[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6316044B2 - Method for producing reinforced fiber fabric - Google Patents

Method for producing reinforced fiber fabric Download PDF

Info

Publication number
JP6316044B2
JP6316044B2 JP2014057572A JP2014057572A JP6316044B2 JP 6316044 B2 JP6316044 B2 JP 6316044B2 JP 2014057572 A JP2014057572 A JP 2014057572A JP 2014057572 A JP2014057572 A JP 2014057572A JP 6316044 B2 JP6316044 B2 JP 6316044B2
Authority
JP
Japan
Prior art keywords
fiber fabric
fabric
far
reinforcing fiber
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014057572A
Other languages
Japanese (ja)
Other versions
JP2015183295A (en
Inventor
誠 市橋
誠 市橋
幸雄 西本
幸雄 西本
武田 重一
重一 武田
伊藤 稔之
稔之 伊藤
友巳 道上
友巳 道上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2014057572A priority Critical patent/JP6316044B2/en
Publication of JP2015183295A publication Critical patent/JP2015183295A/en
Application granted granted Critical
Publication of JP6316044B2 publication Critical patent/JP6316044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Woven Fabrics (AREA)

Description

本発明は、熱可塑性繊維を含む強化繊維織物に熱処理を行う際に、織組織の形態保持に有効な熱処理(目止め処理)を施す強化繊維織物の製造方法に関するものである。   The present invention relates to a method for producing a reinforced fiber fabric, which is subjected to a heat treatment (sealing treatment) effective for maintaining the shape of a woven structure when the reinforced fiber fabric containing thermoplastic fibers is subjected to a heat treatment.

従来から、炭素繊維などの強化繊維は、比強度と比弾性率が高いことから、軽量化効果の大きい強化繊維プラスチック(以下、FRPという。)の材料の一つとして、土建用構造物の補強をはじめ、航空機用や一般産業用に多く使われている。   Conventionally, reinforcing fibers such as carbon fibers have high specific strength and specific elastic modulus, and therefore, as one of the materials of reinforcing fiber plastic (hereinafter referred to as FRP) having a large lightening effect, reinforcement of structures for construction. And many other uses for aircraft and general industries.

このようなFRPの成形方法としては、ハンドレイアップ成形をはじめとしてオートクレーブ成形やRTM成形など種々の方法がある。特に土建用構造物の補強のために適用されるハンドレイアップ成形において、かかる強化繊維織物には、織物を取り扱う際に変形したり織糸がずれて目ずれしたりする問題や、織物を裁断した際に織糸が解れ易いという問題があった。   Such FRP molding methods include various methods such as hand lay-up molding, autoclave molding, and RTM molding. Especially in hand lay-up molding applied for reinforcement of structures for civil engineering, such reinforcing fiber fabrics have problems such as deformation or misalignment of the weaving yarn when handling the fabric, and cutting of the fabric. There was a problem that the woven yarn was easily unraveled.

こうした問題に対して、強化繊維と熱可塑性繊維を同時に製織した後に、熱可塑性繊維を加熱、溶融させて、たて糸とよこ糸の交錯点を目止めすることにより、強化繊維のたて糸またはよこ糸の解れ防止機能と形態安定機能を与え、取扱性に優れ、高速で生産できる強化繊維織物を得る提案がなされている。例えば、特開2005−344240号公報(特許文献1)には、波長が0.8μm以上で4μm以下の近赤外線〜中赤外線を強化繊維織物の片面に照射し、非接触で熱可塑性繊維を加熱溶融させ、溶融した熱可塑性繊維で炭素繊維を接着させることにより目ずれを防止し、均一な品質を有する強化繊維織物を高速で製造する方法が開示されている。   To prevent such problems, weaving reinforcement fibers and thermoplastic fibers simultaneously, then heating and melting the thermoplastic fibers to prevent the warp yarns and weft yarns from coming apart at the intersection of the warp and weft yarns Proposals have been made to obtain reinforced fiber fabrics that provide functions and form-stabilizing functions, are easy to handle and can be produced at high speed. For example, in JP-A-2005-344240 (Patent Document 1), a near-infrared to mid-infrared wavelength of 0.8 μm or more and 4 μm or less is irradiated on one side of a reinforcing fiber fabric, and thermoplastic fibers are heated in a non-contact manner. Disclosed is a method for producing a reinforced fiber fabric having a uniform quality at a high speed by melting and preventing carbon misalignment by adhering carbon fibers with molten thermoplastic fibers.

しかしながら、遠赤外線では、放射状に拡散照射されるので、製造装置のローラ等にも照射されて高温となり、軸受け等を劣化させるので高温での処理ができず、処理温度に制限があるため、十分な接着効果を得ようとしても処理速度を上げることができない。つまり、単に遠赤外線の照射により生産速度を上げることは困難であった。また、遠赤外線では、高温処理のため製造装置の停機時に織物が加熱され焦げ付きやサイジング剤が硬くなることにより織物が剛くなる問題があった。   However, far-infrared rays are diffused and radiated radially, so they are also irradiated on the rollers of the manufacturing equipment and become high temperature, which deteriorates the bearings and the like. Even if it is trying to obtain a good bonding effect, the processing speed cannot be increased. In other words, it has been difficult to increase the production speed simply by irradiation with far infrared rays. In addition, the far infrared rays have a problem that the fabric becomes stiff due to the high temperature treatment and the fabric is heated when the manufacturing apparatus is stopped, and the scorching and the sizing agent become hard.

特開2005−344240号公報JP 2005-344240 A

上述のように、単に片面から遠赤外線を織物に照射し熱可塑性繊維を加熱、溶融させるだけでは、高品質・高品位の強化繊維織物を生産性よく製造することには問題があった。   As described above, there is a problem in producing a high-quality, high-quality reinforced fiber fabric with high productivity simply by irradiating the far-infrared ray from one side to the fabric to heat and melt the thermoplastic fiber.

本発明の基本的構成は、複数本の強化繊維をたて糸とし、熱可塑性繊維により被覆されたガラス繊維からなる補助繊維糸をよこ糸として製織される強化繊維織物を、引取ローラを介して巻き取る強化繊維織物の製造方法であって、
前記引取ローラ通過後の前記強化繊維織物の一方の面に、波長4μmを超え、1000μm以下の遠赤外線を、非接触で照射する工程と、
前記遠赤外線の照射後に、前記強化繊維織物を冷却する工程と、
引き続き、前記強化繊維織物のもう一方の面に、波長4μmを超え、1000μm以下の遠赤外線を、非接触で照射する工程と、
前記遠赤外線の照射後に、前記強化繊維織物を冷却する工程とを有する強化繊維織物の製造方法にある。
The basic configuration of the present invention is a reinforcement in which a reinforcing fiber fabric woven using a plurality of reinforcing fibers as warp yarns and an auxiliary fiber yarn made of glass fibers covered with thermoplastic fibers as weft yarns is wound through a take-up roller. A method of manufacturing a textile fabric,
Irradiating one surface of the reinforcing fiber fabric after passing through the take-up roller with far-infrared rays having a wavelength exceeding 4 μm and not more than 1000 μm in a non-contact manner;
A step of cooling the reinforcing fiber fabric after the irradiation of the far infrared rays;
Subsequently, the other surface of the reinforcing fiber fabric is irradiated with far-infrared rays having a wavelength of more than 4 μm and not more than 1000 μm in a non-contact manner;
And a step of cooling the reinforcing fiber fabric after the irradiation with the far infrared rays.

好ましい態様によれば、前記熱可塑性繊維の融点が80〜180℃である。また、前記強化繊維織物のよこ糸密度は3本/2.5cm以上10本/2.5cm以下であることが好ましい。   According to a preferred embodiment, the thermoplastic fiber has a melting point of 80 to 180 ° C. The weft density of the reinforcing fiber fabric is preferably 3 / 2.5 cm or more and 10 / 2.5 cm or less.

本発明によれば、上述の構成をもつ製織後の強化繊維織物を引取ローラを介して巻き取るにあたり、引取ローラ通過後の前記強化繊維織物の一方の面に、所定領域の波長からなる遠赤外線を非接触で照射したのち、強化繊維織物を冷却し、引き続いて前記強化繊維織物のもう一方の面に、同じく所定領域の波長からなる遠赤外線を非接触で照射したのち、冷却することにより、強化繊維織物の表裏両面を二段で加熱・冷却して前記補助繊維糸の構成繊維の一つである熱可塑性繊維を加熱溶融させながら、強化繊維からなるたて糸との交差点にて補助繊維糸を接着固定して目止めするため、強化繊維織物の目ずれを効果的に防止することができるので、製織速度を上げても目止めが確実になされた強化繊維織物を効率的に製織することができる。   According to the present invention, when winding the reinforcing fiber fabric after weaving having the above-described configuration via the take-up roller, the far infrared ray having a wavelength in a predetermined region is provided on one surface of the reinforcing fiber fabric after passing through the take-up roller. After the non-contact irradiation, the reinforcing fiber woven fabric is cooled, and subsequently, the other surface of the reinforcing fiber woven fabric is irradiated with far-infrared rays having a wavelength of a predetermined region in a non-contact manner, and then cooled. While heating and cooling the front and back surfaces of the reinforcing fiber fabric in two steps to heat and melt the thermoplastic fiber that is one of the constituent fibers of the auxiliary fiber yarn, the auxiliary fiber yarn is crossed with the warp yarn made of reinforcing fibers. Since it is possible to effectively prevent the misalignment of the reinforcing fiber fabric because it is bonded and fixed, it is possible to efficiently weave the reinforcing fiber fabric that has been reliably secured even if the weaving speed is increased. it can

本発明の強化繊維織物を製造する装置の一例を示す概略側面図である。It is a schematic side view which shows an example of the apparatus which manufactures the reinforced fiber fabric of this invention. 本発明の範囲外である比較例1〜3を製造する装置の一例を示す概略側面図である。It is a schematic side view which shows an example of the apparatus which manufactures Comparative Examples 1-3 which are outside the scope of the present invention.

以下に、本発明の強化繊維織物の製造方法の望ましい実施の形態の一例について、図面を参照しながら説明する。
強化繊維織物は、一般的にたて糸1として炭素繊維などの強化繊維マルチフィラメント糸を並行に配列し、よこ糸3は熱可塑性繊維により被覆されたガラス繊維からなる補助繊維糸で構成されており、織組織としては平織でよこ糸3は1本毎にたて糸1と交互に交錯を繰り返されて組織され、加熱して溶融した熱可塑性繊維で炭素繊維を接着させることにより目ずれを防止する。この際、熱量不足による未融着が起こると、織物を取り扱う際に変形したり、織糸がずれて目ずれしたりする問題や、織物を裁断した際に織糸が解れ易いという問題がある。また、熱量不足解消のために生産速度を落とすと生産性が悪くなる。
Below, an example of desirable embodiment of the manufacturing method of the reinforced fiber fabric of this invention is demonstrated, referring drawings.
In the reinforcing fiber fabric, generally, reinforcing fiber multifilament yarns such as carbon fibers are arranged in parallel as the warp yarn 1, and the weft yarn 3 is composed of auxiliary fiber yarns made of glass fibers covered with thermoplastic fibers. The weft 3 is a plain weave, and the weft yarns 3 are alternately interleaved with the warp yarns 1, and carbon fibers are bonded with thermoplastic fibers which are heated and melted to prevent misalignment. At this time, if unfused due to insufficient heat amount occurs, there is a problem that the fabric is deformed when the fabric is handled, the weaving yarn is displaced and misaligned, and the weaving yarn is easily unraveled when the fabric is cut. . In addition, if the production speed is lowered to solve the shortage of heat, the productivity is deteriorated.

本発明の強化繊維織物の製造方法によれば、未融着を解消することで、高速生産を可能にし、同時に織物形態の安定化が図れるものである。
本発明の具体的な実施形態を図1に従って詳細に説明する。たて糸1は目付け、繊度に応じて炭素繊維のマルチフィラメントからなる扁平糸を適宜並列して配し、ヘルド2によって開口し、よこ糸3の熱可塑性繊維により被覆されたガラス繊維からなる補助繊維糸を開口内に挿入し、目止め前織物4を形成する。
According to the method for producing a reinforced fiber fabric of the present invention, it is possible to achieve high-speed production by eliminating non-fusion, and at the same time stabilize the fabric form.
A specific embodiment of the present invention will be described in detail with reference to FIG. The warp yarn 1 is a flat yarn made of multifilaments of carbon fibers according to the basis weight and fineness, arranged in parallel as appropriate, opened by the heald 2, and an auxiliary fiber yarn made of glass fiber covered with thermoplastic fibers of the weft yarn 3. It inserts in opening and forms the fabric 4 before sealing.

(融着工程)
よこ糸3である補助繊維糸を被覆している熱可塑性繊維をたて糸1に融着させるため、引取ローラ5を通過後の強化繊維織物の一方の面に、非接触型の第1遠赤外線ヒーター6にて遠赤外線を照射し、照射される側にある熱可塑性繊維だけを加熱、溶融させ、その後、大気放熱により冷却する。引き続き、強化繊維織物のもう一方の面に、非接触型の第2遠赤外線ヒーター7にて遠赤外線を照射し、熱可塑性繊維を加熱、溶融させ、その後、大気放熱で冷却し、目止め織物8としてから、引取ローラ5を介して巻き取り部9で巻き取られる。
(Fusion process)
A non-contact type first far-infrared heater 6 is formed on one surface of the reinforcing fiber fabric after passing through the take-up roller 5 in order to fuse the thermoplastic fiber covering the auxiliary fiber yarn which is the weft yarn 3 to the warp yarn 1. Irradiate far-infrared rays, heat and melt only the thermoplastic fibers on the irradiated side, and then cool by atmospheric heat radiation. Subsequently, the other surface of the reinforcing fiber fabric is irradiated with far-infrared rays by a non-contact type second far-infrared heater 7 to heat and melt the thermoplastic fibers, and then cooled by atmospheric heat radiation, and the sealing fabric. After being set to 8, the film is taken up by the take-up unit 9 via the take-up roller 5.

本発明の強化繊維織物の製造方法に用いることができる第1及び第2遠赤外線ヒーター6,7は、強化繊維織物との接触による、強化繊維織物の毛羽立ちなどを防止する必要から、非接触型であることが好ましい。また、遠赤外線の波長は、4μmを超え、1000μm以下であることが熱可塑性繊維に吸収されやすく、短時間で効率よく加熱することが可能となる点で必要である。   The first and second far-infrared heaters 6 and 7 that can be used in the method for producing a reinforcing fiber fabric of the present invention need to prevent fluffing of the reinforcing fiber fabric due to contact with the reinforcing fiber fabric. It is preferable that Further, the far-infrared wavelength of more than 4 μm and 1000 μm or less is necessary because it is easily absorbed by the thermoplastic fiber and can be efficiently heated in a short time.

本発明の強化繊維織物の製造方法では、遠赤外線の照射を、少なくとも2回以上に分けて、強化繊維織物の一方の面に照射し、その後、もう一方の面に照射することが、熱量過多により、熱融着性繊維が均一に溶融する前に切れて未融着部分が発生することを防止するとともに、熱量不足による未溶融部分を発生させずに、短時間で熱可塑性繊維を均一に溶融させる点で必要である。   In the method for producing a reinforced fiber fabric according to the present invention, far-infrared irradiation may be divided into at least two times to irradiate one surface of the reinforced fiber fabric and then irradiate the other surface. This prevents the heat-fusible fiber from being cut before it is uniformly melted, thereby preventing the occurrence of an unfused part, and the thermoplastic fiber is made uniform in a short time without generating an unmelted part due to insufficient heat. Necessary in terms of melting.

本発明の強化繊維織物の製造方法では、遠赤外線の照射の後に、強化繊維織物を冷却する工程を施す必要がある。遠赤外線の照射の後に、強化繊維織物を冷却する工程を施すことで、熱可塑性繊維が強化織物に均一に接着し、品質、品位のよい織物となる。また、溶融した熱可塑性繊維を冷却固化させることで、溶融物が製造工程の周辺部材(ロール、ガイドなど)へと付着することによるトラブル、巻き取り時の織物同士の貼りつきを防止することができる。   In the manufacturing method of the reinforced fiber fabric of this invention, it is necessary to perform the process of cooling a reinforced fiber fabric after irradiation of far infrared rays. By subjecting the reinforcing fiber fabric to a cooling process after the irradiation of the far infrared rays, the thermoplastic fibers are uniformly bonded to the reinforcing fabric and become a fabric of good quality and quality. Also, by cooling and solidifying the molten thermoplastic fiber, it is possible to prevent troubles due to the melt adhering to peripheral members (rolls, guides, etc.) in the manufacturing process, and sticking of the fabrics during winding. it can.

強化繊維織物を冷却する工程は、積極的に冷媒などを介して、強化繊維織物を冷却することもできるが、強化繊維織物に外気を接触させることで、冷却することが好ましい。この場合、第1遠赤外線ヒーター6による加熱位置と第2遠赤外線ヒーター7による加熱位置との間の経路長及び空間、及び第2遠赤外線ヒーター7による加熱位置と巻き取り部9の間の経路長及び空間を、広く取ることがさらに好ましい。   In the step of cooling the reinforcing fiber fabric, the reinforcing fiber fabric can be actively cooled through a refrigerant or the like, but it is preferable to cool the reinforcing fiber fabric by bringing outside air into contact with the reinforcing fiber fabric. In this case, the path length and space between the heating position by the first far infrared heater 6 and the heating position by the second far infrared heater 7, and the path between the heating position by the second far infrared heater 7 and the winding unit 9. More preferably, the length and space are wide.

第1遠赤外線ヒーター6による加熱位置と第2遠赤外線ヒーター7による加熱位置との間の経路長及び空間と、第2遠赤外線ヒーター7による加熱位置と巻き取り部9の間の経路長及び空間とを、広く取ることにより、遠赤外線ヒーターを設置する箇所にスペースができ、ロール等への加熱がなくなり、かつ、可動式ヒーターとして織機が停機してもヒーターを移動させるようにすれば、焦げつきを防止することができ、トラブルが発生することを防止して強化繊維織物を高速で製造できることができる。   The path length and space between the heating position by the first far infrared heater 6 and the heating position by the second far infrared heater 7, and the path length and space between the heating position by the second far infrared heater 7 and the winding part 9 If the loom is moved, even if the loom stops as a movable heater, there will be a space at the location where the far infrared heater is installed, and the heater will be burnt. It is possible to prevent the occurrence of trouble and to manufacture a reinforced fiber fabric at a high speed.

本発明の強化繊維織物の製造方法に用いることができるよこ糸3としては、たて糸1強化繊維のクリンプによる強度低下を低減させるため、たて糸1強化繊維よりも細いガラス繊維が好ましい。よこ糸3は専ら織物の形態保持を目的とするので、よこ糸3の繊度は180〜810dTexの範囲内にあることがさらに好ましい。   As the weft yarn 3 that can be used in the method for producing a reinforcing fiber fabric of the present invention, a glass fiber that is thinner than the warp yarn 1 reinforcing fiber is preferable in order to reduce the strength reduction due to crimping of the warp yarn 1 reinforcing fiber. Since the weft 3 is exclusively for maintaining the shape of the woven fabric, it is more preferable that the fineness of the weft 3 is in the range of 180 to 810 dTex.

本発明の強化繊維織物の製造方法に用いることができる熱可塑性繊維としては、ナイロン、ポリプロピレン、ポリエステルやポリエチレンなどからなる繊維であってもよいが、融着処理を効率よく行うという観点から、融点が80〜180℃の範囲にある樹脂を用いた繊維であることが好ましい。   The thermoplastic fiber that can be used in the method for producing a reinforced fiber fabric of the present invention may be a fiber made of nylon, polypropylene, polyester, polyethylene, or the like, but it has a melting point from the viewpoint of efficiently performing a fusion treatment. Is preferably a fiber using a resin in the range of 80 to 180 ° C.

よこ糸3の織り密度は3本/2.5cm以上から10本/2.5cm以下であることが好ましい。3本/2.5cm未満では織物の形態保持が不安定で、10本/2.5cmより多ければ、たて糸のクリンプによる強度低下が発生するためである。3本/2.5cm未満では、織機回転数を下げなければ製織速度が速すぎて未融着部分が発生し、織機回転数を下げた場合にはよこ糸のゆるみが発生し織物の形態保持が不安定となることがある。10本/2.5cmより多ければ、生産性を確保するために織機回転数を上げなければならないが、よこ糸切れが発生し易くなる。   The weave density of the weft yarn 3 is preferably 3 / 2.5 cm or more and 10 / 2.5 cm or less. This is because when the number of yarns is less than 3 / 2.5 cm, the shape of the woven fabric is unstable, and when the number is more than 10 / 2.5 cm, the strength decreases due to warp crimping. If it is less than 3 / 2.5 cm, the weaving speed will be too fast if the loom speed is not lowered, and unfused parts will occur. If the loom speed is lowered, the weft will loosen and the shape of the fabric will be maintained. May become unstable. If it is more than 10 pieces / 2.5 cm, the rotational speed of the loom must be increased to ensure productivity, but weft breakage is likely to occur.

(実施例1)
フィラメント数が12000本からなる炭素繊維糸(三菱レイヨン(株)製、製品名:パイロフィルTR50S 12L)をたて糸とし、よこ糸には芯糸を224dTexのガラス繊維として、その周囲を融点が120℃の56dTexの熱可塑性繊維1本をS方向にシングルカバリング被覆させた補助繊維糸(カバリング糸)を用いて、図1に示した態様で波長が5μmの第1及び第2遠赤外線ヒーター6,7を設置し、よこ糸3の熱可塑性繊維を加熱、溶融させて、目付210g/m2 の織物(よこ糸の織り密度:8本/2.5cm)を回転数130rpmで製織した。製織速度は40cm/分であった。
Example 1
A carbon fiber yarn having a filament number of 12,000 (Mitsubishi Rayon Co., Ltd., product name: Pyrofil TR50S 12L) is used as the warp yarn, and the weft yarn is made of 224 dTex glass fiber, and its periphery is 56 dTex with a melting point of 120 ° C. The first and second far-infrared heaters 6 and 7 having a wavelength of 5 μm are installed in the form shown in FIG. 1 using an auxiliary fiber yarn (covering yarn) in which one thermoplastic fiber is covered with a single covering in the S direction. Then, the thermoplastic fibers of the weft yarn 3 were heated and melted, and a woven fabric having a basis weight of 210 g / m 2 (weaving density of the weft yarn: 8 yarns / 2.5 cm) was woven at a rotational speed of 130 rpm. The weaving speed was 40 cm / min.

高速で製織しても織物表面と裏面とを個別に加熱することにより、よこ糸3の熱可塑性繊維が均一に炭素繊維糸に溶融・接着し、安定した製織ができた。また、第1遠赤外線ヒーター6と第2遠赤外線ヒーター7との間の距離を長くするとともに、第2遠赤外線ヒーター7と巻き取り部9との間を長くして設置し、大気放熱時間を長くした冷却効果により織物の貼りつきは起こらなかった。また織機停止時にはヒーター位置を移動させ、織物の焦げつきを防止し、織物が剛くなることもなかった。   Even when weaving at high speed, the front and back surfaces of the fabric were individually heated, so that the thermoplastic fibers of the weft yarn 3 were uniformly melted and bonded to the carbon fiber yarn, and stable weaving was achieved. In addition, the distance between the first far-infrared heater 6 and the second far-infrared heater 7 is increased, and the distance between the second far-infrared heater 7 and the take-up portion 9 is increased to reduce the air heat radiation time. Due to the longer cooling effect, the fabric did not stick. Also, when the loom was stopped, the heater position was moved to prevent the fabric from burning, and the fabric did not become stiff.

(比較例1)
図2に示した態様で、波長が5μmの第1遠赤外線ヒーター6のみを1箇所に設置した以外は、実施例1と同様にして目付210g/m2 の織物を回転数130rpmで製織した。製織速度は40cm/分であった。このとき、織物に未融着の部分が発生した。その原因は生産速度が高速のため、加熱時間が短時間となり、熱量不足と考えられるものであった。未融着の部分を発生させないためには、回転数90rpm(製織速度は28cm/分)が限界速度であった。
(Comparative Example 1)
In the embodiment shown in FIG. 2, a fabric with a basis weight of 210 g / m 2 was woven at a rotational speed of 130 rpm in the same manner as in Example 1 except that only the first far-infrared heater 6 having a wavelength of 5 μm was installed in one place. The weaving speed was 40 cm / min. At this time, an unfused portion was generated in the fabric. The cause was considered to be a shortage of heat because the production rate was high and the heating time was short. In order not to generate an unfused portion, the rotational speed was 90 rpm (weaving speed was 28 cm / min), which was the critical speed.

(比較例2)
図2に示した態様で、波長が5μmの第1及び第2遠赤外線ヒーター6、7を織物を挟んで対向する位置に設置し、織物の表面及び裏面を同時に加熱、溶融させた以外は、実施例1と同様にして目付210g/m2 の織物を回転数130rpmで製織した。製織速度は40cm/分であった。このとき、織物に未融着の部分は発生しなかったが、織物の表面と裏面とを同時に加熱したことにより十分に冷却されなかったため、巻き取り時の織物同士の貼りつきが発生した。また、溶融した熱可塑性繊維がロールに付着しており、織物の毛羽立ちの要因となった。
(Comparative Example 2)
In the embodiment shown in FIG. 2, the first and second far-infrared heaters 6 and 7 having a wavelength of 5 μm are installed at positions facing each other across the fabric, and the front and back surfaces of the fabric are heated and melted at the same time. In the same manner as in Example 1, a fabric having a basis weight of 210 g / m 2 was woven at a rotational speed of 130 rpm. The weaving speed was 40 cm / min. At this time, an unfused portion did not occur in the woven fabric, but the fabric was not sufficiently cooled by simultaneously heating the front and back surfaces of the woven fabric, so that the woven fabric was stuck to each other during winding. In addition, the molten thermoplastic fiber was adhered to the roll, which caused the fabric to fluff.

(比較例3)
図2に示した態様で、波長が5μmの第1及び第2遠赤外線ヒーター6、7を織物を挟んで対向する位置に設置し、織物の表面及び裏面を同時に加熱して熱可塑性繊維を溶融させ、回転数を90rpmとした以外は、実施例1と同様にして目付210g/m2 の織物を製織した。製織速度は28cm/分であった。このとき、織物に未融着の部分は発生しなかったが、織物の表面と裏面とを同時に加熱したことにより十分に冷却されなかったため、巻き取り時の織物同士の貼りつきが起こった。また、溶融した熱可塑性繊維がロールに付着しており、織物の毛羽立ちの要因となった。
(Comparative Example 3)
In the embodiment shown in FIG. 2, first and second far-infrared heaters 6 and 7 having a wavelength of 5 μm are installed at positions facing each other across the fabric, and the front and back surfaces of the fabric are simultaneously heated to melt the thermoplastic fiber. A fabric with a basis weight of 210 g / m 2 was woven in the same manner as in Example 1 except that the rotation speed was 90 rpm. The weaving speed was 28 cm / min. At this time, an unfused portion did not occur in the fabric, but the fabric was not sufficiently cooled due to simultaneous heating of the front and back surfaces of the fabric, so that the fabrics adhered to each other during winding. In addition, the molten thermoplastic fiber was adhered to the roll, which caused the fabric to fluff.

1 たて糸
2 ヘルド
3 よこ糸
4 目止め前織物
5 引取ローラ
6,7 第1及び第2遠赤外線ヒーター
8 目止め織物
9 巻き取り部
DESCRIPTION OF SYMBOLS 1 Warp thread 2 Held 3 Weft thread 4 Fabric before opening 5 Take-off rollers 6, 7 First and second far-infrared heater 8 Seal fabric 9 Winding part

Claims (3)

複数本の強化繊維をたて糸とし、熱可塑性繊維により被覆されたガラス繊維からなる補助繊維糸をよこ糸として製織される強化繊維織物を、引取ローラを介して巻き取る強化繊維織物の製造方法であって、
前記引取ローラ通過後の前記強化繊維織物の一方の面に、波長4μmを超え、1000μm以下の遠赤外線を、非接触で照射する工程と、
前記強化繊維織物の一方の面に対する前記遠赤外線の照射後に、前記強化繊維織物を冷却する工程と、
前記強化繊維織物の冷却後に、引き続き前記強化繊維織物の他方の面に、波長4μmを超え、1000μm以下の遠赤外線を、非接触で照射する工程と、
前記強化繊維織物の前記他方の面に対する前記遠赤外線の照射後に、前記強化繊維織物を冷却する工程と、
を有する強化繊維織物の製造方法。
A method for producing a reinforced fiber fabric in which a reinforced fiber fabric is woven using a plurality of reinforcing fibers as warp yarns and an auxiliary fiber yarn made of glass fibers coated with thermoplastic fibers as weft yarns via a take-up roller. ,
Irradiating one surface of the reinforcing fiber fabric after passing through the take-up roller with far-infrared rays having a wavelength exceeding 4 μm and not more than 1000 μm in a non-contact manner;
Cooling the reinforcing fiber fabric after irradiation of the far-infrared ray on one surface of the reinforcing fiber fabric;
After cooling the reinforcing fiber fabric, the other surface of the reinforcing fiber fabric is irradiated with far-infrared rays having a wavelength of more than 4 μm and not more than 1000 μm in a non-contact manner;
Cooling the reinforcing fiber fabric after the far-infrared irradiation to the other surface of the reinforcing fiber fabric;
A method for producing a reinforced fiber fabric comprising:
前記熱可塑性繊維の融点が80〜180℃である、請求項1記載の強化繊維織物の製造方法。   The manufacturing method of the reinforced fiber fabric of Claim 1 whose melting | fusing point of the said thermoplastic fiber is 80-180 degreeC. 前記強化繊維織物のよこ糸密度が3本/2.5cm以上10本/2.5cm以下である、請求項1又は2に記載の強化繊維織物の製造方法。   The manufacturing method of the reinforced fiber fabric of Claim 1 or 2 whose weft density of the said reinforced fiber fabric is 3 / 2.5cm or more and 10 / 2.5cm or less.
JP2014057572A 2014-03-20 2014-03-20 Method for producing reinforced fiber fabric Active JP6316044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014057572A JP6316044B2 (en) 2014-03-20 2014-03-20 Method for producing reinforced fiber fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014057572A JP6316044B2 (en) 2014-03-20 2014-03-20 Method for producing reinforced fiber fabric

Publications (2)

Publication Number Publication Date
JP2015183295A JP2015183295A (en) 2015-10-22
JP6316044B2 true JP6316044B2 (en) 2018-04-25

Family

ID=54350181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014057572A Active JP6316044B2 (en) 2014-03-20 2014-03-20 Method for producing reinforced fiber fabric

Country Status (1)

Country Link
JP (1) JP6316044B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163462A (en) * 1983-03-04 1984-09-14 マルサン染工株式会社 Remote infrared het treatment of fiber structure containing polyester differently extensible blended fiber yarn
JPS626932A (en) * 1985-07-01 1987-01-13 東レ株式会社 Production of reinforcing fiber fabric
JPH03149231A (en) * 1989-11-06 1991-06-25 Toray Ind Inc Production of prepreg
JP4254158B2 (en) * 2001-08-20 2009-04-15 東レ株式会社 Carbon fiber substrate manufacturing method, preform manufacturing method, and composite material manufacturing method
JP2004256930A (en) * 2003-02-24 2004-09-16 Toray Ind Inc Method for reinforcing woven fabric
JP5002895B2 (en) * 2005-02-22 2012-08-15 東レ株式会社 Method for producing reinforced fiber fabric
JP4767029B2 (en) * 2006-02-01 2011-09-07 花王株式会社 Nonwoven fabric bulk recovery method
EP2014806B1 (en) * 2006-04-28 2012-11-28 Toray Industries, Inc. Process for producing woven carbon fiber fabric

Also Published As

Publication number Publication date
JP2015183295A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
AU2013258358B2 (en) Textile part, composite-material element with textile part, and production method for the same
TWI532594B (en) Thermoplastic resin reinforced sheet material and method for manufacture thereof
JP5707734B2 (en) Unidirectional reinforced fiber woven or knitted fabric for fiber reinforced plastic, its fiber substrate, method for producing the fiber substrate, and method for molding fiber reinforced plastic using the fiber substrate
JP2015063772A (en) Method and device for cutting woven fabric
JP6316044B2 (en) Method for producing reinforced fiber fabric
WO2016017469A1 (en) Combined filament yarn and manufacturing method thereof
JP5002895B2 (en) Method for producing reinforced fiber fabric
JPH08302537A (en) Carbon fiber woven fabric, its production thereof and device therefor
US20210316483A1 (en) Reinforcing fiber tape material and production method thereof, reinforcing fiber layered body and fiber reinforced resin molded body using reinforcing fiber tape material
WO2019216149A1 (en) Industrial fabric
KR101966554B1 (en) Manufacturing method of fabric for fiber reinforced composite materials and prepreg using thereof
JP6642141B2 (en) Method and apparatus for manufacturing reinforced fiber fabric
JP6836765B2 (en) Method for manufacturing drawn multifilament yarn
KR102512971B1 (en) Carbon fiber fabric and method of manufacturing the same
TWI572650B (en) 0° uni-directional filament prepreg, method of manufacturing the same and method of manufacturing multi-axis prepreg composite thereby
KR20160038430A (en) Hybrid textile for thermoplastic composites material and method of manufacturing the same
WO2020072009A1 (en) Semi -finished composite materials containing natural fibers and production thereof
JP6196658B2 (en) Sandwich panel, unidirectional prepreg manufacturing method, and sandwich panel manufacturing method
TW202124135A (en) Carbon fiber tape material, and reinforced fiber laminate and molded article using same
JP4386794B2 (en) Method for producing reinforcing fiber fabric
JP3289783B2 (en) Composite reinforcing fiber material impregnated with thermoplastic resin
JP7236763B2 (en) Weft for carbon fiber fabric and carbon fiber fabric using this weft
KR20240086064A (en) Sheet for CFRTP and metheod for manufacturing the same
KR20240086066A (en) Apparatus for manufacturing Sheet for CFRTP
JP2004256930A (en) Method for reinforcing woven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180327

R150 Certificate of patent or registration of utility model

Ref document number: 6316044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250