[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6414053B2 - 液晶表示素子、液晶配向膜及び液晶配向処理剤 - Google Patents

液晶表示素子、液晶配向膜及び液晶配向処理剤 Download PDF

Info

Publication number
JP6414053B2
JP6414053B2 JP2015512508A JP2015512508A JP6414053B2 JP 6414053 B2 JP6414053 B2 JP 6414053B2 JP 2015512508 A JP2015512508 A JP 2015512508A JP 2015512508 A JP2015512508 A JP 2015512508A JP 6414053 B2 JP6414053 B2 JP 6414053B2
Authority
JP
Japan
Prior art keywords
liquid crystal
group
carbon atoms
display element
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015512508A
Other languages
English (en)
Other versions
JPWO2014171493A1 (ja
Inventor
徳俊 三木
徳俊 三木
雅章 片山
雅章 片山
幸司 巴
幸司 巴
奈穂 菊池
奈穂 菊池
保坂 和義
和義 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2014171493A1 publication Critical patent/JPWO2014171493A1/ja
Application granted granted Critical
Publication of JP6414053B2 publication Critical patent/JP6414053B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13347Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals working in reverse mode, i.e. clear in the off-state and scattering in the on-state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Description

本発明は、電圧無印加時に透明状態となり、電圧印加時に散乱状態となる透過散乱型の液晶表示素子、それに用いられる液晶配向膜及びこの液晶配向膜を形成するための液晶配向処理剤に関するものである。
液晶材料を用いた液晶表示素子としては、TN(Twisted Nematic)モードが実用化されている。このモードでは、液晶の旋光特性を利用して、光のスイッチングを行うものであり、液晶表示素子として用いる際には、偏光板を用いる必要がある。しかしながら、偏光板を用いることで光の利用効率が低くなる。
偏光板を用いずに光の利用効率の高い液晶表示素子として、液晶の透過状態(透明状態ともいう)と散乱状態との間でスイッチングを行う液晶表示素子があり、一般的には、高分子分散型液晶(PDLC(Polymer Dispersed Liquid Crystal))や高分子ネットワーク型液晶(PNLC(Polymer Network Liquid Crystal))を用いたものが知られている。
これらを用いた液晶表示素子は、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、液晶組成物の一部又は全体が液晶性を示す状態で前記液晶組成物の硬化を行い、液晶と重合性化合物の硬化物複合体を形成させる工程を経て製造される液晶表示素子である。そして、この液晶表示素子は、電圧の印加により、液晶の透過状態と散乱状態とを制御する。
従来のPDLCやPNLCを用いた液晶表示素子は、電圧無印加時に液晶分子がランダムな方向を向いているため、白濁(散乱)状態となり、電圧印加時には液晶が電界方向に配列し、光を透過して透過状態となる(このような透過散乱の制御を行う液晶表示素子をノーマル型素子ともいう)。しかし、このノーマル型素子においては、透過状態を得るために常時電圧を印加しておく必要があるため、透明状態で使用される場合が多い用途、例えば窓ガラスなどで使用する場合には、消費電力が大きい。
ノーマル型素子に対して、電圧無印加時に透過状態となり、電圧印加時には、散乱状態になるPDLCが報告されている(このような透過散乱の制御を行う液晶表示素子をリバース型素子ともいう)(例えば、特許文献1又は2参照)。
日本特許2885116号公報 日本特許4132424号公報
リバース型素子では、液晶を垂直に配向させなければならないため、液晶を垂直に配向させる液晶配向膜(垂直液晶配向膜ともいう)が用いられる。その際、垂直液晶配向膜は疎水性が高い膜であるため、液晶層と液晶配向膜との密着性が低くなってしまう。そのため、リバース型素子に用いる液晶組成物には、液晶層と液晶配向膜との密着性を高めるための重合性化合物(硬化剤ともいう)を多く導入しなければならない。しかしながら、重合性化合物を多く導入すると、液晶の垂直配向性が阻害され、電圧無印加時の透明性と電圧印加時の散乱特性が大きく低下する問題がある。そのため、リバース型素子に用いる液晶配向膜は、液晶の垂直配向性が高いものが必要となる。
そこで、本発明は、上記特性を兼ね備えた液晶表示素子を提供することを目的とする。すなわち、本発明は、液晶表示素子であって、液晶層と垂直液晶配向膜との密着性が高い、更には、液晶の垂直配向性が高く、良好な光学特性、すなわち、電圧無印加時の透明性と電圧印加時の散乱特性が良好な液晶表示素子を提供することを目的とする。加えて、上記液晶表示素子に用いる液晶配向膜及び液晶配向処理剤の提供を目的とする。
本発明者は、鋭意研究を行った結果、特定構造の側鎖を有する重合体及び特定構造の発生剤を含む液晶配向処理剤から得られた垂直液晶配向膜を用いた液晶表示素子が、上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。
すなわち、本発明は以下の要旨を有するものである。
(1)電極を備えた一対の基板の間に液晶層を有し、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、さらに、基板の少なくとも一方が液晶を垂直に配向させる液晶配向膜を有し、液晶組成物の一部又は全体が液晶性を示す状態で前記液晶組成物の硬化を行い、液晶と重合性化合物の硬化物複合体を形成させてなり、かつ電圧無印加時に透明状態となり、電圧印加時に散乱状態となる透過散乱型の液晶表示素子であり、前記液晶配向膜が、下記の(A)成分及び(B)成分を含む液晶配向処理剤から得られる液晶配向膜である液晶表示素子。
(A)成分:下記の式[1−1]及び式[1−2]で示される構造からなる群から選ばれる少なくとも1種の構造を有する重合体
(B)成分:光ラジカル発生剤、光酸発生剤及び光塩基発生剤からなる群から選ばれる少なくとも1つの発生剤
Figure 0006414053
(Yは単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種の結合基を示す。Yは単結合又は−(CH−(bは1〜15の整数である)を示す。Yは単結合、−(CH−(cは1〜15の整数である)、−O−、−CHO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種の結合基を示す。Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格を有する炭素数17〜51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシル基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシル基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。nは0〜4の整数を示す。Yは炭素数1〜18のアルキル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシル基及び炭素数1〜18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。)
Figure 0006414053
(Yは単結合、−O−、−CHO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種の結合基を示す。Yは炭素数8〜22のアルキル基又は炭素数6〜18のフッ素含有アルキル基を示す。)
(2)前記(A)成分の重合体が、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンからなる群から選ばれる少なくとも1つである上記(1)に記載の液晶表示素子。
(3)前記重合体が、前記式[1−1]の構造の側鎖を有するジアミン化合物及び式[1−2]の構造の側鎖を有するジアミン化合物からなる群から選ばれる少なくとも1種のジアミン化合物を原料の一部に用いて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種である上記(2)に記載の液晶表示素子。
(4)前記ジアミン化合物が、下記の式[1a]で示されるジアミン化合物である上記(3)に記載の液晶表示素子。
Figure 0006414053
(Yは前記式[1−1]及び式[1−2]で示される構造からなる群から選ばれる少なくとも1種を示す。nは1〜4の整数を示す。)
(5)前記(A)成分の重合体が、下記の式[3]で示されるテトラカルボン酸成分を原料の一部に用いて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種である上記(2)〜(4)のいずれかに記載の液晶表示素子。
Figure 0006414053
(Zは後記する式[3a]〜式[3j]から選ばれる構造を示す。)
(6)前記重合体がポリイミドである上記(3)〜(5)のいずれかに記載の液晶表示素子。
(7)前記(A)成分の重合体が、下記の式[A1]で示されるアルコキシシランを重縮合させて得られるポリシロキサン、又は、式[A1]と、下記の式[A2]及び式[A3]で示されるアルコキシシランからなる群から選ばれる少なくとも1種のアルコキシシランとを重縮合させて得られるポリシロキサンである上記(2)に記載の液晶表示素子。
Figure 0006414053
(Aは前記式[1−1]又は式[1−2]で示される構造を示す。Aはそれぞれ水素原子又は炭素数1〜5のアルキル基を示す。Aはそれぞれ炭素数1〜5のアルキル基を示す。mは1又は2の整数を示す。nは0〜2の整数を示す。pは0〜3の整数を示す。ただし、m+n+pは4である。)
Figure 0006414053
(Bはビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基及びシンナモイル基からなる群から選ばれる少なくとも1種の炭素数2〜12の有機基を示す。Bはそれぞれ水素原子又は炭素数1〜5のアルキル基を示す。Bはそれぞれ炭素数1〜5のアルキル基を示す。mは1又は2の整数を示す。nは0〜2の整数を示す。pは0〜3の整数を示す。ただし、m+n+pは4である。)
Figure 0006414053
(Dはそれぞれ水素原子又は炭素数1〜5のアルキル基を示す。Dは炭素数1〜5のアルキル基を示す。nは0〜3の整数を示す。)
(8)前記(B)成分の発生剤が、光ラジカル発生剤である上記(1)〜(7)のいずれかに記載の液晶表示素子。
(9)前記液晶配向処理剤中に、1−ヘキサノール、シクロヘキサノール、1,2−エタンジオール、1,2−プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、シクロヘキサノン、シクロペンタノン、下記の式[D1]、式[D2]及び式[D3]で示される溶媒からなる群から選ばれる少なくとも1つの溶媒を含有する上記(1)〜(8)のいずれかに記載の液晶表示素子。
Figure 0006414053
(Dは炭素数1〜3のアルキル基を示す。Dは炭素数1〜3のアルキル基を示す。Dは炭素数1〜4のアルキル基を示す。)
(10)前記液晶配向処理剤中に、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン及びγ−ブチロラクトンからなる群から選ばれる少なくとも1つの溶媒を含有する上記(1)〜(9)のいずれかに記載の液晶表示素子。
(11)前記液晶配向処理剤に、後記する式[B1]〜式[B7]で示される構造を有する化合物からなる群から選ばれる少なくとも1つの化合物を含有する上記(1)〜(10)のいずれかに記載の液晶表示素子。
(12)前記液晶表示素子の基板が、ガラス基板又はプラスチック基板である上記(1)〜(11)のいずれかに記載の液晶表示素子。
(13)上記(1)〜(12)のいずれかに記載の液晶表示素子に用いる液晶配向膜。
(14)膜厚が5〜300nmである上記(13)に記載の液晶配向膜。
(15)上記(13)又は(14)に記載の液晶配向膜を形成するための液晶配向処理剤。


本発明によれば、特定構造の側鎖を有する重合体及び特定構造の発生剤を含む液晶配向処理剤から得られる垂直液晶配向膜を用いることにより、液晶層と垂直液晶配向膜との密着性が高い、更には、液晶の垂直配向性が高く、良好な光学特性、すなわち、電圧無印加時の透明性と電圧印加時の散乱特性が良好な液晶表示素子を提供できる。本発明の液晶表示素子であるリバース型素子は、表示を目的とする液晶ディスプレイ、光の透過と遮断を制御する調光窓や光シャッター素子などに用いることができる。
<液晶表示素子>
本発明の液晶表示素子は、電極を備えた一対の基板の間に液晶層を有し、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、さらに、基板の少なくとも一方が液晶を垂直に配向させる液晶配向膜を有し、液晶組成物の一部又は全体が液晶性を示す状態で前記液晶組成物の硬化を行い、液晶と重合性化合物の硬化物複合体を形成させて得られる液晶表示素子であり、前記液晶配向膜が、下記の(A)成分及び(B)成分を含む液晶配向処理剤から得られる液晶配向膜を有する。
(A)成分:下記の式[1−1]及び式[1−2]で示される構造からなる群から選ばれる少なくとも1種の構造を有する重合体(特定重合体ともいう)
(B)成分:光ラジカル発生剤、光酸発生剤及び光塩基発生剤からなる群から選ばれる少なくとも1つの発生剤(特定発生剤ともいう)
Figure 0006414053
(式中、Y、Y、Y、Y、Y、Y、及びnは、前記と同意義である。)
Figure 0006414053
(式中、Y、及びYは、前記と同意義である。)
本発明における垂直液晶配向膜は、紫外線などの活性エネルギー線や熱により、ラジカル、酸又は塩基(触媒ともいう)を発生する特定発生剤を含む液晶配向処理剤から得られる。そのため、液晶表示素子を作製する際の液晶と重合性化合物の硬化物複合体、すなわち、液晶層を形成させる工程で用いる紫外線や加熱により、垂直液晶配向膜中の特定発生剤から触媒が発生して、液晶層と垂直液晶配向膜との密着性が、より強固なものとなる。
さらに、本発明の液晶表示素子に使用される、特定重合体に含まれる、式[1−1]で示される特定側鎖構造は、側鎖部位にベンゼン環、シクロヘキシル環、複素環、又はステロイド骨格を有する炭素数17〜51の2価の有機基を有する。これら環及び有機基の側鎖構造は、剛直な構造を示すため、高くて安定な液晶の垂直配向性を得ることができる。
以上の点から、本発明の特定側鎖構造を有する重合体及び特定発生剤を含む液晶配向処理剤から得られる垂直液晶配向膜を有する液晶表示素子は、液晶の垂直配向性が高く、良好な光学特性、すなわち、電圧無印加時の透明性(透過状態)と電圧印加時の散乱特性(散乱状態)が良好で、さらに液晶層と垂直液晶配向膜との密着性が高いリバース型素子として用いることができる。
<液晶組成物>
本発明の液晶表示素子の作製に用いる液晶組成物中の液晶には、ネマチック液晶やスメクチック液晶を用いることができる。なかでも、負の誘電異方性を有するものが好ましい。また、低電圧駆動及び散乱特性の点からは、誘電率の異方性が大きく、屈折率の異方性が大きいものが好ましい。
さらに、液晶表示素子をTFT(Thin Film Transistor)などの能動素子として駆動させるためには、液晶の電気抵抗が高く、電圧保持率(VHRともいう)が高いことが求められる。そのため、液晶には、電気抵抗が高く、紫外線などの活性エネルギー線によりVHRが低下しないフッ素系や塩素系の液晶を用いることが好ましい。さらに、液晶としては、複屈折率(Δn)が大きいものを用いることが好ましい。
本発明における液晶表示素子は、液晶組成物中に二色性染料を溶解させてゲストホスト型の素子とすることもできる。この場合、電圧無印加時は透明で、電圧印加時に吸収(散乱)となる素子が得られる。
また、本発明における液晶表示素子では、液晶の配向の方向は、電圧印加の有無により90度変化する。そのため、本発明の液晶表示素子では、二色性染料の吸光特性の違いを利用することで、ランダム配向と垂直配向でスイッチングを行う従来のゲストホスト型の素子に比べて、高いコントラストが得られる。また、二色性染料を溶解させたゲストホスト型の素子では、液晶が水平方向に配向した場合に有色になり、散乱状態においてのみ、不透明となる。そのため、電圧を印加するにつれ、電圧無印加時の無色透明から有色不透明、有色透明の状態に切り替わる素子を得ることもできる。
本発明における液晶組成物中には、紫外線などの活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物が含まれる。重合性化合物の重合は、その反応形式は問わず、液晶と重合性化合物の硬化物複合体を形成させても良い。具体的な重合の反応形式としては、ラジカル重合、カチオン重合、アニオン重合又は重付加反応が挙げられる。ここで、硬化物複合体とは、重合性化合物により形成される高分子量体(ポリマー)中に液晶が存在しているような状態を意味する。
重合性化合物としては、液晶に溶解すれば、どのような化合物であってもよい。ただし、重合性化合物を液晶に溶解した際に、液晶組成物の一部又は全体が液晶相を示す温度が存在することが必要となる。液晶組成物の一部が液晶相を示す場合であっても、液晶表示素子を肉眼で確認して、素子内全体が、ほぼ一様な透明性と散乱特性が得られていれば良い。
重合性化合物の反応形式がラジカル重合の場合、下記のラジカル型の重合性化合物を用いることができる。
例えば、2−エチルヘキシルアクリレート、ブチルエチルアクリレート、ブトキシエチルアクリレート、2−シアノエチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、2−ヒドロキシプロピルアクリレート、2−エトキシエチルアクリレート、N,N−ジエチルアミノエチルアクリレート、N,N−ジメチルアミノエチルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、グリシジルアクリレート、テトラヒドロフルフリルアクリレート、イソボニルアクリレート、イソデシルアクリレート、ラウリルアクリレート、モルホリンアクリレート、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、2,2,2−トリフルオロエチルアクリレート、2,2,3,3,3−ペンタフルオロプロピルアクリレート、2,2,3,3−テトラフルオロプロピルアクリレート、2,2,3,4,4,4−ヘキサフルオロブチルアクリレート、2−エチルヘキシルメタクリレート、ブチルエチルメタクリレート、ブトキシエチルメタクリレート、2−シアノエチルメタクリレート、ベンジルメタクリレート、シクロヘキシルメタクリレート、2−ヒドロキシプロピルメタクリレート、2−エトキシエチルアクリレート、N,N−ジエチルアミノエチルメタクリレート、N,N−ジメチルアミノエチルメタクリレート、ジシクロペンタニルメタクリレート、ジシクロペンテニルメタクリレート、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレート、イソボニルメタクリレート、イソデシルメタクリレート、ラウリルメタクリレート、モルホリンメタクリレート、フェノキシエチルメタクリレート、フェノキシジエチレングリコールメタクリレート、2,2,2−トリフルオロエチルメタクリレート、2,2,3,3−テトラフルオロプロピルメタクリレート、2,2,3,4,4,4−ヘキサフルオロブチルメタクリレート、4,4’−ビフェニルジアクリレート、ジエチルスチルべストロールジアクリレート、1,4−ビスアクリロイルオキシベンゼン、4,4’−ビスアクリロイルオキシジフェニルエーテル、4,4’−ビスアクリロイルオキシジフェニルメタン、3,9−[1,1−ジメチル−2−アクリロイルオキシエチル]−2,4,8,10−テトラスピロ[5,5]ウンデカン、α,α’−ビス[4−アクリロイルオキシフェニル]−1,4−ジイソプロピルベンゼン、1,4−ビスアクリロイルオキシテトラフルオロベンゼン、4,4’−ビスアクリロイルオキシオクタフルオロビフェニル、ジエチレングリコールアクリレート、1,4−ブタンジオールジアクリレート、1,3−ブチレングリコールジアクリレート、ジシクロペンタニルジアクリレート、グリセロールジアクリレート、1,6−へキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、テトラエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、4,4’−ジアクリロイルオキシスチルベン、4,4’−ジアクリロイルオキシジメチルスチルベン、4,4’−ジアクリロイルオキシジエチルスチルベン、4,4’−ジアクリロイルオキシジプロピルスチルベン、4,4’−ジアクリロイルオキシジブチルスチルベン、4,4’−ジアクリロイルオキシジペンチルスチルベン、4,4’−ジアクリロイルオキシジヘキシルスチルベン、4,4’−ジアクリロイルオキシジフルオロスチルベン、2,2,3,3,4,4−ヘキサフルオロペンタンジオール−1,5−ジアクリレート、1,1,2,2,3,3−ヘキサフルオロプロピル−1,3−ジアクリレート、ジエチレングリコールジメタクリレート、1,4−ブタンジオールジメタクリレート、1,3−ブチレングリコールジメタクリレート、1,6−へキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラメタクリレート、ペンタエリスリトールトリメタクリレート、ジトリメチロールプロパンテトラメタクリレート、ジペンタエリスリトールヘキサメタクリレート、ジペンタエリスリトールモノヒドロキシペンタメタクリレート、2,2,3,3,4,4−ヘキサフルオロペンタンジオール−1,5−ジメタクリレートなどのモノマー及びオリゴマーが挙げられる。
なかでも、電圧印加時の散乱特性を高くすることを目的に、3個以上の官能基を有する多官能性型のラジカル型の重合性化合物を用いることが好ましい。
具体的には、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリストリトールトリアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラメタクリレート、ペンタエリスリトールトリメタクリレート、ジトリメチロールプロパンテトラメタクリレート、ジペンタエリスリトールヘキサメタクリレート、ジペンタエリスリトールモノヒドロキシペンタメタクリレートなどのモノマー及びオリゴマーが挙げられる。
上記のラジカル型の重合性化合物は、液晶表示素子の光学特性や液晶層と垂直液晶配向膜との密着性の特性に応じて、1種類又は2種類以上を混合して使用することもできる。
さらに、重合性化合物の反応形式がラジカル重合の場合、液晶組成物中に、紫外線によりラジカルを発生するラジカル開始剤を導入することもできる。
具体的には、tert−ブチルペルオキシ−iso−ブタレート、2,5−ジメチル−2,5−ビス(ベンゾイルジオキシ)へキサン、1,4−ビス[α−(tert−ブチルジオキシ)−iso−プロポキシ]ベンゼン、ジ−tert−ブチルペルオキシド、2,5−ジメチル−2,5−ビス(tert−ブチルジオキシ)へキセンヒドロペルオキシド、α−(iso−プロピルフェニル)−iso−プロピルヒドロペルオキシド、2,5−ジメチルへキサン、tert−ブチルヒドロペルオキシド、1,1−ビス(tert−ブチルジオキシ)−3,3,5−トリメチルシクロへキサン、ブチル−4,4−ビス(tert−ブチルジオキシ)バレレート、シクロへキサノンペルオキシド、2,2’,5,5’−テトラ(tert−ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’−テトラ(tert−ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’−テトラ(tert−アミルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’−テトラ(tert−ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’−ビス(tert−ブチルペルオキシカルボニル)−4,4’−ジカルボキシベンゾフェノン、tert−ブチルペルオキシベンゾエート、ジ−tert−ブチルジペルオキシイソフタレートなどの有機過酸化物;9,10−アントラキノン、1−クロロアントラキノン、2−クロロアントラキノン、オクタメチルアントラキノン、1,2−ベンズアントラキノンなどのキノン類;ベンゾインメチル、ベンゾインエチルエーテル、α−メチルベンゾイン、α−フェニルベンゾインなどのベンゾイン誘導体;などが挙げられる。
重合性化合物の反応形式がカチオン重合又はアニオン重合の場合、下記のイオン型の重合性化合物を用いることができる。
具体的には、ヒドロキシル基、ヒドロキシアルキル基、及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の架橋形成基を有する化合物である。
例えば、アミノ基の水素原子がメチロール基、アルコキシメチル基またその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体又はグリコールウリルを用いることができる。このメラミン誘導体やベンゾグアナミン誘導体はオリゴマーであっても良い。これらはトリアジン環1個当たり、メチルール基又はアルコキシメチル基を平均3個以上6個未満有するものが好ましい。
このようなメラミン誘導体やベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX−750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW−30(以上、三和ケミカル社製)や、サイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123−10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125−80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイテック社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリルなどが挙げられる。
ヒドロキシル基又はアルコキシル基を有するベンゼン、又はフェノール性化合物としては、例えば、1,3,5−トリス(メトキシメトキシ)ベンゼン、1,2,4−トリス(イソプロポキシメトキシ)ベンゼン、1,4−ビス(sec−ブトキシメトキシ)ベンゼン、2,6−ジヒドロキシメチル−p−tert−ブチルフェノールなどが挙げられる。
また、上記イオン型の重合性化合物としては、エポキシ基、イソシアネート基を含み架橋形成基を有する化合物を用いることもできる。具体的には、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル−m−キシレンジアミン、テトラグリシジル−1,3−ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3−ビス(1−(2,3−エポキシプロポキシ)−1−トリフルオロメチル−2,2,2−トリフルオロメチル)ベンゼン、4,4−ビス(2,3−エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル−p−アミノフェノール、テトラグリシジルメタキシレンジアミン、2−(4−(2,3−エポキシプロポキシ)フェニル)−2−(4−(1,1−ビス(4−(2,3−エポキシプロポキシ)フェニル)エチル)フェニル)プロパン、1,3−ビス(4−(1−(4−(2,3−エポキシプロポキシ)フェニル)−1−(4−(1−(4−(2,3−エポキシプロポキシフェニル)−1−メチルエチル)フェニル)エチル)フェノキシ)−2−プロパノールなどが挙げられる。
上記のイオン型の重合性化合物は、光学特性や液晶層と垂直液晶配向膜との密着性の特性に応じて、1種類又は2種類以上を混合して使用することもできる。
さらに、重合性化合物の反応形式がカチオン重合又はアニオン重合の場合、液晶組成物中に、紫外線により酸又は塩基を発生するイオン開始剤を導入することもできる。
具体的には、トリアジン系化合物、アセトフェノン誘導体化合物、ジスルホン系化合物、ジアゾメタン系化合物、スルホン酸誘導体化合物、ジアリールヨードニウム塩、トリアリールスルホニウム塩、トリアリールホスホニウム塩、鉄アレーン錯体などを用いることができるが、これらに限定されるものではない。
より具体的には、例えば、ジフェニルヨードニウムクロライド、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムメシレート、ジフェニルヨードニウムトシレート、ジフェニルヨードニウムブロミド、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムヘキサフルオロアルセネート、ビス(p−tert−ブチルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(p−tert−ブチルフェニル)ヨードニウムメシレート、ビス(p−tert−ブチルフェニル)ヨードニウムトシレート、ビス(p−tert−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(p−tert−ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(p−tert−ブチルフェニル)ヨードニウムクロリド、ビス(p−クロロフェニル)ヨードニウムクロライド、ビス(p−クロロフェニル)ヨードニウムテトラフルオロボレート、トリフェニルスルホニウムクロリド、トリフェニルスルホニウムブロミド、トリ(p−メトキシフェニル)スルホニウムテトラフルオロボレート、トリ(p−メトキシフェニル)スルホニウムヘキサフルオロホスホネート、トリ(p−エトキシフェニル)スルホニウムテトラフルオロボレート、トリフェニルホスホニウムクロリド、トリフェニルホスホニウムブロミド、トリ(p−メトキシフェニル)ホスホニウムテトラフルオロボレート、トリ(p−メトキシフェニル)ホスホニウムヘキサフルオロホスホネート、又はトリ(p−エトキシフェニル)ホスホニウムテトラフルオロボレートが挙げられる。
また、ビス[[(2−ニトロベンジル)オキシ]カルボニルへキサン−1,6−ジアミン]、ニトロベンジルシクロへキシルカルバメート、ジ(メトキシベンジル)ヘキサメチレンジカルバメート、ビス[[(2−ニトロベンジル)オキシ]カルボニルへキサン−1,6−ジアミン]、ニトロベンジルシクロへキシルカルバメート又はジ(メトキシベンジル)ヘキサメチレンジカルバメートが挙げられる。
本発明の液晶表示素子においては、本素子の光学特性の点から、ラジカル型の重合性化合物を用いることが好ましい。
液晶組成物中における重合性化合物の含有量には特に制限は無いが、重合性化合物の含有量が多い場合、液晶中に重合性化合物が溶解しなかったり、液晶組成物が液晶相を示す温度がなかったり、素子の透明状態と散乱状態との変化が小さくなり光学特性が悪くなる。また、重合性化合物の含有量が少ない場合、液晶層の硬化性が低くなり、さらには、液晶層と垂直液晶配向膜との密着性が低下し、機械的な外圧に対して液晶の配向性が乱れやすくなる。そのため、重合性化合物の含有量は、液晶100質量部に対して、1〜50質量部であることが好ましく、なかでも、5〜40質量部が好ましい。特に好ましいのは、11〜30質量部である。
また、重合性化合物の反応を促進するラジカル開始剤及びイオン開始剤の含有量には特に制限は無いが、好ましくは、液晶100質量部に対して、0.01〜10質量部であり、なかでも、0.05〜5質量部が好ましい。特に好ましいのは、0.05〜3質量部である。
<特定重合体>
本発明の液晶表示素子は、基板の少なくとも一方に液晶を垂直に配向させるような垂直液晶配向膜を有する素子である。その際の垂直液晶配向膜は、下記の式[1−1]及び式[1−2]で示される特定側鎖構造からなる群から選ばれる少なくとも1種の特定側鎖構造を有する特定重合体を含む液晶配向処理剤から得られる液晶配向膜である。
Figure 0006414053
は単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種の結合基を示す。なかでも、原料の入手性や合成の容易さの点から、単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−又は−COO−が好ましい。より好ましいのは、単結合、−(CH−(aは1〜10の整数である)、−O−、−CHO−又は−COO−である。
は単結合又は−(CH−(bは1〜15の整数である)を示す。なかでも、単結合又は−(CH−(bは1〜10の整数である)が好ましい。
は単結合、−(CH−(cは1〜15の整数である)、−O−、−CHO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種の結合基を示す。なかでも、合成の容易さの点から、単結合、−(CH−(cは1〜15の整数である)、−O−、−CHO−又は−COO−が好ましい。より好ましいのは、単結合、−(CH−(cは1〜10の整数である)、−O−、−CHO−又は−COO−である。
はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基であり、これらの環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシル基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。さらに、Yは、ステロイド骨格を有する炭素数17〜51の有機基から選ばれる2価の有機基であってもよい。なかでも、合成の容易さの点から、ベンゼン環、シクロへキサン環又はステロイド骨格を有する炭素数17〜51の有機基が好ましい。
はベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシル基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。なかでも、ベンゼン環又はシクロへキサン環が好ましい。
nは0〜4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0〜3が好ましい。より好ましいのは、0〜2である。
は炭素数1〜18のアルキル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシル基及び炭素数1〜18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。なかでも、炭素数1〜18のアルキル基、炭素数1〜10のフッ素含有アルキル基、炭素数1〜18のアルコキシル基又は炭素数1〜10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシル基である。特に好ましくは、炭素数1〜9のアルキル基又は炭素数1〜9のアルコキシル基である。
、Y、Y、Y、Y、Y及びnの好ましい組み合わせとしては、国際公開公報WO2011/132751(2011.10.27公開)の13頁〜34頁の表6〜表47に掲載される(2−1)〜(2−629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表におけるY1〜Y6は、それぞれ、本発明のY〜Yに読み替えるものとする。また、国際公開公報の各表に掲載される(2−605)〜(2−629)における、ステロイド骨格を有する炭素数12〜25の有機基は、いずれも、ステロイド骨格を有する炭素数17〜51の有機基に読み替えるものとする。
なかでも、(2−25)〜(2−96)、(2−145)〜(2−168)、(2−217)〜(2−240)、(2−268)〜(2−315)、(2−364)〜(2−387)、(2−436)〜(2−483)又は(2−603)〜(2−615)の組み合わせが好ましい。特に好ましい組み合わせは、(2−49)〜(2−96)、(2−145)〜(2−168)、(2−217)〜(2−240)、(2−603)〜(2−606)、(2−607)〜(2−609)、(2−611)、(2−612)又は(2−624)である。
Figure 0006414053
は単結合、−O−、−CHO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種の結合基を示す。なかでも、単結合、−O−、−CHO−、−CONH−、−CON(CH)−又は−COO−が好ましい。より好ましくは、単結合、−O−、−CONH−又は−COO−である。
は炭素数8〜22のアルキル基又は炭素数6〜18のフッ素含有アルキル基を示す。なかでも、炭素数8〜18のアルキル基が好ましい。
上記特定側鎖構造としては、高くて安定な液晶の垂直配向性を得ることができる点から、式[1−1]で示される構造を用いることが好ましい。
特定側鎖構造を有する特定重合体としては、特に限定は無いが、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンからなる群から選ばれる少なくとも1つの重合体であることが好ましい。なかでも、ポリイミド前駆体、ポリイミド又はポリシロキサンが好ましい。
特定重合体にポリイミド前駆体又はポリイミド(総称してポリイミド系重合体ともいう)を用いる場合、それらは、ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体又はポリイミドであることが好ましい。
ポリイミド前駆体とは、下記の式[A]で示される構造である。
Figure 0006414053
(Rは4価の有機基を示す。Rは2価の有機基を示す。A及びAは水素原子又は炭素数1〜8のアルキル基を示し、それぞれ同じであっても異なってもよい。A及びAは水素原子、炭素数1〜5のアルキル基又はアセチル基を示し、それぞれ同じであっても異なってもよい。nは正の整数を示す。)
前記ジアミン成分としては、分子内に1級又は2級のアミノ基を2個有するジアミン化合物であり、テトラカルボン酸成分としては、テトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。
ポリイミド系重合体は、下記の式[B]で示されるテトラカルボン酸二無水物と下記の式[C]で示されるジアミン化合物とを原料とすることで、比較的簡便に得られるという理由から、下記の式[D]で示される繰り返し単位の構造式からなるポリアミド酸又は該ポリアミド酸をイミド化させたポリイミドが好ましい。なかでも、特定ポリイミド系重合体としては、垂直液晶配向膜の物理的及び化学的安定性の点から、ポリイミドを用いることが好ましい。
Figure 0006414053
(R及びRは式[A]で定義したものと同意義である。)
Figure 0006414053
(R及びRは式[A]で定義したものと同意義である。)
また、通常の合成手法で、上記で得られた式[D]の重合体に、式[A]で示されるA及びAの炭素数1〜8のアルキル基、及び式[A]で示されるA及びAの炭素数1〜5のアルキル基又はアセチル基を導入することもできる。
上記特定側鎖構造をポリイミド系重合体に導入する方法としては、特定側鎖構造を有するジアミン化合物を原料の一部に用いることが好ましい。特に下記の式[1a]で示されるジアミン化合物(特定側鎖型ジアミン化合物ともいう)を用いることが好ましい。
Figure 0006414053
Yは前記式[1−1]及び式[1−2]で示される構造を示す。なお、式[1−1]におけるY〜Y及びnの好ましい組み合わせ及び式[1−2]におけるY及びYの好ましい組み合わせは、前記の通りである。
mは1〜4の整数を示す。なかでも、1が好ましい。
特定側鎖型ジアミン化合物としては、高くて安定な液晶の垂直配向性を得ることができる点から、前記式[1−1]で示される構造のジアミン化合物を用いることが好ましい。
具体的には、例えば下記の式[1a−1]〜式[1a−31]で示される構造が挙げられる。
Figure 0006414053
(Rはそれぞれ独立して、−O−、−OCH−、−CHO−、−COOCH−及び−CHOCO−からなる群から選ばれる少なくとも1種の結合基を示す。Rはそれぞれ独立して、炭素数1〜22の直鎖状又は分岐状アルキル基、炭素数1〜22の直鎖状又は分岐状アルコキシル基、炭素数1〜22の直鎖状又は分岐状フッ素含有アルキル基、又は炭素数1〜22の直鎖状又は分岐状フッ素含有アルコキシル基を示す。)
Figure 0006414053
(Rはそれぞれ独立して、−COO−、−OCO−、−CONH−、−NHCO−、−COOCH−、−CHOCO−、−CHO−、−OCH−及び−CH−からなる群から選ばれる少なくとも1種の結合基を示す。Rはそれぞれ独立して、炭素数1〜22の直鎖状又は分岐状アルキル基、炭素数1〜22の直鎖状又は分岐状アルコキシル基、炭素数1〜22の直鎖状又は分岐状フッ素含有アルキル基、又は炭素数1〜22の直鎖状又は分岐状フッ素含有アルコキシル基を示す。)
Figure 0006414053
(Rはそれぞれ独立して、−COO−、−OCO−、−CONH−、−NHCO−、−COOCH−、−CHOCO−、−CHO−、−OCH−、−CH−、−O−及び−NH−からなる群から選ばれる少なくとも1種の結合基を示す。Rはそれぞれ独立して、フッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基及び水酸基からなる群から選ばれる少なくとも1種を示す。)
Figure 0006414053
(Rはそれぞれ独立して、炭素数3〜12の直鎖状又は分岐状アルキル基を示し、1,4-シクロヘキシレンのシス−トランス異性は、それぞれトランス異性体である。)
Figure 0006414053
(Rはそれぞれ独立して、炭素数3〜12の直鎖状又は分岐状アルキル基を示し、1,4-シクロヘキシレンのシス−トランス異性は、それぞれトランス異性体である。)
Figure 0006414053
(Aはフッ素原子で置換されていてもよい炭素数3〜20の直鎖状又は分岐状アルキル基であり、Aは1,4−シクロへキシレン基又は1,4−フェニレン基であり、Aは酸素原子又は−COO−*(ただし、「*」を付した結合手がAと結合する)であり、Aは酸素原子又は−COO−*(ただし、「*」を付した結合手が(CH)a)と結合する)である。また、aは0又は1の整数であり、aは2〜10の整数であり、aは0又は1の整数である。)
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
上記の式[1a−1]〜[1a−31]中、特に好ましい構造の特定側鎖型ジアミン化合物としては、式[1a−1]〜式[1a−6]、式[1a−9]〜式[1a−13]又は式[1a−22]〜式[1a−31]である。
また、本発明においては、液晶の垂直配向性と、液晶層と垂直液晶配向膜との密着性の点から、これら特定側鎖型ジアミン化合物は、ジアミン成分全体の10モル%以上80モル%以下であることが好ましい。より好ましくは、10モル%以上70モル%以下である。
上記の特定側鎖型ジアミン化合物は、ポリイミド系重合体の溶媒への溶解性、垂直液晶配向膜にした際の液晶の垂直配向性、さらには、液晶表示素子の光学特性などの特性に応じて、1種類又は2種類以上を混合して使用することができる。
上記のポリイミド系重合体を作製するためのジアミン成分としては、下記の式[2]で示される第2のジアミン化合物(第2のジアミン化合物ともいう)を用いることも好ましい。
Figure 0006414053
式[2]中、Xは下記の式[2a]、式[2b]、式[2c]及び式[2d]から選ばれる構造の置換基を示す。
Figure 0006414053
aは0〜4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0又は1の整数が好ましい。
bは0〜4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、0又は1の整数が好ましい。
及びXはそれぞれ独立して、炭素数1〜12の炭化水素基を示す。
は炭素数1〜5のアルキル基を示す。
mは1〜4の整数を示す。なかでも、1が好ましい。
上記式[2]で示されるジアミン化合物の具体的な構造を挙げるが、これらの例に限定されるものではない。
すなわち、式[2]で示されるジアミン化合物としては、2,4−ジメチル−m−フェニレンジアミン、2,6−ジアミノトルエン、2,4−ジアミノフェノール、3,5−ジアミノフェノール、3,5−ジアミノベンジルアルコール、2,4−ジアミノベンジルアルコール、4,6−ジアミノレゾルシノール、2,4−ジアミノ安息香酸、2,5−ジアミノ安息香酸、3,5−ジアミノ安息香酸の他に、下記の式[2−1]〜[2−6]で示される構造のジアミン化合物を挙げることができる。
Figure 0006414053
Figure 0006414053
なかでも、2,4−ジアミノフェノール、3,5−ジアミノフェノール、3,5−ジアミノベンジルアルコール、2,4−ジアミノベンジルアルコール、4,6−ジアミノレゾルシノール、2,4−ジアミノ安息香酸、2,5−ジアミノ安息香酸、3,5−ジアミノ安息香酸、式[2−1]、式[2−2]又は式[2−3]で示されるジアミン化合物が好ましい。特に好ましくは、2,4−ジアミノフェノール、3,5−ジアミノフェノール、3,5−ジアミノベンジルアルコール、3,5−ジアミノ安息香酸、式[2−1]又は式[2−2]で示されるジアミン化合物である。
上記式[2]で示されるジアミン化合物は、ポリイミド系重合体の溶媒への溶解性、垂直液晶配向膜にした際の液晶の垂直配向性、さらには、液晶表示素子の光学特性などの特性に応じて、1種類又は2種類以上を混合して使用することができる。
上記のポリイミド系重合体を作製するためジアミン成分としては、式[1a]及び式[2]で示されるジアミン化合物以外のジアミン化合物(その他ジアミン化合物ともいう)を用いることもできる。下記に、その他ジアミン化合物の具体例を挙げるが、これらの例に限定されるものではない。
例えば、m−フェニレンジアミン、p−フェニレンジアミン、4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニル、3,3’−ジカルボキシ−4,4’−ジアミノビフェニル、3,3’−ジフルオロ−4,4’− ジアミノビフェニル、3,3’−トリフルオロメチル−4,4’−ジアミノビフェニル、3,4’−ジアミノビフェニル、3,3’−ジアミノビフェニル、2,2’−ジアミノビフェニル、2,3’−ジアミノビフェニル、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、2,2’−ジアミノジフェニルメタン、2,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、2,2’−ジアミノジフェニルエーテル、2,3’−ジアミノジフェニルエーテル、4,4’−スルホニルジアニリン、3,3’−スルホニルジアニリン、ビス(4−アミノフェニル)シラン、ビス(3−アミノフェニル)シラン、ジメチル−ビス(4−アミノフェニル)シラン、ジメチル−ビス(3−アミノフェニル)シラン、4,4’−チオジアニリン、3,3’−チオジアニリン、4,4’−ジアミノジフェニルアミン、3,3’−ジアミノジフェニルアミン、3,4’−ジアミノジフェニルアミン、2,2’−ジアミノジフェニルアミン、2,3’−ジアミノジフェニルアミン、N−メチル(4,4’−ジアミノジフェニル)アミン、N−メチル(3,3’−ジアミノジフェニル)アミン、N−メチル(3,4’−ジアミノジフェニル)アミン、N−メチル(2,2’−ジアミノジフェニル)アミン、N−メチル(2,3’−ジアミノジフェニル)アミン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、1,4−ジアミノナフタレン、2,2’−ジアミノベンゾフェノン、2,3’−ジアミノベンゾフェノン、1,5−ジアミノナフタレン、1,6−ジアミノナフタレン、1,7−ジアミノナフタレン、1,8−ジアミノナフタレン、2,5−ジアミノナフタレン、2,6ジアミノナフタレン、2,7−ジアミノナフタレン、2,8−ジアミノナフタレン、1,2−ビス(4−アミノフェニル)エタン、1,2−ビス(3−アミノフェニル)エタン、1,3−ビス(4−アミノフェニル)プロパン、1,3−ビス(3−アミノフェニル)プロパン、1,4−ビス(4アミノフェニル)ブタン、1,4−ビス(3−アミノフェニル)ブタン、ビス(3,5−ジエチル−4−アミノフェニル)メタン、1,4−ビス(4-アミノフェノキシ)ベンゼン、1,3−ビス(4-アミノフェノキシ)ベンゼン、1,4−ビス(4-アミノフェニル)ベンゼン、1,3−ビス(4-アミノフェニル)ベンゼン、1,4−ビス(4-アミノベンジル)ベンゼン、1,3−ビス(4-アミノフェノキシ)ベンゼン、4,4’−[1,4−フェニレンビス(メチレン)]ジアニリン、4,4’−[1,3−フェニレンビス(メチレン)]ジアニリン、3,4’−[1,4−フェニレンビス(メチレン)]ジアニリン、3,4’−[1,3−フェニレンビス(メチレン)]ジアニリン、3,3’−[1,4−フェニレンビス(メチレン)]ジアニリン、3,3’−[1,3−フェニレンビス(メチレン)]ジアニリン、1,4−フェニレンビス[(4−アミノフェニル)メタノン]、1,4−フェニレンビス[(3−アミノフェニル)メタノン]、1,3−フェニレンビス[(4−アミノフェニル)メタノン]、1,3−フェニレンビス[(3−アミノフェニル)メタノン]、1,4−フェニレンビス(4−アミノベンゾエート)、1,4−フェニレンビス(3−アミノベンゾエート)、1,3−フェニレンビス(4−アミノベンゾエート)、1,3−フェニレンビス(3−アミノベンゾエート)、ビス(4−アミノフェニル)テレフタレート、ビス(3−アミノフェニル)テレフタレート、ビス(4−アミノフェニル)イソフタレート、ビス(3−アミノフェニル)イソフタレート、N,N’−(1,4−フェニレン)ビス(4−アミノベンズアミド)、N,N’−(1,3−フェニレン)ビス(4−アミノベンズアミド)、N,N’−(1,4−フェニレン)ビス(3−アミノベンズアミド)、N,N’−(1,3−フェニレン)ビス(3−アミノベンズアミド)、N,N’−ビス(4−アミノフェニル)テレフタルアミド、N,N’−ビス(3−アミノフェニル)テレフタルアミド、N,N’−ビス(4−アミノフェニル)イソフタルアミド、N,N’−ビス(3−アミノフェニル)イソフタルアミド、9,10−ビス(4−アミノフェニル)アントラセン、4,4’−ビス(4−アミノフェノキシ)ジフェニルスルホン、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2’−ビス(3−アミノフェニル)ヘキサフルオロプロパン、2,2’−ビス(3−アミノ−4−メチルフェニル)ヘキサフルオロプロパン、2,2’−ビス(4−アミノフェニル)プロパン、2,2’−ビス(3−アミノフェニル)プロパン、2,2’−ビス(3−アミノ−4−メチルフェニル)プロパン、1,3−ビス(4−アミノフェノキシ)プロパン、1,3−ビス(3−アミノフェノキシ)プロパン、1,4−ビス(4−アミノフェノキシ)ブタン、1,4−ビス(3−アミノフェノキシ)ブタン、1,5−ビス(4−アミノフェノキシ)ペンタン、1,5−ビス(3−アミノフェノキシ)ペンタン、1,6−ビス(4−アミノフェノキシ)へキサン、1,6−ビス(3−アミノフェノキシ)へキサン、1,7−ビス(4−アミノフェノキシ)ヘプタン、1,7−(3−アミノフェノキシ)ヘプタン、1,8−ビス(4−アミノフェノキシ)オクタン、1,8−ビス(3−アミノフェノキシ)オクタン、1,9−ビス(4−アミノフェノキシ)ノナン、1,9−ビス(3−アミノフェノキシ)ノナン、1,10−ビス(4−アミノフェノキシ)デカン、1,10−ビス(3−アミノフェノキシ)デカン、1,11−ビス(4−アミノフェノキシ)ウンデカン、1,11−ビス(3−アミノフェノキシ)ウンデカン、1,12−ビス(4−アミノフェノキシ)ドデカン、1,12−ビス(3−アミノフェノキシ)ドデカン、ビス(4−アミノシクロヘキシル)メタン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノへキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカンなどが挙げられる。
また、その他ジアミン化合物として、ジアミン化合物の側鎖にアルキル基、フッ素含有アルキル基又は複素環を有するものなどを挙げることもできる。
具体的には、本発明の効果を損なわない限りにおいて、下記の式[DA1]〜[DA12]で示されるジアミン化合物を例示することができる。
Figure 0006414053
(pは1〜10の整数を示す。)
Figure 0006414053
Figure 0006414053
(mは0〜3の整数を示す。nは1〜5の整数を示す。)
Figure 0006414053
(Aは単結合、−CH−、−C−、−C(CH−、−CF−、−C(CF−、−O−、−CO−、−NH−、−N(CH)−、−CONH−、−NHCO−、−CHO−、−OCH−、−COO−、−OCO−、−CON(CH)−及び−N(CH)CO−をからなる群から選ばれる少なくとも1種の結合基を示す。m及びmはそれぞれ0〜4の整数を示し、かつm+mは1〜4の整数を示す。m及びmはそれぞれ1〜5の整数を示す。Aは炭素数1〜5の直鎖又は分岐アルキル基を示す。mは1〜5の整数を示す。Aは単結合、−CH−、−C−、−C(CH−、−CF−、−C(CF−、−O−、−CO−、−NH−、−N(CH)−、−CONH−、−NHCO−、−CHO−、−OCH−、−COO−、−OCO−、−CON(CH)−及び−N(CH)CO−からなる群から選ばれる少なくとも1種の結合基を示す。mは1〜4の整数を示す。)
Figure 0006414053
(Aは−O−、−NH−、−N(CH)−、−CONH−、−NHCO−、−CHO−、−OCO−、−CON(CH)−及び−N(CH)CO−からなる群から選ばれる2価の有機基を示す。Aは単結合、炭素数1〜20の脂肪族炭化水素基、非芳香族環式炭化水素基及び芳香族炭化水素基からなる群から選ばれる少なくとも1種を示す。Aは単結合、−O−、−NH−、−N(CH)−、−CONH−、−NHCO−、−COO−、−OCO−、−CON(CH)−、−N(CH)CO−及び−O(CH−(mは1〜5の整数である)からなる群から選ばれる少なくとも1種を示す。Aは窒素含有芳香族複素環を示す。nは1〜4の整数を示す。)
加えて、その他ジアミン化合物として、下記の式[DA13]又は式[DA14]で示されるジアミン化合物を用いることもできる。
Figure 0006414053
上記のその他ジアミン化合物は、ポリイミド系重合体の溶媒への溶解性、垂直液晶配向膜にした際の液晶の垂直配向性、さらには、液晶表示素子の光学特性などの特性に応じて、1種類又は2種類以上を混合して使用することができる。
ポリイミド系重合体を作製するためのテトラカルボン酸成分としては、下記の式[3]で示されるテトラカルボン酸二無水物やそのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物(すべてを総称して特定テトラカルボン酸成分ともいう)を用いることが好ましい。
Figure 0006414053
は下記の式[3a]〜式[3j]から選ばれる構造の基である。
Figure 0006414053
〜Zは水素原子、メチル基、塩素原子又はベンゼン環を示し、それぞれ同じであっても異なってもよい。
及びZは水素原子又はメチル基を示し、それぞれ同じであっても異なってもよい。
上記の特定テトラカルボン酸成分である式[3]に示される構造中、Zは、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[3a]、式[3c]、式[3d]、式[3e]、式[3f]又は式[3g]で示される構造が好ましい。より好ましいのは、式[3a]、式[3e]、式[3f]又は式[3g]で示される構造であり、特に好ましいのは、式[3e]、式[3f]又は式[3g]である。
特定テトラカルボン酸成分は、全テトラカルボン酸成分中の1モル%以上であることが好ましい。より好ましいのは、5モル%以上であり、特に好ましいのは、10モル%以上である。中でも、10〜90モル%がさらに好ましい。
また、式[3e]、式[3f]又は式[3g]の構造の特定テトラカルボン酸成分を用いる場合、その使用量は、テトラカルボン酸成分全体の20モル%以上とすることで、所望の効果が得られる。好ましくは、30モル%以上である。さらに、テトラカルボン酸成分のすべてを式[3e]、式[3f]又は式[3g]の構造のテトラカルボン酸成分であってもよい。
ポリイミド系重合体には、本発明の効果を損なわない限りにおいて、特定テトラカルボン酸成分以外のその他のテトラカルボン酸成分を用いることができる。
その他のテトラカルボン酸成分としては、以下に示すテトラカルボン酸化合物、テトラカルボン酸二無水物、ジカルボン酸ジハライド化合物、ジカルボン酸ジアルキルエステル化合物又はジアルキルエステルジハライド化合物が挙げられる。
すなわち、その他のテトラカルボン酸成分としては、ピロメリット酸、2,3,6,7−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、1,4,5,8−ナフタレンテトラカルボン酸、2,3,6,7−アントラセンテトラカルボン酸、1,2,5,6−アントラセンテトラカルボン酸、3,3’,4,4’−ビフェニルテトラカルボン酸、2,3,3’,4’−ビフェニルテトラカルボン酸、ビス(3,4−ジカルボキシフェニル)エーテル、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、ビス(3,4−ジカルボキシフェニル)スルホン、ビス(3,4−ジカルボキシフェニル)メタン、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(3,4−ジカルボキシフェニル)プロパン、ビス(3,4−ジカルボキシフェニル)ジメチルシラン、ビス(3,4−ジカルボキシフェニル)ジフェニルシラン、2,3,4,5−ピリジンテトラカルボン酸、2,6−ビス(3,4−ジカルボキシフェニル)ピリジン、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸、3,4,9,10−ペリレンテトラカルボン酸又は1,3−ジフェニル−1,2,3,4−シクロブタンテトラカルボン酸が挙げられる。
特定テトラカルボン酸成分及びその他のテトラカルボン酸成分は、ポリイミド系重合体の溶媒への溶解性、垂直液晶配向膜にした際の液晶の垂直配向性、さらには、液晶表示素子の光学特性などの特性に応じて、1種類又は2種類以上を混合して使用することができる。
ポリイミド系重合体を合成する方法は特に限定されない。通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。一般的には、テトラカルボン酸及びその誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種又は複数種のジアミン化合物からなるジアミン成分とを反応させて、ポリアミド酸を得る。具体的には、テトラカルボン酸二無水物と1級又は2級のジアミン化合物とを重縮合させてポリアミド酸を得る方法、テトラカルボン酸と1級又は2級のジアミン化合物とを脱水重縮合反応させてポリアミド酸を得る方法、又はジカルボン酸ジハライドと1級又は2級のジアミン化合物とを重縮合させてポリアミド酸を得る方法が用いられる。
ポリアミド酸アルキルエステルを得るには、カルボン酸基をジアルキルエステル化したテトラカルボン酸と1級又は2級のジアミン化合物とを重縮合させる方法、カルボン酸基をジアルキルエステル化したジカルボン酸ジハライドと1級又は2級のジアミン化合物とを重縮合させる方法、又はポリアミド酸のカルボキシル基をエステルに変換する方法が用いられる。
ポリイミドを得るには、前記のポリアミド酸又はポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを含む溶媒中で行う。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる溶媒の具体例を挙げるが、これらの例に限定されるものではない。
例えば、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン又はγ−ブチロラクトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、1,3−ジメチル−イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4−ヒドロキシ−4−メチル−2−ペンタノン等が挙げられる。
これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
ジアミン成分とテトラカルボン酸成分とを溶媒中で反応させる際には、ジアミン成分を溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸成分を溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ重合体としてもよい。その際の重合温度は−20〜150℃の任意の温度を選択することができるが、好ましくは−5〜100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1〜50質量%、より好ましくは5〜30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することができる。
ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8〜1.2であることが好ましい。通常の重縮合反応と同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
本発明のポリイミドは前記のポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100〜400℃、好ましくは120〜250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、−20〜250℃、好ましくは0〜180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5〜30モル倍、好ましくは2〜20モル倍であり、酸無水物の量はアミド酸基の1〜50モル倍、好ましくは3〜30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
ポリイミド前駆体又はポリイミドの反応溶液から、生成したポリイミド前駆体又はポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2〜10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。
上記のポリイミド系重合体の分子量は、そこから得られる垂直液晶配向膜の強度、垂直膜形成時の作業性及び塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000〜1,000,000とするのが好ましく、より好ましくは、10,000〜150,000である。
特定重合体にポリシロキサンを用いる場合、下記の式[A1]で示されるアルコキシシランを重縮合させて得られるポリシロキサン、又は、式[A1]と、下記の式[A2]及び式[A3]で示されるアルコキシシランからなる群から選ばれる少なくとも1種のアルコキシシランとを重縮合させて得られるポリシロキサンである(総称してポリシロキサン系重合体ともいう)ことが好ましい。
式[A1]で示されるアルコキシシランは、下記の式[A1]に示される。
Figure 0006414053
は前記式[1−1]又は式[1−2]で示される構造を示す。なお、式[1−1]におけるY〜Y及びnの好ましい組み合わせ及び式[1−2]におけるY及びYの好ましい組み合わせは、前記の通りである。
なかでも、高くて安定な液晶の垂直配向性を得ることができる点から、Aは式[1−1]で示される構造が好ましい。
はそれぞれ水素原子又は炭素数1〜5のアルキル基を示す。なかでも、水素原子又は炭素数1〜3のアルキル基が好ましい。
はそれぞれ炭素数1〜5のアルキル基を示す。なかでも、重縮合の反応性の点から、炭素数1〜3のアルキル基が好ましい。
mは1又は2の整数を示す。なかでも、合成の点からは、1が好ましい。
nは0〜2の整数を示す。
pは0〜3の整数を示す。なかでも、重縮合の反応性の点から、1〜3の整数が好ましい。より好ましくは、2又は3である。
m+n+pは4を示す。
式[A1]で示されるアルコキシシランの具体例としては、下記の式[A1−1]〜式[A1−32]で示されるアルコキシシランを挙げることができる。
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
(Rはそれぞれ独立して、炭素数1〜3のアルキル基を示す。Rはそれぞれ独立して、炭素数1〜3のアルキル基を示す。mはそれぞれ独立して、2又は3を示す。nはそれぞれ独立して、0又は1を示す。)
Figure 0006414053
(Rはそれぞれ独立して、炭素数1〜3のアルキル基を示す。Rはそれぞれ独立して、炭素数1〜3のアルキル基を示す。mはそれぞれ独立して、2又は3を示す。nはそれぞれ独立して、0又は1を示す。Rはそれぞれ独立して、−O−、−COO−、−OCO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−OCH−、−CHO−、−COOCH−及び−CHOCO−からなる群から選ばれる少なくとも1種の結合基を示す。Rはそれぞれ独立して、炭素数1〜12のアルキル基、アルコキシ基フッ素含有アルキル基及びフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を示す。)
Figure 0006414053
(Rはそれぞれ独立して、炭素数1〜3のアルキル基を示す。Rはそれぞれ独立して、炭素数1〜3のアルキル基を示す。mはそれぞれ独立して、2又は3を示す。nはそれぞれ独立して、0又は1を示す。Rはそれぞれ独立して、−O−、−COO−、−OCO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−OCH−、−CHO−、−COOCH−及び−CHOCO−からなる群から選ばれる少なくとも1種を示す。Rはそれぞれ独立して、炭素数1〜12のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基、フッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基及び水酸基からなる群から選ばれる少なくとも1種を示す。)
Figure 0006414053
Figure 0006414053
(Rはそれぞれ独立して、炭素数1〜3のアルキル基を示す。Rはそれぞれ独立して、炭素数1〜3のアルキル基を示す。mはそれぞれ独立して、2又は3を示す。nはそれぞれ独立して、0又は1を示す。Rはそれぞれ独立して、−O−、−COO−、−OCO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−OCH−、−CHO−、−COOCH−及び−CHOCO−からなる群から選ばれる少なくとも1種の結合基を示す。Rはそれぞれ独立して、炭素数1〜12のアルキル基、アルコキシ基フッ素含有アルキル基及びフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種示す。)
Figure 0006414053
(Rはそれぞれ炭素数1〜3のアルキル基を示す。Rはそれぞれ炭素数1〜3のアルキル基を示す。mは2又は3を示す。nは0又は1を示す。Bはフッ素原子で置換されていてもよい炭素数3〜20のアルキル基を示す。Bは1,4−シクロへキシレン基又は1,4−フェニレン基を示す。Bは酸素原子又は−COO−*(但し、「*」を付した結合手がBと結合する。)を示す。Bは酸素原子又は−COO−*(但し、「*」を付した結合手が(CH)a)と結合する。)を示す。aは0又は1の整数を示す。aは2〜10の整数を示す。aは0又は1の整数を示す。)
上記の式[A1]で示されるアルコキシシランは、ポリシロキサン系重合体の溶媒への溶解性、垂直液晶配向膜にした際の液晶の垂直配向性、さらには、液晶表示素子の光学特性などの特性に応じて、1種類又は2種類以上を混合して使用することができる。
式[A2]で示されるアルコキシシランは、下記の式[A2]に示される。
Figure 0006414053
はそれぞれビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基及びシンナモイル基からなる群から選ばれる少なくとも1種を有する炭素数2〜12の有機基を示す。なかでも、入手の容易さの点から、ビニル基、エポキシ基、アミノ基、メタクリル基、アクリル基又はウレイド基が好ましい。より好ましくは、メタクリル基、アクリル基又はウレイド基である。
はそれぞれ水素原子又は炭素数1〜5のアルキル基を示す。なかでも、水素原子又は炭素数1〜3のアルキル基が好ましい。
はそれぞれ炭素数1〜5のアルキル基を示す。なかでも、重縮合の反応性の点から、炭素数1〜3のアルキル基が好ましい。
mは1又は2の整数を示す。なかでも、合成の点からは、1が好ましい。
nは0〜2の整数を示す。
pは0〜3の整数を示す。なかでも、重縮合の反応性の点から、1〜3の整数が好ましい。より好ましくは、2又は3である。
m+n+pは4を示す。
上記の式[A2]で示されるアルコキシシランの具体例としては、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリエトキシビニルシラン、ビニルトリメトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、m−スチリルエチルトリエトキシシラン、p−スチリルエチルトリエトキシシラン、m−スチリルメチルトリエトキシシラン、p−スチリルメチルトリエトキシシラン、3−(N−スチリルメチル−2−アミノエチルアミノ)プロピルトリメトキシシラン、ジエトキシ(3−グリシジルオキシプロピル)メチルシラン、3−グリシジルオキシプロピル(ジメトキシ)メチルシラン、3−グリシジルオキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−(2−アミノエチルアミノ)プロピルジメトキシメチルシラン、3−(2−アミノエチルアミノ)プロピルトリエトキシシラン、3−(2−アミノエチルアミノ)プロピルトリメトキシシラン、3−アミノプロピルジエトキシメチルシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、トリメトキシ[3−(フェニルアミノ)プロピル]シラン、3−メルカプトプロピル(ジメトキシ)メチルシラン、(3−メルカプトプロピル)トリエトキシシラン、(3−メルカプトプロピル)トリメトキシシラン、3−(トリエトキシシリル)プロピルイソシアネート、3−(トリエトキシシリル)プロピルメタクリレート、3−(トリメトキシシリル)プロピルメタクリレート、3−(トリエトキシシリル)プロピルアクリレート、3−(トリメトキシシリル)プロピルアクリレート、3−(トリエトキシシリル)エチルメタクリレート、3−(トリメトキシシリル)エチルメタクリレート、3−(トリエトキシシリル)エチルアクリレート、3−(トリメトキシシリル)エチルアクリレート、3−(トリエトキシシリル)メチルメタクリレート、3−(トリメトキシシリル)メチルメタクリレート、 3−(トリエトキシシリル)メチルアクリレート、3−(トリメトキシシリル)メチルアクリレート、γ−ウレイドプロピルトリエトキシシラン、γ−ウレイドプロピルトリメトキシシラン、γ−ウレイドプロピルトリプロポキシシラン、(R)−N−1−フェニルエチル−N’−トリエトキシシリルプロピルウレア、(R)−N−1−フェニルエチル−N’−トリメトキシシリルプロピルウレア、ビス[3−(トリメトキシシリル)プロピル]ウレア、ビス[3−(トリプロポキシシリル)プロピル]ウレア、1−[3−(トリメトキシシリル)プロピル]ウレアなどが挙げられる。
上記の式[A2]で示されるアルコキシシランは、ポリシロキサン系重合体の溶媒への溶解性、垂直液晶配向膜にした際の液晶の垂直配向性、さらには、液晶表示素子の光学特性などの特性に応じて、1種類又は2種類以上を混合して使用することができる。
式[A3]で示されるアルコキシシランは、下記の式[A3]に示される。
Figure 0006414053
はそれぞれ水素原子又は炭素数1〜5のアルキル基を示すが、これらは、ハロゲン原子、窒素原子、酸素原子、硫黄原子等で置換されていても良い。なかでも、水素原子又は炭素数1〜3のアルキル基が好ましい。
はそれぞれ炭素数1〜5のアルキル基を示す。なかでも、重縮合の反応性の点から、炭素数1〜3のアルキル基が好ましい。
nは0〜3の整数を示す。
上記の式[A3]で示されるアルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、メチルトリプロポキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエトキシジエチルシラン、ジブトキシジメチルシラン、(クロロメチル)トリエトキシシラン、3−クロロプロピルジメトキシメチルシラン、3−クロロプロピルトリエトキシシラン、2−シアノエチルトリエトキシシラン、トリメトキシ(3,3,3−トリフルオロプロピル)シラン、ヘキシルトリメトキシシラン、3−トリメトキシシリルプロピルクロライドなどが挙げられる。
式[A3]中、nが0であるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランが挙げられる。
上記の式[A3]で示されるアルコキシシランは、ポリシロキサン系重合体の溶媒への溶解性、垂直液晶配向膜にした際の液晶の垂直配向性、さらには、液晶表示素子の光学特性などの特性に応じて、1種類又は2種類以上を混合して使用することができる。
ポリシロキサン系重合体は、上記式[A1]で示されるアルコキシシランを重縮合させて得られるポリシロキサン、又は、式[A1]と、上記式[A2]及び式[A3]で示されるアルコキシシランからなる群から選ばれる少なくとも1種のアルコキシシランとを重縮合させて得られるポリシロキサンである。すなわち、式[A1]で示されるアルコキシシランのみで重縮合させて得られるポリシロキサン、式[A1]と式[A2]で示される2種類のアルコキシシランを重縮合させて得られるポリシロキサン、式[A1]と式[A3]で示される2種類のアルコキシシランを重縮合させて得られるポリシロキサン、又は式[A1]、式[A2]及び式[A3]で示される3種類のアルコキシシランを重縮合させて得られるポリシロキサンのうちのいずれか1種である。
なかでも、重縮合の反応性やポリシロキサン系重合体の溶媒への溶解性の点から、複数種のアルコキシシランを重縮合させて得られるポリシロキサンが好ましい。すなわち、式[A1]と式[A2]で示される2種類のアルコキシシランを重縮合させて得られるポリシロキサン、式[A1]と式[A3]で示される2種類のアルコキシシランを重縮合させて得られるポリシロキサン、又は式[A1]、式[A2]及び式[A3]で示される3種類のアルコキシシランを重縮合させて得られるポリシロキサンである。
上記のポリシロキサン系重合体を作製する際、複数種のアルコキシランを用いる場合、式[A1]で示されるアルコキシシランは、すべてのアルコキシシラン中、1〜40モル%であることが好ましく、より好ましくは、1〜30モル%である。また、式[A2]で示されるアルコキシシランは、すべてのアルコキシシラン中、1〜70モル%であることが好ましく、より好ましくは、1〜60モル%である。さらに、式[A3]で示されるアルコキシシランは、すべてのアルコキシシラン中、1〜99モル%であることが好ましくは、より好ましくは、1〜80モル%である。
ポリシロキサン系重合体を作製する方法は特に限定されない。本発明におけるポリシロキサン系重合体は、前記式[A1]で示されるアルコキシシランを溶媒中で重縮合させて得る方法、式[A1]と前記式[A2]で示されるアルコキシシランを溶媒中で重縮合させて得る方法、式[A1]と前記式[A3]で示されるアルコキシシランを溶媒中で重縮合させて得る方法、さらに、式[A1]、式[A2]及び式[A3]で示されるアルコキシシランを溶媒中で重縮合させて得る方法が挙げられる。また、本発明のポリシロキサン系重合体は、これらアルコキシシランを重縮合して、溶媒に均一に溶解した溶液として得られる。
ポリシロキサン系重合体を重縮合する方法は特に限定されない。例えば、アルコキシシランをアルコール系溶媒やグリコール系溶媒中で、加水分解・重縮合反応させる方法が挙げられる。その際、加水分解・重縮合反応は、部分的に加水分解させても、完全に加水分解させてもよい。完全に加水分解する場合は、理論上、アルコキシシラン中のすべてのアルコキシ基の0.5倍モル量の水を加えれば良いが、0.5倍モル量よりも過剰量の水を加えることが好ましい。ポリシロキサン系重合体を得るためには、上記の加水分解・重縮合反応に用いる水の量は、目的に応じて適宜選択することができるが、アルコキシシラン中のすべてのアルコキシ基の0.5〜2.5倍モル量であることが好ましい。
また、加水分解・重縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸、フマル酸などの酸性化合物、アンモニア、メチルアミン、エチルアミン、エタノールアミン、トリエチルアミンなどのアルカリ性化合物、あるいは、塩酸、硝酸、蓚酸などの金属塩などを触媒として用いることができる。加えて、アルコキシシランが溶解した溶液を加熱することでも、加水分解・重縮合反応を促進させることもできる。その際の加熱温度及び加熱時間は、目的に応じて適宜選択することができる。例えば、50℃で24時間加熱攪拌して、その後、還流条件下で1時間攪拌するなどの条件が挙げられる。
さらに、重縮合する別の方法として、アルコキシシラン、溶媒及び蓚酸の混合物を加熱して、重縮合反応する方法が挙げられる。具体的には、あらかじめ、溶媒に蓚酸を加えて、蓚酸の溶液とした後、該溶液を加熱した状態で、アルコキシシランを混合する方法である。その際、上記反応に用いる蓚酸の量は、アルコキシシラン中のすべてのアルコキシ基の1モルに対して、0.2〜2.0モルとすることが好ましい。また、この反応は、溶液の温度が50〜180℃で行うことができるが、溶媒の蒸発や揮散が起こらないように、還流下で数十分から数十時間で行うことが好ましい。
ポリシロキサン系重合体を作製する重縮合反応において、前記式[A1]、式[A2]及び式[A3]で示されるアルコキシシランを複種用いる場合は、複数種のアルコキシシランをあらかじめ混合した混合物を用いて反応しても、複数種のアルコキシシランを順次添加しながら反応してもよい。
アルコキシシランの重縮合反応に用いる溶媒としては、アルコキシシランが溶解するものであれば、特に限定されない。また、アルコキシシランが溶解しない溶媒であっても、アルコキシシランの重縮合反応の進行とともに溶解するものであればよい。重縮合反応に用いる溶媒としては、一般的に、アルコキシシランの重縮合反応によりアルコールが発生するため、アルコール系溶媒、グリコール系溶媒、グリコールエーテル系溶媒又はアルコールと相溶性がよい溶媒が用いられる。このような重縮合反応に用いる溶媒の具体例としては、メタノール、エタノール、プロパノール、ブタノール又はジアセトンアルコールなどのアルコール系溶媒、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、へキシレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,2−ペンタンジオール、1,3−ペンタンジオール、1,4−ペンタンジオール、1,5−ペンタンジオール、2,4−ペンタンジオール、2,3−ペンタンジオール又は1,6−ヘキサンジオールなどのグルコール系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル又はプロピレングリコールジブチルエーテルなどのグリコールエーテル系溶媒、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、γ−ブチロラクトン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、テトラメチル尿素、ヘキサメチルホスホトリアミド、m−クレゾールなどのアルコールと相性のよい溶媒が挙げられる。
また、本発明においては、重縮合反応の際、これら溶媒を1種類又は2種類以上、混合して用いることもできる。
上記の方法により得られたポリシロキサン系重合体の溶液は、原料として仕込んだ全アルコキシシランが有する珪素原子をSiOに換算した濃度(SiO換算濃度ともいう)が、20質量%以下であることが好ましい。なかでも、5〜15質量%であることが好ましい。この濃度範囲において任意の濃度を選択することで、溶液中のゲルの発生を抑制することができ、均一なポリシロキサン系重合体の溶液を得ることができる。
本発明においては、上記の方法で得られたポリシロキサン系重合体の溶液を、そのまま特定重合体として用いても良いし、必要に応じて、前記方法で得られたポリシロキサン系重合体の溶液を濃縮したり、溶媒を加えて希釈したり、他の溶媒に置換して、特定重合体として用いることもできる。
上記の溶媒を加えて希釈する際に用いる溶媒(添加溶媒ともいう)は、重縮合反応に用いる溶媒やその他の溶媒であってもよい。この添加溶媒は、ポリシロキサン系重合体が均一に溶解している限りにおいては特に限定されず、1種類又は2種類以上を任意に選択して使用することができる。このような添加溶媒としては、前記重縮合反応に用いる溶媒に加え、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒、酢酸メチル、酢酸エチル、乳酸エチルなどのエステル系溶媒などが挙げられる。
さらに、特定重合体にポリシロキサン系重合体とそれ以外の重合体を用いる場合、ポリシロキサン系重合体にそれ以外の重合体を混合する前に、ポリシロキサン系重合体の重縮合反応の際に発生するアルコールを常圧又は減圧で留去しておくことが好ましい。
<特定発生剤>
本発明における垂直液晶配向膜は、(B)成分である光ラジカル発生剤、光酸発生剤及び光塩基発生剤からなる群から選ばれる少なくとも1つの特定発生剤を含む液晶配向処理剤から得られる。
光ラジカル発生剤としては、紫外線によりラジカルを発生するものであれば特に制限は無く、例えば、tert−ブチルペルオキシ−iso−ブタレート、2,5−ジメチル−2,5−ビス(ベンゾイルジオキシ)へキサン、1,4−ビス[α−(tert−ブチルジオキシ)−iso−プロポキシ]ベンゼン、ジ−tert−ブチルペルオキシド、2,5−ジメチル−2,5−ビス(tert−ブチルジオキシ)へキセンヒドロペルオキシド、α−(iso−プロピルフェニル)−iso−プロピルヒドロペルオキシド、2,5−ジメチルへキサン、tert−ブチルヒドロペルオキシド、1,1−ビス(tert−ブチルジオキシ)−3,3,5−トリメチルシクロへキサン、ブチル−4,4−ビス(tert−ブチルジオキシ)バレレート、シクロへキサノンペルオキシド、2,2’,5,5’−テトラ(tert−ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’−テトラ(tert−ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’−テトラ(tert−アミルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’−テトラ(tert−ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’−ビス(tert−ブチルペルオキシカルボニル)−4,4’−ジカルボキシベンゾフェノン、tert−ブチルペルオキシベンゾエート、ジ−tert−ブチルジペルオキシイソフタレートなどの有機過酸化物や、9,10−アントラキノン、1−クロロアントラキノン、2−クロロアントラキノン、オクタメチルアントラキノン、1,2−ベンズアントラキノンなどのキノン類、ベンゾインメチル、ベンゾインエチルエーテル、α−メチルベンゾイン、α−フェニルベンゾインなどのベンゾイン誘導体などが挙げられる。
また、光酸発生剤及び光塩基発生剤としては、紫外線により酸又は塩基を発生するものであれば特に制限は無く、例えば、トリアジン系化合物、アセトフェノン誘導体化合物、ジスルホン系化合物、ジアゾメタン系化合物、スルホン酸誘導体化合物、ジアリールヨードニウム塩、トリアリールスルホニウム塩、トリアリールホスホニウム塩、鉄アレーン錯体などが挙げられる。より具体的には、例えば、ジフェニルヨードニウムクロライド、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムメシレート、ジフェニルヨードニウムトシレート、ジフェニルヨードニウムブロミド、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムヘキサフルオロアルセネート、ビス(p−tert−ブチルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(p−tert−ブチルフェニル)ヨードニウムメシレート、ビス(p−tert−ブチルフェニル)ヨードニウムトシレート、ビス(p−tert−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(p−tert−ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(p−tert−ブチルフェニル)ヨードニウムクロリド、ビス(p−クロロフェニル)ヨードニウムクロライド、ビス(p−クロロフェニル)ヨードニウムテトラフルオロボレート、トリフェニルスルホニウムクロリド、トリフェニルスルホニウムブロミド、トリ(p−メトキシフェニル)スルホニウムテトラフルオロボレート、トリ(p−メトキシフェニル)スルホニウムヘキサフルオロホスホネート、トリ(p−エトキシフェニル)スルホニウムテトラフルオロボレート、トリフェニルホスホニウムクロリド、トリフェニルホスホニウムブロミド、トリ(p−メトキシフェニル)ホスホニウムテトラフルオロボレート、トリ(p−メトキシフェニル)ホスホニウムヘキサフルオロホスホネート、トリ(p−エトキシフェニル)ホスホニウムテトラフルオロボレート、ビス[[(2−ニトロベンジル)オキシ]カルボニルへキサン−1,6−ジアミン]、ニトロベンジルシクロへキシルカルバメート、ジ(メトキシベンジル)ヘキサメチレンジカルバメート、ビス[[(2−ニトロベンジル)オキシ]カルボニルへキサン−1,6−ジアミン]、ニトロベンジルシクロへキシルカルバメート、ジ(メトキシベンジル)ヘキサメチレンジカルバメートなどが挙げられる。
本発明における特定発生剤としては、液晶層と垂直液晶配向膜との密着性を高める効果が高いことから、光ラジカル発生剤を用いることが好ましい。
<液晶配向処理剤>
本発明の液晶配向処理剤は、垂直液晶配向膜を形成するための塗布溶液であり、(A)成分である前記式[1−1]及び式[1−2]からなる群から選ばれる少なくとも1種の特定側鎖構造を有する特定重合体、(B)成分である光ラジカル発生剤、光酸発生剤及び光塩基発生剤からなる群から選ばれる少なくとも1つの特定発生剤、さらに溶媒を含有する塗布溶液である。
上記の特定側鎖構造を有する特定重合体としては、特に限定は無いが、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンからなる群から選ばれる少なくとも1つであることが好ましい。なかでも、ポリイミド前駆体、ポリイミド又はポリシロキサンが好ましく、特に好ましいのは、ポリイミド又はポリシロキサンである。また、特定重合体には、これら重合体のなかの1種類又は2種類以上を用いることができる。
液晶配向処理剤におけるすべての重合体成分は、すべてが特定重合体であってもよく、それ以外の他の重合体が混合されていても良い。その際、それ以外の他の重合体の含有量は、特定重合体100質量部に対して、0.5〜15質量部、好ましくは、1〜10質量部である。それ以外の他の重合体としては、前記式[1−1]又は式[1−2]で示される特定側鎖構造を含有しない前記重合体が挙げられる。
液晶配向処理剤における特定発生剤は、光ラジカル発生剤、光酸発生剤及び光塩基発生剤からなる群から選ばれる少なくとも1つの特定発生剤である。なかでも、液晶層と垂直液晶配向膜との密着性を高めることができる点から、光ラジカル発生剤を用いることが好ましい。また、液晶配向処理剤中の特定発生剤の含有量は、すべての重合体成分100質量部に対して、0.01〜50質量部であることが好ましい。なかでも、0.01〜30質量部であることが好ましく、特に好ましいのは、0.1〜20質量部である。
液晶配向処理剤中の溶媒の含有量は、液晶配向処理剤の塗布方法や目的とする膜厚を得るという観点から、適宜選択することができる。なかでも、塗布により均一な垂直液晶配向膜を形成するとい観点から、液晶配向処理剤中の溶媒の含有量は50〜99.9質量%であることが好ましい。なかでも、60〜99質量%が好ましく、特に好ましくは、65〜99質量%である。
液晶配向処理剤に用いる溶媒は、特定重合体を溶解させる溶媒であれば特に限定されない。
なかでも、特定重合体がポリイミド前駆体、ポリイミド、ポリアミド又はポリエステルの場合、あるいは、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、セルロース、ポリシロキサン等の溶媒への溶解性が低い場合は、下記に示すような溶媒(溶媒A類ともいう)を用いることが好ましい。
例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、ジメチルスルホキシド、γ−ブチロラクトン、1,3−ジメチル−イミダゾリジノン、メチルエチルケトン、4−ヒドロキシ−4−メチル−2−ペンタノンなどが挙げられる。
なかでも、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン又はγ−ブチロラクトンを用いることが好ましい。これらは単独で使用しても、混合して使用してもよい。
特定重合体が、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、セルロース又はポリシロキサンである場合、あるいは、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル等の溶媒への溶解性が高い場合、下記に示すような溶媒(溶媒B類ともいう)を用いることができる。
例えば、エタノール、イソプロピルアルコール、1−ブタノール、2−ブタノール、イソブチルアルコール、tert−ブチルアルコール、1−ペンタノール、2−ペンタノール、3−ペンタノール、2−メチル−1−ブタノール、イソペンチルアルコール、tert−ペンチルアルコール、3−メチル−2−ブタノール、ネオペンチルアルコール、1−ヘキサノール、2−メチル−1−ペンタノール、2−メチル−2−ペンタノール、2−エチル−1−ブタノール、1−ヘプタノール、2−ヘプタノール、3−ヘプタノール、1−オクタノール、2−オクタノール、2−エチル−1−ヘキサノール、シクロヘキサノール、1−メチルシクロヘキサノール、2−メチルシクロヘキサノール、3−メチルシクロヘキサノール、1,2−エタンジオール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2−ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2−ペンタノン、3−ペンタノン、2−ヘキサノン、2−ヘプタノン、4−ヘプタノン、3−エトキシブチルアセタート、1−メチルペンチルアセタート、2−エチルブチルアセタート、2−エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2−(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2−(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1−(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2−(2−エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n−ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸メチルエチル、3−メトキシプロピオン酸エチル、3−エトキシプロピオン酸、3−メトキシプロピオン酸、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n−プロピルエステル、乳酸n−ブチルエステル、乳酸イソアミルエステル、シクロヘキサノン、シクロペンタノンなどを挙げることができる。さらには、下記の式[D1]、式[D2]又は式[D3]で示される溶媒を用いることもできる。
Figure 0006414053
(Dは炭素数1〜3のアルキル基を示す。Dは炭素数1〜3のアルキル基を示す。Dは炭素数1〜4のアルキル基を示す。)
なかでも、1−ヘキサノール、シクロヘキサノール、1,2−エタンジオール、1,2−プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、シクロヘキサノン、シクロペンタノン、前記式[D1]、式[D2]又は式[D3]で示される溶媒を用いることが好ましい。
これら溶媒B類は、液晶配向処理剤を塗布する際の垂直液晶配向膜の塗膜性や表面平滑性を高めることができるため、特定重合体にポリイミド前駆体、ポリイミド、ポリアミド又はポリエステルを用いた場合、前記溶媒A類と混合して用いることが好ましい。その際、溶媒B類は、液晶配向処理剤に含まれる溶媒全体の1〜70質量%であることが好ましい。なかでも、10〜60質量%がさらに好ましい。より好ましいのは、20〜60質量%である。また、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル等の溶媒への溶解性が高い場合は、溶媒B類のみを用いることができる。
液晶配向処理剤には、液晶層と垂直液晶配向膜との密着性を高める目的で、下記の式[B1]〜式[B7]で示される構造を有する化合物(密着性化合物ともいう)からなる群から選ばれる少なくとも1つの化合物を含有することが好ましい。その際、これら式[B1]〜式[B7]で示される構造は、化合物中に2個以上有することが好ましい。
Figure 0006414053
は、水素原子又はベンゼン環を示す。
は、ベンゼン環、シクロへキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基を示す。
は、炭素数1〜18のアルキル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシル基及び炭素数1〜18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。
より具体的には、下記に示すものが挙げられる。
例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン又はグリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する化合物;さらに、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6−へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート又はヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する化合物;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−フェノキシ−2−ヒドロキシプロピル(メタ)アクリレート、2−(メタ)アクリロイルオキシ−2−ヒドロキシプロピルフタレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2−(メタ)アクリロイルオキシエチルリン酸エステル又はN−メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する化合物;などが挙げられる。
加えて、下記の式[7]で示される化合物を用いることもできる。
Figure 0006414053
(Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環及びフェナントレン環からなる群から選ばれる基を示す。Eは下記の式[7a]又は式[7b]から選ばれる基を示す。nは1〜4の整数を示す。)
Figure 0006414053
特定発生剤として光ラジカル発生剤を用いる場合、液晶層と垂直液晶配向膜との密着性を高める効果が大きいことから、密着性化合物には、前記式[B1]〜式[B6]で示される構造を有する化合物、又は式[7]で示される化合物を用いることが好ましい。なかでも、式[B1]〜式[B5]で示される構造を有する化合物又は式[7]で示される化合物を用いることが好ましい。
上記密着性化合物は、化合物の一例であり、これらに限定されるものではない。また、密着性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。
密着性化合物の含有量は、すべての重合体成分100質量部に対して、0.1〜150質量部であることが好ましい。架橋反応が進行し目的の効果を発現させるためには、すべての重合体成分100質量部に対して0.1〜100質量部がより好ましく、特に、1〜50質量部が最も好ましい。
液晶配向処理剤には、本発明の効果を損なわない限り、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する化合物、あるいは、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する化合物(総称して架橋性化合物ともいう)を導入することもできる。その際、これら置換基は、架橋性化合物中に2個以上有する必要がある。
エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル−m−キシレンジアミン、テトラグリシジル−1,3−ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3−ビス(1−(2,3−エポキシプロポキシ)−1−トリフルオロメチル−2,2,2−トリフルオロメチル)ベンゼン、4,4−ビス(2,3−エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル−p−アミノフェノール、テトラグリシジルメタキシレンジアミン、2−(4−(2,3−エポキシプロポキシ)フェニル)−2−(4−(1,1−ビス(4−(2,3−エポキシプロポキシ)フェニル)エチル)フェニル)プロパン、1,3−ビス(4−(1−(4−(2,3−エポキシプロポキシ)フェニル)−1−(4−(1−(4−(2,3−エポキシプロポキシ)フェニル)−1−メチルエチル)フェニル)エチル)フェノキシ)−2−プロパノールなどが挙げられる。
オキセタン基を有する架橋性化合物は、下記の式[4]で示すオキセタン基を少なくとも2個有する架橋性化合物である。
Figure 0006414053
具体的には、国際公開公報WO2011/132751(2011.10.27公開)の58頁〜59頁に掲載される式[4a]〜式[4k]で示される架橋性化合物が挙げられる。
シクロカーボネート基を有する架橋性化合物としては、下記の式[5]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。
Figure 0006414053
具体的には、国際公開公報WO2012/014898(2012.2.2公開)の76頁〜82頁に掲載される式[5−1]〜式[5−42]で示される架橋性化合物が挙げられる。
ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基又はアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル−ホルムアルデヒド樹脂、スクシニルアミド−ホルムアルデヒド樹脂、エチレン尿素−ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基又はアルコキシメチル基又はその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、又はグリコールウリルを用いることができる。このメラミン誘導体又はベンゾグアナミン誘導体は、2量体又は3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものが好ましい。
このようなメラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX−750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW−30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123−10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125−80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリルなど、パウダーリンク1174のようなメトキシメチロール化グリコールウリルなどが挙げられる。
ヒドロキシル基又はアルコキシル基を有するベンゼン、又はフェノール性化合物としては、例えば、1,3,5−トリス(メトキシメチル)ベンゼン、1,2,4−トリス(イソプロポキシメチル)ベンゼン、1,4−ビス(sec−ブトキシメチル)ベンゼン、2,6−ジヒドロキシメチル−p−tert−ブチルフェノールなどが挙げられる。
より具体的には、国際公開公報WO2011/132751(2011.10.27公開)の62頁〜66頁に掲載される、式[6−1]〜式[6−48]で示される架橋性化合物が挙げられる。
架橋性化合物の含有量は、すべての重合体成分100質量部に対して、0.1〜100質量部であることが好ましい。架橋反応が進行し目的の効果を発現させるためには、すべての重合体成分100質量部に対して0.1〜50質量部がより好ましく、特に、1〜30質量部が最も好ましい。
本発明の液晶表示素子には、液晶配向膜中の電荷移動を促進して素子の電荷抜けを促進させる化合物として、国際公開公報WO2011/132751(2011.10.27公開)の69頁〜73頁に掲載される、式[M1]〜式[M156]で示される窒素含有複素環アミン化合物を添加することもできる。このアミン化合物は、液晶配向処理剤に直接添加しても構わないが、適当な溶媒で濃度が0.1〜10質量%、好ましくは1〜7質量%の溶液にしてから添加することが好ましい。この溶媒としては、上述した特定重合体を溶解させる有機溶媒であれば特に限定されない。
液晶配向処理剤は、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の垂直液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。さらに、垂直液晶配向膜と基板との密着性を向上させる化合物などを用いることもできる。
垂直液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
より具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R−30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS−382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して、好ましくは0.01〜2質量部、より好ましくは0.01〜1質量部である。
垂直液晶配向膜と基板との密着性を向上させる化合物の具体例としては、以下に示す官能性シラン含有化合物やエポキシ基含有化合物が挙げられる。
例えば、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−アミノプロピルトリメトキシシラン、2−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリメトキシシラン、N−エトキシカルボニル−3−アミノプロピルトリエトキシシラン、N−トリエトキシシリルプロピルトリエチレントリアミン、N−トリメトキシシリルプロピルトリエチレントリアミン、10−トリメトキシシリル−1,4,7−トリアザデカン、10−トリエトキシシリル−1,4,7−トリアザデカン、9−トリメトキシシリル−3,6−ジアザノニルアセテート、9−トリエトキシシリル−3,6−ジアザノニルアセテート、N−ベンジル−3−アミノプロピルトリメトキシシラン、N−ベンジル−3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリメトキシシラン、N−ビス(オキシエチレン)−3−アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’,−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,−テトラグリシジル−4、4’−ジアミノジフェニルメタンなどが挙げられる。
これら基板との密着させる化合物を使用する場合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して0.1〜30質量部であることが好ましく、より好ましくは1〜20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶配向処理剤の保存安定性が悪くなる場合がある。
液晶配向処理剤には、上記以外の化合物の他に、本発明の効果が損なわれない範囲であれば、垂直液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
<垂直液晶配向膜・液晶表示素子の作製方法>
液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板、ポリカーボネート基板、PET(ポリエチレンテレフタレート)基板、それらのフィルムなどのプラスチック基板などを用いることができる。液晶表示素子をリバース型素子として、調光窓などに用いる場合には、プラスチック基板であることが好ましい。また、プロセスの簡素化の観点からは、液晶駆動のためのITO(Indium Tin Oxide)電極などが形成された基板を用いることが好ましい。また、反射型のリバース型素子とする場合には、片側の基板のみにならば、シリコンウエハやアルミニウムなどの金属や誘電体多層膜が形成された基板を使用することができる。
本発明の液晶表示素子は、基板の少なくとも一方が、液晶分子を垂直に配向させるような垂直液晶配向膜を有する。この垂直液晶配向膜は、液晶配向処理剤を基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして得ることができる。また、本発明における垂直液晶配向膜は、これらの配向処理無しでも垂直液晶配向膜として用いることができる。
液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などがあり、基板の種類や目的とする垂直液晶配向膜の膜厚に応じて、適宜選択することができる。
液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブンなどの加熱手段により、液晶配向処理剤に用いる溶媒に応じて、30〜300℃、好ましくは30〜250℃の温度で溶媒を蒸発させて垂直液晶配向膜を得ることができる。焼成後の垂直液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると本素子の信頼性が低下する場合があるので、好ましくは5〜300nm、より好ましくは10〜200nmである。
液晶表示素子に用いる液晶組成物は、少なくとも液晶と重合性化合物を有する液晶組成物である。液晶と重合性化合物以外のものとしては、前記開始剤や液晶表示素子の電極間隙(ギャップともいう)を制御するためのスパーサーが挙げられる。
液晶組成物の注入方法は、特に限定されないが、例えば、次の方法が挙げられる。すなわち、基板にガラス基板を用いる場合、垂直液晶配向膜が形成された一対の基板を用意し、片側の基板の4片を、一部分を除いてシール剤を塗布し、その後、垂直液晶配向膜の面が内側になるようにして、もう片側の基板を貼り合わせた空セルを作製する。そして、シール剤が塗布されていない場所から、液晶組成物を減圧注入して、液晶組成物注入セルを得る方法が挙げられる。
さらに、基板にプラスチック基板を用いる場合には、垂直液晶配向膜が形成された一対の基板を用意し、片側の基板の上にODF(One Drop Filling)法やインクジェット法などで、液晶組成物を滴下し、その後、もう片側の基板を貼り合わせて、液晶組成物注入セルを得る方法が挙げられる。
本発明の液晶表示素子では、液晶層と垂直液晶配向膜との密着性が高いため、基板の4片にシール剤を塗布しなくても良い。
また、液晶表示素子のギャップは、スパーサーなどで制御することができる。その方法は、上述した液晶組成物中に目的とする大きさのスパーサーを導入する方法や、目的とする大きさのカラムスペーサを有する基板を用いる方法が挙げられる。また、ギャップの大きさは、1〜100μmが好ましく、より好ましくは、2〜50μmである。特に好ましくは、3〜30μmである。ギャップが小さすぎると液晶表示素子のコントラストが低下し、大きすぎると本素子の駆動電圧が高くなる。
本発明の液晶表示素子は、液晶組成物の一部又は全体が液晶性を示す状態で、液晶組成物の硬化を行い、液晶と重合性化合物の硬化物複合体を形成させて得られる。この液晶組成物の硬化は、前記で得られた液晶組成物注入セルに、活性エネルギー線の照射及び加熱の少なくとも一方の処理によって行う。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が250〜400nm、好ましくは、310〜370nmである。また、加熱処理の場合、その温度は、40〜120℃、好ましくは60〜80℃である。また、紫外線処理と加熱処理とを両方同時に行っても、紫外線処理をした後に加熱処理を行っても良い。液晶組成物の硬化は、紫外線処理のみが好ましい。
上記のように、特定重合体を含む液晶配向処理剤から得られる垂直液晶配向膜を用いた液晶表示素子は、リバース型素子として、液晶層と垂直液晶配向膜との密着性が高く、さらには、液晶の垂直配向性が高く、良好な光学特性、すなわち、電圧無印加時の透明性と電圧印加時の散乱特性が良好であり、液晶ディスプレイや、光の透過と遮断を制御する調光窓や光シャッター素子などに好適に利用することができる。
また、自動車、鉄道及び航空機などの輸送機器及び輸送機械に用いる液晶表示素子、具体的には、光の透過と遮断を制御する調光窓やルームミラーに用いる光シャッター素子などに好適に用いることができる。
特に、従来のリバース型素子を使用した場合に比べて、電圧無印加時の透明性と電圧印加時の散乱特性が良好であることから、乗り物のガラス窓に使用した場合は、夜間時における光の取り入れ効率が高く、さらに、外光からの眩しさを防ぐ効果も高くなる。そのため、乗り物を運転する際の安全性や乗車時の快適性を、より改善することが可能となる。
また、液晶表示素子をフィルム基板で作製し、それを乗り物のガラス窓に貼って使用する場合、従来のリバース型素子に比べて、液晶層と垂直配向膜との密着性が低いことが要因の不良や劣化が起こりにくく、信頼性が高くなる。
さらに、LCD(Liquid Crystal Display)やOLED(Organic Light-emitting Diode)ディスプレイなどのディスプレイ装置の導光板やこれらディスプレイを用いた透明ディスプレイの裏板に用いることもできる。具体的には、透明ディスプレイの裏板に用いる場合は、透明ディスプレイと本発明の液晶表示素子とを合わせ、透明ディスプレイ上で画面表示を行う際に、その背面からの光の入り込みを液晶表示素子で抑制するために用いることができる。これにより、本発明の液晶表示素子は、透明ディスプレイ上で画面表示を行う際に電圧印加された散乱状態となり、画面表示を鮮明にすることができ、画面表示が終わった後には、電圧が無印加の透明状態となる。
以下に実施例を挙げ、本発明をさらに詳しく説明するが、これらに限定して解釈されるものではない。
「合成例、実施例及び比較例で用いる化合物の略号」
L1(液晶):MLC−6608(メルク社製)
R1(重合性化合物):下記の式[R1]で示される化合物
P1(光開始剤):下記の式[P1]で示される化合物
Figure 0006414053
(特定側鎖型ジアミン化合物)
A1:1,3−ジアミノ−4−〔4−(トランス−4−n−ヘプチルシクロへキシル)フェノキシ〕ベンゼン
A2:1,3−ジアミノ−4−〔4−(トランス−4−n−ヘプチルシクロへキシル)フェノキシメチル〕ベンゼン
A3:1,3−ジアミノ−4−{4−〔トランス−4−(トランス−4−n−ペンチルシクロへキシル)シクロへキシル〕フェノキシ}ベンゼン
A4:下記の式[A4]で示されるジアミン化合物
A5:1,3−ジアミノ−4−オクタデシルオキシベンゼン
Figure 0006414053
Figure 0006414053
Figure 0006414053
(第2のジアミン化合物)
B1:3,5−ジアミノ安息香酸
B2:下記の式[B2]で示されるジアミン化合物
Figure 0006414053
(その他ジアミン化合物)
C1:p−フェニレンジアミン
C2:m−フェニレンジアミン
Figure 0006414053
(テトラカルボン酸成分)
D1:1,2,3,4−シクロブタンテトラカルボン酸二無水物
D2:ビシクロ[3,3,0]オクタン−2,4,6,8−テトラカルボン酸二無水物 D3:下記の式[D3]で示されるテトラカルボン酸二無水物
D4:下記の式[D4]で示されるテトラカルボン酸二無水物
Figure 0006414053
(アルコキシシラン)
E1:下記の式[E1]で示されるアルコキシシラン
E2:オクタデシルトリエトキシシラン
E3:3−メタクリロキシプロピルトリメトキシシラン
E4:3−ウレイドプロピルトリエトキシシラン
E5:テトラエトキシシラン
Figure 0006414053
(特定発生剤)
S1:下記の式[S1]で示される光ラジカル発生剤
S2:下記の式[S2]で示される光ラジカル発生剤
Figure 0006414053
(密着性化合物)
M1:下記の式[M1]で示される化合物
M2:下記の式[M2]で示される化合物
M3:下記の式[M3]で示される化合物
Figure 0006414053
(架橋性化合物)
K1:下記の式[K1]で示される化合物
Figure 0006414053
(溶媒)
NMP:N−メチル−2−ピロリドン
NEP:N−エチル−2−ピロリドン
γ−BL:γ−ブチロラクトン
PGME:プロピレングリコールモノメチルエーテル
ECS:エチレングリコールモノエチルエーテル
BCS:エチレングリコールモノブチルエーテル
PB:プロピレングリコールモノブチルエーテル
EC:ジエチレングリコールモノエチルエーテル
「ポリイミド系重合体の分子量の測定方法」
ポリイミド前駆体及びポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC−101)(昭和電工社製)、カラム(KD−803,KD−805)(Shodex社製)を用いて、以下のようにして測定した。
カラム温度:50℃
溶離液:N,N’−ジメチルホルムアミド(添加剤として、臭化リチウム−水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o−リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
「ポリイミドのイミド化率の測定方法」
ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO−d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW−ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5〜10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1−α・x/y)×100
上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
<合成例1>
D1(2.96g,15.1mmol)、A1(2.91g,7.65mmol)、B1(0.93g,6.11mmol)及びC2(0.17g,1.57mmol)をNEP(21.0g)中で混合し、40℃で8時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量は、23,600、重量平均分子量は、71,800であった。
<合成例2>
D2(3.83g,15.3mmol)、A2(6.04g,15.3mmol)及びB1(2.33g,15.3mmol)をNMP(26.4g)中で混合し、50℃で2時間反応させた後、D1(2.94g,15.0mmol)とNMP(23.8g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(2)を得た。このポリアミド酸の数平均分子量は、22,500、重量平均分子量は、67,100であった。
<合成例3>
合成例2で得られたポリアミド酸溶液(2)(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.90g)及びピリジン(2.40g)を加え、70℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(3)を得た。このポリイミドのイミド化率は60%であり、数平均分子量は20,100、重量平均分子量は57,100であった。
<合成例4>
D2(2.64g,10.6mmol)、A3(4.56g,10.5mmol)、B1(1.60g,10.5mmol)及びB2(1.07g,5.26mmol)をNMP(21.9g)中で混合し、80℃で5時間反応させた。その後、D1(3.02g,15.8mmol)とNMP(17.2g)を加え、40℃で8時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.85g)及びピリジン(2.42g)を加え、50℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(4)を得た。このポリイミドのイミド化率は56%であり、数平均分子量は18,500、重量平均分子量は54,000であった。
<合成例5>
D2(2.50g,10.0mmol)、A4(2.96g,6.00mmol)、B1(1.52g,10.0mmol)、B2(0.41g,2.00mmol)及びC1(0.22g,2.00mmol)をNMP(19.0g)中で混合し、80℃で5時間反応させた後、D1(1.92g,9.80mmol)とNMP(9.50g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.00g)及びピリジン(2.50g)を加え、50℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(5)を得た。このポリイミドのイミド化率は49%であり、数平均分子量は16,100、重量平均分子量は49,800であった。
<合成例6>
D3(5.45g,24.3mmol)、A2(5.81g,14.7mmol)、B1(1.12g,7.36mmol)及びB2(0.50g,2.46mmol)をNMP(38.6g)中で混合し、40℃で10時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(4.00g)及びピリジン(2.48g)を加え、70℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(6)を得た。このポリイミドのイミド化率は63%であり、数平均分子量は17,200、重量平均分子量は49,100であった。
<合成例7>
D3(5.45g,24.3mmol)、A4(3.63g,7.37mmol)及びB1(2.61g,17.2mmol)をNMP(35.1g)中で混合し、40℃で5時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)にNMPを加え、6質量%に希釈した後、イミド化触媒として無水酢酸(8.00g)及びピリジン(2.50g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(7)を得た。このポリイミドのイミド化率は54%であり、数平均分子量は17,400、重量平均分子量は47,800であった。
<合成例8>
D4(4.59g,15.3mmol)、A3(6.62g,15.3mmol)、B1(1.86g,12.2mmol)及びB2(0.62g,3.05mmol)をNMP(27.6g)中で混合し、40℃で8時間反応させた後、D1(2.94g,15.0mmol)とNMP(22.3g)を加え、25℃で10時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(7.25g)及びピリジン(2.22g)を加え、40℃で1.5時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(8)を得た。このポリイミドのイミド化率は71%であり、数平均分子量は17,100、重量平均分子量は38,800であった。
<合成例9>
D2(3.83g,15.3mmol)、A5(5.76g,15.3mmol)及びB1(2.33g,15.3mmol)をNMP(26.4g)中で混合し、50℃で2時間反応させた後、D1(2.94g,15.0mmol)とNMP(23.8g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液を得た。
得られたポリアミド酸溶液(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.90g)及びピリジン(2.40g)を加え、70℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(9)を得た。このポリイミドのイミド化率は61%であり、数平均分子量は19,000、重量平均分子量は58,100であった。
<合成例10>
D2(3.83g,15.3mmol)及びB1(4.66g,30.6mmol)をNMP(37.5g)中で混合し、50℃で2時間反応させた後、D1(2.94g,15.0mmol)とNMP(12.8g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(10)を得た。このポリアミド酸の数平均分子量は25,900、重量平均分子量は79,100であった。
<合成例11>
合成例10で得られたポリアミド酸溶液(10)(30.0g)に、NMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.85g)及びピリジン(2.40g)を加え、70℃で2時間反応させた。この反応溶液をメタノール(460ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(11)を得た。このポリイミドのイミド化率は59%であり、数平均分子量は21,200、重量平均分子量は60,100であった。
ポリイミド系重合体を表1に示す。
Figure 0006414053
*1:ポリアミド酸。
「ポリシロキサン系重合体の合成」
<合成例12>
温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、ECS(28.3g)、E1(4.10g)、E3(7.45g)及びE5(32.5g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめECS(14.2g)、水(10.8g)、及び触媒として蓚酸(0.70g)を混合して調製しておいた溶液を、25℃にて30分かけて滴下し、さらに25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調製しておいたE4の含有量が92質量%のメタノール溶液(1.20g)とECS(0.90g)の混合溶液を加えた。さらに30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(1)を得た。
<合成例13>
温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、EC(25.4g)、E1(8.20g)、E3(19.9g)及びE5(20.0g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめEC(12.7g)、水(10.8g)、及び触媒として蓚酸(1.10g)を混合して調製しておいた溶液を、25℃にて30分かけて滴下し、さらに25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調製しておいたE4の含有量92質量%のメタノール溶液(1.20g)とEC(0.90g)の混合溶液を加えた。さらに30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(2)を得た。
<合成例14>
温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、ECS(29.2g)、E1(4.10g)及びE5(38.8g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめECS(14.6g)、水(10.8g)、及び触媒として蓚酸(0.50g)を混合して調製しておいた溶液を、25℃にて30分かけて滴下し、さらに25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調製しておいたE4の含有量92質量%のメタノール溶液(1.20g)とECS(0.90g)の混合溶液を加えた。さらに30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(3)を得た。
<合成例15>
温度計及び還流管を備え付けた200mlの四つ口反応フラスコ中で、EC(28.3g)、E2(4.07g)、E3(7.45g)及びE5(32.5g)を混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、あらかじめEC(14.2g)、水(10.8g)、及び触媒として蓚酸(0.70g)を混合して調製しておいた溶液を、25℃にて30分かけて滴下し、さらに25℃にて30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、あらかじめ調製しておいたE4の含有量が92質量%のメタノール溶液(1.20g)とEC(0.90g)の混合溶液を加えた。さらに30分間還流させた後、放冷してSiO換算濃度が12質量%のポリシロキサン溶液(4)を得た。
ポリシロキサン系重合体(ポリシロキサン溶液)を表2に示す。
Figure 0006414053
「液晶組成物の作製」
(液晶組成物(1)の作製)
L1(11.5g)、R1(1.73g)及びP1(0.12g)を混合し、それを加熱(100℃)後、25℃まで冷却すると液晶性を示す均一な液晶組成物(1)を得た。
(液晶組成物(2)の作製)
L1(12.0g)、R1(2.40g)及びP1(0.12g)を混合し、それを加熱後、25℃まで冷却すると液晶性を示す均一な液晶組成物(2)を得た。
「液晶表示素子の作製(ガラス基板)」
後記する実施例又は比較例の液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、液晶表示素子の作製を行った。具体的には、この溶液を純水及びIPA(イソプロピルアルコール)で洗浄した100×100mmのITO電極付きガラス基板(縦:100mm、横:100mm、厚さ:0.7mm)のITO面上にスピンコートし、ホットプレート上にて100℃で2分間、熱循環型クリーンオーブンにて210℃で10分間加熱処理をして、膜厚が100nmの垂直液晶配向膜付きのITO基板を得た。得られた垂直液晶配向膜付きのITO基板を2枚用意し、その一方の基板の垂直液晶配向膜面に、6μmのスペーサーを塗布した。その後、その基板のスペーサーを塗布した垂直液晶配向膜面に、ODF(One Drop Filling)法にて前記液晶組成物を滴下し、次いで、他方の基板の垂直液晶配向膜界面が向き合うように貼り合わせを行い、処理前の液晶表示素子を得た。
得られた処理前の液晶表示素子に、照度60mWのメタルハライドランプを用いて、350nm以下の波長をカットし、365nm換算で7J/cmの紫外線照射を行い、液晶表示素子を得た。液晶セルに紫外線を照射している際の照射装置内の温度は、25℃に制御した。
「液晶表示素子の作製(プラスチック基板)」
後記する実施例又は比較例の液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、液晶表示素子の作製を行った。具体的には、この溶液を純水で洗浄した150×150mmのITO電極付きPET(ポリエチレンテレフタレート)基板(縦:150mm、横:150mm、厚さ:0.2mm)のITO面上にバーコーターにて塗布をし、ホットプレート上にて100℃で2分間、熱循環型クリーンオーブンにて150℃で1分間加熱処理をして、膜厚が100nmの垂直液晶配向膜付きのITO基板を得た。得られた垂直液晶配向膜付きのITO基板を2枚用意し、その一方の基板の垂直液晶配向膜面に、6μmのスペーサーを塗布した。その後、その基板のスペーサーを塗布した垂直液晶配向膜面に、ODF法にて前記液晶組成物を滴下し、次いで、他方の基板の垂直液晶配向膜界面が向き合うように貼り合わせを行い、処理前の液晶表示素子を得た。
得られた処理前の液晶表示素子に、照度60mWのメタルハライドランプを用いて、350nm以下の波長をカットし、365nm換算で7J/cmの紫外線照射を行い、液晶表示素子を得た。液晶セルに紫外線を照射している際の照射装置内の温度は、25℃に制御した。
「液晶配向性の評価(ガラス基板)」
上記手法で得られた液晶表示素子(ガラス基板)を用いて、液晶配向性の評価を行った。液晶配向性は、本素子を偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)で観察し、液晶が垂直に配向しているかどうかを確認した。具体的には、液晶が垂直に配向しているものを、本評価に優れるとした(表8〜表12中に、良好と示した)。
上記液晶配向性の評価が終了した液晶表示素子(ガラス基板)を、温度100℃の高温槽内に240時間保管した。その後、上記と同様の条件で、液晶配向性の評価を行った。具体的には、液晶配向性に乱れが見られず、均一に液晶が配向しているものを、本評価に優れるとした(表8〜表12中の良好表示)。
「液晶配向性の評価(プラスチック基板」
上記手法で得られた液晶表示素子(プラスチック基板)を用いて、液晶配向性の評価を行った。液晶配向性は、本素子を偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)で観察し、液晶が垂直に配向しているかどうかを確認した。具体的には、液晶が垂直に配向しているものを、本評価に優れるとした(表8〜表11中の良好表示)。
次いで、上記液晶配向性の評価が終了した液晶表示素子(プラスチック基板)を、温度100℃の高温槽内に240時間保管した。その後、上記と同様の条件で、液晶配向性の評価を行った。具体的には、液晶配向性に乱れが見られず、均一に液晶が配向しているものを、本評価に優れるとした(表8〜表11中の良好表示)。
「光学特性(透明性と散乱特性)の評価(ガラス基板)」
上記手法で得られた液晶表示素子(ガラス基板)を用いて、光学特性(透明性と散乱特性)の評価を行った。
電圧無印加時の透明性は、電圧無印加状態での液晶表示素子(ガラス基板)の透過率を測定することで行った。具体的には、測定装置にUV−3600(島津製作所社製)を用い、温度25℃、リファレンスに上記ITO電極付きガラス基板、スキャン波長を300〜800nmの条件で透過率を測定した。評価は、450nmの波長の透過率で行い、透過率が高いものほど、本評価に優れるとした(表13〜表17中に、透過率の値を示した)。
電圧印加時の散乱特性は、液晶表示素子(ガラス基板)に、交流駆動で40Vを印加し、液晶の配向状態を目視観察することで行った。具体的には、本素子が白濁したもの、すなわち、散乱特性が得られたものを、本評価に優れるとした(表13〜表17中の良好表示)。
「光学特性(透明性と散乱特性)の評価(プラスチック基板)」
上記手法で得られた液晶表示素子(プラスチック基板)を用いて、光学特性(透明性と散乱特性)の評価を行った。
電圧無印加時の透明性は、電圧無印加状態での液晶表示素子(プラスチック基板)の透過率を測定することで行った。具体的には、測定装置にUV−3600(島津製作所社製)を用い、温度25℃、リファレンスに上記ITO電極付きPET基板、スキャン波長を300〜800nmの条件で透過率を測定した。評価は、450nmの波長の透過率で行い、透過率が高いものほど、本評価に優れるとした(表13〜表16中に、透過率の値を示した)。
電圧印加時の散乱特性は、液晶表示素子(プラスチック基板)に、交流駆動で40Vを印加し、液晶の配向状態を目視観察することで行った。具体的には、本素子が白濁したもの、すなわち、散乱特性が得られたものを、本評価に優れるとした(表13〜表16中の良好表示)。
「密着性(液晶層と垂直液晶配向膜との密着性)の評価(ガラス基板)」
上記光学特性の評価を行った液晶表示素子(ガラス基板)を用いて、液晶層と垂直液晶配向膜との密着性の評価を行った。具体的には、液晶表示素子(ガラス基板)を、温度80℃、湿度90%RHの高温高湿槽内に48時間保管し、本素子内の気泡の有無及び素子の剥離を確認した。その際、本素子内に気泡が見られずに素子の剥離(液晶層と垂直液晶配向膜とが剥がれている状態)が起こっていないものを、本評価に優れるとした(表13〜表17中の良好表示)。
「密着性(液晶層と垂直液晶配向膜との密着性)の評価(プラスチック基板)」
上記光学特性の評価を行った液晶表示素子(プラスチック基板)を用いて、液晶層と垂直液晶配向膜との密着性の評価を行った。具体的には、液晶表示素子(プラスチック基板)を、温度80℃、湿度90%RHの高温高湿槽内に48時間保管し、本素子内の気泡の有無及び素子の剥離を確認した。その際、本素子内に気泡が見られずに素子の剥離(液晶層と垂直液晶配向膜とが剥がれている状態)が起こっていないものを、本評価に優れるとした(表13〜表16中の良好表示)。
<実施例1>
合成例1で得られた樹脂固形分濃度が25質量%のポリアミド酸溶液(1)(10.5g)に、NEP(16.8g)、BCS(16.5g)、S1(0.263g)、M2(0.263g)及びK1(0.132g)を加え、25℃で5時間攪拌して、液晶配向処理剤(1)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(1)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例2>
合成例2で得られた樹脂固形分濃度が25質量%のポリアミド酸溶液(2)(10.0g)に、NMP(16.0g)、BCS(15.7g)及びS2(0.125g)を加え、25℃で5時間攪拌して、液晶配向処理剤(2)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(2)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例3>
実施例2で得られた液晶配向処理剤(2)と液晶組成物(2)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例4>
合成例3で得られたポリイミド粉末(3)(1.70g)に、NMP(16.0g)及びBCS(10.7g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S2(0.085g)を加え、25℃で2時間攪拌して、液晶配向処理剤(3)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(3)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例5>
実施例4で得られた液晶配向処理剤(3)と液晶組成物(2)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例6>
合成例3で得られたポリイミド粉末(3)(1.70g)に、NEP(16.2g)及びPB(10.8g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S2(0.085g)、M2(0.51g)及びK1(0.17g)を加え、25℃で2時間攪拌して、液晶配向処理剤(4)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(4)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例7>
合成例3で得られたポリイミド粉末(3)(1.80g)に、γ−BL(4.20g)及びPGME(24.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S2(0.09g)、M2(0.36g)及びK1(0.18g)を加え、25℃で2時間攪拌して、液晶配向処理剤(5)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(5)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板、プラスチック基板)、液晶配向性の評価(ガラス基板、プラスチック基板)、光学特性の評価(ガラス基板、プラスチック基板)、及び密着性の評価(ガラス基板、プラスチック基板)を行った。
<実施例8>
合成例4で得られたポリイミド粉末(4)(1.75g)に、NEP(15.1g)、BCS(2.70g)及びPB(9.60g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S1(0.088g)、M2(0.35g)及びK1(0.088g)を加え、25℃で2時間攪拌して、液晶配向処理剤(6)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(6)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例9>
実施例8で得られた液晶配向処理剤(6)と液晶組成物(2)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例10>
合成例4で得られたポリイミド粉末(4)(1.80g)に、γ−BL(4.20g)、PGME(21.2g)及びECS(2.80g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S2(0.126g)、M2(0.27g)及びK1(0.18g)を加え、25℃で2時間攪拌して、液晶配向処理剤(7)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(7)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板、プラスチック基板)、液晶配向性の評価(ガラス基板、プラスチック基板)、光学特性の評価(ガラス基板、プラスチック基板)、及び密着性の評価(ガラス基板、プラスチック基板)を行った。
<実施例11>
合成例4で得られたポリイミド粉末(4)(1.65g)に、γ−BL(1.30g)、PGME(22.0g)及びEC(2.60g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S2(0.083g)及びM2(0.33g)を加え、25℃で2時間攪拌して、液晶配向処理剤(8)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(8)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例12>
合成例5で得られたポリイミド粉末(5)(1.80g)に、γ−BL(2.80g)、PGME(24.0g)及びEC(2.60g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S2(0.27g)及びK1(0.27g)を加え、25℃で2時間攪拌して、液晶配向処理剤(9)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(9)と液晶組成物(2)を用いて、液晶表示素子の作製(ガラス基板、プラスチック基板)、液晶配向性の評価(ガラス基板、プラスチック基板)、光学特性の評価(ガラス基板、プラスチック基板)、及び密着性の評価(ガラス基板、プラスチック基板)を行った。
<実施例13>
合成例5で得られたポリイミド粉末(5)(1.80g)に、NMP(16.9g)、BCS(5.60g)及びPB(5.60g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S2(0.018g)及びM3(0.09g)を加え、25℃で2時間攪拌して、液晶配向処理剤(10)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(10)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例14>
合成例5で得られたポリイミド粉末(5)(1.80g)に、γ−BL(2.80g)及びPGME(25.4g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S1(0.09g)、M2(0.54g)及びK1(0.09g)を加え、25℃で2時間攪拌して、液晶配向処理剤(11)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(11)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例15>
合成例5で得られたポリイミド粉末(5)(1.75g)に、NMP(16.5g)及びPB(11.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S1(0.263g)及びM1(0.70g)を加え、25℃で2時間攪拌して、液晶配向処理剤(12)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(12)と液晶組成物(2)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例16>
合成例6で得られたポリイミド粉末(6)(1.80g)に、γ−BL(5.60g)、PGME(19.7g)及びECS(2.80g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S1(0.126g)、M2(0.54g)及びK1(0.09g)を加え、25℃で2時間攪拌して、液晶配向処理剤(13)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(13)と液晶組成物(2)を用いて、液晶表示素子の作製(ガラス基板、プラスチック基板)、液晶配向性の評価(ガラス基板、プラスチック基板)、光学特性の評価(ガラス基板、プラスチック基板)、及び密着性の評価(ガラス基板、プラスチック基板)を行った。
<実施例17>
合成例6で得られたポリイミド粉末(6)(1.80g)に、γ−BL(2.80g)、PGME(22.6g)及びEC(2.80g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S2(0.09g)、M2(0.27g)及びK1(0.09g)を加え、25℃で2時間攪拌して、液晶配向処理剤(14)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(14)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板、プラスチック基板)、液晶配向性の評価(ガラス基板、プラスチック基板)、光学特性の評価(ガラス基板、プラスチック基板)、及び密着性の評価(ガラス基板、プラスチック基板)を行った。
<実施例18>
合成例6で得られたポリイミド粉末(6)(1.65g)に、NEP(16.8g)及びPB(9.00g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S2(0.017g)及びM3(0.248g)を加え、25℃で2時間攪拌して、液晶配向処理剤(15)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(15)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例19>
合成例7で得られたポリイミド粉末(7)(1.70g)に、γ−BL(6.70g)及びPGME(20.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S1(0.34g)及びM2(0.255g)を加え、25℃で2時間攪拌して、液晶配向処理剤(16)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(16)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例20>
合成例7で得られたポリイミド粉末(7)(1.70g)に、γ−BL(6.70g)及びPGME(20.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S2(0.051g)、M1(0.425g)及びK1(0.085g)を加え、25℃で2時間攪拌して、液晶配向処理剤(17)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(17)と液晶組成物(2)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例21>
合成例8で得られたポリイミド粉末(8)(1.70g)に、NEP(16.0g)及びPB(10.7g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S2(0.085g)を加え、25℃で2時間攪拌して、液晶配向処理剤(18)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(18)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例22>
合成例8で得られたポリイミド粉末(8)(1.80g)に、γ−BL(2.80g)、PGME(22.6g)及びECS(2.80g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S2(0.126g),M2(0.54g)及びK1(0.18g)を加え、25℃で2時間攪拌して、液晶配向処理剤(19)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(19)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板、プラスチック基板)、液晶配向性の評価(ガラス基板、プラスチック基板)、光学特性の評価(ガラス基板、プラスチック基板)、及び密着性の評価(ガラス基板、プラスチック基板)を行った。
<実施例23>
合成例8で得られたポリイミド粉末(8)(1.75g)に、NEP(16.5g)、BCS(5.50g)及びPB(5.50g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S1(0.088g),M2(0.35g)及びK1(0.088g)を加え、25℃で2時間攪拌して、液晶配向処理剤(20)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(20)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例24>
合成例9で得られたポリイミド粉末(9)(1.70g)に、NEP(14.6g)及びBCS(12.0g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S2(0.17g)を加え、25℃で2時間攪拌して、液晶配向処理剤(21)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(21)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例25>
合成例9で得られたポリイミド粉末(9)(1.70g)に、γ−BL(1.30g)、PGME(24.0g)及びEC(1.30g)を加え、70℃にて24時間攪拌して溶解させた。この溶液に、S1(0.085g)、M2(0.51g)及びK1(0.17g)を加え、25℃で2時間攪拌して、液晶配向処理剤(22)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(22)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例26>
合成例12で得られたポリシロキサン溶液(1)(15.0g)に、ECS(10.8g)、BCS(4.20g)及びS2(0.09g)を加え、25℃で5時間攪拌して、液晶配向処理剤(23)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(23)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板、プラスチック基板)、液晶配向性の評価(ガラス基板、プラスチック基板)、光学特性の評価(ガラス基板、プラスチック基板)、及び密着性の評価(ガラス基板、プラスチック基板)を行った。
<実施例27>
実施例26で得られた液晶配向処理剤(23)と液晶組成物(2)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例28>
合成例13で得られたポリシロキサン溶液(2)(15.0g)に、EC(3.70g)、PB(11.3g)及びS2(0.09g)を加え、25℃で5時間攪拌して、液晶配向処理剤(24)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(24)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例29>
実施例28で得られた液晶配向処理剤(24)と液晶組成物(2)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例30>
合成例14で得られたポリシロキサン溶液(3)(16.0g)に、ECS(13.0g)、PB(3.00g)、S2(0.192g)及びM2(0.384g)を加え、25℃で5時間攪拌して、液晶配向処理剤(25)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(25)と液晶組成物(2)を用いて、液晶表示素子の作製(ガラス基板、プラスチック基板)、液晶配向性の評価(ガラス基板、プラスチック基板)、光学特性の評価(ガラス基板、プラスチック基板)、及び密着性の評価(ガラス基板、プラスチック基板)を行った。
<実施例31>
合成例14で得られたポリシロキサン溶液(3)(15.0g)に、ECS(6.50g)、PGME(2.80g)、BCS(5.60g)、S1(0.09g)及びM2(0.54g)を加え、25℃で5時間攪拌して、液晶配向処理剤(26)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(26)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<実施例32>
合成例15で得られたポリシロキサン溶液(4)(15.0g)に、EC(9.40g)、BCS(5.60g)、S1(0.018g)及びM2(0.18g)を加え、25℃で5時間攪拌して、液晶配向処理剤(27)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(27)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<比較例1>
合成例10で得られた樹脂固形分濃度が25質量%のポリアミド酸溶液(10)(10.5g)に、NMP(16.8g)及びBCS(16.5g)を加え、25℃で5時間攪拌して、液晶配向処理剤(28)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(28)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<比較例2>
合成例11で得られたポリイミド粉末(11)(1.50g)に、NMP(14.1g)及びBCS(9.40g)を加え、70℃にて24時間攪拌して、液晶配向処理剤(29)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(29)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<比較例3>
合成例2で得られた樹脂固形分濃度が25質量%のポリアミド酸溶液(2)(10.0g)に、NMP(16.0g)及びBCS(15.7g)を加え、25℃で5時間攪拌して、液晶配向処理剤(30)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(30)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<比較例4>
比較例3で得られた液晶配向処理剤(30)と液晶組成物(2)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<比較例5>
合成例3で得られたポリイミド粉末(3)(1.50g)に、NMP(14.1g)及びBCS(9.40g)を加え、70℃にて24時間攪拌して、液晶配向処理剤(31)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(31)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<比較例6>
比較例5で得られた液晶配向処理剤(31)と液晶組成物(2)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<比較例7>
合成例13で得られたポリシロキサン溶液(2)(15.0g)に、EC(9.40g)及びPB(11.3g)を加え、25℃で5時間攪拌して、液晶配向処理剤(32)を得た。この液晶配向処理剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
液晶配向処理剤(32)と液晶組成物(1)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
<比較例8>
比較例7で得られた液晶配向処理剤(32)と液晶組成物(2)を用いて、液晶表示素子の作製(ガラス基板)、液晶配向性の評価(ガラス基板)、光学特性の評価(ガラス基板)及び密着性の評価(ガラス基板)を行った。
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
Figure 0006414053
*1:液晶が垂直に配向していなかった。
*2:液晶配向性に乱れが見られた。
*3:液晶が垂直に配向していないため、測定できなかった。
*4:素子が、液晶層と垂直液晶配向膜との間で剥離した。
*5:素子内に、気泡が見られた。
上記の結果からわかるように、実施例の液晶表示素子(リバース型素子)は、比較例の液晶表示素子に比べて、液晶層と垂直液晶配向膜との密着性が高く、さらに、液晶の垂直配向性が高く、良好な光学特性、すなわち、電圧無印加時の透明性と電圧印加時の散乱特性が良好であった。
一方で、比較例の液晶表示素子は、液晶層と垂直配向膜との密着性が悪く、高温槽に保管した後、液晶配向性に乱れが発生したり、高温高湿槽に保管した後に、素子内に気泡が見られたり、あるいは、液晶層と垂直配向膜との間で剥離が起こった。
具体的には、同一の特定重合体を用い、(B)成分であるラジカル発生剤を含んだ実施例と含まない比較例、すなわち、実施例2と比較例3、実施例3と比較例4、実施例4と比較例5、実施例5と比較例6、実施例28と比較例7、及び実施例29と比較例8との比較では、明確な差が認められた。
本発明の液晶表示素子は、液晶層と垂直液晶配向膜との密着性が高く、さらには、液晶の垂直配向性も高く、良好な光学特性、すなわち、電圧無印加時の透明性と電圧印加時の散乱特性が良好であり、リバース型素子として、好適に用いることができる。
特に、表示を目的とする液晶ディスプレイ、光の透過と遮断を制御する調光窓や光シャッター素子等として有用であり、素子をフィルム基板などのプラスチック基板で作製した場合は、支持体であるガラスや窓ガラスに張って使用することも可能である。
なお、2013年4月16日に出願された日本特許出願2013−085918号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1. 電極を備えた一対の基板の間に液晶層を有し、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、さらに、基板の少なくとも一方が液晶を垂直に配向させる液晶配向膜を有し、液晶組成物の一部又は全体が液晶性を示す状態で前記液晶組成物の硬化を行い、液晶と重合性化合物の硬化物複合体を形成させてなり、かつ電圧無印加時に透明状態となり、電圧印加時に散乱状態となる透過散乱型の液晶表示素子であり、前記液晶配向膜が、下記の(A)成分及び(B)成分を含む液晶配向処理剤から得られる液晶配向膜であることを特徴とする液晶表示素子。
    (A)成分:下記の式[1−1]及び式[1−2]で示される構造からなる群から選ばれる少なくとも1種の構造を有する重合体
    (B)成分:光ラジカル発生剤、光酸発生剤及び光塩基発生剤からなる群から選ばれる少なくとも1つの発生剤
    Figure 0006414053
    (Yは単結合、−(CH−(aは1〜15の整数である)、−O−、−CHO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種の結合基を示す。Yは単結合又は−(CH−(bは1〜15の整数である)を示す。Yは単結合、−(CH−(cは1〜15の整数である)、−O−、−CHO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種の結合基を示す。Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基、又はステロイド骨格を有する炭素数17〜51の2価の有機基を示し、前記環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシル基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。Yはベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる2価の環状基を示し、これらの環状基上の任意の水素原子は、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシル基、炭素数1〜3のフッ素含有アルキル基、炭素数1〜3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。nは0〜4の整数を示す。Yは炭素数1〜18のアルキル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシル基及び炭素数1〜18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。)
    Figure 0006414053
    (Yは単結合、−O−、−CHO−、−CONH−、−NHCO−、−CON(CH)−、−N(CH)CO−、−COO−及び−OCO−からなる群から選ばれる少なくとも1種の結合基を示す。Yは炭素数8〜22のアルキル基又は炭素数6〜18のフッ素含有アルキル基を示す。)
  2. 前記(A)成分の重合体が、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース及びポリシロキサンからなる群から選ばれる少なくとも1つである請求項1に記載の液晶表示素子。
  3. 前記重合体が、前記式[1−1]の構造の側鎖を有するジアミン化合物及び式[1−2]の構造の側鎖を有するジアミン化合物からなる群から選ばれる少なくとも1種のジアミン化合物を原料の一部に用いて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種である請求項2に記載の液晶表示素子。
  4. 前記ジアミン化合物が、下記の式[1a]で示されるジアミン化合物である請求項3に記載の液晶表示素子。
    Figure 0006414053
    (Yは前記式[1−1]及び式[1−2]で示される構造からなる群から選ばれる少なくとも1種を示す。nは1〜4の整数を示す。)
  5. 前記(A)成分の重合体が、下記の式[3]で示されるテトラカルボン酸成分を原料の一部に用いて得られるポリイミド前駆体及びポリイミドからなる群から選ばれる少なくとも1種である請求項2〜4のいずれか一項に記載の液晶表示素子。
    Figure 0006414053
    (Zは下記の式[3a]〜式[3j]から選ばれる構造を示す。)
    Figure 0006414053
    (Z〜Zは水素原子、メチル基、塩素原子又はベンゼン環を示し、それぞれ同じであっても異なってもよい。Z及びZは水素原子又はメチル基を示し、それぞれ同じであっても異なってもよい。)
  6. 前記重合体がポリイミドである請求項3〜5のいずれか一項に記載の液晶表示素子。
  7. 前記(A)成分の重合体が、下記の式[A1]で示されるアルコキシシランを重縮合させて得られるポリシロキサン、又は、式[A1]と、下記の式[A2]及び式[A3]で示されるアルコキシシランからなる群から選ばれる少なくとも1種のアルコキシシランとを重縮合させて得られるポリシロキサンである請求項2に記載の液晶表示素子。
    Figure 0006414053
    (Aは前記式[1−1]及び式[1−2]で示される構造からなる群から選ばれる少なくとも1種を示す。Aはそれぞれ水素原子又は炭素数1〜5のアルキル基を示す。Aはそれぞれ炭素数1〜5のアルキル基を示す。mは1又は2の整数を示す。nは0〜2の整数を示す。pは0〜3の整数を示す。ただし、m+n+pは4である。)
    Figure 0006414053
    (Bはそれぞれビニル基、エポキシ基、アミノ基、メルカプト基、イソシアネート基、メタクリル基、アクリル基、ウレイド基及びシンナモイル基からなる群から選ばれる少なくとも1種を有する炭素数2〜12の有機基を示す。Bはそれぞれ水素原子又は炭素数1〜5のアルキル基を示す。Bはそれぞれ炭素数1〜5のアルキル基を示す。mは1又は2の整数を示す。nは0〜2の整数を示す。pは0〜3の整数を示す。ただし、m+n+pは4である。)
    Figure 0006414053
    (Dはそれぞれ水素原子又は炭素数1〜5のアルキル基を示す。Dは炭素数1〜5のアルキル基を示す。nは0〜3の整数を示す。)
  8. 前記(B)成分の発生剤が、光ラジカル発生剤である請求項1〜7のいずれか一項に記載の液晶表示素子。
  9. 前記液晶配向処理剤中に、1−ヘキサノール、シクロヘキサノール、1,2−エタンジオール、1,2−プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、シクロヘキサノン、シクロペンタノン、下記の式[D1]、式[D2]及び式[D3]で示される溶媒からなる群から選ばれる少なくとも1つの溶媒を含有する請求項1〜8のいずれか一項に記載の液晶表示素子。
    Figure 0006414053
    (Dは炭素数1〜3のアルキル基を示す。Dは炭素数1〜3のアルキル基を示す。Dは炭素数1〜4のアルキル基を示す。)
  10. 前記液晶配向処理剤中に、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン及びγ−ブチロラクトンからなる群から選ばれる少なくとも1つの溶媒を含有する請求項1〜9のいずれか一項に記載の液晶表示素子。
  11. 前記液晶配向処理剤に、下記の式[B1]〜式[B7]で示される構造を有する化合物からなる群から選ばれる少なくとも1つの化合物を含有する請求項1〜10のいずれか一項に記載の液晶表示素子。
    Figure 0006414053
    (Wは水素原子又はベンゼン環を示す。Wはベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる2価の環状基を示す。Wは炭素数1〜18のアルキル基、炭素数1〜18のフッ素含有アルキル基、炭素数1〜18のアルコキシル基及び炭素数1〜18のフッ素含有アルコキシル基からなる群から選ばれる少なくとも1種を示す。)
  12. 前記液晶表示素子の基板が、ガラス基板又はプラスチック基板である請求項1〜11のいずれか一項に記載の液晶表示素子。
  13. 請求項1〜12のいずれか一項に記載の液晶表示素子に用いる液晶配向膜。
  14. 膜厚が5〜300nmである請求項13に記載の液晶配向膜。
  15. 請求項13又は14に記載の液晶配向膜を形成するための液晶配向処理剤。
JP2015512508A 2013-04-16 2014-04-16 液晶表示素子、液晶配向膜及び液晶配向処理剤 Active JP6414053B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013085918 2013-04-16
JP2013085918 2013-04-16
PCT/JP2014/060842 WO2014171493A1 (ja) 2013-04-16 2014-04-16 液晶表示素子、液晶配向膜及び液晶配向処理剤

Publications (2)

Publication Number Publication Date
JPWO2014171493A1 JPWO2014171493A1 (ja) 2017-02-23
JP6414053B2 true JP6414053B2 (ja) 2018-10-31

Family

ID=51731430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015512508A Active JP6414053B2 (ja) 2013-04-16 2014-04-16 液晶表示素子、液晶配向膜及び液晶配向処理剤

Country Status (5)

Country Link
JP (1) JP6414053B2 (ja)
KR (1) KR102196273B1 (ja)
CN (1) CN105339838B (ja)
TW (1) TWI658097B (ja)
WO (1) WO2014171493A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637410B (zh) * 2013-08-14 2019-08-02 日产化学工业株式会社 液晶表示元件
JP6348984B2 (ja) * 2014-11-07 2018-06-27 日産化学工業株式会社 液晶表示素子の製造方法
KR102546376B1 (ko) * 2015-03-02 2023-06-21 닛산 가가쿠 가부시키가이샤 액정 표시 소자
TWI747882B (zh) * 2016-02-26 2021-12-01 日商日產化學工業股份有限公司 液晶顯示元件
JP7039166B2 (ja) * 2016-09-30 2022-03-22 東京応化工業株式会社 樹脂組成物、硬化物の製造方法、及び硬化物
JP7096533B2 (ja) * 2017-02-28 2022-07-06 日産化学株式会社 化合物、液晶組成物及び液晶表示素子
WO2019022202A1 (ja) * 2017-07-27 2019-01-31 日産化学株式会社 樹脂組成物、樹脂膜及び液晶表示素子
KR102537443B1 (ko) 2018-04-03 2023-05-30 삼성디스플레이 주식회사 액정 표시 장치
WO2021065933A1 (ja) 2019-10-02 2021-04-08 日産化学株式会社 液晶調光素子
JPWO2021166701A1 (ja) * 2020-02-17 2021-08-26
CN116120616A (zh) * 2022-12-30 2023-05-16 成都瑞波科材料科技有限公司 能够实现液晶聚合物配向的树脂薄膜及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160824A (ja) * 1992-11-20 1994-06-07 Sharp Corp 高分子分散型液晶表示素子およびその製造方法
US5473450A (en) * 1992-04-28 1995-12-05 Sharp Kabushiki Kaisha Liquid crystal display device with a polymer between liquid crystal regions
JP2885116B2 (ja) 1994-07-05 1999-04-19 日本電気株式会社 液晶光学素子およびその製造方法
JP4132424B2 (ja) 1999-06-22 2008-08-13 旭硝子株式会社 液晶光学素子の製造方法
JP2003255315A (ja) * 2001-12-28 2003-09-10 Asahi Glass Co Ltd 液晶調光素子およびその製造方法
JP4472263B2 (ja) * 2003-03-20 2010-06-02 シャープ株式会社 液晶表示装置の製造方法
JP2007249041A (ja) * 2006-03-17 2007-09-27 Fujifilm Corp 調光材料
JP5017963B2 (ja) * 2006-08-29 2012-09-05 Dic株式会社 液晶素子
KR101824283B1 (ko) * 2010-07-13 2018-01-31 닛산 가가쿠 고교 가부시키 가이샤 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
TWI448790B (zh) * 2011-05-13 2014-08-11 Chi Mei Corp 液晶配向膜及液晶顯示元件
TWI553040B (zh) * 2011-05-27 2016-10-11 Nissan Chemical Ind Ltd Silicon liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display components

Also Published As

Publication number Publication date
KR102196273B1 (ko) 2020-12-29
CN105339838A (zh) 2016-02-17
CN105339838B (zh) 2019-06-07
JPWO2014171493A1 (ja) 2017-02-23
TWI658097B (zh) 2019-05-01
TW201510078A (zh) 2015-03-16
KR20150143737A (ko) 2015-12-23
WO2014171493A1 (ja) 2014-10-23

Similar Documents

Publication Publication Date Title
JP6414053B2 (ja) 液晶表示素子、液晶配向膜及び液晶配向処理剤
JP6459959B2 (ja) 液晶表示素子、液晶配向膜及び液晶配向処理剤
JP6414145B2 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP6390611B2 (ja) 液晶表示素子、液晶配向膜及び液晶配向処理剤
JP6414215B2 (ja) 液晶表示素子、液晶配向膜、及び液晶配向処理剤
JP5930237B2 (ja) 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
JP6368955B2 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子
JP6409774B2 (ja) 液晶表示素子、液晶配向処理剤、及び液晶配向膜
JP6575510B2 (ja) 液晶表示素子、液晶配向膜及び液晶配向処理剤
JP5950137B2 (ja) 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
JP6264577B2 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R151 Written notification of patent or utility model registration

Ref document number: 6414053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151