回転数と、エアコンプレッサー360の現在の回転数との差が所定値以上であり、且つ、燃料電池100に対するパワー要求値が所定値以上の場合には、制御部200は、第1加速トルクに基づいてエアコンプレッサー360の回転数を上昇させる。更に、アクセル開度に基づく要求電力を燃料電池100から出力するために必要な空気供給量を供給するためのエアコンプレッサー360の要求回転数と、エアコンプレッサー360の現在の回転数との差が所定値以上であり、且つ、燃料電池100に対するパワー要求値が所定値未満の場合には、第1加速トルクより低い第2加速トルク(図2で実線で示すトルク指令TP)に基づいてエアコンプレッサー360の回転数を上昇させる。 Specifically, the control unit 200 controls the air compressor 360 as follows. That is, the difference between the required number of revolutions of the air compressor 360 for supplying the amount of air supply necessary to output the required power from the fuel cell 100 and the present number of revolutions of the air compressor 360 is equal to or greater than a predetermined value. When the power requirement value for the fuel cell 100 is equal to or greater than the predetermined value, the control unit 200 increases the rotational speed of the air compressor 360 based on the first acceleration torque. Furthermore, the difference between the required number of revolutions of the air compressor 360 for supplying the amount of air supply required to output the required power based on the accelerator opening from the fuel cell 100 and the present number of revolutions of the air compressor 360 are predetermined. If the power demand value for the fuel cell 100 is less than the predetermined value, the air compressor is selected based on the second acceleration torque (torque command T P indicated by a solid line in FIG. 2) lower than the first acceleration torque. Increase the number of revolutions of 360.
このように、燃料電池100に対するパワー要求値が所定値未満の場合には、燃費向上を狙い、所定の回転数に到達するのを遅らせることで(図2の実線で示す回転数RPのように、時刻t3で所定の回転数に到達させる)、ACP損失を抑えることができる(図2の実線で示すEP)。これにより、必要な燃料電池100の発電応答速度を確保しながら燃費を向上させる、言い換えれば、ドライバビリティと燃費の両立を図ることができる。 As described above, when the power requirement value for the fuel cell 100 is less than the predetermined value, the fuel efficiency is improved to delay reaching the predetermined number of rotations (as indicated by the solid line R P in FIG. 2). to, to reach a predetermined rotational speed at time t3), it is possible to suppress the ACP loss (E P indicated by a solid line in FIG. 2). As a result, the fuel efficiency can be improved while securing the necessary power generation response speed of the fuel cell 100, in other words, both drivability and fuel efficiency can be achieved.
また本実施形態では、エアブロー等の発電以外の用途によって回転数指令が急変した場合に、加速トルクを制限しても良い。詳細には、エアブロー等の発電以外の用途において、エアコンプレッサー360に対する回転数指令が急変した場合に、制御部200は、上述した第1加速トルクよりも低い第2加速トルクに基づいてエアコンプレッサー360の回転数を上昇させる。エアブロー等の発電以外の用途による機能に、エアコンプレッサー360の最速応答性は必要ないため、このような用途においても加速トルクを制御することにより、機能性を確保しつつ燃費を向上させることができる。 Further, in the present embodiment, the acceleration torque may be limited when the rotation speed command suddenly changes due to applications other than power generation such as air blow. Specifically, in applications other than power generation such as air blow, when the rotation speed command to the air compressor 360 suddenly changes, the control unit 200 controls the air compressor 360 based on the second acceleration torque lower than the first acceleration torque described above. Increase the speed of Since the fastest response of the air compressor 360 is not required for functions other than power generation such as air blow, fuel efficiency can be improved while maintaining functionality by controlling acceleration torque also in such applications. .
以上、具体例を参照しつつ本発明の実施形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。 The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. That is, those to which those skilled in the art appropriately modify the design of these specific examples are also included in the scope of the present invention as long as they have the features of the present invention. The elements included in each of the specific examples described above and their arrangements, materials, conditions, shapes, sizes, and the like are not limited to those illustrated, and can be changed as appropriate.
100:燃料電池
200:制御部
300:酸化ガス供給排出系
310:酸化剤ガス供給管
320:酸化剤排ガス排出管
360:エアコンプレッサー
370:回転数センサ
100: Fuel cell 200: Control unit 300: Oxidizing gas supply and discharge system 310: Oxidizing gas supply pipe 320: Oxidizing gas exhaust pipe 360: Air compressor 370: Rotational speed sensor
Claims (1)
要求電力を燃料電池から出力するために必要な空気供給量を供給するためのエアコンプレッサーの要求回転数と前記エアコンプレッサーの現在の回転数との差、及び前記燃料電池の運転状態が間欠運転明けであるか否かの判定結果に基づいて、前記エアコンプレッサーのトルク指令値及び回転数を制御する制御部を備え、
前記制御部は、
前記差が所定値以上、且つ、前記燃料電池の運転状態が間欠運転明けでないと判定された場合に、第1加速トルクに基づいて前記エアコンプレッサーの回転数を上昇させ、
前記差が所定値以上、且つ、前記燃料電池の運転状態が間欠運転明けであると判定された場合に、前記第1加速トルクよりも小さい第2加速トルクにより前記エアコンプレッサーの回転数を上昇させて前記要求回転数に到達する時間を遅延させることを特徴とするエアコンプレッサー装置。 An air compressor used in a fuel cell system, comprising:
The difference between the required number of revolutions of the air compressor for supplying the required amount of air supply to output the required power from the fuel cell and the present number of revolutions of the air compressor, and the operating state of the fuel cell And a controller configured to control the torque command value and the number of revolutions of the air compressor based on the determination result of whether or not
The control unit
The rotation number of the air compressor is increased based on the first acceleration torque when it is determined that the difference is equal to or more than a predetermined value and the operating state of the fuel cell is not intermittent operation .
When it is determined that the difference is equal to or more than a predetermined value and the operation state of the fuel cell is after intermittent operation, the number of revolutions of the air compressor is increased by a second acceleration torque smaller than the first acceleration torque. Air compressor device, which delays the time to reach the required rotational speed .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016034004A JP6547957B2 (en) | 2016-02-25 | 2016-02-25 | Air compressor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016034004A JP6547957B2 (en) | 2016-02-25 | 2016-02-25 | Air compressor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017152230A JP2017152230A (en) | 2017-08-31 |
JP6547957B2 true JP6547957B2 (en) | 2019-07-24 |
Family
ID=59738569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016034004A Active JP6547957B2 (en) | 2016-02-25 | 2016-02-25 | Air compressor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6547957B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112644343B (en) * | 2021-01-12 | 2022-08-30 | 广西玉柴机器股份有限公司 | Air compressor rotating speed correction method of fuel cell system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4353154B2 (en) * | 2005-08-04 | 2009-10-28 | トヨタ自動車株式会社 | Fuel cell vehicle |
JP5077295B2 (en) * | 2009-06-16 | 2012-11-21 | トヨタ自動車株式会社 | On-vehicle fuel cell system |
-
2016
- 2016-02-25 JP JP2016034004A patent/JP6547957B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017152230A (en) | 2017-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013157488A1 (en) | Fuel cell system | |
JP4378735B1 (en) | Fuel cell system | |
WO2012039167A1 (en) | Power generation control device for electric vehicle | |
WO2017163499A1 (en) | Fuel cell system and method for controlling fuel cell system | |
US9029036B2 (en) | Systems and methods for controlling a compressor recirculation valve | |
JP4525112B2 (en) | Control device for fuel cell vehicle | |
EP2940771B1 (en) | Fuel cell system and control method for the same | |
JP2007265653A (en) | Fuel cell system | |
EP3174145B1 (en) | Fuel cell system | |
JP2002246051A (en) | Controller for fuel cell system | |
JP6277600B2 (en) | Control device for fuel cell system | |
JP2004265683A (en) | Fuel cell power generation control system | |
JP6547957B2 (en) | Air compressor device | |
JP2009099342A (en) | Fuel cell system and rotational speed control method of compressor | |
JP5765064B2 (en) | Fuel cell wet state control device | |
JP2005085622A (en) | Fuel cell power generating system | |
JP4876502B2 (en) | Fuel cell system | |
JP6667418B2 (en) | Fuel cell system | |
JP2019087479A (en) | Fuel cell system for industrial vehicle | |
JP2006109650A (en) | Vehicle control unit and vehicle control method | |
JP6248319B2 (en) | Vehicle brake negative pressure securing device | |
JP4075727B2 (en) | Control device for fuel cell vehicle | |
JP4747495B2 (en) | Fuel cell system | |
JP2007234311A (en) | Fuel cell system | |
JP5119568B2 (en) | Fuel cell system control apparatus and fuel cell system control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190529 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190611 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6547957 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |