[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4723624B2 - Disposal of chlorine-containing fine powder waste - Google Patents

Disposal of chlorine-containing fine powder waste Download PDF

Info

Publication number
JP4723624B2
JP4723624B2 JP2008247411A JP2008247411A JP4723624B2 JP 4723624 B2 JP4723624 B2 JP 4723624B2 JP 2008247411 A JP2008247411 A JP 2008247411A JP 2008247411 A JP2008247411 A JP 2008247411A JP 4723624 B2 JP4723624 B2 JP 4723624B2
Authority
JP
Japan
Prior art keywords
chlorine
containing fine
added
iron
polymer flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008247411A
Other languages
Japanese (ja)
Other versions
JP2010075849A (en
Inventor
達也 吉井
金夫 水野
譲治 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Consultant and Engineering Co Ltd
Original Assignee
Denka Consultant and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Consultant and Engineering Co Ltd filed Critical Denka Consultant and Engineering Co Ltd
Priority to JP2008247411A priority Critical patent/JP4723624B2/en
Publication of JP2010075849A publication Critical patent/JP2010075849A/en
Application granted granted Critical
Publication of JP4723624B2 publication Critical patent/JP4723624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、セメント製造装置等において、塩素、塩基性物質、硫黄等を含有する焼成ガスの一部を抽気した際に同伴されて出てくる有害物質を含むダスト(以下、「抽気ダスト」という)や焼却灰等の、塩素含有微粉状廃棄物の処理方法に関する。   The present invention relates to a dust containing a harmful substance (hereinafter referred to as “bleeding dust”) that comes out when a part of a burning gas containing chlorine, a basic substance, sulfur or the like is extracted in a cement manufacturing apparatus or the like. ) And incineration ash, etc.

抽気ダストには、塩素、塩基性物質、硫黄に加え、鉛、カドミウム、セレン、銅、亜鉛等の有害物質が含まれている。従って、抽気ダストをそのまま埋め立てに使用したり廃棄すると、環境汚染を引き起こす。そこで、従来より、抽気ダストを水洗して塩素や塩基性物質を除いた後に得られる固形分は、セメントの原料の一部として使用されている。一方、水洗に使用した水には、前記の有害物質が溶存している。その水洗水については、排水する場合には、水質汚濁防止法の排水基準に適合させなければならない。そのため、水洗水からそれらの有害物質を除去し、水質汚濁防止法の排水基準において規定された濃度以下とするための処理方法が研究され、実施されている。   Extracted dust contains harmful substances such as lead, cadmium, selenium, copper and zinc in addition to chlorine, basic substances and sulfur. Therefore, if the extracted dust is used for landfill as it is or discarded, it causes environmental pollution. Therefore, conventionally, the solid content obtained after washing the extracted dust to remove chlorine and basic substances has been used as a part of the raw material for cement. On the other hand, the harmful substances are dissolved in the water used for washing. The drainage water must conform to the drainage standards of the Water Pollution Control Law when draining. Therefore, a treatment method for removing those harmful substances from the washing water so that the concentration is not more than the concentration specified in the drainage standard of the Water Pollution Control Law has been studied and implemented.

特許文献1には、セメントキルン抽気ダストの処理方法であって、4回もの固液分離工程を含む方法が開示されている。また、特許文献2には、セメント装置抽気ダストの処理方法であって、3回の固液分離工程を含む方法が開示されている。これらの方法を連続法で実施するには、沈殿槽等を少なくとも四基(特許文献1に記載の発明の場合)又は三基(特許文献2に記載の発明の場合)用意する必要があり、従って設備の建設に多額の費用がかかる。さらに、固液分離には時間を要するので、これらの方法は効率が悪く、よってランニングコストも大きくなる。   Patent Document 1 discloses a method for treating cement kiln bleed dust, which includes four solid-liquid separation steps. Patent Document 2 discloses a method of treating cement apparatus bleed dust, which includes three solid-liquid separation steps. In order to carry out these methods in a continuous manner, it is necessary to prepare at least four precipitation tanks (in the case of the invention described in Patent Document 1) or three groups (in the case of the invention described in Patent Document 2), Therefore, the construction of the equipment is expensive. Furthermore, since solid-liquid separation takes time, these methods are inefficient and therefore the running cost increases.

ところで、抽気ダスト水洗水の処理において、除去が困難とされる金属の一つとしてセレンが挙げられる。抽気ダスト水洗水からのセレンの十分な除去を目的とした抽気ダストの処理方法が、特許文献3及び特許文献4に開示されている。特許文献3に記載の発明の特徴は、抽気ダストのスラリーを固液分離した後の処理水(上澄み)に多硫化カルシウムを添加する点にある。なお、この方法における固液分離工程は2回である。また、特許文献4に記載の方法も、固液分離工程は2回のみである。従って、設備費用やランニングコストの点からは、これらの方法は特許文献1や特許文献2に記載の方法よりも優れているといえる。   By the way, selenium is mentioned as one of the metals that are difficult to remove in the treatment of the extracted dust washing water. Patent Literature 3 and Patent Literature 4 disclose a method for treating extraction dust for the purpose of sufficiently removing selenium from extraction dust washing water. The feature of the invention described in Patent Document 3 is that calcium polysulfide is added to treated water (supernatant) after solid-liquid separation of the extracted dust slurry. In addition, the solid-liquid separation process in this method is twice. In the method described in Patent Document 4, the solid-liquid separation process is performed only twice. Therefore, it can be said that these methods are superior to the methods described in Patent Document 1 and Patent Document 2 in terms of equipment costs and running costs.

特許文献3及び特許文献4に記載の発明においては、抽気ダスト水洗水の処理において通常は使用される高分子凝集剤が、必須成分ではなく任意成分とされている。抽気ダスト水洗水中の有害物質の種類や量によっては、高分子凝集剤の使用が必要となると思われるが、特許文献3や特許文献4には、これらに記載の発明における使用に適する高分子凝集剤について、具体的な例示がなく、且つ、高分子凝集剤を使用した例(実施例)の記載もない。また、特許文献3や特許文献4に記載の方法において、特に抽気ダスト水洗水の有害物質濃度が高い場合に、すべての有害物質濃度を、水質汚濁防止法の排水基準で規定されている基準値以下となるように処理できるのか否かも不明である。   In the inventions described in Patent Document 3 and Patent Document 4, the polymer flocculant normally used in the treatment of the extracted dust washing water is not an essential component but an optional component. Depending on the type and amount of harmful substances in the extracted dust washing water, it may be necessary to use a polymer flocculant. However, Patent Document 3 and Patent Document 4 describe polymer aggregation suitable for use in the inventions described therein. There is no specific illustration about the agent, and there is no description of an example (Example) using the polymer flocculant. In addition, in the methods described in Patent Document 3 and Patent Document 4, in particular, when the concentration of harmful substances in the extracted dust washing water is high, all the harmful substance concentrations are the standard values defined in the drainage standards of the Water Pollution Control Law. It is also unclear whether it can be processed to be as follows.

特開2005−103476JP 2005-103476 A 特開平10−99817JP-A-10-99817 特開2002−254049JP2002-254049 特開2006−347831JP 2006-347831 A

上記の先行技術に鑑み、本発明者らは、設備費用やランニングコストの小さい、固液分離工程数の少ない方法であって、処理の対象が有害物質含有量の大きい抽気ダスト等の塩素含有微粉状廃棄物であっても、その水洗水の有害物質濃度を水質汚濁防止法の排水基準における基準値内となるように処理できる方法の提供を目的として、鋭意研究してきた。その結果、使用する高分子凝集剤、無機凝集剤、金属捕集剤の種類を限定し、使用時の液相のpHを限定し且つ使用順序を特定することで、上記目的を達成することができた。   In view of the above prior art, the present inventors are a method with a small equipment cost and running cost and a small number of solid-liquid separation steps, and the object of treatment is chlorine-containing fine powder such as extraction dust having a high content of harmful substances. In order to provide a method that can treat the concentration of toxic substances in washing water within the standard value of the wastewater standards of the Water Pollution Control Law, we have conducted intensive research. As a result, by limiting the types of polymer flocculants, inorganic flocculants, and metal scavengers used, limiting the pH of the liquid phase during use and specifying the order of use, the above object can be achieved. did it.

即ち、本発明は、塩素含有微粉状廃棄物に水を加えてスラリー化し、pH12以上で陰イオン性カルボン酸系高分子凝集剤の存在下で固液分離をする第一工程、第一工程で得られた液相に鉄系還元剤及び酸剤を添加し、pHを6.0乃至8.0とし、次いで金属捕集剤を添加する第二工程、第二工程終了後、バッチ式の場合はそのまま続けて、連続式の場合は第二工程が終了した液相を次の水槽に移して、ポリ硫酸第二鉄又は塩化第二鉄と、必要な場合にはアルカリ剤とを添加し、pHを6.5乃至7.5とする第三工程、及び第三工程終了後、バッチ式の場合はそのまま続けて、連続式の場合は第三工程が終了した液相を次の水槽に移して、陰イオン性カルボン酸系高分子凝集剤を添加し、固液分離をする第四工程を含むことを特徴とする、塩素含有微粉状廃棄物の処理方法に関する。
That is, the present invention is a first step in which water is added to a chlorine-containing fine powder waste to form a slurry, and solid-liquid separation is performed in the presence of an anionic carboxylic acid polymer flocculant at pH 12 or higher. the resulting iron-based reducing agent and the acid agent is added to the liquid phase, the second step the pH was 6.0 to 8.0, and then adding a metal scavenger, after completion of the second step, when the batch In the case of a continuous type, the liquid phase after the second step is transferred to the next water tank, and polyferric sulfate or ferric chloride and, if necessary, an alkali agent are added. After completion of the third step and the third step with a pH of 6.5 to 7.5 , the batch type is continued as it is, and in the case of the continuous type, the liquid phase after the third step is transferred to the next water tank. Te, was added anionic carboxylate polymer flocculant, characterized in that it comprises a fourth step of the solid-liquid separation It relates to a process for the treatment of chlorine-containing pulverulent waste.

鉄系還元剤として、塩化第一鉄又は硫酸第一鉄を使用することが好ましい。   It is preferable to use ferrous chloride or ferrous sulfate as the iron-based reducing agent.

陰イオン性カルボン酸系高分子凝集剤として、(メタ)アクリルアミド−(メタ)アクリル酸塩の共重合体を使用することが好ましい。   As the anionic carboxylic acid polymer flocculant, it is preferable to use a copolymer of (meth) acrylamide- (meth) acrylate.

金属捕集剤として、ジチオカルバミン酸系高分子金属捕集剤を使用することが好ましい。   As the metal scavenger, it is preferable to use a dithiocarbamic acid polymer metal scavenger.

鉄系還元剤として塩化第一鉄を使用し、第二工程において、塩化第一鉄に、目開きが45μmのフルイ(JIS Z8801−1)の通過分が95重量%以上の鉄粉を併用することが好ましい。   Ferrous chloride is used as an iron-based reducing agent, and in the second step, iron powder having a passage of 95 μm or more of sieve (JIS Z8801-1) having a mesh opening of 45 μm is used in combination with ferrous chloride. It is preferable.

本発明の塩素含有微粉状廃棄物の処理方法では、固液分離工程が2回のみであるので、処理設備及びそのための敷地が小さくて済み、従って、処理設備の建設費用が少なくて済む。さらに、本発明の方法は、固液分離工程が2回のみの簡便な方法であることから、作業効率が高く、よって本発明の方法の実施におけるランニングコストも小さい。   In the method for treating chlorine-containing pulverized waste according to the present invention, the solid-liquid separation process is performed only twice, so that the treatment equipment and the site for the treatment are small, and therefore the construction cost of the treatment equipment can be reduced. Furthermore, since the method of the present invention is a simple method having only two solid-liquid separation steps, the working efficiency is high, and therefore the running cost in carrying out the method of the present invention is low.

本発明の方法を実施するだけで、塩素含有微粉状廃棄物水洗水中の有害物質濃度を、水質汚濁防止法の排水基準値内とすることができる。さらなる処理が不要であるので、この点からも、本発明の実施により、塩素含有微粉状廃棄物処理のコストを低減させることができる。   Only by carrying out the method of the present invention, the concentration of harmful substances in the washing water of chlorine-containing fine powder waste can be within the drainage standard value of the Water Pollution Control Law. Since no further treatment is required, the cost of chlorine-containing fine powder waste treatment can be reduced from this point as well by implementing the present invention.

以下に、本発明を具体的に説明する。   The present invention will be specifically described below.

本発明の方法の実施対象である塩素含有微粉状廃棄物とは、例えばセメント製造装置における焼成ガスの抽気の際に出てくるダスト(塩素バイパスダスト)、電気集塵ダスト、焼却灰等をいう。本発明の方法は、塩素バイパスダスト等の抽気ダストの処理に特に適する。   The chlorine-containing pulverized waste that is the object of the method of the present invention refers to, for example, dust (chlorine bypass dust), electrostatic dust collection dust, incineration ash, and the like that come out when extracting the calcination gas in a cement manufacturing apparatus. . The method of the present invention is particularly suitable for treating bleed dust such as chlorine bypass dust.

第一工程は、塩素含有微粉状廃棄物に水を加えてスラリー化し、pH12以上で陰イオン性カルボン酸系高分子凝集剤の存在下で固液分離をする工程である。塩素含有微粉状廃棄物に加える水の量は、スラリーが形成できればよく、特に限定されないが、例えば、スラリーの固形分(ダスト)濃度が5乃至20重量%程度となる量、好ましくは8乃至15重量%程度となる量である。塩素含有微粉状廃棄物に水を加えて撹拌すると、スラリーとなる。このスラリーは、一般的には高塩基性であるので、アルカリ剤を添加しなくてもスラリーのpHは12以上である。しかし、スラリーのpHが12未満である場合には、水酸化ナトリウム、水酸化カリウム、水酸化ナトリウム等のアルカリ剤を加え、pHを12以上とする。尚、好ましいpHは12.5以上であり、更に好ましいpHは13以上である。   The first step is a step in which water is added to a chlorine-containing fine powdery waste to form a slurry, and solid-liquid separation is performed in the presence of an anionic carboxylic acid polymer flocculant at pH 12 or higher. The amount of water added to the chlorine-containing fine powder waste is not particularly limited as long as a slurry can be formed. For example, the amount of the solid content (dust) of the slurry is about 5 to 20% by weight, preferably 8 to 15 The amount is about wt%. When water is added to the chlorine-containing fine powder waste and stirred, a slurry is formed. Since this slurry is generally highly basic, the pH of the slurry is 12 or more without adding an alkali agent. However, when the pH of the slurry is less than 12, an alkaline agent such as sodium hydroxide, potassium hydroxide or sodium hydroxide is added to adjust the pH to 12 or more. In addition, preferable pH is 12.5 or more, and more preferable pH is 13 or more.

第一工程で使用する高分子凝集剤は、陰イオン性のカルボン酸系凝集剤である。このような凝集剤の具体例としては、アクリルアミド−アクリル酸塩の共重合体、メタクリルアミド−メタクリル酸塩の共重合体、アクリルアミド−メタクリルアミド−アクリル酸塩−メタクリル酸塩の共重合体が挙げられる。塩の例は、ナトリウム塩やアンモニウム塩である。なお、以下においては、このような共重合体をまとめて「(メタ)アクリルアミド−(メタ)アクリル酸塩の共重合体」という。(メタ)アクリルアミド−(メタ)アクリル酸塩の共重合体は、ポリ(メタ)アクリルアミドを部分加水分解して(メタ)アクリル酸部分を生じさせ、そのアクリル酸部分をナトリウム塩やアンモニウム塩としたものである。高分子凝集剤として、数平均分子量が500万乃至3,000万のものが好ましく、1,000万乃至2,000万のものが更に好ましい。また、陰イオン性を示すアニオン度は、ポリ(メタ)アクリルアミドは0%で、ポリ(メタ)アクリル酸の塩は100%であり、(メタ)アクリルアミド−(メタ)アクリル酸塩の共重合体は、(メタ)アクリル酸塩部分の比率が大きくなるにつれて、アニオン度が高くなる。第一工程では、アニオン度が10乃至30%程度の高分子凝集剤が好ましく、15乃至25%程度の高分子凝集剤がさらに好ましい。また、高分子凝集剤の添加量は、水スラリー中の高分子凝集剤自体の量が0.1乃至50ppmとなる量であることが好ましく、0.5乃至20ppmとなる量であることが更に好ましく、1乃至10ppmとなる量であることが更により好ましい。   The polymer flocculant used in the first step is an anionic carboxylic acid flocculant. Specific examples of such flocculants include acrylamide-acrylate copolymers, methacrylamide-methacrylate copolymers, and acrylamide-methacrylamide-acrylate-methacrylate copolymers. It is done. Examples of the salt are sodium salt and ammonium salt. In the following, such copolymers are collectively referred to as “(meth) acrylamide- (meth) acrylate copolymer”. The copolymer of (meth) acrylamide- (meth) acrylate is partially hydrolyzed poly (meth) acrylamide to produce a (meth) acrylic acid portion, and the acrylic acid portion is converted to a sodium salt or an ammonium salt. Is. The polymer flocculant preferably has a number average molecular weight of 5 million to 30 million, more preferably 10 million to 20 million. The anionic degree of anionicity is 0% for poly (meth) acrylamide, 100% for poly (meth) acrylic acid salt, and a copolymer of (meth) acrylamide- (meth) acrylate As the ratio of the (meth) acrylate moiety increases, the anionic degree increases. In the first step, a polymer flocculant having an anion degree of about 10 to 30% is preferable, and a polymer flocculant of about 15 to 25% is more preferable. The amount of the polymer flocculant added is preferably such that the amount of the polymer flocculant itself in the water slurry is 0.1 to 50 ppm, more preferably 0.5 to 20 ppm. The amount is preferably 1 to 10 ppm, and still more preferably.

第一工程では、塩素含有微粉状廃棄物の水スラリーを形成し、pHを測定して必要に応じてアルカリ剤を添加し、その後高分子凝集剤を添加する。   In the first step, an aqueous slurry of chlorine-containing fine powdery waste is formed, the pH is measured, an alkaline agent is added as necessary, and then a polymer flocculant is added.

第一工程では、高分子凝集剤によって、セレンと鉛を除く溶存金属が結合されたフロックが形成される。このフロックが凝集沈殿する。凝集沈殿後の固液分離方法は、特に限定されないが、例えば、濾布や膜を用いた濾過や、遠心脱水、フィルタープレス脱水、ベルトプレス脱水、スクリュープレス脱水等の方法による脱水ケーキと脱水ろ液への分離が挙げられる。   In the first step, the polymer flocculant forms a floc in which dissolved metals other than selenium and lead are bonded. This floc aggregates and settles. The solid-liquid separation method after the coagulation sedimentation is not particularly limited, but for example, filtration using a filter cloth or a membrane, centrifugal dehydration, filter press dehydration, belt press dehydration, screw press dehydration, etc. Examples include separation into liquid.

第二工程では、先ず、第一工程で得られた液相に鉄系還元剤及び酸剤を添加し、pHを6.0乃至8.0とする。鉄系還元剤は、溶存する6価セレンを4価に還元し、析出させるために使用される。鉄系還元剤として、塩化第一鉄(FeCl)又は硫酸第一鉄(FeSO)を使用することが好ましい。塩化第一鉄は、空気(酸素)によって酸化され易い。酸化後の塩化第二鉄(FeCl)は、セレンに対する還元能を示さないので、塩化第二鉄を塩化第一鉄に戻すために、目開きが45μmのフルイ(JIS Z8801−1)の通過分が95重量%以上の鉄粉を併用することが好ましい。 In the second step, first, an iron reducing agent and an acid agent are added to the liquid phase obtained in the first step, and the pH is adjusted to 6.0 to 8.0. The iron-based reducing agent is used to reduce and precipitate dissolved hexavalent selenium to tetravalent. As iron-based reducing agent, it is preferred to use the ferrous chloride (FeCl 2) or ferrous sulfate (FeSO 4). Ferrous chloride is easily oxidized by air (oxygen). Since ferric chloride (FeCl 3 ) after oxidation does not show the ability to reduce selenium, in order to return ferric chloride to ferrous chloride, it passes through a sieve (JIS Z8801-1) having an opening of 45 μm. It is preferable to use iron powder having a content of 95% by weight or more in combination.

第一工程で得られた液相に添加される鉄系還元剤の量は、溶存するセレンの量にもよるが、鉄系還元剤中の鉄イオンの量に換算して、重量基準で、20ppm以上であることが好ましく、500ppm以上であることがより好ましく、700ppm以上であることが更により好ましい。なお、上限値は、無駄な使用とならない量であり、10,000ppm(1重量%)程度である。また、鉄粉の使用量は、鉄系還元剤の鉄イオンの重量を基準として5乃至20重量%程度であることが好ましい。   The amount of the iron-based reducing agent added to the liquid phase obtained in the first step depends on the amount of iron ions in the iron-based reducing agent, although it depends on the amount of dissolved selenium. It is preferably 20 ppm or more, more preferably 500 ppm or more, and even more preferably 700 ppm or more. Note that the upper limit is an amount that is not wasted and is about 10,000 ppm (1 wt%). The amount of iron powder used is preferably about 5 to 20% by weight based on the weight of iron ions in the iron-based reducing agent.

溶存する6価セレンを4価に還元する際の液相のpHは、5.0乃至12.0であり、好ましくは6.0乃至8.0である。このようなpH値とするために使用される酸剤は、塩酸、硫酸等である。なお、塩化第一鉄を使用する場合には塩酸を、硫酸第一鉄を使用する場合には硫酸を使用することが好ましい。   The pH of the liquid phase when reducing the hexavalent selenium dissolved to tetravalent is 5.0 to 12.0, preferably 6.0 to 8.0. The acid agent used to obtain such a pH value is hydrochloric acid, sulfuric acid or the like. In addition, when using ferrous chloride, it is preferable to use hydrochloric acid, and when using ferrous sulfate, it is preferable to use sulfuric acid.

第二工程では、金属捕集剤を添加し、4価セレンを捕集する。金属捕集剤は、金属固定化剤とも称される。金属捕集剤として、ジチオカルバミン酸系金属捕集剤を使用することが好ましく、ジチオカルバミン酸系高分子金属捕集剤を使用することがさらに好ましい。ここで、ジチオカルバミン酸系金属捕集剤とは、カルボジチオ酸基を有する化合物をいい、また、ジチオカルバミン酸系高分子金属捕集剤とは、カルボジチオ酸基を有する化合物中、例えば低分子量のジチオカルバミン酸化合物の高分子量ポリアミン塩等の高分子化合物をいう。金属捕集剤の添加量は、液相中の金属捕集剤自体の量が、重量基準で0.3乃至200ppmとなる量であることが好ましく、1乃至100ppmとなる量であることが更に好ましい。   In the second step, a metal scavenger is added to collect tetravalent selenium. The metal scavenger is also referred to as a metal fixing agent. As the metal scavenger, it is preferable to use a dithiocarbamic acid-based metal scavenger, and it is more preferable to use a dithiocarbamic acid-based polymer metal scavenger. Here, the dithiocarbamic acid-based metal scavenger refers to a compound having a carbodithioic acid group, and the dithiocarbamic acid-based polymer metal scavenger is a compound having a carbodithioic acid group, for example, a low molecular weight dithiocarbamic acid. A high molecular weight compound such as a high molecular weight polyamine salt of the compound. The amount of the metal scavenger added is preferably such that the amount of the metal scavenger itself in the liquid phase is 0.3 to 200 ppm, preferably 1 to 100 ppm, on a weight basis. preferable.

第二工程終了後、バッチ式の場合にはそのまま続けて、連続式の場合には第二工程が終了した液相を次の水槽に移して、第三工程を行う。第三工程では、第二工程で得られた液相に、無機凝集剤であるポリ硫酸第二鉄又は塩化第二鉄と、必要な場合にはアルカリ剤とを添加し、pHを6.5乃至7.5、好ましくは6.8乃至7.2とする。   After the second step, the batch process is continued as it is, and in the case of the continuous process, the liquid phase after the second process is transferred to the next water tank and the third process is performed. In the third step, the liquid phase obtained in the second step is added with ferric sulfate or ferric chloride, which is an inorganic flocculant, and an alkali agent, if necessary, to a pH of 6.5. To 7.5, preferably 6.8 to 7.2.

ポリ硫酸第二鉄(液状品の鉄イオン含有量の例:11%)や塩化第二鉄(液状品の鉄イオン含有量の例:13%)の添加量は、液相中のそれらの量が、鉄イオンの量として、重量基準で0.1乃至70ppmとなる量であることが好ましく、0.3乃至50ppmとなる量であることが更に好ましい。   The amount of ferric sulfate (example of iron ion content of liquid product: 11%) and ferric chloride (example of iron ion content of liquid product: 13%) is the amount of those in the liquid phase. However, the amount of iron ions is preferably 0.1 to 70 ppm on a weight basis, and more preferably 0.3 to 50 ppm.

ポリ硫酸第二鉄や塩化第二鉄を添加すると、液相のpHが下がる。特に、塩化第二鉄を使用した場合には、pHの低下の程度が大きい。そこで、液相のpHが6.5乃至7.5の範囲内にない場合や、この範囲内ではあるが、この範囲内において更にpHを高めたい場合(即ち、必要な場合)には、アルカリ剤を添加する。なお、アルカリ剤としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムが挙げられる。   Addition of polyferric sulfate or ferric chloride lowers the pH of the liquid phase. In particular, when ferric chloride is used, the degree of pH decrease is large. Therefore, when the pH of the liquid phase is not within the range of 6.5 to 7.5, or when it is within this range but it is desired to further increase the pH within this range (that is, when necessary), alkaline Add agent. Examples of the alkali agent include sodium hydroxide, potassium hydroxide, and calcium hydroxide.

第三工程では、鉛をはじめとする、液相に溶存している有害物質を、無機凝集剤で捕集する。無機凝集剤には種々のものがあるが、この第三工程では、ポリ硫酸第二鉄又は塩化第二鉄を使用する。塩化第二鉄の方がより好ましい。   In the third step, harmful substances dissolved in the liquid phase, such as lead, are collected with an inorganic flocculant. There are various inorganic flocculants, but in this third step, polyferric sulfate or ferric chloride is used. Ferric chloride is more preferred.

第三工程終了後、バッチ式の場合にはそのまま続けて、連続式の場合には第三工程が終了した液相を次の水槽に移して、第四工程を行う。第四工程では、第三工程で得られた液相に陰イオン性カルボン酸系高分子凝集剤を添加し、固液分離をする。   After the third step, the batch process is continued as it is, and in the case of the continuous process, the liquid phase after the third process is transferred to the next water tank, and the fourth process is performed. In the fourth step, an anionic carboxylic acid polymer flocculant is added to the liquid phase obtained in the third step, and solid-liquid separation is performed.

陰イオン性カルボン酸系高分子凝集剤については、先に第一工程に関する説明に記載したとおりである。この工程においても、アニオン度が10乃至30%程度の高分子凝集剤が好ましく、15乃至25%程度の高分子凝集剤がさらに好ましい。第四工程では、第一工程で使用したものと同じものを使用してもよいし、異なるもの(例えばアニオン度や分子量が異なるもの)を使用してもよい。また、その添加量は、液相中の高分子凝集剤自体の量が0.1乃至50ppmとなる量であることが好ましく、0.5乃至10ppmとなる量であることが更に好ましい。   The anionic carboxylic acid type polymer flocculant is as described in the explanation relating to the first step. Also in this step, a polymer flocculant having an anion degree of about 10 to 30% is preferable, and a polymer flocculant of about 15 to 25% is more preferable. In the fourth step, the same one used in the first step may be used, or a different one (for example, one having a different anion degree or molecular weight) may be used. The amount added is preferably an amount such that the amount of the polymer flocculant itself in the liquid phase is 0.1 to 50 ppm, and more preferably 0.5 to 10 ppm.

高分子凝集剤により、無機凝集剤で捕集された溶存金属が結合されたフロックが形成される。このフロックが凝集沈殿する。凝集沈殿後の固液分離方法は、特に限定されないが、例えば、濾布や膜を用いた濾過や、遠心脱水、フィルタープレス脱水、ベルトプレス脱水、スクリュープレス脱水等の方法による脱水ケーキと脱水ろ液への分離が挙げられる。   The polymer flocculant forms a floc in which the dissolved metal collected by the inorganic flocculant is bound. This floc aggregates and settles. The solid-liquid separation method after the coagulation sedimentation is not particularly limited, but for example, filtration using a filter cloth or a membrane, centrifugal dehydration, filter press dehydration, belt press dehydration, screw press dehydration, etc. Examples include separation into liquid.

本発明の方法は、この明細書に記載されていない任意物質の添加や他の工程の追加を排除するものではない。しかし、第一乃至第四工程を必須成分のみを用いて行うのみで、水質汚濁防止法の排水基準に適合した水が得られる。本発明の方法には、当然のことながら、第一乃至第四工程を実質的にその必須成分のみを用いて行う方法が包含される。   The method of the present invention does not exclude the addition of optional substances and other steps not described in this specification. However, water that conforms to the drainage standards of the Water Pollution Control Law can be obtained only by performing the first to fourth steps using only essential components. As a matter of course, the method of the present invention includes a method in which the first to fourth steps are carried out substantially using only the essential components.

(実験例1)キルンダストの水洗条件の検討
表1に示す成分組成のキルンダスト200gを2リットル容のビーカーに入れ、これに純水を加えて全量を2,000gとした。これを一定時間撹拌し、スラリーを得た。このスラリーを数日間静置したところ、上澄み液は無色透明となった。そこで、この上澄み液の水質分析を行った。結果を表2に示す。なお、キルンダスト中の金属分は、底質調査方法(昭和63年環水管第127号)に従って定量し、水中の金属分は、JISK0102に従って定量し、塩素イオン濃度は、下水試験方法に従って定量した。結果を表2に示す。
(Experimental example 1) Examination of water washing conditions of kiln dust 200 g of kiln dust having the composition shown in Table 1 was put into a 2 liter beaker, and pure water was added thereto to make the total amount of 2,000 g. This was stirred for a certain time to obtain a slurry. When this slurry was allowed to stand for several days, the supernatant became colorless and transparent. Then, the water quality analysis of this supernatant liquid was performed. The results are shown in Table 2. In addition, the metal content in kiln dust was quantified according to the bottom sediment investigation method (Showa 63 ring water pipe No. 127), the metal content in water was quantified according to JISK0102, and the chlorine ion concentration was quantified according to the sewage test method. The results are shown in Table 2.

Figure 0004723624
Figure 0004723624

Figure 0004723624
Figure 0004723624

表2から明らかなように、亜鉛は、自然沈降のみでも排水基準以下となることが分かった。   As is clear from Table 2, zinc was found to be below the drainage standard even by natural sedimentation alone.

(実験例2)スラリーへの高分子凝集剤の添加
実験例1と同様にしてスラリーを形成させた後、ポリアクリルアミド系高分子凝集剤(SKF−A553;積水アクアシステム株式会社製;アニオン度:20%(中アニオン);分子量1,200万)5ppmを添加し、撹拌し、静置して凝集沈殿を生じさせた。pH調整は行わなかったが、pH=約13であった。凝集沈殿形成後の上澄み液について、水質分析を行った。結果を表3に示す。
Experimental Example 2 Addition of Polymer Flocculant to Slurry After forming a slurry in the same manner as in Experimental Example 1, polyacrylamide polymer flocculant (SKF-A553; manufactured by Sekisui Aqua System Co., Ltd .; anion degree: 5 ppm of 20% (medium anion); molecular weight 12 million) was added, stirred, and allowed to stand to cause aggregation precipitation. The pH was not adjusted, but the pH was about 13. A water quality analysis was performed on the supernatant liquid after the formation of the aggregated precipitate. The results are shown in Table 3.

Figure 0004723624
Figure 0004723624

表3から明らかなように、水洗のみ(実験例1の表2)に比べ、セレン及びカドミウムの濃度は低下していたが、鉛及びセレンの濃度はまだ排水基準に適合してはいなかった。   As is clear from Table 3, the concentrations of selenium and cadmium were lower than those of water washing alone (Table 2 of Experimental Example 1), but the concentrations of lead and selenium were not yet compatible with the wastewater standards.

(実験例3)一次凝集後の上澄み水の二次凝集処理
実験例2の上澄み液(本発明の第一工程後の液相に相当する)を、以下のように処理し、二次凝集させ、その上澄み液の水質分析を行った。結果を表4に示す。
(Experimental example 3) Secondary flocculation treatment of supernatant water after primary flocculation The supernatant liquid of experimental example 2 (corresponding to the liquid phase after the first step of the present invention) is treated as follows to cause secondary flocculation. The water quality of the supernatant was analyzed. The results are shown in Table 4.

(1)上澄み液に硫酸を加え、pHを7.8とした。
(2)(1)で得られた液相に、ジチオカルバミン酸系高分子金属捕集剤(エポフロックL−1;ミヨシ油脂株式会社製;分子量:8万乃至12万;pH(1%)10.5乃至12.5;比重:1.19乃至1.23;ジチオカルバミン酸系化合物と硫化水素ナトリウムとの合計濃度:約35%)を、有姿で100ppm(容量基準)(高分子金属捕集剤の量として、約42ppm)添加し、10分間撹拌した。
(3)(2)で得られた液相に、ポリ硫酸第二鉄(液状品;Fe含有量:11%)を、Feイオンの量で33ppmとなる量で添加し、5分間撹拌した。
(4)pHを測定したところ、pH=6.33であったので、水酸化ナトリウムを加え、pH=7.0とした。
(5)(4)で得られた液相に、ポリアクリルアミド系高分子凝集剤(A−110;MTアクアポリマー株式会社製;アニオン度:20%(中アニオン);分子量1,900万)を5ppm添加し、撹拌した後、静置して凝集沈殿を生じさせた。
(1) Sulfuric acid was added to the supernatant to adjust the pH to 7.8.
(2) To the liquid phase obtained in (1), a dithiocarbamic acid polymer metal scavenger (Epofloc L-1; manufactured by Miyoshi Oil & Fats Co., Ltd .; molecular weight: 80,000 to 120,000; pH (1%) 5 to 12.5; specific gravity: 1.19 to 1.23; total concentration of dithiocarbamic acid-based compound and sodium hydrogen sulfide: about 35%) in solid form at 100 ppm (volume basis) (polymer metal scavenger) About 42 ppm) and stirred for 10 minutes.
(3) To the liquid phase obtained in (2), polyferric sulfate (liquid product; Fe content: 11%) was added in an amount of 33 ppm in terms of Fe ions, and the mixture was stirred for 5 minutes.
(4) When pH was measured, it was pH = 6.33, so sodium hydroxide was added to make pH = 7.0.
(5) Polyacrylamide polymer flocculant (A-110; manufactured by MT Aqua Polymer Co., Ltd .; anion degree: 20% (medium anion); molecular weight of 19 million) is added to the liquid phase obtained in (4). After adding 5 ppm and stirring, the mixture was allowed to stand to cause aggregation and precipitation.

Figure 0004723624
Figure 0004723624

表4から明らかなように、鉛、セレン、カドミウム及亜鉛の濃度は、排水基準値内となった。しかし、セレンについては、排水基準の上限値と同じであったので、液相中のセレン濃度を低下させる何らかの処理が必要であるとの結論に達した。   As is clear from Table 4, the concentrations of lead, selenium, cadmium and zinc were within the effluent standard values. However, for selenium, it was the same as the upper limit of the effluent standard, so the conclusion was reached that some treatment to reduce the selenium concentration in the liquid phase was necessary.

(実験例4)セレン除去条件の検討
以下の条件でキルンダストの水洗及びその水洗水の処理を行った。
(Experimental example 4) Examination of selenium removal conditions The kiln dust was washed with water and the water was treated under the following conditions.

1.一次凝集(第一工程)
実験例1で用いたものと同じキルンダスト200gに純水を加えて全量2,000gとし、撹拌してスラリーを得た。このスラリーに、ポリアクリルアミド系高分子凝集剤(SKF−A553;積水アクアシステム株式会社製;アニオン度:20%(中アニオン);分子量1,200万)5ppmを添加し、撹拌した後、静置して凝集沈殿を生じさせた。pH調整は行わなかったが、pH=約13であった。凝集沈殿形成後の上澄み液(一次凝集処理水)を採取した。
1. Primary aggregation (first step)
Pure water was added to 200 g of the same kiln dust as used in Experimental Example 1 to make a total amount of 2,000 g, and stirred to obtain a slurry. To this slurry, 5 ppm of polyacrylamide polymer flocculant (SKF-A553; manufactured by Sekisui Aqua System Co., Ltd .; anion degree: 20% (medium anion); molecular weight: 12 million) was added and stirred, and then allowed to stand. Thus, agglomeration precipitation was generated. The pH was not adjusted, but the pH was about 13. The supernatant liquid (primary flocculated water) after the formation of the flocculated precipitate was collected.

2.還元剤及び金属捕集剤の添加(第二工程)
一次凝集処理水に、還元剤である硫酸第一鉄又は塩化第一鉄を添加し、撹拌した。その後、硫酸又は塩酸を加え、pH=7.8とした。その後、発明例1乃至7及び比較例1については、金属捕集剤(エポフロックL−1;ミヨシ油脂株式会社製)を、有姿で容量基準で100ppm(高分子金属捕集剤の量として、約42ppm)添加し、10分間撹拌した。
2. Addition of reducing agent and metal scavenger (second step)
Ferrous sulfate or ferrous chloride, which is a reducing agent, was added to the primary flocculated water and stirred. Thereafter, sulfuric acid or hydrochloric acid was added to obtain pH = 7.8. Thereafter, for Invention Examples 1 to 7 and Comparative Example 1, a metal scavenger (Epofloc L-1; manufactured by Miyoshi Oil & Fat Co., Ltd.) is 100 ppm on a volume basis as a solid (as the amount of the polymer metal scavenger, About 42 ppm) was added and stirred for 10 minutes.

ここでは、表5に示すように、還元剤の種類、添加量及び撹拌時間を変更した7種類のケースについて、実験を行った。また、還元剤不添加の系も、2種類のケース(酸剤及び金属捕集剤の添加の有無)について、実験を行った。なお、還元剤、酸剤及び金属捕集剤不添加の系がブランクであり、還元剤不添加且つ酸剤及び金属捕集剤添加の系が比較例1である。   Here, as shown in Table 5, an experiment was conducted on seven types of cases in which the type, amount of addition, and stirring time of the reducing agent were changed. In addition, a system without a reducing agent was also tested in two cases (whether or not an acid agent and a metal scavenger were added). The system without addition of the reducing agent, the acid agent and the metal scavenger is a blank, and the system without addition of the reducing agent and the addition of the acid agent and the metal scavenger is Comparative Example 1.

3.無機凝集剤及びアルカリ剤の添加(第三工程)
第二工程に続き、無機凝集剤であるポリ硫酸第二鉄(液状品;Fe含有量は11%)をFeイオン量で33ppmとなる量又は同じく無機凝集剤である塩化第二鉄(塩化第二鉄含有量38%の液状品;鉄含有量は13%)をFeイオン量で39ppmとなる量で添加し、更に水酸化ナトリウムを添加し、pH=7.0とし、5分間撹拌した。なお、ブランクには無機凝集剤も添加せず、一方、比較例1にはポリ硫酸第二鉄を添加した。
3. Addition of inorganic flocculant and alkali agent (third step)
Following the second step, polyferric sulfate, which is an inorganic flocculant (liquid product; Fe content is 11%), in an amount of 33 ppm in terms of Fe ion, or ferric chloride, which is also an inorganic flocculant (ferric chloride) A liquid product having a ferric content of 38%; the iron content being 13%) was added in an amount of 39 ppm in terms of Fe ions, sodium hydroxide was further added to adjust the pH to 7.0, and the mixture was stirred for 5 minutes. In addition, the inorganic flocculant was not added to the blank, while poly ferric sulfate was added to Comparative Example 1.

4.高分子凝集剤の添加(第四工程)
第三工程に続き、発明例1乃至7及び比較例1については、ポリアクリルアミド系高分子凝集剤(A−110;MTアクアポリマー株式会社製)を5ppm添加し、撹拌し、その後、静置して凝集沈殿を生じさせた。
4). Addition of polymer flocculant (fourth process)
Following the third step, for Invention Examples 1 to 7 and Comparative Example 1, 5 ppm of polyacrylamide polymer flocculant (A-110; manufactured by MT Aqua Polymer Co., Ltd.) was added, stirred, and then allowed to stand. Thus, agglomeration precipitation was caused.

上澄み液(二次凝集処理水)について、セレン濃度を測定した。結果を表5に示す。なお、上記から明らかなように、ブランクは第一工程のみを実施したものであり、比較例1は、第一及び第三工程のみを実施したものである。   The selenium concentration was measured for the supernatant (secondary flocculated water). The results are shown in Table 5. In addition, as is clear from the above, the blank is obtained by performing only the first step, and the comparative example 1 is obtained by performing only the first and third steps.

Figure 0004723624
Figure 0004723624

表5に示した結果から明らかなように、一次凝集処理水について、先ずセレン除去の工程(第二工程)を行うことにより、二次凝集処理水のセレン含有量が排水基準値内となった。他の成分については、実験例4の表4に示したように、セレン除去の工程(第二工程)を行わなくても排水基準値内であったから、本発明の方法により、塩素含有微粉状廃棄物の水洗水を、その有害物質濃度が排水基準に適合するように処理できることが明らかとなった。   As is clear from the results shown in Table 5, the selenium content of the secondary flocculated water was within the drainage standard value by first performing the selenium removal step (second step) for the primary flocculated water. . About other components, as shown in Table 4 of Experimental Example 4, it was within the drainage standard value without performing the selenium removal step (second step). It became clear that the washing water of waste can be treated so that the concentration of harmful substances meets the effluent standards.

(実験例5)種々の処理条件での実験
1.一次凝集(第一工程)
実験例1で用いたものと同じキルンダスト300gに純水を加えて全量2,000gとし、撹拌してスラリーを得た。このスラリーに、ポリアクリルアミド系高分子凝集剤(SKF−A553;積水アクアシステム株式会社製;アニオン度:20%(中アニオン);分子量1,200万)を表6に示す量で添加し、撹拌した後、静置して凝集沈殿を生じさせた。pH調整は行わなかったが、pH=約13.5であった。凝集沈殿形成後の上澄み液(一次凝集処理水)を採取した。
(Experimental example 5) Experiment 1 under various processing conditions Primary aggregation (first step)
Pure water was added to 300 g of the same kiln dust as used in Experimental Example 1 to make a total amount of 2,000 g, and stirred to obtain a slurry. To this slurry, polyacrylamide polymer flocculant (SKF-A553; manufactured by Sekisui Aqua System Co., Ltd .; anion degree: 20% (medium anion); molecular weight 12 million) was added in the amount shown in Table 6 and stirred. Then, the mixture was allowed to stand to cause aggregation precipitation. Although pH adjustment was not performed, pH was about 13.5. The supernatant liquid (primary flocculated water) after the formation of the flocculated precipitate was collected.

2.還元剤及び金属捕集剤の添加(第二工程)
表6に示すように、一次凝集処理水に、鉄系還元剤である硫酸第一鉄又は塩化第一鉄を添加し、20分間撹拌した。また、塩化第一鉄を添加した系の一部については、目開きが45μmのフルイ(JIS Z8801−1)の通過分が95重量%以上の鉄粉も併用した。その後、酸剤(硫酸又は塩酸)を加え、表6に示すpHとした。
2. Addition of reducing agent and metal scavenger (second step)
As shown in Table 6, ferrous sulfate or ferrous chloride, which is an iron-based reducing agent, was added to primary agglomerated treated water and stirred for 20 minutes. In addition, for some of the systems to which ferrous chloride was added, iron powder having a passage of a sieve having a mesh size of 45 μm (JIS Z8801-1) of 95% by weight or more was also used. Thereafter, an acid agent (sulfuric acid or hydrochloric acid) was added to obtain the pH shown in Table 6.

その後、金属捕集剤(エポフロックL−1;ミヨシ油脂株式会社製)を、表6に示す量で添加し、10分間撹拌した。   Thereafter, a metal scavenger (Epofloc L-1; manufactured by Miyoshi Oil & Fat Co., Ltd.) was added in an amount shown in Table 6 and stirred for 10 minutes.

3.無機凝集剤及びアルカリ剤の添加(第三工程)
第二工程に続き、無機凝集剤(ポリ硫酸第二鉄(液状品;Fe含有量は11%)又は塩化第二鉄(塩化第二鉄含有量38%の液状品;Fe含有量は13%))を表6に示す量で添加し、pHを測定し、必要な場合には水酸化ナトリウムも添加してpHを6.5乃至7.5とし、その後5分間撹拌した。
3. Addition of inorganic flocculant and alkali agent (third step)
Following the second step, inorganic flocculant (polyferric sulfate (liquid product; Fe content is 11%) or ferric chloride (liquid product with 38% ferric chloride content; Fe content is 13%) )) Was added in the amounts shown in Table 6 and the pH was measured. If necessary, sodium hydroxide was also added to bring the pH to 6.5 to 7.5, and then stirred for 5 minutes.

4.高分子凝集剤の添加(第四工程)
第三工程に続き、ポリアクリルアミド系高分子凝集剤(A−110;MTアクアポリマー株式会社製)を表6に示す量で添加し、撹拌し、その後、静置して凝集沈殿を生じさせた。
4). Addition of polymer flocculant (fourth process)
Following the third step, polyacrylamide polymer flocculant (A-110; manufactured by MT Aqua Polymer Co., Ltd.) was added in the amount shown in Table 6, stirred, and then allowed to stand to cause coagulation precipitation. .

上澄み液(二次凝集処理水)について、金属濃度を測定した。結果を表7に示す。   The metal concentration was measured for the supernatant (secondary flocculated water). The results are shown in Table 7.

Figure 0004723624
Figure 0004723624

Figure 0004723624
Figure 0004723624

表7に示した結果から明らかなように、本発明の方法により、塩素含有微粉状廃棄物の水洗水を、その有害物質濃度が排水基準に適合するように処理できることが明らかとなった。   As is apparent from the results shown in Table 7, it has been clarified that the washing water of the chlorine-containing fine powdery waste can be treated by the method of the present invention so that the concentration of harmful substances meets the drainage standard.

Claims (5)

塩素含有微粉状廃棄物に水を加えてスラリー化し、pH12以上で陰イオン性カルボン酸系高分子凝集剤の存在下で固液分離をする第一工程、第一工程で得られた液相に鉄系還元剤及び酸剤を添加し、pHを6.0乃至8.0とし、次いで金属捕集剤を添加する第二工程、第二工程終了後、バッチ式の場合はそのまま続けて、連続式の場合は第二工程が終了した液相を次の水槽に移して、ポリ硫酸第二鉄又は塩化第二鉄と、必要な場合にはアルカリ剤とを添加し、pHを6.5乃至7.5とする第三工程、及び第三工程終了後、バッチ式の場合はそのまま続けて、連続式の場合は第三工程が終了した液相を次の水槽に移して、陰イオン性カルボン酸系高分子凝集剤を添加し、固液分離をする第四工程を含むことを特徴とする、塩素含有微粉状廃棄物の処理方法。 The liquid phase obtained in the first step and the first step, in which water is added to a chlorine-containing fine powdery waste to form a slurry, and solid-liquid separation is performed in the presence of an anionic carboxylic acid polymer flocculant at pH 12 or higher. Add iron-based reducing agent and acid agent to adjust the pH to 6.0 to 8.0, then add the metal scavenger, then after the second step, continue in the case of batch type, continuously In the case of the formula, the liquid phase after completion of the second step is transferred to the next water tank, and polyferric sulfate or ferric chloride and, if necessary, an alkali agent are added, and the pH is adjusted to 6.5 to After completion of the third step and the third step to 7.5, in the case of a batch type, continue as it is, and in the case of a continuous type, transfer the liquid phase after the completion of the third step to the next water tank, Chlorine-containing fine powder, characterized by including a fourth step of adding an acid polymer flocculant and performing solid-liquid separation Method of processing wastes. 鉄系還元剤が塩化第一鉄又は硫酸第一鉄である、請求項1に記載の塩素含有微粉状廃棄物の処理方法。 The processing method of the chlorine containing fine powder waste of Claim 1 whose iron type reducing agent is ferrous chloride or ferrous sulfate. 陰イオン性カルボン酸系高分子凝集剤が、(メタ)アクリルアミド−(メタ)アクリル酸塩の共重合体である、請求項1又は2に記載の塩素含有微粉状廃棄物の処理方法。 The method for treating a chlorine-containing fine powdery waste according to claim 1 or 2, wherein the anionic carboxylic acid polymer flocculant is a (meth) acrylamide- (meth) acrylate copolymer. 金属捕集剤がジチオカルバミン酸系高分子金属捕集剤である、請求項1乃至3のいずれか一項に記載の塩素含有微粉状廃棄物の処理方法。 The processing method of the chlorine containing fine powdery waste as described in any one of Claims 1 thru | or 3 whose metal scavenger is a dithiocarbamic-acid type polymer metal scavenger. 鉄系還元剤が塩化第一鉄であり、第二工程において、塩化第一鉄に、目開きが45μmのフルイ(JIS Z8801−1)の通過分が95重量%以上の鉄粉を併用する、請求項2乃至4のいずれか一項に記載の塩素含有微粉状廃棄物の処理方法。 The iron-based reducing agent is ferrous chloride, and in the second step, ferrous chloride is used in combination with iron powder having a mesh passage of 45 μm and having a passage of 95% by weight or more (JIS Z8801-1). The processing method of the chlorine containing fine powder waste as described in any one of Claims 2 thru | or 4.
JP2008247411A 2008-09-26 2008-09-26 Disposal of chlorine-containing fine powder waste Active JP4723624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247411A JP4723624B2 (en) 2008-09-26 2008-09-26 Disposal of chlorine-containing fine powder waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247411A JP4723624B2 (en) 2008-09-26 2008-09-26 Disposal of chlorine-containing fine powder waste

Publications (2)

Publication Number Publication Date
JP2010075849A JP2010075849A (en) 2010-04-08
JP4723624B2 true JP4723624B2 (en) 2011-07-13

Family

ID=42206919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247411A Active JP4723624B2 (en) 2008-09-26 2008-09-26 Disposal of chlorine-containing fine powder waste

Country Status (1)

Country Link
JP (1) JP4723624B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106882884A (en) * 2017-02-16 2017-06-23 华电电力科学研究院 A kind of method of chlorion in recycling waste water

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7146628B2 (en) * 2018-12-27 2022-10-04 昭和電工株式会社 How to treat combustion fly ash
JP7356860B2 (en) * 2019-10-08 2023-10-05 Ube三菱セメント株式会社 Method for suppressing hexavalent selenium elution from cement kiln bleed dust
CN115401060B (en) * 2022-08-24 2023-11-14 浙江红狮环保股份有限公司 Method for removing chlorine content from organic hazardous waste

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134470A (en) * 1992-10-26 1994-05-17 Mitsubishi Heavy Ind Ltd Method for making fly ash harmless
JPH1099817A (en) * 1996-10-01 1998-04-21 Ube Ind Ltd Treatment of extraction dust of cement manufacturing apparatus
JP2000167571A (en) * 1998-12-03 2000-06-20 Kurita Water Ind Ltd Treatment of selenium-containing water
JP2002254049A (en) * 2001-02-28 2002-09-10 Ube Ind Ltd Method for treating extraction dust in cement manufacturing equipment
JP2002307076A (en) * 2000-12-28 2002-10-22 National Institute Of Advanced Industrial & Technology Method of removing selenium and selenium removing agent
JP2005138017A (en) * 2003-11-06 2005-06-02 Ube Ind Ltd Treatment method for cement kiln steam extract dust
JP2005152741A (en) * 2003-11-25 2005-06-16 Ube Ind Ltd Treatment method for dust in cement kiln extraction gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134470A (en) * 1992-10-26 1994-05-17 Mitsubishi Heavy Ind Ltd Method for making fly ash harmless
JPH1099817A (en) * 1996-10-01 1998-04-21 Ube Ind Ltd Treatment of extraction dust of cement manufacturing apparatus
JP2000167571A (en) * 1998-12-03 2000-06-20 Kurita Water Ind Ltd Treatment of selenium-containing water
JP2002307076A (en) * 2000-12-28 2002-10-22 National Institute Of Advanced Industrial & Technology Method of removing selenium and selenium removing agent
JP2002254049A (en) * 2001-02-28 2002-09-10 Ube Ind Ltd Method for treating extraction dust in cement manufacturing equipment
JP2005138017A (en) * 2003-11-06 2005-06-02 Ube Ind Ltd Treatment method for cement kiln steam extract dust
JP2005152741A (en) * 2003-11-25 2005-06-16 Ube Ind Ltd Treatment method for dust in cement kiln extraction gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106882884A (en) * 2017-02-16 2017-06-23 华电电力科学研究院 A kind of method of chlorion in recycling waste water
CN106882884B (en) * 2017-02-16 2019-08-20 华电电力科学研究院 A kind of method of chloride ion in recycling waste water

Also Published As

Publication number Publication date
JP2010075849A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
CN102001734B (en) Heavy metal settling agent for treating mercury-containing wastewater
US6896817B2 (en) Essentially insoluble heavy metal sulfide slurry for wastewater treatment
JP2011050809A (en) Method of treating selenium-containing waste water
JP2019217423A (en) System of treating effluent or sludge containing high-concentration suspended matter
JP4723624B2 (en) Disposal of chlorine-containing fine powder waste
JP4306394B2 (en) Cement kiln extraction dust processing method
JP5685456B2 (en) Method for producing polyferric sulfate
JP2011101830A (en) Water treatment agent and water treatment method
JP2014050841A (en) Water treatment method
WO2015095269A1 (en) Methods for removing contaminants from aqueous systems
JP4306422B2 (en) Cement kiln extraction dust processing method
JP4479116B2 (en) Cement production equipment extraction dust processing method
JP5206453B2 (en) Cement kiln extraction dust processing method
KR101980478B1 (en) Manufacturing method of inorganic coagulants used acid waste water for treatment an activated clay
JP4464765B2 (en) Flocculant for contaminated water or contaminated water purification treatment
JP2004290777A (en) Method for treating arsenic-containing water
JP4306413B2 (en) Cement kiln extraction dust processing method
WO2013117996A1 (en) Processes for the removal of metals and oxyanions from aqueous streams
JP5206455B2 (en) Cement kiln extraction dust processing method
JP2007054818A (en) Method for treating water polluted with selenium and agent therefor
JP4598415B2 (en) Organic arsenic compound processing method
JP5306977B2 (en) Method for treating boron-containing water and boron removing agent
JP5965164B2 (en) Cadmium-containing wastewater treatment method
JP5877588B2 (en) Wastewater treatment method
JP7259620B2 (en) Method for treating lead-containing outside water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250