JP6329448B2 - Waste water treatment method and waste water treatment equipment - Google Patents
Waste water treatment method and waste water treatment equipment Download PDFInfo
- Publication number
- JP6329448B2 JP6329448B2 JP2014138029A JP2014138029A JP6329448B2 JP 6329448 B2 JP6329448 B2 JP 6329448B2 JP 2014138029 A JP2014138029 A JP 2014138029A JP 2014138029 A JP2014138029 A JP 2014138029A JP 6329448 B2 JP6329448 B2 JP 6329448B2
- Authority
- JP
- Japan
- Prior art keywords
- solid
- treatment
- sludge
- liquid separation
- waste water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004065 wastewater treatment Methods 0.000 title claims description 41
- 239000002351 wastewater Substances 0.000 claims description 126
- 239000002244 precipitate Substances 0.000 claims description 115
- 239000010802 sludge Substances 0.000 claims description 102
- 239000007788 liquid Substances 0.000 claims description 85
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 74
- 229910052711 selenium Inorganic materials 0.000 claims description 74
- 239000011669 selenium Substances 0.000 claims description 74
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 74
- 238000000926 separation method Methods 0.000 claims description 70
- -1 fluoride ions Chemical class 0.000 claims description 53
- 150000002505 iron Chemical class 0.000 claims description 50
- 239000003795 chemical substances by application Substances 0.000 claims description 49
- 150000002681 magnesium compounds Chemical class 0.000 claims description 48
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 41
- 239000000920 calcium hydroxide Substances 0.000 claims description 40
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 40
- 150000002506 iron compounds Chemical class 0.000 claims description 37
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 33
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 31
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 14
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 description 39
- 230000000052 comparative effect Effects 0.000 description 38
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 26
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 26
- 238000000034 method Methods 0.000 description 23
- 101100003996 Mus musculus Atrn gene Proteins 0.000 description 18
- 239000003513 alkali Substances 0.000 description 17
- 238000005345 coagulation Methods 0.000 description 17
- 230000015271 coagulation Effects 0.000 description 17
- 238000004062 sedimentation Methods 0.000 description 15
- 238000003756 stirring Methods 0.000 description 15
- 239000003002 pH adjusting agent Substances 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 11
- 239000011575 calcium Substances 0.000 description 11
- 238000006477 desulfuration reaction Methods 0.000 description 11
- 230000023556 desulfurization Effects 0.000 description 11
- 239000003546 flue gas Substances 0.000 description 11
- 239000002002 slurry Substances 0.000 description 11
- 230000001186 cumulative effect Effects 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 239000013049 sediment Substances 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 3
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 3
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 3
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 3
- 235000014413 iron hydroxide Nutrition 0.000 description 3
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 3
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 3
- 239000000347 magnesium hydroxide Substances 0.000 description 3
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 2
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000011790 ferrous sulphate Substances 0.000 description 2
- 235000003891 ferrous sulphate Nutrition 0.000 description 2
- 239000008394 flocculating agent Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
Images
Landscapes
- Removal Of Specific Substances (AREA)
Description
本発明は、マグネシウムイオン、フッ化物イオン、セレンを含有する排水の処理方法及び処理装置の技術に関する。 The present invention relates to a technique for treating waste water containing magnesium ions, fluoride ions, and selenium, and a technique for a treatment apparatus.
従来、硫黄分が含まれている重油や石炭等を燃料として使用する火力発電所等においては、公害防止等の目的で、排煙ガス中の硫黄酸化物を脱硫することが行われている。このような排煙脱硫方法にはさまざまな技術が提案されている。その中で、水酸化マグネシウム等のマグネシウム系吸収剤を使用する排煙脱硫装置が知られている。この排煙脱硫装置から排出される排水には、硫酸マグネシウム等のマグネシウム塩を主体にした水溶性塩類が多量に含まれており、また、排水基準項目として挙げられているフッ化物イオン、セレン等も含まれている。したがって、フッ化物イオン、セレン等を基準値以下となるように除去してから、公共用水域へと放流する必要がある。 Conventionally, in a thermal power plant using heavy oil or coal containing sulfur as a fuel, sulfur oxides in flue gas have been desulfurized for the purpose of preventing pollution. Various technologies have been proposed for such a flue gas desulfurization method. Among them, a flue gas desulfurization apparatus using a magnesium-based absorbent such as magnesium hydroxide is known. Wastewater discharged from this flue gas desulfurization system contains a large amount of water-soluble salts mainly composed of magnesium salts such as magnesium sulfate, and fluoride ions, selenium, etc. which are listed as wastewater standard items Is also included. Therefore, it is necessary to remove fluoride ions, selenium and the like so as to be below the reference value, and then discharge them to public water areas.
例えば、特許文献1には、排煙脱硫排水中のフッ素イオン(フッ化物イオン)を処理する方法が提案されている。具体的には、排煙脱硫排水中の懸濁物質を固液分離し、次いで固液分離した液に水酸化ナトリウムを添加してpH9以上とし、生成した沈殿物にフッ素イオンを吸着させ、固液分離することで、排水中からフッ素イオンを除去している。
For example,
また、例えば、特許文献2には、排煙脱硫排水中のセレンを処理する方法が提案されている。具体的には、鉄金属を充填した塔に、pH3以上の排煙脱硫排水を通水して、鉄金属と排水を接触させ、鉄金属から生成した鉄水酸化物にセレンを吸着させ、固液分離することで、排水中からセレンを除去している。
For example,
また、例えば、特許文献3には、排水中の6価セレンを処理する方法が提案されている。具体的には、排水のpHを6以下に調整しながら、鉄イオンを添加して、次いで金属を添加した後、アルカリ剤を添加してpHを8〜10に調整して、得られた水酸化物を固液分離することで、排水中から6価セレンを除去している。 For example, Patent Document 3 proposes a method for treating hexavalent selenium in waste water. Specifically, while adjusting the pH of the wastewater to 6 or less, iron ions were added, and then a metal was added, and then an alkaline agent was added to adjust the pH to 8 to 10 to obtain the obtained water. By separating the oxide into solid and liquid, hexavalent selenium is removed from the waste water.
排水中のフッ化物イオン及びセレンを除去する方法としては、例えば、特許文献1及び2の組み合わせ、又は特許文献1及び3の組み合わせが考えられる。
As a method for removing fluoride ions and selenium in waste water, for example, a combination of
しかし、特許文献1及び2の組み合わせでは、鉄金属から鉄水酸化物を得るための酸及びアルカリ剤が必要であったり、セレンを除去するための多量の鉄金属が必要であったり、また、それに伴う汚泥発生量(析出物発生量)も多くなったりして、処理コスト等の問題から現実的な組み合わせとは言えない。
However, in the combination of
また、特許文献1及び3の組み合わせでは、マグネシウムイオンを含む排水において、鉄析出物とマグネシウム析出物が同時に生成されるため、密度の低い析出物が生成し、得られる汚泥(析出物)の沈降性が悪いという問題があり、現実的な組み合わせとは言えない。
Moreover, in the combination of
本発明の目的は、マグネシウムイオン、フッ化物イオン、セレンを含む排水処理において、フッ化物イオン及びセレンを安定に処理しながら、沈降濃縮性の高い汚泥を得ることが可能な排水処理方法及び処理装置を提供することにある。 An object of the present invention is to provide a wastewater treatment method and a treatment apparatus capable of obtaining sludge with high sedimentation concentration while stably treating fluoride ions and selenium in wastewater treatment containing magnesium ions, fluoride ions and selenium. Is to provide.
本発明の排水処理方法は、マグネシウムイオン、フッ化物イオン、セレンを含有する排水と鉄塩とをpH6.5〜8.0の条件下で反応させ、生成した鉄化合物含有析出物に前記セレンを吸着させる第1処理工程と、前記第1処理工程後の前記鉄化合物含有析出物を含む排水とアルカリ剤とを反応させ、生成したマグネシウム化合物含有析出物に前記フッ化物イオンを吸着させる第2処理工程と、前記第2処理工程後の前記鉄化合物含有析出物及び前記マグネシウム化合物含有析出物を含む排水を前記鉄化合物含有析出物及び前記マグネシウム化合物含有析出物を含む汚泥と処理水とに固液分離する第1固液分離工程と、を備える。 In the wastewater treatment method of the present invention, wastewater containing magnesium ions, fluoride ions, and selenium is reacted with an iron salt under the conditions of pH 6.5 to 8.0, and the selenium is added to the generated iron compound-containing precipitate. A first treatment step for adsorbing, a second treatment for causing the waste water containing the iron compound-containing precipitate after the first treatment step to react with an alkaline agent, and adsorbing the fluoride ions to the produced magnesium compound-containing precipitate. And a waste liquid containing the iron compound-containing precipitate and the magnesium compound-containing precipitate after the second treatment step into a sludge and treated water containing the iron compound-containing precipitate and the magnesium compound-containing precipitate. A first solid-liquid separation step of separating.
また、前記排水処理方法において、前記第1固液分離工程により分離した前記汚泥を前記第1処理工程に返送することが好ましい。 In the wastewater treatment method, it is preferable that the sludge separated in the first solid-liquid separation step is returned to the first treatment step.
また、前記排水処理方法において、前記第1固液分離工程により分離した前記処理水と、水酸化ナトリウム及び水酸化カルシウムのうち少なくともいずれか一方とを反応させ、生成したマグネシウム化合物含有析出物に前記フッ化物イオンを吸着させる第3処理工程と、前記第3処理工程後の前記マグネシウム化合物含有析出物を含む排水を、前記マグネシウム化合物含有析出物を含む汚泥と処理水とに固液分離する第2固液分離工程と、を備え、前記第2固液分離工程により分離した前記汚泥を前記第1処理工程に返送することが好ましい。 In the wastewater treatment method, the treated water separated in the first solid-liquid separation step is reacted with at least one of sodium hydroxide and calcium hydroxide, and the generated magnesium compound-containing precipitate is added to the generated precipitate. A second treatment step for solid-liquid separation of a third treatment step for adsorbing fluoride ions and wastewater containing the magnesium compound-containing precipitate after the third treatment step into sludge and treated water containing the magnesium compound-containing precipitate. It is preferable that the sludge separated by the second solid-liquid separation step is returned to the first treatment step.
また、本発明の排水処理装置は、マグネシウムイオン、フッ化物イオン、セレンを含有する排水と鉄塩とをpH6.5〜8.0の条件下で反応させ、生成した鉄化合物含有析出物に前記セレンを吸着させる第1処理槽と、前記第1処理槽から排出される前記鉄化合物含有析出物を含む排水とアルカリ剤とを反応させ、生成したマグネシウム化合物含有析出物に前記フッ化物イオンを吸着させる第2処理槽と、前記第2処理槽から排出される前記鉄化合物含有析出物及び前記マグネシウム化合物含有析出物を含む排水を前記鉄化合物含有析出物及び前記マグネシウム化合物含有析出物を含む汚泥と処理水とに固液分離する第1固液分離手段と、を備える。 Moreover, the wastewater treatment apparatus of the present invention reacts wastewater containing magnesium ions, fluoride ions, and selenium with iron salt under the conditions of pH 6.5 to 8.0, and the generated iron compound-containing precipitates A first treatment tank for adsorbing selenium, a waste water containing the iron compound-containing precipitate discharged from the first treatment tank, and an alkali agent are reacted, and the fluoride ions are adsorbed to the generated magnesium compound-containing precipitate. A wastewater containing the iron compound-containing precipitate and the magnesium compound-containing precipitate discharged from the second treatment tank, and a sludge containing the iron compound-containing precipitate and the magnesium compound-containing precipitate. comprising a first solid-liquid separation away means for solid-liquid separation and treated water, the.
また、前記排水処理装置において、前記第1固液分離手段により分離した前記汚泥を前記第1処理槽に返送する第1返送手段を備えることが好ましい。 Moreover, it is preferable that the waste water treatment apparatus further includes a first return means for returning the sludge separated by the first solid-liquid separation means to the first treatment tank.
また、前記排水処理装置において、前記第1固液分離手段により分離した処理水と、水酸化ナトリウム及び水酸化カルシウムのうち少なくともいずれか一方とを反応させ、生成したマグネシウム化合物含有析出物に前記フッ化物イオンを吸着させる第3処理槽と、前記第3処理槽から排出される前記マグネシウム化合物含有析出物を含む排水を、前記マグネシウム化合物含有析出物を含む汚泥と処理水とに固液分離する第2固液分離手段と、を備え、前記第2固液分離手段により分離した前記汚泥を前記第1処理槽に返送する第2返送手段を備えることが好ましい。 In the wastewater treatment apparatus, the treated water separated by the first solid-liquid separation means is reacted with at least one of sodium hydroxide and calcium hydroxide, and the generated magnesium compound-containing precipitate is added to the fluoride. A third treatment tank that adsorbs fluoride ions, and wastewater containing the magnesium compound-containing precipitate discharged from the third treatment tank is separated into sludge and treated water containing the magnesium compound-containing precipitate. It is preferable to include a second return means for returning the sludge separated by the second solid-liquid separation means to the first treatment tank.
本発明によれば、マグネシウムイオン、フッ化物イオン、セレンを含む排水処理において、フッ化物イオン及びセレンを安定に処理しながら、沈降濃縮性の高い汚泥を得ることが可能な排水処理方法及び処理装置を提供することができる。 According to the present invention, in a wastewater treatment containing magnesium ions, fluoride ions, and selenium, a wastewater treatment method and a treatment apparatus capable of obtaining sludge having high sedimentation concentration while stably treating fluoride ions and selenium. Can be provided.
本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.
図1は、本実施形態に係る排水処理装置の構成の一例を示す模式図である。図1に示す排水処理装置1は、第1処理槽10、第2処理槽12、第1凝集剤反応槽14、第1固液分離槽16、を備える。また、排水処理装置1は、鉄塩タンク18、鉄塩供給ライン20を備える鉄塩添加装置、pH調整剤タンク22、pH調整剤ライン24を備えるpH調整剤添加装置、第1アルカリ剤タンク26、第1アルカリ剤供給ライン28を備えるアルカリ剤添加装置、第1凝集剤タンク30、第1凝集剤供給ライン32を備える凝集剤添加装置を備える。
FIG. 1 is a schematic diagram illustrating an example of a configuration of a wastewater treatment apparatus according to the present embodiment. The waste
第1処理槽10には排水ライン34が接続されている。第1処理槽10と第2処理槽12との間、第2処理槽12と第1凝集剤反応槽14との間、第1凝集剤反応槽14と第1固液分離槽16との間は、不図示の排水ラインにより接続されている。第1固液分離槽16には処理水ライン36及び汚泥排出ライン38が接続されている。鉄塩供給ライン20の一端は第1処理槽10に接続され、他端は鉄塩タンク18に接続され、pH調整剤ライン24の一端は第1処理槽10に接続され、他端はpH調整剤タンク22に接続されている。第1アルカリ剤供給ライン28の一端は第2処理槽12に接続され、他端は第1アルカリ剤タンク26に接続されている。第1凝集剤供給ライン32の一端は第1凝集剤反応槽14に接続され、他端は第1凝集剤タンク30に接続されている。
A
本実施形態に係る排水処理装置1の動作の一例について説明する。
An example of the operation of the
本実施形態の処理対象排水は、マグネシウムイオン、フッ化物イオン、セレンを含有する排水であれば特に制限されるものではないが、上記排水としては例えば、排煙脱硫排水等が挙げられる。排煙脱硫排水は、例えば、排ガス中の硫黄酸化物を水酸化マグネシウム等のマグネシウム系吸収剤で、吸収除去する排煙脱硫装置から排出される排水である。 The wastewater to be treated in this embodiment is not particularly limited as long as it contains magnesium ions, fluoride ions, and selenium. Examples of the wastewater include flue gas desulfurization wastewater. The flue gas desulfurization waste water is, for example, waste water discharged from a flue gas desulfurization device that absorbs and removes sulfur oxides in exhaust gas with a magnesium-based absorbent such as magnesium hydroxide.
マグネシウムイオン、フッ化物イオン、セレンを含有する排水(以下、原水と称する場合がある)は、排水ライン34を通り第1処理槽10に供給される。鉄塩タンク18内の鉄塩が鉄塩供給ライン20から第1処理槽10に供給されると共に、pH調整剤タンク22内のpH調整剤がpH調整剤ライン24を通して、第1処理槽10に供給され、第1処理槽10内のpHが6.5〜8.0の範囲に調整される。第1処理槽10内では、鉄水酸化物(Fe(OH)2、Fe(OH)3等)や鉄酸化物(FeO、Fe2O3等)等の鉄化合物を含む析出物が生成され、その生成された析出物に主にセレンが吸着される(第1処理工程)。次に、第1処理槽10内の排水はセレンが吸着された鉄化合物を含む析出物と共に、第2処理槽12に供給される。そして、第1アルカリ剤タンク26内のアルカリ剤が第1アルカリ剤供給ライン28から第2処理槽12に供給される。この際、第2処理槽12内では、マグネシウム水酸化物(Mg(OH)2等)やマグネシウム酸化物(MgO等)等のマグネシウム化合物を含む析出物が生成され、その生成された析出物に主にフッ化物イオンが吸着される(第2処理工程)。析出物の形成メカニズムは明らかではないが、まず、セレンが吸着された鉄化合物を含む析出物を核としてマグネシウム化合物が析出し、そのマグネシウム化合物を含む析出物表面にフッ化物イオンが吸着すると考えられる。このように第2処理工程後には、マグネシウム化合物を含む析出物と鉄化合物を含む析出物が一体となり、密度の高い析出物が形成されると考えられる。このため、後段の固液分離処理において、上記析出物を含む汚泥の沈降濃縮性が向上すると考えられる。一方、第2処理工程を第1処理工程より先に行う場合、すなわちマグネシウム化合物を含む析出物を生成してフッ化物イオンを吸着した後に、鉄化合物を含む析出物を生成した場合では、鉄塩添加時に酸性の鉄塩によりマグネシウム化合物を含む析出物が溶解し、マグネシウム化合物を含む析出物に吸着していたフッ化物イオンが溶出し、処理水中のフッ化物イオン濃度が高くなる。また、フッ化物イオンの溶出を抑制しようとすると、より多くのアルカリ剤を添加する必要があり、析出物が増え、汚泥発生量が増大する。さらに、鉄化合物を含む析出物を核とした析出物にならないため、沈降濃縮性の低い汚泥となる。
Wastewater containing magnesium ions, fluoride ions, and selenium (hereinafter sometimes referred to as raw water) is supplied to the
次に、第2処理槽12内の排水は、セレンが吸着された鉄化合物を含む析出物及びフッ化物イオンが吸着されたマグネシウム化合物を含む析出物と共に、第1凝集剤反応槽14に供給される。そして、第1凝集剤タンク30内の凝集剤が凝集剤供給ライン32から第1凝集剤反応槽14に供給される。第1凝集剤反応槽14では、セレン及びフッ化物イオンが吸着された析出物がフロック化される。そして、第1凝集剤反応槽14内の排水は、フロック化された析出物(セレン及びフッ化物イオンが吸着された析出物)と共に第1固液分離槽16に供給され、第1固液分離槽16内で、セレン及びフッ化物イオンが吸着された析出物を含む汚泥と処理水とに固液分離され、処理水は処理水ライン36から系外へ排出され、汚泥は汚泥排出ライン38から系外へ排出される(固液分離処理工程)。
Next, the waste water in the
以下に、本実施形態の各処理工程の詳細を説明する。 Below, the detail of each processing process of this embodiment is demonstrated.
<第1処理工程>
第1処理工程は、原水と鉄塩とをpH6.5〜8.0の条件下で反応させ、生成した鉄化合物を含む析出物にセレンを吸着させる工程である。反応pHは6.5〜8.0の範囲であればよいが、汚泥の沈降濃縮性、セレンの除去率等の点で、原水のpHは7.0〜7.5の範囲が好ましい。原水のpHが上記範囲を満たすことにより、マグネシウム化合物を含む析出物の生成を抑え、鉄塩を鉄化合物として析出させ、その析出物にセレンを効率的に吸着させることが可能となる。一方、原水のpHが6.5未満であると、第1処理工程での鉄化合物の析出が少なく、第2処理工程の反応で核となる析出物が少なくなり、第2反応工程で密度の比較的低い析出物が生成すると考えられ、上記範囲を満たす場合と比較して、沈降濃縮性の低い汚泥が発生する。また、原水のpHが8.0を超えると、鉄化合物を含む析出物とマグネシウム化合物を含む析出物が同時に生成し、鉄化合物を含む析出物が核とならない比較的密度の低い析出物が生成すると考えられ、上記範囲を満たす場合と比較して、沈降濃縮性の低い汚泥が発生すると共にセレンの除去率も低下する。
<First treatment process>
The first treatment step is a step in which raw water and an iron salt are reacted under a condition of pH 6.5 to 8.0, and selenium is adsorbed on a precipitate containing the generated iron compound. The reaction pH may be in the range of 6.5 to 8.0, but the pH of the raw water is preferably in the range of 7.0 to 7.5 in terms of sludge sedimentation concentration, selenium removal rate, and the like. When the pH of the raw water satisfies the above range, generation of a precipitate containing a magnesium compound can be suppressed, an iron salt can be precipitated as an iron compound, and selenium can be efficiently adsorbed on the precipitate. On the other hand, if the pH of the raw water is less than 6.5, the precipitation of iron compounds in the first treatment step is small, the core precipitates in the reaction of the second treatment step are small, and the density of the second reaction step is low. It is considered that a relatively low precipitate is generated, and sludge having low sedimentation concentration is generated as compared with the case where the above range is satisfied. In addition, when the pH of the raw water exceeds 8.0, a precipitate containing an iron compound and a precipitate containing a magnesium compound are generated at the same time, and a precipitate having a relatively low density is generated in which the precipitate containing the iron compound does not become a nucleus. Thus, as compared with the case where the above range is satisfied, sludge with low sedimentation concentration is generated and the selenium removal rate is also reduced.
本実施形態では、鉄塩を添加しながら、または鉄塩を必要量添加した後に、pH調整剤を第1処理槽10に供給して、反応pHが6.5〜8.0の範囲に調整される。但し、鉄塩は酸性を示すため、鉄塩を添加する前の原水のpHを6.5〜8.0に調整しても、鉄塩を添加することで、原水のpHが6.5未満になる場合がある。その際には、鉄塩を添加しながら又は鉄塩を添加した後に、原水のpHが6.5〜8.0の範囲となるように再度pH調整を行う必要がある。したがって、pH調整は、鉄塩を添加しながら又は鉄塩添加後に行われることが望ましい。反応pHは、第1処理槽10内に設置したpH計(不図示)により測定される。なお、反応pHの調整は、例えば、以下のように行われる。例えば、作業者が、pH計の値を見ながら、pH調整剤ライン24に設けたバルブ(不図示)を開閉してpH調整剤を供給することで行われる。また、例えば、pH計及びpH調整剤ライン24に設けた電磁バルブ(不図示)と電気的に接続された制御部を設け、pH計によるpH値を受けた制御部が、そのpH値に基づいて、電磁バルブの開閉を制御することで行われる。
In this embodiment, while adding an iron salt or after adding a necessary amount of iron salt, a pH adjuster is supplied to the
原水のpH調整には、塩酸等の酸剤又は水酸化ナトリウム、水酸化カルシウム等のアルカリ剤等のpH調整剤等が用いられる。 For adjusting the pH of the raw water, an acid agent such as hydrochloric acid or a pH adjuster such as an alkali agent such as sodium hydroxide or calcium hydroxide is used.
本実施形態で使用される鉄塩は、例えば、塩化第一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄等が挙げられる。排水中のセレンの形態が4価セレン(SeO2 2−)のみであれば、いずれの鉄塩を使用しても良いが、6価セレン(SeO3 2−)を含む場合には、塩化第一鉄、硫酸第一鉄等の2価鉄塩が好ましい。2価鉄塩を用いることにより、6価セレンが4価セレンに還元され、4価セレンが鉄化合物を含む析出物に吸着されるものと考えられる。 Examples of the iron salt used in the present embodiment include ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, and the like. If the form of selenium in the waste water is only tetravalent selenium (SeO 2 2− ), any iron salt may be used, but if hexavalent selenium (SeO 3 2− ) is included, Divalent iron salts such as ferrous iron and ferrous sulfate are preferred. By using a divalent iron salt, it is considered that hexavalent selenium is reduced to tetravalent selenium and the tetravalent selenium is adsorbed by the precipitate containing the iron compound.
鉄塩の添加量は、原水中のセレン濃度、要求される処理水中のセレン濃度などによって適宜設定されるものであり、特に制限されるものではないが、例えば、原水中のセレン濃度が、排水基準値(0.1mg/L)より少し高い程度(0.2〜0.3mg/L程度)であれば、鉄塩の添加量は例えば100〜500mgFe/L程度が目安となる。 The amount of iron salt added is appropriately set depending on the selenium concentration in the raw water, the required selenium concentration in the treated water, and is not particularly limited. For example, the selenium concentration in the raw water If the amount is slightly higher than the reference value (0.1 mg / L) (about 0.2 to 0.3 mg / L), the amount of iron salt added is, for example, about 100 to 500 mgFe / L.
第1処理工程における原水と鉄塩との反応時間は、鉄化合物を含む析出物を十分に析出させる時間が確保されていれば特に制限されるものではないが、例えば、10分〜60分の範囲とすることが好ましい。反応時間が10分未満であれば、鉄化合物を含む析出物の生成が十分に行われずに第2処理工程に移行するため、セレンの除去率が低下する場合があり、60分を超えると、大きな容量の第1処理槽10が必要となるため、実用上好ましくない場合がある。また、鉄化化合物を含む析出物の生成効率の点で、第1処理槽10内に撹拌機を設置し、原水と鉄塩とを撹拌しながら反応させることが好ましい。
The reaction time between the raw water and the iron salt in the first treatment step is not particularly limited as long as the time for sufficiently depositing the precipitate containing the iron compound is ensured, for example, 10 minutes to 60 minutes. It is preferable to be in the range. If the reaction time is less than 10 minutes, the generation of the precipitate containing the iron compound is not sufficiently performed, and the process proceeds to the second treatment step, so that the selenium removal rate may be reduced. Since the
<第2処理工程>
第2処理工程は、第1処理工程後のセレンを吸着した鉄化合物含有析出物を含む排水とアルカリ剤とを反応させ、生成したマグネシウム化合物含有析出物にフッ化物イオンを吸着させる工程である。
<Second treatment process>
The second treatment step is a step in which the wastewater containing the iron compound-containing precipitate adsorbing selenium after the first treatment step is reacted with an alkaline agent to adsorb fluoride ions to the produced magnesium compound-containing precipitate.
本実施形態で使用されるアルカリ剤は、例えば、水酸化ナトリウム(NaOH)、水酸化カルシウム(Ca(OH)2)等が挙げられるが、フッ素除去率の点で、水酸化カルシウムが好ましい。水酸化カルシウムを使用することで、フッ化物イオンがフッ化カルシウムとして析出されるため、水酸化ナトリウムを使用した場合と比較して、フッ素除去率が向上する。また、フッ化カルシウムが第1処理工程及び第2処理工程で生成した析出物に付着するため、水酸化ナトリウムを使用した場合と比較して、汚泥の沈降濃縮性が向上する場合がある。 Examples of the alkaline agent used in the present embodiment include sodium hydroxide (NaOH), calcium hydroxide (Ca (OH) 2 ), and the like, and calcium hydroxide is preferable in terms of fluorine removal rate. By using calcium hydroxide, fluoride ions are precipitated as calcium fluoride, so that the fluorine removal rate is improved as compared with the case of using sodium hydroxide. Moreover, since calcium fluoride adheres to the precipitate produced | generated at the 1st process process and the 2nd process process, compared with the case where sodium hydroxide is used, the sedimentation concentration property of sludge may improve.
アルカリ剤の添加量は、フッ化物イオンを除去するのに十分なマグネシウム化合物を含む析出物を形成することが可能な量であればよい。アルカリ剤の添加量は、原水のマグネシウムイオン濃度やフッ化物イオン濃度、要求される処理水中のフッ化物イオン濃度により適宜設定される。アルカリ剤の添加量は、アルカリ剤として水酸化カルシウムを使用した場合、100〜300mgF/Lの原水であれば、例えば2000〜4000mg/Lとすることが好ましい。 The addition amount of the alkaline agent may be an amount capable of forming a precipitate containing a magnesium compound sufficient to remove fluoride ions. The addition amount of the alkaline agent is appropriately set depending on the magnesium ion concentration and fluoride ion concentration of the raw water and the required fluoride ion concentration in the treated water. When calcium hydroxide is used as the alkaline agent, the amount of the alkaline agent added is preferably, for example, 2000 to 4000 mg / L if the raw water is 100 to 300 mgF / L.
第2処理工程での排水のpHは、9以上とすることが好ましく、9.0〜10.0の範囲とすることが好ましく、9.2〜9.7の範囲とすることが更により好ましい。9.0未満の場合には、マグネシウム化合物を含む析出物が十分に生成されず、フッ化物イオンの除去率が低下する場合があり、10.0を超える場合には、マグネシウム化合物の析出量が多大となり、汚泥発生量が過大となる場合がある。 The pH of the waste water in the second treatment step is preferably 9 or more, preferably in the range of 9.0 to 10.0, and more preferably in the range of 9.2 to 9.7. . In the case of less than 9.0, the precipitate containing the magnesium compound is not sufficiently generated, and the fluoride ion removal rate may be reduced. The amount of generated sludge may become excessive.
第2処理工程における排水とアルカリ剤との反応時間は、マグネシウム化合物を含む析出物を十分に析出させる時間が確保されていれば特に制限されるものではないが、例えば、10分〜60分の範囲とすることが好ましい。反応時間が10分未満であれば、マグネシウム化合物を含む析出物の生成が十分に行われずに固液分離処理工程に移行するため、フッ化物イオンの除去率が低下する場合があり、60分を超えると、大きな容量の第2処理槽12が必要となるため、実用上好ましくない場合がある。また、マグネシウム化化合物を含む析出物の生成効率の点で、第2処理槽12内に撹拌機を設置し、排水とアルカリ剤とを撹拌しながら反応させることが好ましい。
The reaction time of the waste water and the alkaline agent in the second treatment step is not particularly limited as long as the time for sufficiently depositing the precipitate containing the magnesium compound is secured, but for example, 10 minutes to 60 minutes It is preferable to be in the range. If the reaction time is less than 10 minutes, the precipitate containing the magnesium compound is not sufficiently generated and the process proceeds to the solid-liquid separation treatment step, and the fluoride ion removal rate may be reduced. When it exceeds, since the
本実施形態のように、第1処理工程後に第2処理工程を行うことで、前述したように、鉄化合物を含む析出物とマグネシウム化合物を含む析出物とが付着した析出物が得られる。このため、セレン及びフッ化物イオンを効率的に除去しながら、沈降濃縮性の高い汚泥が得られる。一方、第2処理工程の後、第1処理工程を行う場合、すなわち、先にマグネシウム化合物を含む析出物を生成させた後鉄塩を添加すると、フッ素イオンを吸着していたマグネシウム析出物の一部が溶解するため、フッ化物イオンの除去率が低下する場合があり、またはアルカリ剤添加量が増大する場合がある。ひいては、前述したように鉄化合物を含む析出物を核とする密度の高い析出物が生成せず、沈降濃縮性の低い汚泥となる場合がある。また、第2処理工程を設けず、第1処理工程のみを行う排水処理の場合において、反応pHを6.5〜8.0に調整した場合には、マグネシウム化合物を含む析出物が生成されないため、フッ化物イオンの除去率が著しく低下する場合がある。また、第2処理工程を設けず、第1処理工程のみを行う排水処理の場合において、反応pHを6.5未満に調整した場合もマグネシウム化合物を含む析出物が生成されないため、フッ化物イオンの除去率が著しく低下する場合がある。反応pHを8.0超に調整した場合には、鉄化合物を含む析出物とマグネシウム化合物を含む析出物が同時に生成し、鉄化合物を含む析出物を核とする密度の高い析出物が形成されにくいため、沈降濃縮性の悪い汚泥となる場合がある。 As described above, by performing the second treatment step after the first treatment step as in the present embodiment, a precipitate to which a precipitate containing an iron compound and a precipitate containing a magnesium compound are attached is obtained. For this reason, sludge with high sedimentation concentration property is obtained, removing selenium and fluoride ion efficiently. On the other hand, when the first treatment step is performed after the second treatment step, that is, when the iron salt is added after the precipitate containing the magnesium compound is first generated, one of the magnesium precipitates that have adsorbed the fluorine ions. Since the portion dissolves, the fluoride ion removal rate may decrease, or the amount of alkali agent added may increase. Eventually, as described above, a high-density precipitate having a precipitate containing an iron compound as a core is not generated, and sludge having a low sediment concentration property may be formed. In addition, in the case of wastewater treatment in which only the first treatment step is performed without providing the second treatment step, when the reaction pH is adjusted to 6.5 to 8.0, a precipitate containing a magnesium compound is not generated. In some cases, the fluoride ion removal rate may be significantly reduced. In addition, in the case of wastewater treatment in which only the first treatment step is performed without providing the second treatment step, a precipitate containing a magnesium compound is not generated even when the reaction pH is adjusted to less than 6.5. The removal rate may be significantly reduced. When the reaction pH is adjusted to more than 8.0, a precipitate containing an iron compound and a precipitate containing a magnesium compound are generated at the same time, and a high-density precipitate having a precipitate containing an iron compound as a nucleus is formed. Because it is difficult, it may become sludge with poor sedimentation concentration.
<固液分離処理工程>
固液分離処理工程では、第2処理工程後の排水に、凝集剤を添加し、排水中の析出物をフロック化させた後、固液分離処理を行うことが望ましい。凝集剤は、従来公知の無機凝集剤や高分子凝集剤等が用いられる。
<Solid-liquid separation process>
In the solid-liquid separation treatment step, it is desirable to perform a solid-liquid separation treatment after adding a flocculant to the waste water after the second treatment step to flock the precipitate in the waste water. As the flocculant, conventionally known inorganic flocculants, polymer flocculants and the like are used.
本実施形態の固液分離処理では、排水からフッ化物イオン及びセレンを吸着した析出物を沈降分離して、該析出物を含む汚泥と処理水とに分離する固液分離槽(沈殿槽)を例に説明したが、フッ化物イオン及びセレンを吸着した析出物を含む汚泥と処理水とに分離するものであれば、これに限定されるものではなく、例えば、膜ろ過装置等であってもよい。固液分離された析出物を含む汚泥は系外に排出され、例えば、濃縮・脱水して廃棄処分される。 In the solid-liquid separation treatment of this embodiment, a solid-liquid separation tank (precipitation tank) that separates precipitates that have adsorbed fluoride ions and selenium from wastewater into sediment and separates the sludge containing the precipitates and treated water. As explained in the example, it is not limited to this as long as it is separated into sludge containing precipitates adsorbing fluoride ions and selenium and treated water. Good. The sludge containing the solid-liquid separated deposits is discharged out of the system, and is disposed, for example, after being concentrated and dehydrated.
図2は、本実施形態に係る排水処理装置の構成の他の一例を示す模式図である。図2に示す排水処理装置2において、図1に示す排水処理装置1と同様の構成については同一の符号を付し、その説明を省略する。図2に示す排水処理装置2は、汚泥返送ライン40を備えており、汚泥返送ライン40の一端は汚泥排出ライン38に接続され、他端は、第1処理槽10に接続されている。第1処理工程及び第2処理工程を経て、固液分離槽16により得られる汚泥はアルカリ性を示す。このため、図2に示す排水処理装置2では、固液分離処理された汚泥(フッ化物イオン及びセレンを吸着した析出物)を汚泥返送ライン40から第1処理槽10に供給することで、第1処理槽10内のpHを6.5〜8.0の範囲に調整するアルカリ剤として利用することが可能となる。その結果、第1処理工程において、pH調整に使用されるアルカリ剤の量を低減することが可能となる。また汚泥を循環させることにより、フッ化物イオンの除去率が向上する場合がある。
FIG. 2 is a schematic diagram illustrating another example of the configuration of the waste water treatment apparatus according to the present embodiment. In the waste
図3は、本実施形態に係る排水処理装置の構成の他の一例を示す模式図である。図3に示す排水処理装置3において、図1に示す排水処理装置1と同様の構成については同一の符号を付し、その説明を省略する。図3に示す排水処理装置3は、第3処理槽42、第2凝集剤反応槽44、第2固液分離槽46、を備える。第2アルカリ剤タンク48、第2アルカリ剤供給ライン50を備えるアルカリ剤添加装置、第2凝集剤タンク52、第2凝集剤供給ライン54を備える第2凝集剤添加装置を備える。
FIG. 3 is a schematic diagram illustrating another example of the configuration of the waste water treatment apparatus according to the present embodiment. In the waste water treatment apparatus 3 shown in FIG. 3, the same code | symbol is attached | subjected about the structure similar to the waste
処理水ライン36の一端は第1固液分離槽16に接続され、他端は第3処理槽42に接続されている。また第3処理槽42と第2凝集剤反応槽44との間、第2凝集剤反応槽44と第2固液分離槽46との間は、不図示の排水ラインにより接続されている。第2固液分離槽46には最終処理水ライン56及び汚泥排出ライン58が接続されている。汚泥返送ライン40の一端は汚泥排出ライン58に接続され、他端は、第1処理槽10に接続されている。
One end of the treated
第1固液分離槽16から排出される処理水は、処理水ライン36を通り、第3処理槽42へ供給される。第2アルカリ剤タンク48内のアルカリ剤が第2アルカリ剤供給ライン50を通り、第3処理槽42へ供給される。第3処理槽42では、処理水とアルカリ剤とが反応して、処理水中に残存するマグネシウムイオンがマグネシウム化合物を含む析出物として析出し、処理水中に残存するフッ化物イオンを吸着する(第3処理工程)。これにより、よりフッ化物イオン濃度の低い処理水が得られる。
The treated water discharged from the first solid-
第3処理工程で使用するアルカリ剤は、水酸化ナトリウム、水酸化カルシウム等が挙げられる。また、第3処理工程でのアルカリ剤の添加量は、フッ化物イオンを除去するのに十分なマグネシウム化合物を含む析出物を形成できる量であればよく、最終処理水ライン56から排出される処理水中のフッ化物イオン濃度を確認しながら、アルカリ剤の添加量を調整することが望ましい。
Examples of the alkaline agent used in the third treatment step include sodium hydroxide and calcium hydroxide. Moreover, the addition amount of the alkaline agent in the third treatment step may be an amount capable of forming a precipitate containing a magnesium compound sufficient to remove fluoride ions, and the treatment discharged from the final treated
第3処理槽42内の排水は、フッ化物イオンが吸着されたマグネシウム化合物を含む析出物と共に、第2凝集剤反応槽44に供給される。そして、第2凝集剤タンク52内の凝集剤が第2凝集剤供給ライン54から第2凝集剤反応槽44に供給される。第2凝集剤反応槽44では、フッ化物イオンが吸着された析出物がフロック化される。そして、第2凝集剤反応槽44内の排水は、フロック化された析出物と共に第2固液分離槽46に供給され、第2固液分離槽46内で、フッ化物イオンが吸着された析出物を含む汚泥と処理水とに固液分離される。処理水は最終処理水ライン56から系外へ排出される。また、汚泥は汚泥排出ライン58から系外へ排出され(固液分離処理工程)、また、汚泥返送ライン40を通り第1処理槽10に供給される。
The waste water in the
図3に示す排水処理装置3では、第2固液分離槽46で固液分離処理された汚泥(フッ化物イオンを吸着した析出物)が、汚泥返送ライン40を通り第1処理槽10に供給され、原水のpHを6.5〜8.0の範囲に調整することに利用される。これにより、第1処理工程において、pH調整に使用されるアルカリ剤の量を低減することが可能となる。また汚泥を循環させることにより、フッ化物イオンの除去率が向上する場合がある。図3に示す排水処理装置3では、第2固液分離槽46に汚泥返送ライン40を設けたが、第1固液分離槽16に設けてもよく、また第1固液分離槽16及び第2固液分離槽46の両方に設けても良い。
In the wastewater treatment apparatus 3 shown in FIG. 3, sludge (precipitate that has adsorbed fluoride ions) subjected to solid-liquid separation in the second solid-
各排水処理装置では、例えば、フッ化物イオン濃度50〜300mg/L、セレン濃度0.1〜1.0mg/L、マグネシウムイオン濃度2000〜15000mg/Lの範囲の排水に対して、フッ化物イオン及びセレンを排水基準以下(フッ化物イオン濃度15mg/L以下、セレン濃度0.1mg/L以下)とすることが可能であり、また沈降濃縮性の高い汚泥が得られる。 In each wastewater treatment device, for example, fluoride ions and selenium concentrations of 0.1 to 1.0 mg / L, selenium concentrations of 2000 to 15000 mg / L, and fluoride ions and Selenium can be reduced to a wastewater standard (fluoride ion concentration of 15 mg / L or less, selenium concentration of 0.1 mg / L or less), and sludge with high sedimentation concentration can be obtained.
以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.
(実施例1)
図1に示す処理装置を用いて、マグネシウムイオン、フッ化物イオン、セレン(4価)を含む模擬排水の処理を行った。模擬排水は、上記特許文献1に記載の脱硫排水水質を参考に調整したものである。ただしセレンについては、排水基準値よりも十分に高い値となるよう調整した。模擬排水の組成及びpHを表1に示す。
Example 1
Using the treatment apparatus shown in FIG. 1, treatment of simulated waste water containing magnesium ions, fluoride ions, and selenium (tetravalent) was performed. The simulated waste water is prepared by referring to the desulfurization waste water quality described in
実施例1の処理は以下の通り行った。模擬排水1000mLに塩化第二鉄を500mgFe/Lとなるように添加し、その後、水酸化カルシウムを400mgCa/Lとなるように添加し、排水のpHを7.5に調整した後、15分間撹拌しながら排水と塩化第二鉄とを反応させた(第1処理工程)。その後、水酸化カルシウムスラリーを1800mgCa/Lとなるように添加した(このとき排水のpHは9.2であった)。排水を15分間撹拌して、水酸化カルシウムと排水とを反応させた(第2処理工程)。次に、高分子凝集剤(オルガノ社製オルフロックM−4020)を5mg/L添加し、10分間撹拌し、凝集処理を行った。凝集処理後の排水中のSS濃度をガラス繊維ろ紙ろ過により測定した。 The processing of Example 1 was performed as follows. Ferric chloride was added to 1000 mL of simulated waste water so as to be 500 mgFe / L, and then calcium hydroxide was added so as to be 400 mgCa / L, and the pH of the wastewater was adjusted to 7.5, followed by stirring for 15 minutes. Then, the waste water and ferric chloride were reacted (first treatment step). Thereafter, a calcium hydroxide slurry was added to 1800 mgCa / L (at this time, the pH of the wastewater was 9.2). The waste water was stirred for 15 minutes to react calcium hydroxide with the waste water (second treatment step). Next, 5 mg / L of a polymer flocculant (Orglock M-4020 manufactured by Organo Co., Ltd.) was added and stirred for 10 minutes for aggregation treatment. The SS concentration in the waste water after the coagulation treatment was measured by glass fiber filter paper filtration.
次に、凝集処理後の排水を固液分離槽で沈降分離させ、30分後、固液分離槽内の処理水を採取し、pHをpH計(東亜DKK社製、HM-30P)、フッ化物イオン濃度をランタン−アリザリンコンプレキソン吸光光度法、セレン濃度をICP質量分析法により測定した。また、固液分離槽内に堆積した汚泥体積比(処理水量に対する汚泥の体積%)を分離槽壁面に刻んだ目盛により測定した。上記各処理は、排水を40℃に維持した状態で行った。実施例1の薬品添加量及び排水pHを表2にまとめた。 Next, the waste water after the coagulation treatment is settled and separated in a solid-liquid separation tank, and after 30 minutes, the treated water in the solid-liquid separation tank is collected, and the pH is measured with a pH meter (HM-30P, manufactured by Toa DKK) The chloride ion concentration was measured by lanthanum-alizarin complexone spectrophotometry, and the selenium concentration was measured by ICP mass spectrometry. Further, the volume ratio of sludge accumulated in the solid-liquid separation tank (volume% of sludge with respect to the amount of treated water) was measured by a scale carved on the separation tank wall surface. Each said process was performed in the state which maintained waste_water | drain at 40 degreeC. Table 2 summarizes the chemical addition amount and drainage pH in Example 1.
(比較例1−1)
模擬排水1000mLに水酸化カルシウムスラリーを1800mgCa/Lとなるように添加し、排水pHを9.2に調整した後、15分間撹拌しながら排水と水酸化カルシウムとを反応させた(アルカリ反応工程)。次に、塩化第二鉄を500mgFe/Lとなるように添加した後、水酸化カルシウムを400mgCa/Lとなるように添加し、15分間撹拌しながら排水と塩化第二鉄とを反応させた(鉄塩反応工程)。このときの排水のpHは9.2であった。次に、高分子凝集剤(オルガノ社製、M−4020)を5mg/L添加し、10分間撹拌し、凝集処理を行った。凝集処理後の排水中のSS濃度を測定した。
(Comparative Example 1-1)
After adding calcium hydroxide slurry to 1000 mL of simulated waste water to 1800 mg Ca / L and adjusting the drain pH to 9.2, the waste water and calcium hydroxide were reacted with stirring for 15 minutes (alkali reaction step). . Next, after adding ferric chloride to 500 mgFe / L, calcium hydroxide was added to 400 mgCa / L, and the waste water and ferric chloride were reacted with stirring for 15 minutes ( Iron salt reaction process). The pH of the waste water at this time was 9.2. Next, 5 mg / L of a polymer flocculant (manufactured by Organo Corp., M-4020) was added and stirred for 10 minutes for aggregation treatment. The SS concentration in the waste water after the coagulation treatment was measured.
次に、凝集処理後の排水を固液分離槽で沈降分離させ、30分後、固液分離槽内の処理水を採取し、pH、フッ化物イオン濃度、セレン濃度を測定した。また、固液分離槽内に堆積した汚泥の汚泥体積比(処理水量に対する汚泥の体積%)を測定した。上記各処理は、排水を40℃に維持した状態で行った。比較例1−1の薬品添加量及び排水pHを表3にまとめた。なお、各項目の測定法及び測定機器は実施例1と同じである。 Next, the waste water after the coagulation treatment was settled and separated in a solid-liquid separation tank, and after 30 minutes, treated water in the solid-liquid separation tank was collected, and pH, fluoride ion concentration, and selenium concentration were measured. Moreover, the sludge volume ratio (volume% of sludge with respect to the amount of treated water) of the sludge accumulated in the solid-liquid separation tank was measured. Each said process was performed in the state which maintained waste_water | drain at 40 degreeC. Table 3 summarizes the chemical addition amount and drainage pH of Comparative Example 1-1. In addition, the measuring method and measuring equipment of each item are the same as Example 1.
(比較例1−2)
塩化第二鉄を500mgFe/Lとなるように添加した後、水酸化カルシウムを3200mgCa/Lとなるように添加したこと以外は、比較例1−1と同様の条件で試験を行った。比較例1−2の薬品添加量及び排水pHを表3にまとめた。塩化第二鉄及び水酸化カルシウム添加反応後のpHは9.5であった。
(Comparative Example 1-2)
The test was performed under the same conditions as in Comparative Example 1-1 except that ferric chloride was added to 500 mgFe / L and calcium hydroxide was added to 3200 mgCa / L. Table 3 summarizes the chemical addition amount and drainage pH of Comparative Example 1-2. The pH after ferric chloride and calcium hydroxide addition reaction was 9.5.
(比較例2−1)
模擬排水1000mLに水酸化カルシウムスラリーを2200mgCa/Lとなるように添加し、排水pHを9.2に調整した後、15分間撹拌しながら排水と水酸化カルシウムとを反応させた(アルカリ反応工程)。次に、塩化第二鉄を500mgFe/Lとなるように添加した後(排水のpHは9.0)、15分間撹拌しながら排水と塩化第二鉄とを反応させた(鉄塩反応工程)。その後の操作は比較例1−1と同様の条件とした。比較例2−1の薬品添加量及び排水pHを表4にまとめた。
(Comparative Example 2-1)
After adding calcium hydroxide slurry to 1000 mL of simulated waste water so as to be 2200 mgCa / L and adjusting the pH of the waste water to 9.2, the waste water and calcium hydroxide were reacted with stirring for 15 minutes (alkali reaction step). . Next, after adding ferric chloride to 500 mgFe / L (the pH of the wastewater is 9.0), the wastewater and ferric chloride were reacted with stirring for 15 minutes (iron salt reaction step) . Subsequent operations were performed under the same conditions as in Comparative Example 1-1. Table 4 summarizes the chemical addition amount and drainage pH of Comparative Example 2-1.
(比較例2−2)
模擬排水1000mLに水酸化カルシウムスラリーを5000mgCa/Lとなるように添加し、排水pHを9.4に調整した後、15分間撹拌しながら排水と水酸化カルシウムとを反応させた(アルカリ反応工程)。次に、塩化第二鉄を500mgFe/Lとなるように添加した後(排水のpHは9.2)、15分間撹拌しながら排水と塩化第二鉄とを反応させた(鉄塩反応工程)。その後の操作は比較例1−1と同様の条件とした。比較例2−2の薬品添加量及び排水pHを表4にまとめた。
(Comparative Example 2-2)
After adding calcium hydroxide slurry to 1000 mL of simulated waste water so as to be 5000 mgCa / L and adjusting the drainage pH to 9.4, the wastewater and calcium hydroxide were reacted while stirring for 15 minutes (alkali reaction step). . Next, after adding ferric chloride to 500 mg Fe / L (the pH of the wastewater was 9.2), the wastewater and ferric chloride were reacted with stirring for 15 minutes (iron salt reaction step) . Subsequent operations were performed under the same conditions as in Comparative Example 1-1. Table 4 summarizes the chemical addition amount and drainage pH of Comparative Example 2-2.
(比較例3−1)
模擬排水1000mLに塩化第二鉄を500mgFe/Lとなるように添加すると同時に、水酸化カルシウムスラリーを2200mgCa/Lとなるように添加した後(排水のpHは9.2)、30分間撹拌しながら排水と塩化第二鉄及び水酸化カルシウムとを反応させた(鉄塩アルカリ反応工程)。その後、比較例1−1と同様に、凝集処理及び沈降分離処理を行った。比較例3−1の薬品添加量及び排水pHを表5にまとめた。
(Comparative Example 3-1)
After adding ferric chloride to 1000 mL of simulated waste water to 500 mgFe / L and simultaneously adding calcium hydroxide slurry to 2200 mgCa / L (drain pH is 9.2), stirring for 30 minutes The waste water was reacted with ferric chloride and calcium hydroxide (iron salt alkali reaction step). Then, the aggregation process and the sedimentation-separation process were performed similarly to the comparative example 1-1. Table 5 summarizes the chemical addition amount and drainage pH of Comparative Example 3-1.
(比較例3−2)
模擬排水1000mLに塩化第二鉄を1000mgFe/Lとなるように添加したこと以外は、比較例3−1と同様の条件で試験した。比較例3−2の薬品添加量及び排水pHを表5にまとめた。
(Comparative Example 3-2)
A test was conducted under the same conditions as in Comparative Example 3-1, except that ferric chloride was added to 1000 mL of simulated waste water so as to be 1000 mgFe / L. Table 5 summarizes the chemical addition amount and drainage pH of Comparative Example 3-2.
実施例1及び各比較例の処理水のpH、フッ化物イオン濃度及びセレン濃度、凝集処理後の排水中のSS濃度、固液分離した汚泥の汚泥体積比(処理水量に対する汚泥の体積%)を表6にまとめた。 PH of treated water of Example 1 and each comparative example, fluoride ion concentration and selenium concentration, SS concentration in waste water after coagulation treatment, sludge volume ratio of sludge separated into solid and liquid (volume% of sludge with respect to treated water amount) The results are summarized in Table 6.
排水と鉄塩とをpH7.5の条件下で反応させた後、アルカリ剤と反応(pH9.2)させた実施例1では、処理水中のフッ化物イオン濃度は13mg/L、セレン濃度は0.05mg/Lであった。また、累計のCa(OH)2添加量は2200mgCa/Lであり、凝集処理後の排水中のSS濃度(発生固形物濃度)は10500mg/Lであり、固液分離した汚泥の汚泥体積比は29%であった。 In Example 1 in which wastewater and iron salt were reacted under the condition of pH 7.5 and then reacted with an alkaline agent (pH 9.2), the fluoride ion concentration in the treated water was 13 mg / L, and the selenium concentration was 0. 0.05 mg / L. Moreover, the cumulative amount of Ca (OH) 2 added is 2200 mgCa / L, the SS concentration in the waste water after the coagulation treatment (generated solid matter concentration) is 10500 mg / L, and the sludge volume ratio of the sludge separated into solid and liquid is 29%.
排水とアルカリ剤とをpH9.2の条件下で反応させた後、鉄塩と反応させた比較例1−1及び1−2のうち、累計のCa(OH)2添加量が、実施例1と同じである比較例1−1は、処理水中のセレン濃度は実施例1と同程度であったが、フッ化物イオンは31mg/Lであり、実施例1と比較して高かった。また、凝集処理後のSS濃度は実施例1とほぼ同等であったが、固液分離した汚泥の汚泥体積比は46%であり、実施例1と比較して高かった。汚泥体積比が高い値ほど沈降濃縮性の悪い汚泥であると言える。次に、累計のCa(OH)2添加量が実施例1の約2倍である比較例1−2は、処理水中のセレン濃度及びフッ化物イオン濃度は実施例1と同程度であった。しかし、凝集処理後のSS濃度は実施例1と比較して約2倍の21700mg/Lとなり、また、固液分離した汚泥の汚泥体積比は60%であり、実施例1と比較して高く、沈降濃縮性の悪い汚泥であった。 After reacting the waste water and the alkaline agent under the condition of pH 9.2, among the Comparative Examples 1-1 and 1-2 reacted with the iron salt, the cumulative amount of Ca (OH) 2 added was Example 1. In Comparative Example 1-1, which was the same as in Example 1, the selenium concentration in the treated water was the same as that in Example 1, but the fluoride ion was 31 mg / L, which was higher than that in Example 1. Further, the SS concentration after the coagulation treatment was almost the same as in Example 1, but the sludge volume ratio of the solid-liquid separated sludge was 46%, which was higher than that in Example 1. It can be said that the higher the sludge volume ratio, the worse the sludge is. Next, in Comparative Example 1-2 in which the cumulative amount of Ca (OH) 2 added was about twice that of Example 1, the selenium concentration and fluoride ion concentration in the treated water were similar to those in Example 1. However, the SS concentration after the coagulation treatment is about 21 times 21700 mg / L compared with Example 1, and the sludge volume ratio of the solid-liquid separated sludge is 60%, which is higher than that of Example 1. The sludge was poorly settled and concentrated.
排水とアルカリ剤とをpH9.2又は9.4で反応させた後、pH調整せず、鉄塩と反応させた比較例2−1及び2−2のうち、累計のCa(OH)2添加量が、実施例1と同じである比較例2−1は、処理水中のセレン濃度は実施例1と同程度であったが、フッ化物イオンは38mg/Lであり、実施例1と比較して高かった。また、凝集処理後のSS濃度は実施例1とほぼ同等であったが、固液分離した汚泥の汚泥体積比は46%であり、実施例1と比較して高く、沈降濃縮性の悪い汚泥であった。次に、累計のCa(OH)2添加量が実施例1の約2倍である比較例2−2は、処理水中のセレン濃度及びフッ化物イオン濃度は実施例1と同程度であった。しかし、凝集処理後のSS濃度は実施例1と比較して2倍以上の24400mg/Lとなり、また、固液分離した汚泥の汚泥体積比は67%であり、実施例1と比較して高く、沈降濃縮性の悪い汚泥であった。 After reacting the waste water and the alkaline agent at pH 9.2 or 9.4, the cumulative addition of Ca (OH) 2 was carried out among Comparative Examples 2-1 and 2-2 that were reacted with iron salt without adjusting the pH. In Comparative Example 2-1, the amount of which was the same as in Example 1, the selenium concentration in the treated water was similar to that in Example 1, but the fluoride ion was 38 mg / L. It was expensive. The SS concentration after the coagulation treatment was almost the same as in Example 1, but the sludge volume ratio of the sludge separated into solid and liquid is 46%, which is higher than that in Example 1 and has poor sedimentation concentration. Met. Next, in Comparative Example 2-2 in which the cumulative amount of Ca (OH) 2 added was about twice that in Example 1, the selenium concentration and fluoride ion concentration in the treated water were comparable to those in Example 1. However, the SS concentration after the coagulation treatment is 24400 mg / L, which is more than twice that in Example 1, and the sludge volume ratio of the solid-liquid separated sludge is 67%, which is higher than that in Example 1. The sludge was poorly settled and concentrated.
排水に鉄塩及びアルカリ剤を同時に添加し反応させた比較例3−1及び3−2のうち、鉄塩添加量及び累計のCa(OH)2添加量が実施例1と同じである比較例3−1は、処理水中のフッ化物イオン濃度は、実施例1と同程度であったが、セレン濃度は0.17mg/Lであり、実施例1と比較して高かった。また、凝集処理後のSS濃度は実施例1とほぼ同等であったが、固液分離した汚泥の汚泥体積比は35%であり、実施例1と比較して高く、沈降濃縮性の悪い汚泥であった。次に、累計のCa(OH)2添加量は実施例1と同じであるが、鉄塩の添加量が2倍である比較例3−2は、処理水中のセレン濃度は実施例1と同程度であったが、フッ化物イオン濃度は24mg/Lであり、実施例1と比較して高かった。また、凝集処理後のSS濃度は実施例1と比較して1.3倍の14400mg/Lとなり、また、固液分離した汚泥の汚泥体積比は42%であり、実施例1と比較して高く、沈降濃縮性の悪い汚泥であった。 Of Comparative Examples 3-1 and 3-2 in which an iron salt and an alkaline agent were added to the wastewater and reacted, the comparative example in which the iron salt addition amount and the cumulative Ca (OH) 2 addition amount were the same as in Example 1 3-1, the fluoride ion concentration in the treated water was similar to that in Example 1, but the selenium concentration was 0.17 mg / L, which was higher than that in Example 1. The SS concentration after the coagulation treatment was almost the same as in Example 1, but the sludge volume ratio of the sludge separated into solid and liquid is 35%, which is higher than that in Example 1 and has poor sedimentation concentration. Met. Next, although the cumulative amount of Ca (OH) 2 added is the same as that in Example 1, Comparative Example 3-2 in which the amount of iron salt added is twice is the same as that in Example 1 in the selenium concentration in the treated water. The fluoride ion concentration was 24 mg / L, which was higher than that of Example 1. Further, the SS concentration after the coagulation treatment is 1.3400 times that of Example 1, 14400 mg / L, and the sludge volume ratio of the solid-liquid separated sludge is 42%, which is compared with Example 1. The sludge was high and poor in sediment concentration.
以上の結果から、マグネシウムイオン、フッ化物イオン、セレンを含む排水処理においては、実施例1のように、排水と鉄塩とをpH7.5の条件下で反応させた後、アルカリ剤と反応(pH9.2)させることにより、フッ化物イオン及びセレンを安定に処理することが可能となり、また沈降濃縮性の高い汚泥が得られることが確認された。なお、実施例1は、薬品使用量も抑えられるため、少ない汚泥量とすることも可能となった。 From the above results, in the wastewater treatment containing magnesium ions, fluoride ions, and selenium, as in Example 1, the wastewater and iron salt were reacted under the condition of pH 7.5, and then reacted with an alkali agent ( It was confirmed that by adjusting the pH to 9.2), fluoride ions and selenium can be stably treated, and sludge having high sedimentation concentration can be obtained. In Example 1, since the amount of chemicals used was also suppressed, it was possible to reduce the amount of sludge.
(実施例2−1)
模擬排水1000mLに塩化第二鉄を500mgFe/Lとなるように添加し、その後、水酸化カルシウムを350mgCa/Lとなるように添加し、排水のpHを6.5に調整した後、15分間撹拌しながら排水と塩化第二鉄とを反応させた(第1処理工程)。その後、水酸化カルシウムスラリーを1850mgCa/Lとなるように添加し、排水を15分間撹拌して、水酸化カルシウムと排水とを反応させた(第2処理工程)。反応後のpHは9.2であった。なお、以下の実施例及び比較例でも、鉄塩添加量は500mgFe/Lであり、累計のCa(OH)2添加量は2200mgCa/Lである。
(Example 2-1)
Ferric chloride is added to 1000 mL of simulated waste water to 500 mgFe / L, then calcium hydroxide is added to 350 mgCa / L, and the pH of the wastewater is adjusted to 6.5, followed by stirring for 15 minutes. Then, the waste water and ferric chloride were reacted (first treatment step). Thereafter, a calcium hydroxide slurry was added to 1850 mgCa / L, and the wastewater was stirred for 15 minutes to react calcium hydroxide and wastewater (second treatment step). The pH after the reaction was 9.2. In the following examples and comparative examples, the iron salt addition amount is 500 mg Fe / L, and the cumulative Ca (OH) 2 addition amount is 2200 mg Ca / L.
次に、高分子凝集剤(オルガノ社製、M−4020)を5mg/L添加し、10分間撹拌し、凝集処理を行った。凝集処理後の排水中のSS濃度を測定した。 Next, 5 mg / L of a polymer flocculant (manufactured by Organo Corp., M-4020) was added and stirred for 10 minutes for aggregation treatment. The SS concentration in the waste water after the coagulation treatment was measured.
次に、凝集処理後の排水を固液分離槽で沈降分離させ、30分後、固液分離槽内の処理水を採取し、pH、フッ化物イオン濃度、セレン濃度を測定した。また、固液分離槽内に堆積した汚泥体積比(処理水量に対する汚泥の体積%)を測定した。上記各処理は、排水を40℃に維持した状態で行った。実施例2−1の薬品添加量及び排水pHを表7にまとめた。なお、各項目の測定法及び測定機器は実施例1と同じである。 Next, the waste water after the coagulation treatment was settled and separated in a solid-liquid separation tank, and after 30 minutes, treated water in the solid-liquid separation tank was collected, and pH, fluoride ion concentration, and selenium concentration were measured. Moreover, the sludge volume ratio (volume% of sludge with respect to the amount of treated water) deposited in the solid-liquid separation tank was measured. Each said process was performed in the state which maintained waste_water | drain at 40 degreeC. Table 7 shows the chemical addition amount and drainage pH in Example 2-1. In addition, the measuring method and measuring equipment of each item are the same as Example 1.
(実施例2−2)
模擬排水1000mLに塩化第二鉄を500mgFe/Lとなるように添加し、その後、水酸化カルシウムを400mgCa/Lとなるように添加し、排水のpHを7.5に調整した後、15分間撹拌しながら排水と塩化第二鉄とを反応させた(第1処理工程)。その後、水酸化カルシウムスラリーを1800mgCa/Lとなるように添加し、排水を15分間撹拌して、水酸化カルシウムと排水とを反応させた(第2処理工程)。反応後のpHは9.2であった。その後の操作は実施例2−1と同様の条件とした。実施例2−2の薬品添加量及び排水pHを表7にまとめた。
(Example 2-2)
Ferric chloride was added to 1000 mL of simulated waste water so as to be 500 mgFe / L, and then calcium hydroxide was added so as to be 400 mgCa / L, and the pH of the wastewater was adjusted to 7.5, followed by stirring for 15 minutes. Then, the waste water and ferric chloride were reacted (first treatment step). Thereafter, a calcium hydroxide slurry was added to 1800 mgCa / L, and the wastewater was stirred for 15 minutes to react calcium hydroxide and wastewater (second treatment step). The pH after the reaction was 9.2. Subsequent operations were performed under the same conditions as in Example 2-1. Table 7 summarizes the chemical addition amount and drainage pH of Example 2-2.
(実施例2−3)
模擬排水1000mLに塩化第二鉄を500mgFe/Lとなるように添加し、その後、水酸化カルシウムを450mgCa/Lとなるように添加し、排水のpHを8.0に調整した後、15分間撹拌しながら排水と塩化第二鉄とを反応させた(第1処理工程)。その後、水酸化カルシウムスラリーを1750mgCa/Lとなるように添加し、排水を15分間撹拌して、水酸化カルシウムと排水とを反応させた(第2処理工程)。反応後のpHは9.2であった。その後の操作は実施例2−1と同様の条件とした。実施例2−3の薬品添加量及び排水pHを表7にまとめた。
(Example 2-3)
Ferric chloride is added to 1000 mL of simulated waste water to 500 mgFe / L, then calcium hydroxide is added to 450 mgCa / L, and the pH of the wastewater is adjusted to 8.0, and then stirred for 15 minutes. Then, the waste water and ferric chloride were reacted (first treatment step). Thereafter, a calcium hydroxide slurry was added to 1750 mgCa / L, and the waste water was stirred for 15 minutes to react calcium hydroxide and the waste water (second treatment step). The pH after the reaction was 9.2. Subsequent operations were performed under the same conditions as in Example 2-1. Table 7 shows the chemical addition amount and drainage pH in Example 2-3.
(比較例4−1)
模擬排水1000mLに塩化第二鉄を500mgFe/Lとなるように添加した後(排水pHは5.0)、15分間撹拌しながら排水と塩化第二鉄とを反応させた(第1処理工程)。その後、水酸化カルシウムスラリーを2200mgCa/Lとなるように添加し、排水を15分間撹拌して、水酸化カルシウムと排水とを反応させた(第2処理工程)。反応後のpHは9.2であった。その後の操作は実施例2−1と同様の条件とした。比較例4−1の薬品添加量及び排水pHを表7にまとめた。
(Comparative Example 4-1)
After adding ferric chloride to 1000 mL of simulated waste water to 500 mgFe / L (drainage pH is 5.0), the wastewater and ferric chloride were reacted with stirring for 15 minutes (first treatment step) . Thereafter, a calcium hydroxide slurry was added to 2200 mg Ca / L, and the waste water was stirred for 15 minutes to react calcium hydroxide and the waste water (second treatment step). The pH after the reaction was 9.2. Subsequent operations were performed under the same conditions as in Example 2-1. Table 7 shows the chemical addition amount and drainage pH of Comparative Example 4-1.
(比較例4−2)
模擬排水1000mLに塩化第二鉄を500mgFe/Lとなるように添加し、その後、水酸化カルシウムを300mgCa/Lとなるように添加し、排水のpHを6.0に調整した後、15分間撹拌しながら排水と塩化第二鉄とを反応させた(第1処理工程)。その後、水酸化カルシウムスラリーを1900mgCa/Lとなるように添加し、排水を15分間撹拌して、水酸化カルシウムと排水とを反応させた(第2処理工程)。反応後のpHは9.2であった。その後の操作は実施例2−1と同様の条件とした。比較例4−2の薬品添加量及び排水pHを表7にまとめた。
(Comparative Example 4-2)
Ferric chloride is added to 1000 mL of simulated waste water to 500 mgFe / L, then calcium hydroxide is added to 300 mgCa / L, and the pH of the wastewater is adjusted to 6.0, followed by stirring for 15 minutes. Then, the waste water and ferric chloride were reacted (first treatment step). Thereafter, a calcium hydroxide slurry was added to 1900 mgCa / L, and the waste water was stirred for 15 minutes to react calcium hydroxide with the waste water (second treatment step). The pH after the reaction was 9.2. Subsequent operations were performed under the same conditions as in Example 2-1. Table 7 shows the chemical addition amount and drainage pH of Comparative Example 4-2.
(比較例4−3)
模擬排水1000mLに塩化第二鉄を500mgFe/Lとなるように添加し、その後、水酸化カルシウムを500mgCa/Lとなるように添加し、排水のpHを8.5に調整した後、15分間撹拌しながら排水と塩化第二鉄とを反応させた(第1処理工程)。その後、水酸化カルシウムスラリーを1700mgCa/Lとなるように添加し、排水を15分間撹拌して、水酸化カルシウムと排水とを反応させた(第2処理工程)。反応後のpHは9.2であった。その後の操作は実施例2−1と同様の条件とした。比較例4−3の薬品添加量及び排水pHを表7にまとめた。
(Comparative Example 4-3)
Ferric chloride is added to 1000 mL of simulated waste water to 500 mgFe / L, then calcium hydroxide is added to 500 mgCa / L, and the pH of the wastewater is adjusted to 8.5, followed by stirring for 15 minutes. Then, the waste water and ferric chloride were reacted (first treatment step). Thereafter, a calcium hydroxide slurry was added to 1700 mgCa / L, and the wastewater was stirred for 15 minutes to react calcium hydroxide and the wastewater (second treatment step). The pH after the reaction was 9.2. Subsequent operations were performed under the same conditions as in Example 2-1. Table 7 shows the chemical addition amount and drainage pH of Comparative Example 4-3.
実施例2及び比較例4の処理水のpH、フッ化物イオン濃度及びセレン濃度、凝集処理後の排水中のSS濃度、固液分離した汚泥の汚泥体積比(処理水量に対する汚泥の体積%)を表8にまとめた。 The pH of the treated water of Example 2 and Comparative Example 4, the fluoride ion concentration and the selenium concentration, the SS concentration in the waste water after the coagulation treatment, the sludge volume ratio of the sludge separated into solid and liquid (volume% of sludge with respect to the treated water amount) Table 8 summarizes.
実施例2−1〜2−3においては、処理水中のフッ化物イオン濃度はいずれも12〜13mg/Lであり、セレン濃度は0.1mg/L未満であった。また、凝集処理後のSS濃度は、10400〜10700mg/Lであり、固液分離した汚泥の汚泥体積比は29〜32%であった。これに対し、pH6.5未満で排水と鉄塩とを反応させた比較例4−1〜4−2では、処理水中のフッ化物イオン濃度及びセレン濃度は実施例2−1〜2−3と同程度であったが、凝集処理後のSS濃度は実施例2−1〜2−3より高く、また、固液分離した汚泥の汚泥体積濃度は、38〜45%であり、実施例2−1〜2−3と比較して高く、沈降濃縮性の悪い汚泥であった。また、pH8.0超で排水と鉄塩とを反応させた比較例4−3では、処理水中のフッ化物イオン濃度は、実施例2−1〜2−3と同程度であるが、セレン濃度は0.15mg/Lであり、実施例2−1〜2−3と比較して高かった。なお、固液分離した汚泥の汚泥体積濃度は、実施例2−1〜2−3と同程度であった。以上の結果から、pH6.5〜8.0の条件で、排水と鉄塩とを反応させることで、フッ化物イオン及びセレンを安定に処理し、沈降濃縮性の高い汚泥を得ることができることが確認された。 In Examples 2-1 to 2-3, the fluoride ion concentration in the treated water was 12 to 13 mg / L, and the selenium concentration was less than 0.1 mg / L. Moreover, SS density | concentration after a coagulation process was 10400-10700 mg / L, and the sludge volume ratio of the sludge solid-liquid-separated was 29-32%. On the other hand, in Comparative Examples 4-1 to 4-2 in which wastewater and iron salt were reacted at a pH of less than 6.5, the fluoride ion concentration and the selenium concentration in the treated water were as in Examples 2-1 to 2-3. The SS concentration after the coagulation treatment was higher than that of Examples 2-1 to 2-3, and the sludge volume concentration of the solid-liquid separated sludge was 38 to 45%. The sludge was high compared with 1-2-3 and poor in sediment concentration. Moreover, in Comparative Example 4-3 in which wastewater and iron salt were reacted at a pH of more than 8.0, the fluoride ion concentration in the treated water was similar to Examples 2-1 to 2-3, but the selenium concentration Was 0.15 mg / L, which was higher than those of Examples 2-1 to 2-3. In addition, the sludge volume density | concentration of the solid-liquid separated sludge was comparable as Examples 2-1 to 2-3. From the above results, it is possible to stably treat fluoride ions and selenium by reacting wastewater and iron salt under the conditions of pH 6.5 to 8.0 and obtain sludge having high sedimentation concentration. confirmed.
1〜3 排水処理装置、10 第1処理槽、12 第2処理槽、14 第1凝集剤反応槽、16 第1固液分離槽、18 鉄塩タンク、20 鉄塩供給ライン、22 pH調整剤タンク、24 pH調整剤ライン、26 第1アルカリ剤タンク、28 第1アルカリ剤供給ライン、30 第1凝集剤タンク、32 第1凝集剤供給ライン、34 排水ライン、36 処理水ライン、38 汚泥排出ライン、40 汚泥返送ライン、42 第3処理槽、44 第2凝集剤反応槽、46 第2固液分離槽、48 第2アルカリ剤タンク、50 第2アルカリ剤供給ライン、52 第2凝集剤タンク、54 第2凝集剤供給ライン、56 最終処理水ライン、58 汚泥排出ライン。 1-3 Wastewater treatment device, 10 1st treatment tank, 12 2nd treatment tank, 14 1st flocculant reaction tank, 16 1st solid-liquid separation tank, 18 Iron salt tank, 20 Iron salt supply line, 22 pH adjuster Tank, 24 pH adjuster line, 26 First alkali agent tank, 28 First alkali agent supply line, 30 First flocculant tank, 32 First flocculant supply line, 34 Drain line, 36 Treated water line, 38 Sludge discharge Line, 40 Sludge return line, 42 3rd processing tank, 44 2nd flocculant reaction tank, 46 2nd solid-liquid separation tank, 48 2nd alkali agent tank, 50 2nd alkali agent supply line, 52 2nd flocculant tank , 54 Second flocculant supply line, 56 Final treated water line, 58 Sludge discharge line.
Claims (6)
前記第1処理工程後の前記鉄化合物含有析出物を含む排水とアルカリ剤とを反応させ、生成したマグネシウム化合物含有析出物に前記フッ化物イオンを吸着させる第2処理工程と、
前記第2処理工程後の前記鉄化合物含有析出物及び前記マグネシウム化合物含有析出物を含む排水を前記鉄化合物含有析出物及び前記マグネシウム化合物含有析出物を含む汚泥と処理水とに固液分離する第1固液分離工程と、を備えることを特徴とする排水処理方法。 A first treatment step in which wastewater containing magnesium ions, fluoride ions, and selenium and an iron salt are reacted under conditions of pH 6.5 to 8.0, and the selenium is adsorbed to the produced iron compound-containing precipitate;
A second treatment step of causing the waste water containing the iron compound-containing precipitate after the first treatment step to react with an alkaline agent, and adsorbing the fluoride ions to the generated magnesium compound-containing precipitate;
The waste water containing the iron compound-containing precipitate and the magnesium compound-containing precipitate after the second treatment step is solid-liquid separated into sludge and treated water containing the iron compound-containing precipitate and the magnesium compound-containing precipitate. A wastewater treatment method comprising: 1 solid-liquid separation step.
前記第3処理工程後の前記マグネシウム化合物含有析出物を含む排水を、前記マグネシウム化合物含有析出物を含む汚泥と処理水とに固液分離する第2固液分離工程と、を備え、
前記第2固液分離工程により分離した前記汚泥を前記第1処理工程に返送することを特徴とする請求項1又は2記載の排水処理方法。 Reacting the treated water separated in the first solid-liquid separation step with at least one of sodium hydroxide and calcium hydroxide to adsorb the fluoride ions to the generated magnesium compound-containing precipitate; Processing steps;
A second solid-liquid separation step for solid-liquid separation of the waste water containing the magnesium compound-containing precipitate after the third treatment step into sludge containing the magnesium compound-containing precipitate and treated water;
The wastewater treatment method according to claim 1 or 2, wherein the sludge separated in the second solid-liquid separation step is returned to the first treatment step.
前記第1処理槽から排出される前記鉄化合物含有析出物を含む排水とアルカリ剤とを反応させ、生成したマグネシウム化合物含有析出物に前記フッ化物イオンを吸着させる第2処理槽と、
前記第2処理槽から排出される前記鉄化合物含有析出物及び前記マグネシウム化合物含有析出物を含む排水を前記鉄化合物含有析出物及び前記マグネシウム化合物含有析出物を含む汚泥と処理水とに固液分離する第1固液分離手段と、を備えることを特徴とする排水処理装置。 A first treatment tank that causes magnesium ion, fluoride ion, selenium-containing wastewater and iron salt to react under conditions of pH 6.5 to 8.0, and adsorbs the selenium to the produced iron compound-containing precipitate;
A second treatment tank in which the wastewater containing the iron compound-containing precipitate discharged from the first treatment tank is reacted with an alkaline agent, and the fluoride ions are adsorbed on the generated magnesium compound-containing precipitate;
Solid-liquid separation of the waste water containing the iron compound-containing precipitate and the magnesium compound-containing precipitate discharged from the second treatment tank into sludge and treated water containing the iron compound-containing precipitate and the magnesium compound-containing precipitate. waste water treatment apparatus, characterized in that it comprises a first solid-liquid separation away means, the for.
前記第3処理槽から排出される前記マグネシウム化合物含有析出物を含む排水を、前記マグネシウム化合物含有析出物を含む汚泥と処理水とに固液分離する第2固液分離手段と、を備え、
前記第2固液分離手段により分離した前記汚泥を前記第1処理槽に返送する第2返送手段を備えることを特徴とする請求項4又は5記載の排水処理装置。 A third treatment in which the treated water separated by the first solid-liquid separation means is reacted with at least one of sodium hydroxide and calcium hydroxide and the fluoride ions are adsorbed on the produced magnesium compound-containing precipitate. A tank,
A second solid-liquid separation means for solid-liquid separation of the waste water containing the magnesium compound-containing precipitate discharged from the third treatment tank into sludge containing the magnesium compound-containing precipitate and treated water;
The wastewater treatment apparatus according to claim 4 or 5, further comprising second return means for returning the sludge separated by the second solid-liquid separation means to the first treatment tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014138029A JP6329448B2 (en) | 2014-07-03 | 2014-07-03 | Waste water treatment method and waste water treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014138029A JP6329448B2 (en) | 2014-07-03 | 2014-07-03 | Waste water treatment method and waste water treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016013533A JP2016013533A (en) | 2016-01-28 |
JP6329448B2 true JP6329448B2 (en) | 2018-05-23 |
Family
ID=55230189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014138029A Active JP6329448B2 (en) | 2014-07-03 | 2014-07-03 | Waste water treatment method and waste water treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6329448B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7047459B2 (en) * | 2018-02-28 | 2022-04-05 | 三菱マテリアル株式会社 | Treatment method of selenium-containing water |
CN111777232B (en) * | 2020-08-05 | 2024-11-01 | 联泓(山东)化学有限公司 | Production wastewater defluorination treatment system and method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2912226B2 (en) * | 1996-04-19 | 1999-06-28 | 日本電気環境エンジニアリング株式会社 | Wastewater treatment method |
JP2000176241A (en) * | 1998-12-11 | 2000-06-27 | Fujikasui Engineering Co Ltd | Treatment of fluoride ions in waste water in stack gas desulfurization |
JP5417927B2 (en) * | 2009-03-24 | 2014-02-19 | 電源開発株式会社 | Coal gasification wastewater treatment method |
JP5106463B2 (en) * | 2009-03-30 | 2012-12-26 | 太平洋セメント株式会社 | Method and apparatus for processing solution containing selenium and fluorine |
JP5637713B2 (en) * | 2010-03-26 | 2014-12-10 | 千代田化工建設株式会社 | Wastewater treatment method and treatment apparatus |
-
2014
- 2014-07-03 JP JP2014138029A patent/JP6329448B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016013533A (en) | 2016-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5261950B2 (en) | Method and apparatus for treating selenium-containing wastewater | |
JPH09276875A (en) | Treatment of waste water | |
JP2011050809A (en) | Method of treating selenium-containing waste water | |
WO2014136651A1 (en) | Silica-containing water treatment apparatus, water treatment system, and method for treating silica-containing water | |
CN104445733A (en) | Technology for removing thallium with lead and zinc smelting flue gas washing waste acid water | |
JP5831914B2 (en) | Water treatment method | |
JP5451323B2 (en) | Water treatment method | |
JP2007326077A (en) | Treatment method of selenium-containing water | |
JP4973864B2 (en) | Method and apparatus for treating heavy metal-containing water | |
EP2792645A1 (en) | Process for removing fluorides from water | |
JP6329448B2 (en) | Waste water treatment method and waste water treatment equipment | |
JP4877103B2 (en) | Method and apparatus for treating selenium-containing wastewater | |
JP5206453B2 (en) | Cement kiln extraction dust processing method | |
JP5109505B2 (en) | Method and apparatus for treating selenium-containing wastewater | |
JP4723624B2 (en) | Disposal of chlorine-containing fine powder waste | |
JP6307276B2 (en) | Selenium-containing water treatment apparatus and selenium-containing water treatment method | |
JP4039820B2 (en) | Wastewater treatment method | |
WO2016111739A1 (en) | Process for removal of selenium from water by dithionite ions | |
TW200305543A (en) | Effluent water treatment method | |
WO2014108941A1 (en) | Water treatment method and water treatment device | |
JP2018130717A (en) | Processing method and system for treatment of desulfurization waste water | |
JP4210509B2 (en) | Method for treating boron-containing water | |
JP4629851B2 (en) | Wastewater treatment method | |
JP4747269B2 (en) | Method and apparatus for treating heavy metal-containing water | |
JP4591641B2 (en) | Method for coagulating and precipitating iron hydroxide in wastewater containing concentrated inorganic components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170330 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180417 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180420 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6329448 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |