[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6321384B2 - Agricultural and horticultural facilities with solar power generation system - Google Patents

Agricultural and horticultural facilities with solar power generation system Download PDF

Info

Publication number
JP6321384B2
JP6321384B2 JP2014012926A JP2014012926A JP6321384B2 JP 6321384 B2 JP6321384 B2 JP 6321384B2 JP 2014012926 A JP2014012926 A JP 2014012926A JP 2014012926 A JP2014012926 A JP 2014012926A JP 6321384 B2 JP6321384 B2 JP 6321384B2
Authority
JP
Japan
Prior art keywords
power generation
light
agricultural
horticultural
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014012926A
Other languages
Japanese (ja)
Other versions
JP2015139388A (en
Inventor
野村 和弘
和弘 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Technos Corp
Original Assignee
Riken Technos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Technos Corp filed Critical Riken Technos Corp
Priority to JP2014012926A priority Critical patent/JP6321384B2/en
Publication of JP2015139388A publication Critical patent/JP2015139388A/en
Application granted granted Critical
Publication of JP6321384B2 publication Critical patent/JP6321384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/254Roof garden systems; Roof coverings with high solar reflectance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/32Roof garden systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Greenhouses (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、農園芸用施設に関する。更に詳しくは、農園芸作物の生育に必要な光は透過させつつ、その余の光は効率的に太陽光発電に利用することのできる太陽光発電システムを備えた農園芸用施設に関する。
The present invention relates to an agricultural and horticultural facility. More specifically, the present invention relates to an agricultural and horticultural facility equipped with a solar power generation system that allows light necessary for growth of agricultural and horticultural crops to pass therethrough and efficiently use the remaining light for solar power generation.

近年、石油等の化石燃料や原子力に替わる新たなエネルギー源として、太陽光発電が注目を集めており、住宅や農園芸用ハウスの屋根等への太陽光発電システムの設置が進んでいる。太陽光発電システムを農園芸用ハウスの屋根の上や農地に設置された架台の上に設置する場合は、農園芸作物の生育に必要な光を施設内に採り入れるため、採光部分を有する太陽光発電システムが使用される。 In recent years, photovoltaic power generation has attracted attention as a new energy source to replace fossil fuels such as oil and nuclear power, and the installation of photovoltaic power generation systems on the roofs of houses and agricultural and horticultural houses is progressing. When installing a solar power generation system on the roof of an agricultural or horticultural house or on a pedestal installed in farmland, the sunlight that has a daylighting part is used to bring the light necessary for the growth of agricultural and horticultural crops into the facility. A power generation system is used.

しかし、採光部分を有していても、採光部分以外の箇所による影が出来るため、農園芸作物の受け取る光量は場所により違い、その生育状態にばらつきが出易いという問題があった。またこの問題を解決するため、太陽光発電システムのアレイを非常に高い位置に設置することが行われているが、システムのメンテナンス作業性やメンテナンス作業時の安全性が低下する;システムが強風により被害を受け易い;という新たな問題を生じていた。 However, even if it has a daylighting part, there is a problem that the light quantity received by the agricultural and horticultural crops varies depending on the place because the shadows are caused by places other than the daylighting part, and the growth state tends to vary. Moreover, in order to solve this problem, the array of the photovoltaic power generation system is installed at a very high position, but the maintenance workability of the system and the safety during the maintenance work are reduced; A new problem has arisen;

農園芸用施設等に使用する採光部分を有する太陽光発電システムとして、両面発電型のものを使用することは公知であり、「採光部分を有し太陽光を内部に採光するように構成した建物内の該採光部分の直下に、複数枚の太陽電池セルを並設し透明な合成樹脂で被覆してなる薄型軽量太陽電池モジュールを配設するか又は複数の該薄型軽量太陽電池モジュールを配設した構成の太陽電池アレイを設け、前記建物内への採光は前記太陽電池モジュールの太陽電池セルと太陽電池セルの間及び/又は前記太陽電池アレイの太陽電池モジュールと太陽電池モジュールの間から行うようにしたことを特徴とする遮光・調光機能付太陽光発電システム。」、及び上記のシステムにおいて、「太陽電池モジュールに両面発電可能な太陽電池セルを用い、該太陽電池モジュールは屋外から入射する太陽光の他、屋内で反射・散乱した光でも発電できるように構成したことを特徴とする遮光・調光機能付太陽光発電システム。」が提案されている(特許文献1)。しかし、採光部分以外の箇所による影が出来るため、農園芸作物の生育状態にばらつきが生じるという問題を解決する方法については、何の記載も示唆もない。また、寒冷期であっても、晴天の日中には、農園芸作物の生育に必要な光をハウス内に採り入れることにより、ハウス内部の温度は大きく上昇するため、農園芸用ハウスの内部が高温になることにより育成に障害が生じ易い農園芸作物、例えば、イチゴやレタスなどの場合には、冷房を必要としているという問題を解決する方法については、何の記載も示唆もない。
As a solar power generation system having a daylighting part used for agricultural and horticultural facilities, etc., it is known to use a double-sided power generation type, “a building having a daylighting part and configured to daylight sunlight inside. A thin and light solar cell module in which a plurality of solar cells are juxtaposed and covered with a transparent synthetic resin or a plurality of the thin and light solar cell modules is arranged immediately below the daylighting portion. The solar cell array having the above structure is provided, and the daylighting into the building is performed between the solar cells of the solar cell module and / or between the solar cell modules of the solar cell array. In the solar power generation system with a light-shielding / dimming function, characterized in that, and in the above-described system, The solar cell module is a solar power generation system with a light-shielding / dimming function, characterized in that it can generate power from sunlight reflected and scattered indoors in addition to sunlight incident from the outside. " Patent Document 1). However, there is no description or suggestion about a method for solving the problem of variation in the growth state of agricultural and horticultural crops because shadows are caused by portions other than the daylighting portion. In addition, even during the cold season, the temperature inside the house rises greatly by introducing light necessary for the growth of agricultural and horticultural crops into the house during sunny days. In the case of agricultural and horticultural crops, such as strawberries and lettuce, which tend to be hindered by raising the temperature, there is no description or suggestion about a method for solving the problem of requiring cooling.

特開2002−026357号公報JP 2002-026357 A

本発明の課題は、任意の低い位置に採光部分を有する太陽光発電システムのアレイを設置しても、農園芸作物の受け取る光量が場所によらず一定となり、その生育状態のばらつきを小さくすることのできる太陽光発電システムを備えた農園芸用施設を提供することにある。本発明の更なる課題は、農園芸作物の生育に必要な光は透過させつつ、その余の光は効率的に太陽光発電に利用し、農園芸用施設内部の温度上昇を抑制することのできる太陽光発電システムを備えた農園芸用施設を提供することにある。
The problem of the present invention is that even if an array of a solar power generation system having a daylighting portion is installed at an arbitrarily low position, the amount of light received by agricultural and horticultural crops is constant regardless of the location, and the variation in the growth state is reduced. It is to provide an agricultural and horticultural facility equipped with a solar power generation system capable of generating energy. A further problem of the present invention is that light necessary for the growth of agricultural and horticultural crops is transmitted while the remaining light is efficiently used for solar power generation to suppress an increase in temperature inside the agricultural and horticultural facilities. The purpose is to provide a farming and horticultural facility equipped with a solar power generation system that can be used.

本発明者は、鋭意研究した結果、採光部分を有する太陽光発電システムの採光部分を透過した光を、光拡散性部材に入射させ、その透過拡散光を農園芸用施設内部へと入射させることにより、上記課題を達成できることを見出した。 As a result of earnest research, the inventor makes light transmitted through a daylighting part of a solar power generation system having a daylighting part incident on a light diffusing member, and causes the transmitted diffused light to enter the inside of an agricultural or horticultural facility. Thus, it has been found that the above-mentioned problems can be achieved.

すなわち、本発明は、農園芸用施設であって、
(A)太陽光が直射する箇所の少なくとも一部分に、採光部分を有する太陽光発電システムが、設けられていること;
(B)光拡散性部材が、上記太陽光発電システムの採光部分を透過した光の少なくとも一部が入射するように、かつ、上記光拡散性部材を透過した光の少なくとも一部は、施設内部に入射するように設けられていること;
を特徴とする農園芸用施設である。
That is, the present invention is an agricultural and horticultural facility,
(A) A solar power generation system having a daylighting portion is provided in at least a part of a portion where sunlight directly shines;
(B) The light diffusing member is such that at least a part of the light transmitted through the daylighting part of the solar power generation system is incident, and at least a part of the light transmitted through the light diffusing member is inside the facility. To be incident on the
It is an agricultural and horticultural facility characterized by

第二の発明は、上記採光部分を有する太陽光発電システムが、更に、両面発電型モジュールと赤外線反射部材とを有し、上記赤外線反射部材は、
(C)赤外線反射率が30%以上;かつ、
(D)可視光線透過率が50%以上;
であり、
(E)上記太陽光発電システムの採光部分を透過した光の少なくとも一部は、上記赤外線反射部材に入射するように構成されていること;
(F)上記赤外線反射部材で反射された赤外線の少なくとも一部は、上記両面発電型モジュールに入射するように構成されていること;
を特徴とする第一の発明に記載の農園芸用施設である。
According to a second aspect of the present invention, a solar power generation system having the daylighting portion further includes a double-sided power generation type module and an infrared reflecting member, and the infrared reflecting member is
(C) Infrared reflectance is 30% or more; and
(D) Visible light transmittance is 50% or more;
And
(E) At least a part of the light transmitted through the daylighting portion of the solar power generation system is configured to be incident on the infrared reflecting member;
(F) At least a part of infrared rays reflected by the infrared reflecting member is configured to be incident on the double-sided power generation type module;
An agricultural and horticultural facility according to the first invention, characterized in that

第三の発明は、農園芸用施設内部に入射する可視光線の少なくとも一部が、更に波長500〜600ナノメートルに吸収極大を有する色素を含む媒体を透過後、施設内部に入射することを特徴とする第一の発明又は第二の発明に記載の農園芸用施設である。
A third invention is characterized in that at least a part of visible light incident on the inside of an agricultural and horticultural facility is further transmitted through a medium containing a dye having an absorption maximum at a wavelength of 500 to 600 nanometers and then incident on the inside of the facility. The facility for agricultural and horticultural use described in the first invention or the second invention.

本発明の太陽光発電システムを備えた農園芸用施設は、任意の低い位置に採光部分を有する太陽光発電システムのアレイを設置しても、農園芸作物の受け取る光量が場所によらず一定となり、その生育状態のばらつきを小さくすることができる。また本発明の第二の発明及び第三の発明では、更に農園芸作物の生育に不必要な光は効率的に太陽光発電に利用することができ、農園芸用施設内部の温度上昇を抑制することができる。そのためイチゴやレタスなどの高温に弱い作物の栽培に好適に用いることができる。
Agricultural and horticultural facilities equipped with the solar power generation system of the present invention have a constant amount of light received by agricultural and horticultural crops regardless of location, even if an array of solar power generation systems having a daylighting portion is installed at an arbitrarily low position. The variation in the growth state can be reduced. In the second and third inventions of the present invention, light unnecessary for the growth of agricultural and horticultural crops can be efficiently used for solar power generation, and the temperature rise inside the agricultural and horticultural facilities is suppressed. can do. Therefore, it can be suitably used for cultivation of crops that are vulnerable to high temperatures such as strawberries and lettuce.

本発明の農園芸用施設は、(A)太陽光が直射する箇所の少なくとも一部分に、採光部分を有する太陽光発電システムが、設けられていること;を特徴とする。 The agricultural and horticultural facility according to the present invention is characterized in that (A) a solar power generation system having a daylighting portion is provided in at least a part of a portion where sunlight directly shines.

本明細書において、「農園芸用施設」とは、農園芸用ハウスのみならず、農地に設置された架台に太陽光発電システムを設置した施設も含む用語である。また「農園芸用施設内部」とは、農園芸用ハウスの場合はハウス内部であり、農地に設置された架台に太陽光発電システムを設置した施設の場合は、太陽光発電システムの下となる場所である。 In this specification, “agricultural and horticultural facilities” is a term including not only agricultural and horticultural houses but also facilities in which a photovoltaic power generation system is installed on a pedestal installed on farmland. “Agricultural and horticultural facilities” means the interior of the house for agricultural and horticultural houses, and under the solar power generation system for facilities with a solar power generation system installed on a stand installed on farmland. Is a place.

本発明の農園芸用施設を図1を用いて説明する。太陽光発電システムの採光部分1を透過した光4は、光拡散性部材3に入射し、拡散された光5が農園芸施設内部に入射する。太陽光発電システムは、農園芸用施設の太陽光が直射する箇所の少なくとも一部分に、設けられているため、太陽電池モジュールの表面に入射する光6により、効率的に発電が行われる。 The agricultural and horticultural facilities of the present invention will be described with reference to FIG. The light 4 transmitted through the daylighting portion 1 of the solar power generation system is incident on the light diffusing member 3, and the diffused light 5 is incident on the inside of the agricultural and horticultural facility. Since the solar power generation system is provided in at least a part of the direct sunlight of the agricultural and horticultural facilities, power generation is efficiently performed by the light 6 incident on the surface of the solar cell module.

上記太陽光発電システムの採光部分は、発電要素と発電要素との間に設けた隙間である。隙間の設け方は制限されず、任意である。例えば、太陽電池セルに隙間を施したタイプ、太陽電池モジュールのセルとセルとの間に隙間を設けたタイプ、太陽電池アレイのモジュールとモジュールとの間に隙間を設けたタイプ、太陽電池アレイと太陽電池アレイとの間に隙間を設けたタイプ、及びこれらを任意に組み合わせたタイプなどをあげることができる。隙間の形も任意であり、例えば、直線状、曲線状、円形、三角形、四角形、六角形などの連続した、又は/及び独立した隙間を設けることができる。 The daylighting part of the solar power generation system is a gap provided between the power generation element and the power generation element. The method of providing the gap is not limited and is arbitrary. For example, a type with a gap between solar cells, a type with a gap between cells of a solar cell module, a type with a gap between modules of a solar cell array, a solar cell array, The type which provided the clearance gap between solar cell arrays, the type which combined these arbitrarily, etc. can be mention | raise | lifted. The shape of the gap is also arbitrary. For example, a continuous or / and independent gap such as a straight line, a curved line, a circle, a triangle, a quadrangle, and a hexagon can be provided.

なお本明細書において、太陽電池セルとは、太陽電池素子そのもののことであり、太陽電池の基本単位となるものである。太陽電池モジュールとは、太陽電池セルを複数並べて配線し、強化ガラス等で保護・パッケージ化したものである。太陽電池アレイとは、太陽電池モジュールを複数並べて配線したものであり、太陽光発電システムの発電要素の設置単位となるものである。太陽光発電システムとはアレイ、及び制御系等を含むものである。 In addition, in this specification, a photovoltaic cell is a solar cell element itself, and becomes a basic unit of a solar cell. A solar cell module is a device in which a plurality of solar cells are arranged and wired and protected and packaged with tempered glass or the like. A solar cell array is a unit in which a plurality of solar cell modules are arranged and wired, and is a unit for installing power generation elements of a solar power generation system. The solar power generation system includes an array, a control system, and the like.

上記太陽光発電システムの採光部分の全光線透過率は、通常50%以上である。農園芸作物の生育や、発電効率の観点から、採光部分の全光線透過率は高いほど好ましく、70%以上が好ましい。 The total light transmittance of the daylighting part of the solar power generation system is usually 50% or more. From the viewpoint of growth of agricultural and horticultural crops and power generation efficiency, the total light transmittance of the daylighting portion is preferably as high as possible, and preferably 70% or more.

上記太陽光発電システムの採光部分の面積の、太陽光発電システムの全太陽光受光面積に対する割合は、特に制限されず、採光部分の全光線透過率や農園芸用施設内部で栽培される作物の種類などを勘案して、任意に決めることができる。例えば、イチゴやレタスなどの高温に弱い作物を栽培するときは、遮光効果を大きくするため、上記割合を小さくすることが好ましい。 The ratio of the area of the daylighting part of the solar power generation system to the total sunlight receiving area of the solar power generation system is not particularly limited, and the total light transmittance of the daylighting part and the crops grown in the agricultural and horticultural facilities are not limited. It can be decided arbitrarily considering the type. For example, when cultivating crops that are vulnerable to high temperatures such as strawberries and lettuce, it is preferable to reduce the ratio in order to increase the light-shielding effect.

本発明の農園芸用施設に使用する太陽光発電システムは、採光部分を有すること以外は制限されず、任意のシステムを使用することができるが、上記光拡散性部材で反射されて太陽電池モジュールの裏面に入射する光を発電に用いることができるように、両面発電型を使用することが好ましい。 The solar power generation system used for the agricultural and horticultural facilities of the present invention is not limited except that it has a daylighting portion, and any system can be used, but the solar cell module is reflected by the light diffusing member. It is preferable to use a double-sided power generation type so that light incident on the back surface of the surface can be used for power generation.

本発明の農園芸用施設は、(B)光拡散性部材が、上記太陽光発電システムの採光部分を透過した光の少なくとも一部が入射するように、かつ、上記光拡散性部材を透過した光の少なくとも一部は、施設内部に入射するように設けられていること;を特徴とする。 In the agricultural and horticultural facility of the present invention, (B) the light diffusing member is transmitted through the light diffusing member so that at least part of the light transmitted through the daylighting portion of the solar power generation system is incident. At least a part of the light is provided so as to be incident on the inside of the facility.

太陽光発電システムが採光部分を有していても、採光部分以外の箇所による影が出来るため、農園芸作物の受け取る光量は場所により違うものになる。光量の位置依存性は、太陽光発電システムの採光部分からの距離を十分に遠くすることによっても減じることはできるが、そのためには太陽光発電システムのアレイを非常に高い位置に設置しなくてはならなくなる。するとシステムのメンテナンスは高所作業となり、その作業性や安全性は低いものになる。また高所であるため、システムが強風により被害を受け易いという問題も生じる。そこで本発明においては、採光部分を透過した光を光拡散性部材に入射させ、その透過拡散光を農園芸用施設内部へと入射させることにより、任意の低い位置に太陽電池システムのアレイを設置したとしても、光量の位置依存性を減らし、農園芸作物の受け取る光量が場所によらず一定となり、その生育状態のばらつきを小さくすることができるようにしたものである。 Even if the solar power generation system has a daylighting part, shadows are produced by places other than the daylighting part, so the amount of light received by the agricultural and horticultural crops varies depending on the place. The position dependency of the amount of light can be reduced by sufficiently increasing the distance from the daylighting part of the photovoltaic system, but for this purpose, the array of photovoltaic systems must be installed at a very high position. Will not be. Then, the maintenance of the system becomes a work at a high place, and its workability and safety are low. Also, because of the high location, there is a problem that the system is easily damaged by strong winds. Therefore, in the present invention, the light transmitted through the daylighting part is incident on the light diffusing member, and the transmitted diffused light is incident on the inside of the agricultural and horticultural facilities, thereby installing the solar cell system array at an arbitrarily low position Even so, the position dependency of the amount of light is reduced, the amount of light received by the agricultural and horticultural crops is constant regardless of the location, and the variation in the growth state can be reduced.

なお本発明の農園芸用施設では、太陽光発電システムのアレイを、任意の低い位置に設置することができるが、実際の設置高さは、通常、農園芸用施設で栽培される作物の生育や施設内部における農作業性に支障のない高さを勘案して決定することが好ましい In the agricultural and horticultural facilities of the present invention, the array of the photovoltaic power generation system can be installed at an arbitrarily low position, but the actual installation height is usually the growth of crops cultivated in the agricultural and horticultural facilities. It is preferable to decide in consideration of the height that does not hinder the farm workability inside the facility

上記光拡散性部材は、十分な光拡散性が得られ、全光線透過率の高いものであれば制限されず、任意のものを用いることができる。例えば、透明樹脂からなるマトリックス中に、光拡散剤を分散させた樹脂組成物からなる部材をあげることができる。 The light diffusing member is not limited as long as sufficient light diffusibility is obtained and the total light transmittance is high, and any member can be used. For example, a member made of a resin composition in which a light diffusing agent is dispersed in a matrix made of a transparent resin can be mentioned.

上記透明樹脂としては、ポリメタクリル酸エステル系樹脂、ポリスチレン系樹脂及びポリカーボネート系樹脂などをあげることができる。 Examples of the transparent resin include polymethacrylate resins, polystyrene resins and polycarbonate resins.

上記光拡散剤としては、結晶性シリカ、無定形シリカ、炭酸カルシウム、硫酸バリウム、水酸化アルミニウム、及び酸化チタン等の無機系微粒子;ガラス繊維等の無機系繊維;架橋アクリル系粒子、架橋シリコン系粒子及び架橋スチレン系粒子等の架橋樹脂微粒子;などをあげることができる。 Examples of the light diffusing agent include inorganic fine particles such as crystalline silica, amorphous silica, calcium carbonate, barium sulfate, aluminum hydroxide, and titanium oxide; inorganic fibers such as glass fibers; crosslinked acrylic particles, and crosslinked silicon And fine particles of crosslinked resin such as particles and crosslinked styrene-based particles.

上記光拡散性部材の形状は、任意である。通常は、シート状のものが好ましく使用できるが、これに制限されない。 The shape of the light diffusing member is arbitrary. Usually, a sheet-like material can be preferably used, but is not limited thereto.

上記光拡散性部材の光拡散性は、図2に示すように、光拡散性部材3の表面に、光線を光源7から入射角0°で入射したとき、透過光(出射光)の光量が、0°の値の1/2の値になる角度θとして評価することができる。上記角度θは、大きいほど光拡散性が良好なことを示す。上記光拡散性部材の光拡散性は、全光線透過率を高く保持できる範囲内において、大きいほど好ましい。島津製作所株式会社の分光光度計「SolidSpec−3700(商品名)」を使用し、波長380〜780ナノメートルの全範囲における日射を測定光として用いて測定したとき、上記角度θは好ましくは20°以上、より好ましくは23°以上である。 As shown in FIG. 2, the light diffusibility of the light diffusing member is such that when the light beam is incident on the surface of the light diffusing member 3 from the light source 7 at an incident angle of 0 °, the amount of transmitted light (emitted light) is , And can be evaluated as an angle θ that is a half value of 0 °. The larger the angle θ, the better the light diffusibility. The light diffusibility of the light diffusing member is preferably as large as possible within a range where the total light transmittance can be kept high. When a spectrophotometer “SolidSpec-3700 (trade name)” manufactured by Shimadzu Corporation is used and the solar radiation in the entire range of wavelengths of 380 to 780 nanometers is measured as measurement light, the angle θ is preferably 20 °. More preferably, it is 23 ° or more.

上記光拡散性部材の全光線透過率は、80%以上が好ましく、85%以上がより好ましい。全光線透過率は、高いほど好ましい。 The total light transmittance of the light diffusing member is preferably 80% or more, and more preferably 85% or more. A higher total light transmittance is preferable.

なお本明細書において、全光線透過率は、JIS K 7361−1:1997に従い、日本電色工業株式会社の濁度計「NDH2000」(商品名)を用いて測定した値である。 In this specification, the total light transmittance is a value measured using a turbidimeter “NDH2000” (trade name) manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS K 7361-1: 1997.

以下、本発明の第二の発明について説明する。本発明の第二の発明は、上記採光部分を有する太陽光発電システムが、更に、両面発電型モジュールと赤外線反射部材とを有し、上記赤外線反射部材は、(C)赤外線反射率が30%以上;かつ、(D)可視光線透過率が50%以上;であり、(E)上記太陽光発電システムの採光部分を透過した光の少なくとも一部は、上記赤外線反射部材に入射するように構成されていること;(F)上記赤外線反射部材で反射された赤外線の少なくとも一部は、上記両面発電型モジュールに入射するように構成されていること;を特徴とする第一の発明に記載の農園芸用施設である。 The second invention of the present invention will be described below. According to a second aspect of the present invention, the photovoltaic power generation system having the daylighting portion further includes a double-sided power generation type module and an infrared reflecting member, and the infrared reflecting member has (C) an infrared reflectance of 30%. And (D) visible light transmittance is 50% or more; and (E) at least part of the light transmitted through the daylighting portion of the solar power generation system is incident on the infrared reflecting member. (F) at least a part of infrared rays reflected by the infrared reflecting member is configured to be incident on the double-sided power generation type module. Agricultural and horticultural facilities.

上記両面発電型モジュールは、両面からの発電が可能なモジュールである。本発明に使用する両面発電型モジュールは、特に制限されず、例えば、表裏対象構造の太陽電池セルを、表面ガラスと裏面ガラスとでサンドイッチ構造にしたモジュール;表面のみ発電可能なモジュールを組み合わせ、モジュール組合体として両面からの発電を可能にしたもの;など任意の両面からの発電が可能なモジュールを使用することができるが、裏面側で発電に使用する光は、主に上記赤外線反射部材で反射された赤外線となるので、少なくとも裏面側については、赤外線領域の分光感度の高いものが好ましい。赤外線領域の分光感度の高いものとしては、例えば、結晶シリコン型、CIS(カルコパイライト)型などをあげることができる。 The double-sided power generation type module is a module that can generate power from both sides. The double-sided power generation type module used in the present invention is not particularly limited. For example, a module in which a solar cell having a front and back target structure is sandwiched between a front glass and a back glass; Modules that can generate power from both sides, such as those that allow power generation from both sides as a combined body, can be used, but the light used for power generation on the back side is mainly reflected by the infrared reflecting member Therefore, it is preferable that at least the back side has high spectral sensitivity in the infrared region. Examples of high spectral sensitivity in the infrared region include a crystalline silicon type and a CIS (chalcopyrite) type.

上記赤外線反射部材は、赤外線は反射し、可視光線は透過する部材であり、(C)赤外線反射率は30%以上であり;かつ、(D)可視光線透過率は50%以上である。 The infrared reflecting member is a member that reflects infrared rays and transmits visible light, (C) has an infrared reflectance of 30% or higher; and (D) has a visible light transmittance of 50% or higher.

なお本明細書において、赤外線反射率は、波長780〜2500ナノメートルの全範囲における日射の反射率が100%であると仮定した場合の反射スペクトルの積分面積に対する波長780〜2500ナノメートルにおける日射の反射スペクトルの積分面積の割合であり、島津製作所株式会社の分光光度計「SolidSpec−3700(商品名)」を用い、光を入射角0°で赤外線反射部材に入射させて測定した値である。 In this specification, the infrared reflectance is the reflectance of solar radiation at a wavelength of 780 to 2500 nanometers with respect to the integrated area of the reflection spectrum when the reflectance of solar radiation in the entire range of wavelengths of 780 to 2500 nanometers is assumed to be 100%. It is the ratio of the integrated area of the reflection spectrum, and is a value measured by using a spectrophotometer “SolidSpec-3700 (trade name)” manufactured by Shimadzu Corporation and making light incident on an infrared reflecting member at an incident angle of 0 °.

また可視光線透過率は、波長380〜780ナノメートルの全範囲における日射の透過率が100%であると仮定した場合の透過スペクトルの積分面積に対する波長380〜780ナノメートルにおける日射の透過スペクトルの積分面積の割合であり、島津製作所株式会社の分光光度計「SolidSpec−3700(商品名)」を用い、光を入射角0°で赤外線反射部材に入射させて測定した値である。 The visible light transmittance is the integral of the transmission spectrum of solar radiation at a wavelength of 380 to 780 nanometers with respect to the integrated area of the transmission spectrum when the transmittance of solar radiation in the entire range of wavelengths of 380 to 780 nanometers is assumed to be 100%. It is a ratio of an area, and is a value measured by using a spectrophotometer “SolidSpec-3700 (trade name)” manufactured by Shimadzu Corporation and making light incident on an infrared reflecting member at an incident angle of 0 °.

上記(C)赤外線反射率は、好ましくは40%以上である。(C)赤外線反射率は、高いほど太陽光発電効率が上がり、農園芸用施設内部の温度上昇を抑制することができるため好ましい。また上記(D)可視光線透過率は、好ましくは70%以上であり、より好ましくは80%以上である。(D)可視光線透過率は、高いほど農作物の生育の観点から好ましい。 The (C) infrared reflectance is preferably 40% or more. (C) The higher the infrared reflectance, the higher the photovoltaic power generation efficiency, and the more the temperature inside the agricultural and horticultural facilities can be suppressed. The visible light transmittance (D) is preferably 70% or more, and more preferably 80% or more. (D) The higher the visible light transmittance, the more preferable from the viewpoint of growing crops.

本発明に使用する赤外線反射部材は、上記特性(C)及び(D)を満たすこと以外は特に制限されず、任意の赤外線反射部材を使用することができる。 The infrared reflecting member used in the present invention is not particularly limited except that the above characteristics (C) and (D) are satisfied, and any infrared reflecting member can be used.

好ましい赤外線反射部材としては、例えば、二軸延伸ポリエチレンテレフタレートフィルムなどの任意の透明ウェブ基材の少なくとも片面に、スパッタリング、蒸着、及びコーティング等の手法を用いて、高屈折率層と低屈折率層とを交互に多積層したもの;高屈折率の透明熱可塑性樹脂組成物と低屈折率の透明熱可塑性樹脂組成物との共押出交互多層積層体;などの光学的な干渉により赤外線を反射するものをあげることができる。 As a preferable infrared reflecting member, for example, a high refractive index layer and a low refractive index layer are formed on at least one surface of an arbitrary transparent web substrate such as a biaxially stretched polyethylene terephthalate film using a technique such as sputtering, vapor deposition, and coating. Infrared rays are reflected by optical interference, such as a co-extruded alternating multi-layer laminate of a transparent thermoplastic resin composition having a high refractive index and a transparent thermoplastic resin composition having a low refractive index; I can give you something.

上記赤外線反射部材の形状は、任意であり、特に制限されない。例えば、フィルム状、プリズム状など任意のものを使用することができる。 The shape of the infrared reflecting member is arbitrary and is not particularly limited. For example, arbitrary things, such as a film form and a prism form, can be used.

本発明の第二の発明に使用する太陽光発電システムは、(E)上記採光部分を透過した光の少なくとも一部は、上記赤外線反射部材に入射するように構成され、(F)上記赤外線反射部材で反射された赤外線の少なくとも一部は、上記両面発電型モジュールに入射するように構成されている。そして両面発電型モジュールにおいて入射した赤外線を使用して発電が行われる。 The photovoltaic power generation system used in the second invention of the present invention is configured such that (E) at least part of the light transmitted through the daylighting portion is incident on the infrared reflection member, and (F) the infrared reflection. At least a part of infrared rays reflected by the member is configured to enter the double-sided power generation type module. Then, power generation is performed using the incident infrared rays in the double-sided power generation type module.

上記構成(E)及び上記構成(F)の実施態様としては、例えば、図3や図4に示すように、上記採光部分を透過した光が、上記赤外線反射部材に直接入射するように構成しても良いし、例えば、図5に示すように、上記採光部分を透過した光を1以上の鏡などの全光線反射部材で反射し、上記赤外線反射部材に間接的に入射するように構成しても良い。赤外線反射部材に直接入射する実施態様では、システムを簡素で低コストなものにすることができる。赤外線反射部材に間接的に入射する実施態様では、赤外線反射部材により反射された赤外線が、両面発電型モジュールに入射することなく、再び採光部分を透過してしまうというロスを減らすことができる。 As an embodiment of the configuration (E) and the configuration (F), for example, as shown in FIGS. 3 and 4, the light transmitted through the daylighting portion is directly incident on the infrared reflecting member. For example, as shown in FIG. 5, the light transmitted through the daylighting portion is reflected by a total light reflecting member such as one or more mirrors and indirectly incident on the infrared reflecting member. May be. In an embodiment that is directly incident on the infrared reflecting member, the system can be simple and low cost. In the embodiment in which the light is indirectly incident on the infrared reflecting member, it is possible to reduce the loss that the infrared light reflected by the infrared reflecting member is transmitted through the daylighting portion again without entering the double-sided power generation type module.

本発明の第二の発明においても第一の発明と同様に、上記赤外線反射部材を透過した可視光線の少なくとも一部、好ましくは全部は、光拡散性部材に入射し、かつ上記光拡散性部材を透過した光の少なくとも一部、好ましくは全部が農園芸用施設内部に入射するように構成する。好ましい実施態様としては、赤外線反射シートと光拡散性シートとの積層体を、赤外線反射シート側を両面発電型モジュール側に(光拡散性シート側を農園芸用施設内部側に)して設置する態様をあげることができる。この実施態様は、赤外線反射部材を透過した可視光線の全部が光拡散性部材に入射し、かつ省スペースである。 Also in the second invention of the present invention, as in the first invention, at least a part, preferably all of the visible light transmitted through the infrared reflecting member is incident on the light diffusing member, and the light diffusing member. At least a part, preferably all of the light transmitted through the light enters the agricultural / horticultural facility. As a preferred embodiment, a laminate of an infrared reflecting sheet and a light diffusing sheet is installed with the infrared reflecting sheet side facing the double-sided power generation type module (the light diffusing sheet side facing the agricultural / horticultural facility inside). Embodiments can be mentioned. In this embodiment, all of the visible light transmitted through the infrared reflecting member is incident on the light diffusing member, and the space is saved.

また休耕中は、農園芸用施設内部に光を入射させても何ら得るものはないため、例えば図5に示す実施態様において、上記採光部分を透過した光を、上記赤外線反射部材に入射させずに、上記全光線反射部材からの反射光の全てを、上記両面発電型モジュールに入射させるようにしてもよい。 Further, during fallowing, nothing can be obtained even if light is incident on the inside of the agricultural and horticultural facilities. For example, in the embodiment shown in FIG. 5, the light transmitted through the daylighting portion is not incident on the infrared reflecting member. In addition, all of the reflected light from the total light reflection member may be incident on the double-sided power generation type module.

本発明の第二の発明の農園芸用施設では、赤外線は上記赤外線反射部材により反射され、農園芸用施設内部には入射しないため、内部温度の上昇を大きく抑制することができるという更なる効果を有する。 In the agricultural and horticultural facility according to the second aspect of the present invention, the infrared ray is reflected by the infrared reflecting member and does not enter the agricultural and horticultural facility, so that an increase in the internal temperature can be greatly suppressed. Have

以下、本発明の第三の発明について説明する。第三の発明では、第一の発明又は第二の発明の農園芸用施設に、更に波長500〜600ナノメートルに吸収極大を有する色素を含む媒体を有し、波長500〜600ナノメートルの光を吸収する装置又は部材が、施設内部に入射する可視光線の少なくとも一部が、上記媒体を透過後に施設内部に入射するように設けられている。通常の農園芸作物の生育に必要とする光は、可視光線の中でも波長400〜500ナノメートルと600〜700ナノメートルの光であり(文献1)、波長500〜600ナノメートルの光は生育への寄与は小さい。一方、施設内部の温度を上昇させる影響は大きい。そのため本発明の第三の発明は、農園芸作物の生育に影響を及ぼすことなく、農園芸用施設内部の温度上昇を更に大きく抑制することができる The third invention of the present invention will be described below. In the third invention, the agricultural or horticultural facility according to the first invention or the second invention further includes a medium containing a dye having an absorption maximum at a wavelength of 500 to 600 nanometers, and light having a wavelength of 500 to 600 nanometers. The device or member that absorbs the light is provided so that at least a part of the visible light incident on the facility enters the facility after passing through the medium. The light required for the growth of ordinary agricultural and horticultural crops is light with wavelengths of 400 to 500 nanometers and 600 to 700 nanometers in visible light (Reference 1), and light with a wavelength of 500 to 600 nanometers grows. The contribution of is small. On the other hand, the effect of increasing the temperature inside the facility is significant. Therefore, the third invention of the present invention can further suppress the temperature rise inside the agricultural and horticultural facilities without affecting the growth of agricultural and horticultural crops.

(文献1)植物の成長・発育と光質の関係
http://www.nodai.ac.jp/journal/research/amaki/050708.html
(Reference 1) Relationship between plant growth and development and light quality
http://www.nodai.ac.jp/journal/research/amaki/050708.html

上記波長400〜500ナノメートルと600〜700ナノメートルの光を透過し、波長500〜600ナノメートルの光を吸収する装置又は部材としては、例えば、ガラスなどの透明部材で構成した槽や流路の中に、ローダミンB(ベーシックバイオレット10)などの波長500〜600ナノメートルに吸収極大を有する色素を、適量溶解させた水などの熱交換媒体を適宜循環させる、熱交換媒体循環装置をあげることができる。上記装置は、施設内部に入射する可視光線の少なくとも一部が、上記装置を透過後に施設内部に入射するように設置する。好ましい実施態様としては、例えば、上記槽を深さの非常に浅い直方体等の箱状のもので構成し、その底面に光拡散性シートを、所望によりその平面に赤外線反射シートを、設置する態様;その平面に光拡散性シートを、所望により該光拡散性シートの上に赤外線反射シートを積層して、設置する態様;などをあげることができる。 As an apparatus or member that transmits light having a wavelength of 400 to 500 nanometers and 600 to 700 nanometers and that absorbs light having a wavelength of 500 to 600 nanometers, for example, a tank or a channel formed of a transparent member such as glass Among them, a heat exchange medium circulation device for appropriately circulating a heat exchange medium such as water in which an appropriate amount of a dye having an absorption maximum at a wavelength of 500 to 600 nanometers such as rhodamine B (basic violet 10) is circulated. Can do. The apparatus is installed such that at least part of visible light incident on the inside of the facility enters the facility after passing through the apparatus. As a preferable embodiment, for example, the above-mentioned tank is configured by a box-shaped object such as a rectangular parallelepiped having a very shallow depth, and a light diffusing sheet is installed on the bottom surface, and an infrared reflecting sheet is installed on the flat surface if desired. A mode in which a light diffusive sheet is laminated on the plane, and an infrared reflecting sheet is laminated on the light diffusive sheet, if desired, and the like are installed.

上記装置により吸収した波長500〜600ナノメートルの光のエネルギーは、熱エネルギーとして用いることができる。 The energy of light having a wavelength of 500 to 600 nanometers absorbed by the above apparatus can be used as thermal energy.

また上記波長400〜500ナノメートルと600〜700ナノメートルの光を透過し、波長500〜600ナノメートルの光を吸収する部材としては、例えば、二軸延伸ポリエチレンテレフタレートフィルムなどの任意の透明ウェブ基材の少なくとも片面に、波長500〜600ナノメートルに吸収極大を有する色素を含む硬化性樹脂塗膜を設けたもの;波長500〜600ナノメートルに吸収極大を有する色素を含む透明熱可塑性樹脂組成物からなるフィルム;などをあげることができる。 Moreover, as a member which transmits the light of the said wavelength 400-500 nanometer and 600-700 nanometer, and absorbs the light of wavelength 500-600 nanometer, for example, arbitrary transparent web groups, such as a biaxially-stretched polyethylene terephthalate film, are used. A transparent thermoplastic resin composition containing a pigment having an absorption maximum at a wavelength of 500 to 600 nanometers, provided on at least one surface of the material with a pigment having an absorption maximum at a wavelength of 500 to 600 nanometers The film which consists of;

上記フィルム状部材を用いる場合の好ましい実施態様としては、例えば、上記フィルム状部材の農園芸用施設内部側の面に光拡散性シートを、所望によりその反対側の面に赤外線反射シートを積層する態様;上記フィルム状部材の太陽発電モジュール側の面に光拡散性シートを、所望により該光拡散性シートの上に赤外線反射シートを積層する態様;などをあげることができる。 As a preferable embodiment in the case of using the film-like member, for example, a light diffusing sheet is laminated on the surface of the film-like member inside the agricultural and horticultural facility, and an infrared reflection sheet is laminated on the opposite surface as desired. Aspect: A mode in which a light diffusive sheet is laminated on the surface of the film-like member on the solar power generation module side, and an infrared reflective sheet is laminated on the light diffusive sheet if desired.

本発明の構成が、実施例により具体的に説明されたが、これらは本発明を例示的に説明したものに過ぎず、本発明の技術分野における通常の知識を有する者であれば、本発明の本質的な特徴から外れない範囲内で様々な変形が可能である。本明細書に開示された実施例により、本発明の技術思想と技術的範囲が何ら限定されるものではない。本発明の技術的範囲は、特許請求の範囲の記載に基づいて定められるべきであり、これと同等の範囲内にある全ての技術は、本発明の技術的範囲に含まれるものと解釈されるべきである。
The configuration of the present invention has been specifically described by way of examples. However, these are merely illustrative examples of the present invention, and those who have ordinary knowledge in the technical field of the present invention can use the present invention. Various modifications are possible without departing from the essential characteristics of the above. The technical idea and technical scope of the present invention are not limited by the embodiments disclosed in the present specification. The technical scope of the present invention should be determined based on the description of the scope of claims, and all the techniques within the equivalent scope are interpreted as being included in the technical scope of the present invention. Should.

本発明の第一の発明の農園芸施設の一例を示す概念図である。It is a conceptual diagram which shows an example of the agricultural and horticultural facilities of 1st invention of this invention. 光拡散性部材の光拡散性を評価する装置の一例を示す概念図である。It is a conceptual diagram which shows an example of the apparatus which evaluates the light diffusibility of a light diffusable member. 本発明の第二の発明の発明に用いる太陽光発電システムの一例を示す概念図である。It is a conceptual diagram which shows an example of the solar energy power generation system used for invention of 2nd invention of this invention. 本発明の第二の発明の発明に用いる太陽光発電システムの他の一例を示す概念図である。It is a conceptual diagram which shows another example of the solar power generation system used for invention of 2nd invention of this invention. 本発明の第二の発明の発明に用いる太陽光発電システムの他の一例を示す概念図である。It is a conceptual diagram which shows another example of the solar power generation system used for invention of 2nd invention of this invention.

1:採光部分
2:太陽光発電システムのモジュール
3:光拡散性部材
4:採光部分を透過する光
5:光拡散性部材3で拡散され、農園芸用施設内部に入射する光
6:太陽光発電システムのモジュール2又は両面発電型モジュール9の表面に入射する光
7:光拡散性評価装置の光源
8:光拡散性部材3を透過した光の光量が、0°の値の1/2の値になる角度θ
9:太陽光発電システムの両面発電型モジュール
10:赤外線反射部材
11:赤外線反射部材10を透過した可視光線
12:赤外線反射部材10で反射され、両面発電型モジュール9の裏面に入射する赤外線
13:全光線反射部材
14:全光線反射部材13で反射され、赤外線反射部材10に入射する光
1: Daylighting part 2: Module 3 of solar power generation system: Light diffusing member 4: Light passing through the daylighting part 5: Light diffused by the light diffusing member 3 and incident inside the agricultural or horticultural facility 6: Sunlight Light 7 incident on the surface of the module 2 of the power generation system or the double-sided power generation type module 9: Light source 8 of the light diffusibility evaluation device 8: The amount of light transmitted through the light diffusive member 3 is ½ of the value of 0 ° The value of the angle θ
9: Double-sided power generation type module 10 of the solar power generation system 10: Infrared reflecting member 11: Visible light 12 transmitted through the infrared reflecting member 10: Infrared ray 13 reflected by the infrared reflecting member 10 and incident on the back surface of the double-sided power generating module 9: Total light reflection member 14: Light reflected by the total light reflection member 13 and incident on the infrared reflection member 10

Claims (2)

農園芸用施設であって、
(A)太陽光が直射する箇所の少なくとも一部分に、採光部分を有する太陽光発電システムが、設けられていること;
(B)光拡散性部材が、上記太陽光発電システムの採光部分を透過した光の少なくとも一部が入射するように、かつ、上記光拡散性部材を透過した光の少なくとも一部は、施設内部に入射するように設けられていること;
(G)上記採光部分を有する太陽光発電システムは、両面発電型モジュールと赤外線反射部材とを有すること;
上記赤外線反射部材は、
(C)赤外線反射率が30%以上;かつ、
(D)可視光線透過率が50%以上;
であること;
(E)上記太陽光発電システムの採光部分を透過した光の少なくとも一部は、上記赤外線反射部材に入射するように構成されていること;
(F)上記赤外線反射部材で反射された赤外線の少なくとも一部は、上記両面発電型モジュールに入射するように構成されていること;
を特徴とする農園芸用施設。
Agricultural and horticultural facilities,
(A) A solar power generation system having a daylighting portion is provided in at least a part of a portion where sunlight directly shines;
(B) The light diffusing member is such that at least a part of the light transmitted through the daylighting part of the solar power generation system is incident, and at least a part of the light transmitted through the light diffusing member is inside the facility. To be incident on the
(G) The solar power generation system having the daylighting portion includes a double-sided power generation type module and an infrared reflecting member;
The infrared reflecting member is
(C) Infrared reflectance is 30% or more; and
(D) Visible light transmittance is 50% or more;
Be
(E) At least a part of the light transmitted through the daylighting portion of the solar power generation system is configured to be incident on the infrared reflecting member;
(F) At least a part of infrared rays reflected by the infrared reflecting member is configured to be incident on the double-sided power generation type module;
Agricultural and horticultural facilities.
農園芸用施設内部に入射する可視光線の少なくとも一部が、更に波長500〜600ナノメートルに吸収極大を有する色素を含む媒体を透過後、施設内部に入射することを特徴とする請求項1に記載の農園芸用施設。 At least a portion of visible light incident on the internal facilities agricultural and horticultural further after passing through the medium comprising a dye having an absorption maximum in a wavelength 500-600 nanometers to claim 1, characterized in that entering the internal facilities Agricultural and horticultural facilities listed.
JP2014012926A 2014-01-28 2014-01-28 Agricultural and horticultural facilities with solar power generation system Active JP6321384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014012926A JP6321384B2 (en) 2014-01-28 2014-01-28 Agricultural and horticultural facilities with solar power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014012926A JP6321384B2 (en) 2014-01-28 2014-01-28 Agricultural and horticultural facilities with solar power generation system

Publications (2)

Publication Number Publication Date
JP2015139388A JP2015139388A (en) 2015-08-03
JP6321384B2 true JP6321384B2 (en) 2018-05-09

Family

ID=53770204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012926A Active JP6321384B2 (en) 2014-01-28 2014-01-28 Agricultural and horticultural facilities with solar power generation system

Country Status (1)

Country Link
JP (1) JP6321384B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5960332B1 (en) 2015-08-06 2016-08-02 ファームランド株式会社 Soil cultivation system with solar panels
CN112243757A (en) * 2020-11-05 2021-01-22 周凤桂 Complementary modern ecological agricultural device of high-efficient farming light

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059038U (en) * 1983-09-30 1985-04-24 株式会社日立製作所 heat collection device
JP2002026357A (en) * 2000-07-07 2002-01-25 Ebara Corp Photovoltaic power generation system with light shield and light control functions
JP2008035766A (en) * 2006-08-04 2008-02-21 Token Housing:Kk Horticultural facility
JP2009129686A (en) * 2007-11-22 2009-06-11 Kiso Micro Kk Solar battery system
JP2012216609A (en) * 2011-03-31 2012-11-08 Nagasaki Prefecture Solar cell installation-building structure and solar cell panel

Also Published As

Publication number Publication date
JP2015139388A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
Zeyghami et al. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling
JP6600919B2 (en) Condensing mechanism, solar power generation device and window structure
Gentle et al. A subambient open roof surface under the Mid‐Summer sun
WO2008152887A1 (en) Visible light transmitting solar radiation heat reflecting film
ITSV20060031A1 (en) COVERING ELEMENT FOR AGRICULTURAL AND SIMILAR GREENHOUSES, A HALF HEATER FOR AGRICULTURAL OR SIMILAR GREENHOUSES, SYSTEM AND PLANT
KR20110067118A (en) Photovoltaic cell apparatus
US20180219510A1 (en) Distributed light condensation/splitting-based comprehensive solar energy utilization system
TW201229367A (en) A building structure having semi-transparent photovoltaic panels
Bicer et al. Optimal spectra management for self-power producing greenhouses for hot arid climates
Ming et al. Optical evaluation of a smart transparent insulation material for window application
CN117957762A (en) Photovoltaic system for low solar elevation
US8884156B2 (en) Solar energy harvesting device using stimuli-responsive material
JP6321384B2 (en) Agricultural and horticultural facilities with solar power generation system
Song et al. Application of highly concentrated sunlight transmission and daylighting indoor via plastic optical fibers with comprehensive cooling approaches
JP2015513057A (en) Skylight energy management system
JP6263369B2 (en) Solar power generation system and agricultural and horticultural house equipped with the same
JP2012010609A (en) Agricultural sheet
US8040609B1 (en) Self-adjusting solar light transmission apparatus
JP6187949B1 (en) Agricultural house construction method
JP2007264353A (en) Wavelength selective thin film
JP2015208288A (en) Agricultural and horticultural facilities with photovoltaic power generation system
Bisht et al. Study and analysis of parameters affecting tubular daylighting device
JP2015204755A (en) Facility for agricultural and horticultural use equipped with sunlight power generating system
CN100368831C (en) Mask sheet with solar energy collection and solar device therefor
Hebrink Durable polymeric films for increasing the performance of concentrators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180405

R150 Certificate of patent or registration of utility model

Ref document number: 6321384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250