[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6263369B2 - Solar power generation system and agricultural and horticultural house equipped with the same - Google Patents

Solar power generation system and agricultural and horticultural house equipped with the same Download PDF

Info

Publication number
JP6263369B2
JP6263369B2 JP2013242607A JP2013242607A JP6263369B2 JP 6263369 B2 JP6263369 B2 JP 6263369B2 JP 2013242607 A JP2013242607 A JP 2013242607A JP 2013242607 A JP2013242607 A JP 2013242607A JP 6263369 B2 JP6263369 B2 JP 6263369B2
Authority
JP
Japan
Prior art keywords
power generation
agricultural
reflecting member
infrared
infrared reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013242607A
Other languages
Japanese (ja)
Other versions
JP2015103642A (en
Inventor
野村 和弘
和弘 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Technos Corp
Original Assignee
Riken Technos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Technos Corp filed Critical Riken Technos Corp
Priority to JP2013242607A priority Critical patent/JP6263369B2/en
Publication of JP2015103642A publication Critical patent/JP2015103642A/en
Application granted granted Critical
Publication of JP6263369B2 publication Critical patent/JP6263369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/254Roof garden systems; Roof coverings with high solar reflectance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/32Roof garden systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Greenhouses (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、太陽光発電システムに関する。更に詳しくは、農園芸作物の生育に必要な光は透過させつつ、その余の光は効率的に太陽光発電に利用し、農園芸用ハウス内部の温度上昇を抑制することのできる太陽光発電システム、及びこれを備えた農園芸用ハウスに関する。
The present invention relates to a photovoltaic power generation system. More specifically, solar power generation that can transmit light necessary for the growth of agricultural and horticultural crops and efficiently use the remaining light for solar power generation to suppress the temperature rise inside the agricultural and horticultural house. The present invention relates to a system and an agricultural / horticultural house equipped with the system.

近年、石油等の化石燃料や原子力に替わる新たなエネルギー源として、太陽光発電が注目を集めており、住宅や農園芸用ハウスの屋根等への太陽光発電システムの設置が進んでいる。太陽光発電システムを農園芸用ハウスの屋根等に設置する場合は、農園芸作物の生育に必要な光をハウス内に採り入れるため、採光型太陽電池モジュールが使用される。 In recent years, photovoltaic power generation has attracted attention as a new energy source to replace fossil fuels such as oil and nuclear power, and the installation of photovoltaic power generation systems on the roofs of houses and agricultural and horticultural houses is progressing. When the solar power generation system is installed on the roof or the like of an agricultural / horticultural house, a daylighting solar cell module is used in order to incorporate light necessary for the growth of agricultural / horticultural crops into the house.

農園芸用ハウス等に使用する採光型太陽電池モジュールとして、両面発電型のものを使用することは公知であり、「採光部分を有し太陽光を内部に採光するように構成した建物内の該採光部分の直下に、複数枚の太陽電池セルを並設し透明な合成樹脂で被覆してなる薄型軽量太陽電池モジュールを配設するか又は複数の該薄型軽量太陽電池モジュールを配設した構成の太陽電池アレイを設け、前記建物内への採光は前記太陽電池モジュールの太陽電池セルと太陽電池セルの間及び/又は前記太陽電池アレイの太陽電池モジュールと太陽電池モジュールの間から行うようにしたことを特徴とする遮光・調光機能付太陽光発電システム。」、及び上記のシステムにおいて、「太陽電池モジュールに両面発電可能な太陽電池セルを用い、該太陽電池モジュールは屋外から入射する太陽光の他、屋内で反射・散乱した光でも発電できるように構成したことを特徴とする遮光・調光機能付太陽光発電システム。」が提案されている(特許文献1)。しかし、寒冷期であっても、晴天の日中には、農園芸作物の生育に必要な光をハウス内に採り入れることにより、ハウス内部の温度は大きく上昇するため、農園芸用ハウスの内部が高温になることにより育成に障害が生じ易い農園芸作物、例えば、イチゴやレタスなどの場合には、冷房を必要としているという問題を解決する方法については、何の記載も示唆もない。
As a daylighting solar cell module used for an agricultural or horticultural house or the like, it is known to use a double-sided power generation type module, and “the building in a building having a daylighting portion and configured to daylight sunlight inside” is used. A configuration in which a thin and light solar cell module in which a plurality of solar cells are arranged in parallel and covered with a transparent synthetic resin or a plurality of the thin and light solar cell modules is arranged immediately below the daylighting portion. A solar cell array is provided, and the daylighting in the building is performed between the solar cells of the solar cell module and / or between the solar cell modules of the solar cell array. In the solar power generation system with a light-shielding / dimming function, and the above-mentioned system, “the solar battery module uses a solar battery cell capable of generating power on both sides, and the solar battery. Joule is a solar power generation system with a light-shielding / dimming function, characterized in that it can generate electric power not only with sunlight incident from the outside but also with light reflected and scattered indoors (Patent Literature). 1). However, even during the cold season, the temperature inside the house rises greatly by introducing light necessary for the growth of agricultural and horticultural crops into the house during sunny days. In the case of agricultural and horticultural crops, such as strawberries and lettuce, which tend to be hindered by raising the temperature, there is no description or suggestion about a method for solving the problem of requiring cooling.

特開2002−026357号公報JP 2002-026357 A

本発明の課題は、農園芸作物の生育に必要な光は透過させつつ、その余の光は効率的に太陽光発電に利用し、農園芸用ハウス内部の温度上昇を抑制することのできる太陽光発電システム、及びこれを備えた農園芸用ハウスを提供することにある。
The problem of the present invention is that the light necessary for the growth of agricultural and horticultural crops can be transmitted while the remaining light can be efficiently used for solar power generation to suppress the temperature rise inside the agricultural and horticultural house. A photovoltaic power generation system and an agricultural and horticultural house equipped with the photovoltaic power generation system are provided.

本発明者は、鋭意研究した結果、採光型太陽発電モジュールの採光部分を透過した光のうち、赤外線は反射部材により両面発電型モジュールへと入射させ、可視光線は農園芸用ハウス内部へと透過させることにより、上記課題を達成できることを見出した。 As a result of diligent research, the present inventor has made infrared light incident on the double-sided power generation module by the reflecting member among the light transmitted through the daylighting portion of the daylighting solar power generation module, and visible light is transmitted into the agricultural and horticultural house. It has been found that the above-mentioned problems can be achieved by making it.

すなわち、本発明は、太陽光発電システムであって、
(A)採光部分;
(B)両面発電型モジュール;
(C)赤外線反射部材;
を有し、上記(C)赤外線反射部材は、
(D)赤外線反射率が30%以上;
(E)可視光線透過率が50%以上;
であり、
(F)上記(A)採光部分を透過した光の少なくとも一部は、上記(C)赤外線反射部材に入射するように構成され;
(G)上記(C)赤外線反射部材で反射された赤外線の少なくとも一部は、上記(B)両面発電型モジュールに入射するように構成されている;
太陽光発電システムである。
That is, the present invention is a photovoltaic power generation system,
(A) Daylighting part;
(B) Double-sided power generation type module;
(C) an infrared reflecting member;
The (C) infrared reflecting member has
(D) Infrared reflectance is 30% or more;
(E) Visible light transmittance is 50% or more;
And
(F) At least a part of the light transmitted through the (A) daylighting portion is configured to be incident on the (C) infrared reflecting member;
(G) At least a part of infrared rays reflected by the (C) infrared reflecting member is configured to be incident on the (B) double-sided power generation type module;
It is a solar power generation system.

第二の発明は、農園芸用ハウスであって、太陽光が直射する屋根及び/又は壁の少なくとも一部分に、第一の発明に記載の太陽光発電システムが、上記(A)採光部分及び上記(C)赤外線反射部材を透過した可視光線の少なくとも一部が、ハウス内部に入射するように設置されている農園芸用ハウスである。 A second invention is an agricultural and horticultural house, wherein the solar power generation system according to the first invention is provided on at least a part of a roof and / or a wall on which sunlight directly shines. (C) An agricultural and horticultural house installed such that at least part of visible light transmitted through the infrared reflecting member is incident on the inside of the house.

第三の発明は、上記(A)採光部分及び上記(C)赤外線反射部材を透過した可視光線の少なくとも一部が、更に波長500〜600ナノメートルに吸収極大を有する色素を含む媒体を透過後にハウス内部に入射することを特徴とする第ニの発明に記載の農園芸用ハウスである。
According to a third aspect of the present invention, after (A) the daylighting portion and (C) at least part of visible light transmitted through the infrared reflecting member further passes through a medium containing a dye having an absorption maximum at a wavelength of 500 to 600 nanometers. The agricultural and horticultural house according to the second invention, wherein the house is incident on the inside of the house.

本発明の太陽光発電システムは、農園芸作物の生育に必要な光は透過させつつ、その余の光は効率的に太陽光発電に利用することができる。また農園芸用ハウス内部の温度上昇を抑制することができる。そのため本発明の太陽光発電システムを備えた本発明の農園芸用ハウスは、イチゴやレタスなどの高温に弱い作物の栽培に好適に用いることができる。
The solar power generation system of the present invention allows light necessary for the growth of agricultural and horticultural crops to pass therethrough and the remaining light can be efficiently used for solar power generation. Moreover, the temperature rise inside the agricultural and horticultural house can be suppressed. Therefore, the agricultural and horticultural house of the present invention provided with the solar power generation system of the present invention can be suitably used for cultivation of crops that are vulnerable to high temperatures such as strawberries and lettuce.

本発明の太陽光発電システムは、(A)採光部分;(B)両面発電型モジュール;(C)赤外線反射部材;を有する。 The photovoltaic power generation system of the present invention includes (A) a daylighting portion; (B) a double-sided power generation type module; and (C) an infrared reflecting member.

上記(A)採光部分は、発電要素と発電要素との間に設けた隙間である。隙間の設け方は制限されず、任意である。例えば、太陽電池セルに隙間を施したタイプ、太陽電池モジュールのセルとセルとの間に隙間を設けたタイプ、太陽電池アレイのモジュールとモジュールとの間に隙間を設けたタイプ、及びこれらを任意に組み合わせたタイプなどをあげることができる。隙間の形も任意であり、例えば、スリット状、円形、三角形、四角形、六角形などの連続した、又は/及び独立した隙間を設けることができる。 The (A) daylighting portion is a gap provided between the power generation elements. The method of providing the gap is not limited and is arbitrary. For example, a type in which a gap is provided between solar cells, a type in which a gap is provided between cells of a solar battery module, a type in which a gap is provided between modules of a solar battery array, and any of these types The type combined with can be given. The shape of the gap is also arbitrary. For example, a continuous or / and independent gap such as a slit shape, a circle shape, a triangle shape, a square shape, or a hexagon shape can be provided.

上記(A)採光部分の全光線透過率は、通常50%以上である。農園芸作物の生育や、両面型発電モジュールの発電効率の観点から、(A)採光部分の全光線透過率は高いほど好ましく、70%以上が好ましい。 The total light transmittance of the (A) daylighting part is usually 50% or more. From the viewpoint of the growth of agricultural and horticultural crops and the power generation efficiency of the double-sided power generation module, (A) the total light transmittance of the daylighting portion is preferably as high as possible, and preferably 70% or more.

上記(A)採光部分の面積の、太陽光発電システムの全太陽光受光面積に対する割合は、特に制限されず、(A)採光部分の全光線透過率や農園芸用ハウス内部で栽培される作物の種類などを勘案して、任意に決めることができる。例えば、イチゴやレタスなどの高温に弱い作物を栽培するときは、遮光効果を大きくするため、上記割合を小さくすることが好ましい。 The ratio of the area of the above-mentioned (A) daylighting part to the total sunlight receiving area of the photovoltaic power generation system is not particularly limited, and (A) the total light transmittance of the daylighting part and the crop cultivated inside the agricultural and horticultural house It can be decided arbitrarily in consideration of the type. For example, when cultivating crops that are vulnerable to high temperatures such as strawberries and lettuce, it is preferable to reduce the ratio in order to increase the light-shielding effect.

上記(B)両面発電型モジュールは、両面からの発電が可能なモジュールである。本発明に使用する部材(B)は、特に制限されず、例えば、表裏対象構造の太陽電池セルを、表面ガラスと裏面ガラスとでサンドイッチ構造にしたモジュール;表面のみ発電可能なモジュールを組み合わせ、モジュール組合体として両面からの発電を可能にしたもの;など任意の両面からの発電が可能なモジュールを使用することができるが、裏面側で発電に使用する光は、主に上記部材(C)で反射された赤外線となるので、少なくとも裏面側については、赤外線領域の分光感度の高いものが好ましい。赤外線領域の分光感度の高いものとしては、例えば、結晶シリコン型、CIS(カルコパイライト)型などをあげることができる。 The (B) double-sided power generation type module is a module that can generate power from both sides. The member (B) used in the present invention is not particularly limited. For example, a module in which a solar cell having a front and back object structure is sandwiched between a front glass and a back glass; Modules that can generate power from both sides, such as those that enable power generation from both sides as a combined body, can be used, but the light used for power generation on the back side is mainly the member (C) Since the reflected infrared ray is used, at least the back side preferably has a high spectral sensitivity in the infrared region. Examples of high spectral sensitivity in the infrared region include a crystalline silicon type and a CIS (chalcopyrite) type.

上記(C)赤外線反射部材は、赤外線は反射し、可視光線は透過する部材であり、(D)赤外線反射率は30%以上であり;(E)可視光線透過率は50%以上である。 The (C) infrared reflecting member is a member that reflects infrared rays and transmits visible light, (D) has an infrared reflectance of 30% or more; and (E) has a visible light transmittance of 50% or more.

なお本明細書において、赤外線反射率は、波長780〜2500ナノメートルの全範囲における日射の反射率が100%であると仮定した場合の反射スペクトルの積分面積に対する波長780〜2500ナノメートルにおける日射の反射スペクトルの積分面積の割合であり、島津製作所株式会社の分光光度計「SolidSpec−3700(商品名)」を用い、光を入射角0°で(C)赤外線反射部材に入射させて測定した値である。 In this specification, the infrared reflectance is the reflectance of solar radiation at a wavelength of 780 to 2500 nanometers with respect to the integrated area of the reflection spectrum when the reflectance of solar radiation in the entire range of wavelengths of 780 to 2500 nanometers is assumed to be 100%. The ratio of the integrated area of the reflection spectrum, measured using a spectrophotometer “SolidSpec-3700 (trade name)” manufactured by Shimadzu Corporation with light incident on an infrared reflecting member at an incident angle of 0 ° (C) It is.

また可視光線透過率は、波長380〜780ナノメートルの全範囲における日射の透過率が100%であると仮定した場合の透過スペクトルの積分面積に対する波長380〜780ナノメートルにおける日射の透過スペクトルの積分面積の割合であり、島津製作所株式会社の分光光度計「SolidSpec−3700(商品名)」を用い、光を入射角0°で(C)赤外線反射部材に入射させて測定した値である。 The visible light transmittance is the integral of the transmission spectrum of solar radiation at a wavelength of 380 to 780 nanometers with respect to the integrated area of the transmission spectrum when the transmittance of solar radiation in the entire range of wavelengths of 380 to 780 nanometers is assumed to be 100%. It is a ratio of the area, and is a value measured by using a spectrophotometer “SolidSpec-3700 (trade name)” manufactured by Shimadzu Corporation and making light incident on the infrared reflecting member (C) at an incident angle of 0 °.

上記(D)赤外線反射率は、好ましくは40%以上である。(D)赤外線反射率は、高いほど太陽光発電効率が上がり、農園芸用ハウス内部の温度上昇を抑制することができるため好ましい。また上記(E)可視光線透過率は、好ましくは70%以上であり、より好ましくは80%以上である。(E)可視光線透過率は、高いほど農作物の生育の観点から好ましい。 The (D) infrared reflectance is preferably 40% or more. (D) The higher the infrared reflectance, the higher the photovoltaic power generation efficiency, and the more preferable is the temperature rise inside the agricultural and horticultural house. The visible light transmittance (E) is preferably 70% or more, and more preferably 80% or more. (E) The higher the visible light transmittance, the more preferable from the viewpoint of growing crops.

本発明に使用する(C)赤外線反射部材は、上記特性(D)及び(E)を満たすこと以外は特に制限されず、任意の赤外線反射部材を使用することができる。 The (C) infrared reflecting member used in the present invention is not particularly limited except that the above characteristics (D) and (E) are satisfied, and any infrared reflecting member can be used.

好ましい(C)赤外線反射部材としては、例えば、二軸延伸ポリエチレンテレフタレートフィルムなどの任意の透明ウェブ基材の少なくとも片面に、スパッタリング、蒸着、コーティング等の手法を用いて、高屈折率層と低屈折率層とを交互に多積層したもの;高屈折率の透明熱可塑性樹脂組成物と低屈折率の透明熱可塑性樹脂組成物との共押出交互多層積層体;などの光学的な干渉により赤外線を反射するものをあげることができる。 As a preferable (C) infrared reflecting member, for example, a high refractive index layer and a low refractive index are formed on at least one surface of an arbitrary transparent web substrate such as a biaxially stretched polyethylene terephthalate film using a technique such as sputtering, vapor deposition, and coating. Multi-layered alternating refractive index layers; co-extruded alternating multi-layer laminates of high refractive index transparent thermoplastic resin composition and low refractive index transparent thermoplastic resin composition; You can list things that reflect.

上記(C)赤外線反射部材の形状は、任意であり、特に制限されない。例えば、フィルム状、プリズム状など任意のものを使用することができる。 The shape of the (C) infrared reflecting member is arbitrary and is not particularly limited. For example, arbitrary things, such as a film form and a prism form, can be used.

本発明の太陽光発電システムは、(F)上記(A)採光部分を透過した光の少なくとも一部は、上記(C)赤外線反射部材に入射するように構成され;(G)上記(C)赤外線反射部材で反射された赤外線の少なくとも一部は、上記(B)両面発電型モジュールに入射するように構成されている。そして部材(B)において入射した赤外線を使用して発電が行われる。 The photovoltaic power generation system of the present invention is configured such that (F) at least part of the light transmitted through the (A) daylighting portion is incident on the (C) infrared reflecting member; (G) (C) At least a part of infrared rays reflected by the infrared reflecting member is configured to be incident on the (B) double-sided power generation type module. And power generation is performed using the incident infrared rays in the member (B).

構成(F)及び構成(G)の実施態様としては、例えば、図1や図2に示すように、上記(A)採光部分を透過した光が、上記(C)赤外線反射部材に直接入射するように構成しても良いし、例えば、図3に示すように、上記(A)採光部分を透過した光を1以上の鏡などの全光線反射部材で反射し、上記(C)赤外線反射部材に間接的に入射するように構成しても良い。部材(C)に直接入射する実施態様では、システムを簡素で低コストなものにすることができる。部材(C)に間接的に入射する実施態様では、部材(C)により反射された赤外線が、部材(B)に入射することなく、再び(A)採光部分を透過してしまうというロスを減らすことができる。 As an embodiment of the configuration (F) and the configuration (G), for example, as shown in FIGS. 1 and 2, the light transmitted through the (A) daylighting portion is directly incident on the (C) infrared reflecting member. For example, as shown in FIG. 3, (A) the light transmitted through the daylighting portion is reflected by a total light reflecting member such as one or more mirrors, and the (C) infrared reflecting member. It may be configured so as to be incident indirectly. In an embodiment that is directly incident on the member (C), the system can be simple and low cost. In the embodiment in which the light is incident on the member (C) indirectly, the infrared light reflected by the member (C) is not incident on the member (B), and the loss that the light is transmitted again through the (A) daylighting portion is reduced. be able to.

本発明の農園芸用ハウスは、太陽光が直射する屋根及び/又は壁の少なくとも一部分に、本発明の太陽光発電システムが、上記(A)採光部分及び上記(C)赤外線反射部材を透過した可視光線の少なくとも一部が、ハウス内部に入射するように設置された農園芸用ハウスである。農園芸用ハウス内部に入射した可視光線は農園芸作物の生育に用いられる。また赤外線は、部材(C)により反射され、農園芸用ハウス内部には入射しないため、内部温度の上昇を大きく抑制することができる。 In the agricultural and horticultural house of the present invention, the solar power generation system of the present invention has passed through the (A) daylighting part and the (C) infrared reflecting member on at least a part of the roof and / or the wall directly exposed to sunlight. An agricultural and horticultural house installed such that at least part of visible light is incident on the inside of the house. Visible light incident on the agricultural and horticultural house is used for the growth of agricultural and horticultural crops. Moreover, since infrared rays are reflected by the member (C) and do not enter the agricultural or horticultural house, an increase in the internal temperature can be greatly suppressed.

また本発明の農園芸用ハウスに、更に波長500〜600ナノメートルの光を吸収する装置又は部材を設け、上記(A)採光部分及び上記(C)赤外線反射部材を透過した可視光線が、更に上記装置又は部材を透過後にハウス内部に入射するようにすることも、好ましい実施態様の一つである。通常の農園芸作物の生育に必要とする光は、可視光線の中でも波長400〜500ナノメートルと600〜700ナノメートルの光であり(文献1)、波長500〜600ナノメートルの光は生育への寄与は小さい一方、ハウス内部の温度を上昇させる影響は大きいためである。 In addition, the agricultural or horticultural house of the present invention is further provided with a device or member that absorbs light having a wavelength of 500 to 600 nanometers, and visible light transmitted through the (A) daylighting portion and the (C) infrared reflecting member is further provided. In another preferred embodiment, the device or member is allowed to enter the house after transmission. The light required for the growth of ordinary agricultural and horticultural crops is light with wavelengths of 400 to 500 nanometers and 600 to 700 nanometers in visible light (Reference 1), and light with a wavelength of 500 to 600 nanometers grows. This is because the effect of increasing the temperature inside the house is large.

(文献1)植物の成長・発育と光質の関係
http://www.nodai.ac.jp/journal/research/amaki/050708.html
(Reference 1) Relationship between plant growth and development and light quality
http://www.nodai.ac.jp/journal/research/amaki/050708.html

上記波長400〜500ナノメートルと600〜700ナノメートルの光を透過し、波長500〜600ナノメートルの光を吸収する装置としては、例えば、少なくとも上記(A)採光部分及び上記(C)赤外線反射部材を透過した可視光線を透過させる部分を、ガラスなどの透明部材で構成した槽や流路の中に、ローダミンB(ベーシックバイオレット10)などの波長500〜600ナノメートルに吸収極大を有する色素を、適量溶解させた水などの熱交換媒体を適宜循環させる、熱交換媒体循環装置をあげることができる。上記装置は、上記(A)採光部分及び上記(C)赤外線反射部材を透過した可視光線の少なくとも一部が、上記装置を透過した後、農園芸用ハウス内部に入射するように設置する。また上記装置により吸収した波長500〜600ナノメートルの光のエネルギーは、熱エネルギーとして用いることができる。 Examples of a device that transmits light having a wavelength of 400 to 500 nanometers and 600 to 700 nanometers and that absorbs light having a wavelength of 500 to 600 nanometers include at least the (A) daylighting portion and the (C) infrared reflection. A pigment having a maximum absorption at a wavelength of 500 to 600 nm, such as rhodamine B (basic violet 10), in a tank or a channel formed of a transparent member such as glass for a portion that transmits visible light transmitted through the member. In addition, a heat exchange medium circulating apparatus that appropriately circulates a heat exchange medium such as water dissolved in an appropriate amount can be given. The apparatus is installed so that at least a part of visible light transmitted through the (A) daylighting portion and the (C) infrared reflecting member is transmitted through the apparatus and then enters the agricultural or horticultural house. The energy of light having a wavelength of 500 to 600 nanometers absorbed by the apparatus can be used as thermal energy.

また上記波長400〜500ナノメートルと600〜700ナノメートルの光を透過し、波長500〜600ナノメートルの光を吸収する部材としては、二軸延伸ポリエチレンテレフタレートフィルムなどの任意の透明ウェブ基材の少なくとも片面に、波長500〜600ナノメートルに吸収極大を有する色素を含む硬化性樹脂塗膜を設けたもの;波長500〜600ナノメートルに吸収極大を有する色素を含む透明熱可塑性樹脂組成物からなるフィルム;などをあげることができる。
Moreover, as a member which transmits the light of the said wavelength 400-500 nanometer and 600-700 nanometer, and absorbs the light of wavelength 500-600 nanometer, arbitrary transparent web base materials, such as a biaxially-stretched polyethylene terephthalate film, are used. Provided on at least one surface with a curable resin coating film containing a dye having an absorption maximum at a wavelength of 500 to 600 nanometers; comprising a transparent thermoplastic resin composition containing a dye having an absorption maximum at a wavelength of 500 to 600 nanometers Film; and the like.

本発明の太陽光発電システムの一例を示す概念図である。It is a conceptual diagram which shows an example of the solar energy power generation system of this invention. 本発明の太陽光発電システムの他の一例を示す概念図である。It is a conceptual diagram which shows another example of the solar energy power generation system of this invention. 本発明の太陽光発電システムの他の一例を示す概念図である。It is a conceptual diagram which shows another example of the solar energy power generation system of this invention. 本発明の実施例1で作成した太陽光発電システムを示す概念図である。It is a conceptual diagram which shows the solar energy power generation system created in Example 1 of this invention.

1:(A)採光部分
2:(B)両面発電型モジュール
3:(C)赤外線反射部材
4:(A)採光部分を透過し、(C)赤外線反射部材に入射する光
5:(C)赤外線反射部材で反射され、(B)両面発電型モジュールの裏面に入射する赤外線
6:(C)赤外線反射部材を透過し、農園芸用ハウス内部に入射する可視光線
7:(B)両面発電型モジュールの表面に入射する光
8:全光線反射部材
9:(A)採光部分を透過し、全光線反射部材8に入射する光
10:全光線反射部材8で反射され、(C)赤外線反射部材に入射する光
11:本発明の実施例1で作成した太陽光発電システムの平面
12:本発明の実施例1で作成した太陽光発電システムの底面
1: (A) Daylighting part 2: (B) Double-sided power generation type module 3: (C) Infrared reflecting member 4: (A) Light 5 that passes through the daylighting part and is incident on the infrared reflecting member 5: (C) Reflected by the infrared reflecting member and (B) Infrared ray 6 incident on the back surface of the double-sided power generating module: (C) Visible light ray 7 passing through the infrared reflecting member and entering the agricultural / horticultural house 7: (B) Double-sided power generating type Light incident on the surface of the module 8: Total light reflecting member 9: (A) Light passing through the daylighting portion and incident on the total light reflecting member 8: Reflected by the total light reflecting member 8, (C) Infrared reflecting member 11 incident on the plane 11: the plane of the photovoltaic power generation system created in Example 1 of the present invention 12: the bottom surface of the photovoltaic power generation system created in Example 1 of the present invention

以下、本発明を実施例により説明するが、本発明はこれに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to this.

実施例1
(1)太陽光発電システムの作成
坪量500g/mのコートボール紙を用い、縦300mm×横300mm×高さ50mmの浅い直方体形状の紙箱を作成した。次いで上記紙箱の平面の中央に穴を開け、出力0.5Wの採光部分を有する両面発電型の結晶シリコン型太陽電池モジュールを、穴を完全に塞ぐように設置した。このとき穴の大きさは、モジュールの大きさに合わせた。更に、上記紙箱の底面の中央に縦250mm×横250mmの穴を開け、住友スリーエム株式会社の赤外線反射フィルム「スコッチティントNano90S(商品名)」(赤外線反射率40%、可視光線透過率88%)を、縦280mm×横280mmの大きさに裁断し、穴を完全に塞ぐように、赤外線反射面が紙箱の内側になるようにして貼り付けた。こうして太陽光発電システムを得た。
(2)性能評価
上記で得た太陽光発電システムに設置した太陽電池モジュールの上20cmの高さから、50Wのレフランプで照射した。全発電量から、表側の発電量を差し引いた裏側の発電量(上記赤外線反射フィルムの反射光による発電量)は12.9mW/hrであった。また日本板硝子株式会社の5mm厚みの熱強化ガラス「ホームタフライト(商品名)」を用い、縦300mm×横300mm×高さ10mmの非常に浅い直方体形状の槽を作成し、内部を蒸留水で満たし、その平面上に上記で得た太陽光発電システムを設置し、太陽電池モジュールの上20cmの高さから、50Wのレフランプで照射したところ、1時間経過後の蒸留水の温度は、スタート時の23℃が24℃に少し上昇した。
Example 1
(1) Creation of photovoltaic power generation system Using a coated cardboard having a basis weight of 500 g / m 2 , a shallow rectangular parallelepiped paper box having a length of 300 mm × width of 300 mm × height of 50 mm was created. Next, a hole was made in the center of the plane of the paper box, and a double-sided power generation type crystalline silicon solar cell module having a daylighting portion with an output of 0.5 W was installed so as to completely close the hole. At this time, the size of the hole was adjusted to the size of the module. Further, a hole of 250 mm length × 250 mm width is formed at the center of the bottom of the paper box, and an infrared reflection film “Scotch Tint Nano90S (trade name)” by Sumitomo 3M Limited (infrared reflectance 40%, visible light transmittance 88%). Was cut into a size of 280 mm in length and 280 mm in width, and attached so that the infrared reflecting surface was inside the paper box so as to completely close the hole. Thus, a solar power generation system was obtained.
(2) Performance evaluation It irradiated with the 50W reflex lamp from the height of 20 cm above the solar cell module installed in the solar power generation system obtained above. The back side power generation amount (the power generation amount by the reflected light of the infrared reflective film) obtained by subtracting the front side power generation amount from the total power generation amount was 12.9 mW / hr. Also, using 5mm thick heat-strengthened glass “Home Taflight (trade name)” by Nippon Sheet Glass Co., Ltd., a very shallow rectangular parallelepiped tank 300mm long x 300mm wide x 10mm high is filled with distilled water. When the solar power generation system obtained above was installed on the plane and irradiated with a 50 W reflex lamp from a height of 20 cm above the solar cell module, the temperature of distilled water after 1 hour was 23 ° C rose slightly to 24 ° C.

比較例1
上記赤外線反射フィルムに替えて、赤外線反射率5%、可視光線透過率15%のスモークフィルムを用いたこと以外は、実施例1と同様に行った。裏側の発電量は1.6mW/hrであった。また蒸留水の温度は、スタート時の23℃が31℃に上昇した。
Comparative Example 1
The same procedure as in Example 1 was performed except that a smoke film having an infrared reflectance of 5% and a visible light transmittance of 15% was used instead of the infrared reflective film. The power generation on the back side was 1.6 mW / hr. The temperature of distilled water increased from 23 ° C. at the start to 31 ° C.

実施例2
蒸留水に替えて、蒸留水にHUNTSMAN株式会社の色素「NOVACRON BLACK NN(商品名)」を0.002質量%溶解した水溶液(波長500ナノメートルに吸収率50%の吸収極大を有す)で上記直方体形状の槽の内部を満たしたこと以外は、全て実施例1と同様に行った。裏側の発電量は12.1mW/hrであった。また水溶液の温度は、スタート時の23℃が28℃に上昇した。
Example 2
Instead of distilled water, HUNTSMAN Co., Ltd. dye “NOVACRON BLACK NN” (trade name) dissolved in 0.002% by mass in distilled water (having an absorption maximum of 50% absorption at a wavelength of 500 nanometers) All of the operations were the same as in Example 1 except that the inside of the rectangular parallelepiped tank was filled. The power generation on the back side was 12.1 mW / hr. The temperature of the aqueous solution rose from 23 ° C. at the start to 28 ° C.

比較例2
上記赤外線反射フィルムに替えて、赤外線反射率5%、可視光線透過率15%のスモークフィルムを用いたこと以外は、実施例2と同様に行った。裏側の発電量は0.8mW/hrであった。また水溶液の温度は、スタート時の23℃が33℃に上昇した。
Comparative Example 2
The same procedure as in Example 2 was performed except that a smoke film having an infrared reflectance of 5% and a visible light transmittance of 15% was used instead of the infrared reflective film. The amount of power generation on the back side was 0.8 mW / hr. The temperature of the aqueous solution rose from 23 ° C. at the start to 33 ° C.

実施例1は裏面側も大きな発電量がある。また槽中の蒸留水温度が、比較例1と比較して、僅かに上昇しているだけであることから、これを設置した農園芸用ハウスは内部温度の上昇を抑制できると期待できる。 In Example 1, the rear side also has a large amount of power generation. Moreover, since the distilled water temperature in a tank is only rising slightly compared with the comparative example 1, it can be anticipated that the agricultural and horticultural house in which this is installed can suppress an increase in internal temperature.

実施例2は裏面側も大きな発電量がある。また槽中の水溶液温度が、実施例1よりも上昇していることから、赤外線反射フィルムを透過した可視光線を、更に色素を含む水溶液を透過させることにより、エネルギーを吸収できたことが分かる。従って、波長500〜600ナノメートルの光を吸収する装置を備えることにより、ハウス内部温度の上昇は更に小さくできると期待できる。 In Example 2, there is a large amount of power generation on the back side. Moreover, since the aqueous solution temperature in a tank is rising rather than Example 1, it turns out that the energy was able to be absorbed by permeate | transmitting the visible light which permeate | transmitted the infrared reflective film, and also the aqueous solution containing a pigment | dye. Therefore, it can be expected that an increase in the house internal temperature can be further reduced by providing a device that absorbs light having a wavelength of 500 to 600 nanometers.

一方、比較例1、2は裏面側の発電量が非常に小さい。また槽中の蒸留水又は水溶液の温度が大きく上昇していることから、これを設置しても農園芸用ハウス内部の温度上昇を抑制することはできないと判断される。 On the other hand, in Comparative Examples 1 and 2, the power generation amount on the back side is very small. Moreover, since the temperature of the distilled water or aqueous solution in a tank has risen greatly, even if it installs, it is judged that the temperature rise inside the agricultural / horticultural house cannot be suppressed.

Claims (1)

農園芸用ハウスであって、
太陽光が直射する屋根及び/又は壁の少なくとも一部分に、
太陽光発電システムであって、
(A)採光部分;
(B)両面発電型モジュール;
(C)赤外線反射部材;
を有し、
上記(C)赤外線反射部材は、
(D)赤外線反射率が30%以上;
(E)可視光線透過率が50%以上;
であり、
(F)上記(A)採光部分を透過した光の少なくとも一部は、上記(C)赤外線反射部材に入射するように構成され;
(G)上記(C)赤外線反射部材で反射された赤外線の少なくとも一部は、上記(B)両面発電型モジュールに入射するように構成されている;
太陽光発電システムが、
上記(A)採光部分及び上記(C)赤外線反射部材を透過した可視光線の少なくとも一部が、ハウス内部に入射するように設置されており、
ここで上記(A)採光部分及び上記(C)赤外線反射部材を透過した可視光線の少なくとも一部が、
熱交換媒体循環装置であって、波長500〜600ナノメートルに吸収極大を有する色素を含む熱交換媒体を循環させる熱交換媒体循環装置を透過後にハウス内部に入射することを特徴とする
農園芸用ハウス。
An agricultural and horticultural house,
On at least a part of the roof and / or walls directly exposed to sunlight,
A solar power generation system,
(A) Daylighting part;
(B) Double-sided power generation type module;
(C) an infrared reflecting member;
Have
The (C) infrared reflecting member is
(D) Infrared reflectance is 30% or more;
(E) Visible light transmittance is 50% or more;
And
(F) At least a part of the light transmitted through the (A) daylighting portion is configured to be incident on the (C) infrared reflecting member;
(G) At least a part of infrared rays reflected by the (C) infrared reflecting member is configured to be incident on the (B) double-sided power generation type module;
Solar power system,
(A) The daylighting part and (C) at least part of visible light transmitted through the infrared reflecting member is installed so as to enter the house,
Here, (A) the daylighting part and (C) at least part of the visible light transmitted through the infrared reflecting member is
A heat exchange medium circulation device, wherein the heat exchange medium circulation device circulates a heat exchange medium circulation device that circulates a heat exchange medium containing a dye having an absorption maximum at a wavelength of 500 to 600 nanometers and then enters the house.
Agricultural and horticultural house.
JP2013242607A 2013-11-25 2013-11-25 Solar power generation system and agricultural and horticultural house equipped with the same Active JP6263369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013242607A JP6263369B2 (en) 2013-11-25 2013-11-25 Solar power generation system and agricultural and horticultural house equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013242607A JP6263369B2 (en) 2013-11-25 2013-11-25 Solar power generation system and agricultural and horticultural house equipped with the same

Publications (2)

Publication Number Publication Date
JP2015103642A JP2015103642A (en) 2015-06-04
JP6263369B2 true JP6263369B2 (en) 2018-01-17

Family

ID=53379121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013242607A Active JP6263369B2 (en) 2013-11-25 2013-11-25 Solar power generation system and agricultural and horticultural house equipped with the same

Country Status (1)

Country Link
JP (1) JP6263369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI703081B (en) 2015-12-22 2020-09-01 瑞士商伊文修股份有限公司 Lift system,method for setting a length of a section of a traction medium in a reservoir with such a lift system and use of a reservoir

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10724809B2 (en) * 2016-02-29 2020-07-28 The Regents Of The University Of Colorado, A Body Corporate Radiative cooling structures and systems
CN109039259B (en) * 2018-08-17 2020-03-20 常州大学 Double-sided photovoltaic power generation system with trapezoidal infrared absorption

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113690B2 (en) * 1973-02-28 1976-05-01
JPS637726A (en) * 1986-06-26 1988-01-13 堀米 孝 High efficiency greenhouse using fluorescent condensing plate and culture method
JPH0646685A (en) * 1992-08-03 1994-02-22 Nippon Soda Co Ltd Light-quality converting material for agricultural use
JPH10146919A (en) * 1996-11-15 1998-06-02 Teijin Ltd Glass laminate for green house
JP3738129B2 (en) * 1998-04-14 2006-01-25 三洋電機株式会社 Solar cell module
JP3670835B2 (en) * 1998-04-22 2005-07-13 三洋電機株式会社 Solar cell module
JP4863792B2 (en) * 2006-07-05 2012-01-25 日軽金アクト株式会社 Solar power plant
US20100132756A1 (en) * 2007-06-11 2010-06-03 Kazuhiko Tonooka Visible-light transmitting solar-heat reflective film
TWM349481U (en) * 2008-09-05 2009-01-21 Jin-Huai Yang Photoelectric module
JP3151682U (en) * 2009-04-18 2009-07-02 ツジコー株式会社 Agricultural greenhouse film or glass
JP2012216609A (en) * 2011-03-31 2012-11-08 Nagasaki Prefecture Solar cell installation-building structure and solar cell panel
US8745919B2 (en) * 2012-03-09 2014-06-10 Yeeshyi Chang Photovoltaic greenhouse structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI703081B (en) 2015-12-22 2020-09-01 瑞士商伊文修股份有限公司 Lift system,method for setting a length of a section of a traction medium in a reservoir with such a lift system and use of a reservoir

Also Published As

Publication number Publication date
JP2015103642A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
Zeyghami et al. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling
Moraitis et al. Nanoparticles for luminescent solar concentrators-a review
Roncali Luminescent solar collectors: quo vadis?
Hossain et al. Radiative cooling: principles, progress, and potentials
Gentle et al. A subambient open roof surface under the Mid‐Summer sun
Zhu et al. Radiative cooling of solar cells
JP6304768B2 (en) Condensing mechanism, solar power generation device and window structure
Wu et al. Smart solar concentrators for building integrated photovoltaic façades
Slauch et al. Spectrally selective mirrors with combined optical and thermal benefit for photovoltaic module thermal management
MXPA06008501A (en) Method for converting the energy of solar radiation into an electrical current and heat by means of colour-selective interference filter mirrors, and a device pertaining to a concentrator/solar collector comprising colour-selective mirrors for implem
JP2002314112A (en) Photovoltaic power generating system
Weinstein et al. Optical cavity for improved performance of solar receivers in solar-thermal systems
JP6564776B2 (en) Composite solar cell, solar cell module, and concentrating solar cell
JP6263369B2 (en) Solar power generation system and agricultural and horticultural house equipped with the same
US20110209743A1 (en) Photovoltaic cell apparatus
TW201229367A (en) A building structure having semi-transparent photovoltaic panels
US8884156B2 (en) Solar energy harvesting device using stimuli-responsive material
JP2007264353A (en) Wavelength selective thin film
US8040609B1 (en) Self-adjusting solar light transmission apparatus
JP6321384B2 (en) Agricultural and horticultural facilities with solar power generation system
JP2015208288A (en) Agricultural and horticultural facilities with photovoltaic power generation system
JP2015204755A (en) Facility for agricultural and horticultural use equipped with sunlight power generating system
KR20150034923A (en) Transparent colored solar cell
Ketchum et al. Design and Characterization of a Translucent Solar Module (TSM) for Greenhouse Structures
JP2008035766A (en) Horticultural facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R150 Certificate of patent or registration of utility model

Ref document number: 6263369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250