[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6217963B2 - Electromagnetic phase velocity control method and phase velocity control structure - Google Patents

Electromagnetic phase velocity control method and phase velocity control structure Download PDF

Info

Publication number
JP6217963B2
JP6217963B2 JP2013102527A JP2013102527A JP6217963B2 JP 6217963 B2 JP6217963 B2 JP 6217963B2 JP 2013102527 A JP2013102527 A JP 2013102527A JP 2013102527 A JP2013102527 A JP 2013102527A JP 6217963 B2 JP6217963 B2 JP 6217963B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
phase velocity
groove
plate waveguide
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013102527A
Other languages
Japanese (ja)
Other versions
JP2014222861A (en
Inventor
谷 正彦
正彦 谷
知也 左近
知也 左近
大貴 竹嶋
大貴 竹嶋
聡 都築
聡 都築
山本 晃司
晃司 山本
栗原 一嘉
一嘉 栗原
岳 古屋
岳 古屋
史欣 桑島
史欣 桑島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Fukui
Kanai Educational Institution
Original Assignee
University of Fukui
Kanai Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Fukui, Kanai Educational Institution filed Critical University of Fukui
Priority to JP2013102527A priority Critical patent/JP6217963B2/en
Publication of JP2014222861A publication Critical patent/JP2014222861A/en
Application granted granted Critical
Publication of JP6217963B2 publication Critical patent/JP6217963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Waveguides (AREA)

Description

本発明は、電磁波の位相速度の制御が可能な方法及びその構造に関し、特に、周波数30GHz〜30THz,波長10mm〜10μmの周波数領域の電磁波の位相速度制御方法及びそのための構造に関する。   The present invention relates to a method capable of controlling the phase velocity of an electromagnetic wave and a structure thereof, and more particularly to a method of controlling a phase velocity of an electromagnetic wave in a frequency range of a frequency of 30 GHz to 30 THz and a wavelength of 10 mm to 10 μm and a structure therefor.

この種の周波数領域の中では、特にテラヘルツ波帯の電界強度を検出することで非破壊的に検査等を行う技術が近年開発され、例えば、X線装置に代わる安全な透視検査装置を構成してイメージングを行う技術などへの利用が進んでいる。また、物質内部の吸収スペクトルや複素誘電率を求めて分子の結合状態などの物性を調べる分光技術、キャリア濃度や移動度、導電率などの物性を調べる計測技術、生体分子の解析技術などへの利用も進められている(例えば、特許文献1,2,3参照)。   In this type of frequency domain, technology that performs non-destructive inspections by detecting electric field strength in the terahertz wave band has been recently developed. For example, a safe fluoroscopic inspection apparatus that replaces an X-ray apparatus is constructed. The use for imaging technology is progressing. Also, spectroscopic techniques for examining physical properties such as molecular binding states by obtaining absorption spectra and complex permittivity inside substances, measurement techniques for examining physical properties such as carrier concentration, mobility, and conductivity, and biomolecule analysis techniques. The use is also proceeding (see, for example, Patent Documents 1, 2, and 3).

特開2011−33700号公報JP 2011-33700 A 特開2010−204488号公報JP 2010-204488 A 特開2011−203718号公報JP 2011-203718 A 特開平8−102604号公報(段落0002の記載参照)JP-A-8-102604 (see paragraph 0002)

ところで、表面プラズモンを生じさせる金属で形成された板を平行に配置して導波路とした金属平行平板導波路は、電磁波をほとんど損失無く伝搬させることでき、かつ、周波数に依存した位相速度変化(分散)がないことが知られている(例えば、特許文献4参照)。そのため、金属平行平板導波路は、広帯域の電磁波の導波路として適しており、テラヘルツ波帯の電磁波を伝搬させる導波路としての応用も期待されている。
金属平行平板導波路中の電磁波(TEMモード)の位相速度は、金属平行平板導波路内の屈折率で決まるため、位相速度を制御するにはある屈折率を持った誘電率の材料(誘電体)で金属平行平板導波路内を満たす必要がある。
しかし、テラヘルツ領域では誘電体は有限の吸収損失を持つため、損失の小さい誘電率の材料はその種類が限定され、位相速度を任意に制御することが難しいという問題がある。
By the way, a metal parallel plate waveguide, in which plates made of a metal that generates surface plasmons are arranged in parallel to form a waveguide, can propagate electromagnetic waves with almost no loss, and a frequency-dependent phase velocity change ( It is known that there is no (dispersion) (see, for example, Patent Document 4). For this reason, the metal parallel plate waveguide is suitable as a broadband electromagnetic wave waveguide, and is expected to be applied as a waveguide for propagating terahertz wave electromagnetic waves.
Since the phase velocity of the electromagnetic wave (TEM mode) in the metal parallel plate waveguide is determined by the refractive index in the metal parallel plate waveguide, a dielectric material (dielectric material) having a certain refractive index is required to control the phase velocity. ) Needs to fill the metal parallel plate waveguide.
However, since the dielectric has a finite absorption loss in the terahertz region, there is a problem in that it is difficult to arbitrarily control the phase velocity because the types of materials having a low dielectric constant are limited.

本発明は、上記の課題に鑑みてなされたもので、金属平行平板導波路内の電磁波、特にテラヘルツ波帯の電磁波の位相速度を任意に制御することが可能な方法及び構造の提供を目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a method and a structure capable of arbitrarily controlling the phase velocity of electromagnetic waves in a metal parallel plate waveguide, particularly electromagnetic waves in a terahertz wave band. To do.

上記課題を解決するために本発明は、電磁波照射手段から照射された30GHz〜10THzの電磁波の位相速度を制御する方法であって、表面プラズモン結合を生じさせるとともに、前記電磁波の有効屈折率を増大させる平行平板導波路と、この平行平板導波路に前記電磁波を導入する導入手段とを準備し、前記平行平板導波路の幅を前記電磁波の波長以下とし、前記導入手段から前記平行平板導波路に導入した電磁波の位相速度を、前記電磁波が伝搬する前記平行平板導波路の表面粗さによって制御する構成としてある。
前記有効屈折率と前記表面粗さとの関係は、縦軸を有効屈折率、横軸を表面粗さとした両対数グラフにデータフィッティングの結果をプロットしたときに一次関数として表わされるものとすることができる。
In order to solve the above-described problems, the present invention is a method for controlling the phase velocity of an electromagnetic wave of 30 GHz to 10 THz irradiated from an electromagnetic wave irradiation means, which causes surface plasmon coupling and increases the effective refractive index of the electromagnetic wave. A parallel plate waveguide to be introduced and an introduction means for introducing the electromagnetic wave into the parallel plate waveguide, the width of the parallel plate waveguide is set to be equal to or less than the wavelength of the electromagnetic wave, and the introduction means to the parallel plate waveguide The phase velocity of the introduced electromagnetic wave is controlled by the surface roughness of the parallel plate waveguide through which the electromagnetic wave propagates.
The relationship between the effective refractive index and the surface roughness may be expressed as a linear function when the result of data fitting is plotted on a log-log graph with the vertical axis representing the effective refractive index and the horizontal axis representing the surface roughness. it can.

前記導入手段は前記電磁波を平行平板導波路に集束させて導入することができるのであればよく、レンズであってもよいし、少なくとも前記電磁波が伝搬する表面が前記電磁波との間で表面プラズモン結合を生じさせる金属で形成され出口の幅が前記電磁波の波長以下の寸法に形成された先細状の溝としてもよい。このような溝は、例えば二つの金属ブロックを対向配置することで形成することができる。
前記平行平板導波路に前記電磁波を導入することができるのであれば、前記先細状の溝の形状は問わず、例えばV溝とすることができる。この場合、前記V溝の頂部の角度は、前記V溝に入射される前記電磁波の集束角に基づいて決定するとよい。
Said introduction means as long as it can be introduced by focusing the waves into parallel-plate waveguide, may be a lens, the surface plasmon coupling between a surface at least the electromagnetic wave propagates the electromagnetic wave It is good also as a taper-shaped groove | channel formed with the metal which produces this, and the width | variety of the exit was formed in the dimension below the wavelength of the said electromagnetic waves. Such a groove can be formed, for example, by arranging two metal blocks facing each other.
If it is possible to introduce the electromagnetic wave to said parallel-plate waveguide, the shape of the tapered grooves is not limited, may be, for example, V-groove. In this case, the angle of the top of the V groove, may determine that based on the collection angle of the electromagnetic wave to be incident on the V-groove.

本発明は上記のように構成されているので、導波路の表面粗さを変化させるだけで電磁波の屈折率を変化させることができ、簡単に位相速度の制御が可能である。また、その構造も簡単かつコンパクトにすることが可能である。   Since the present invention is configured as described above, the refractive index of the electromagnetic wave can be changed simply by changing the surface roughness of the waveguide, and the phase velocity can be easily controlled. In addition, the structure can be made simple and compact.

以下、本発明の好適な実施形態を、図面を参照しながら詳細に説明する。
図1に、本発明の位相速度制御構造の一実施形態を概略平面図で示す。
この実施形態の位相速度制御構造は、図1に示すように、金属ブロック1に、形成されたV形の溝(V溝2a)と、このV溝2aの先端に形成された平行溝2bからなる導波路2とを有する。この実施形態では、V溝2aが電磁波を集束させて平行溝2bに導入する導入手段を構成し、平行溝2bが電磁波に対する有効屈折率を増大させる平行平板導波路を構成する。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic plan view showing an embodiment of the phase velocity control structure of the present invention.
As shown in FIG. 1, the phase velocity control structure of this embodiment includes a V-shaped groove (V groove 2a) formed in a metal block 1 and a parallel groove 2b formed at the tip of the V groove 2a. And a waveguide 2. In this embodiment, the V-groove 2a constitutes introducing means for converging and introducing the electromagnetic wave into the parallel groove 2b, and the parallel groove 2b constitutes a parallel plate waveguide that increases the effective refractive index with respect to the electromagnetic wave.

テラヘルツ波(以下「THz波」と記載する)をV溝2a内の金属の表面プラズモンと結合させ、V溝2aの先端に集束させることでTHz波を増強することができる。この原理は、例えば、OPTICS EXPRESS Vol.20,No.8 8355(9 April 2012)に掲載されたK. Iwaszczukらによる”Terahertz field
enhancement to the MV/cm regime in a tapered parallel plate waveguide”等で知られている。
表面プラズモン結合を生じさせるものであれば、金属の種類は特に問わないが、金(Au)や銀(Ag)を好適に用いることができる。アルミニウムや鉄などで形成された金属製のブロックにV溝2aを形成し、V溝2aの内面に金(Au)や銀(Ag)等の金属をメッキ又は蒸着等してもよいし、樹脂やセラミック等の非金属材料のブロックにV溝2aを形成し、V溝2aの内面に金(Au)や銀(Ag)等の金属層を形成してもよい。
THz waves can be enhanced by combining terahertz waves (hereinafter referred to as “THz waves”) with metal surface plasmons in the V-groove 2a and focusing them on the tips of the V-grooves 2a. This principle is described in, for example, “Terahertz field” by K. Iwaszczuk et al. Published in OPTICS EXPRESS Vol.20, No.8 8355 (9 April 2012).
Known as “enhancement to the MV / cm regime in a tapered parallel plate waveguide”.
The type of metal is not particularly limited as long as it causes surface plasmon coupling, but gold (Au) or silver (Ag) can be preferably used. A V-groove 2a may be formed in a metal block made of aluminum or iron, and a metal such as gold (Au) or silver (Ag) may be plated or vapor-deposited on the inner surface of the V-groove 2a, or resin. Alternatively, the V groove 2a may be formed in a block of a non-metallic material such as ceramic or a metal, and a metal layer such as gold (Au) or silver (Ag) may be formed on the inner surface of the V groove 2a.

V溝2aの頂部の角度(図1中、符号θで示す角度)はできるだけ小さいほうがよいとされるが、V溝2aの角度を入射するTHz波のビーム集束角に合わせることで、V溝2aの頂部の角度θが大きくても効率よくTHz波を集束させることができる。最適なV溝2aの頂部の角度θは、THz波のビーム集束角を目安に最適値を実験等で求めることができ、例えば、THz波のビーム集束角が18°の場合には、V溝2aの頂部の角度θは20°程度とすることができる。   The angle of the top of the V groove 2a (the angle indicated by the symbol θ in FIG. 1) should be as small as possible. However, by adjusting the angle of the V groove 2a to the beam focusing angle of the incident THz wave, the V groove 2a THz waves can be focused efficiently even when the angle θ of the top of the is large. The optimum angle θ of the top of the V-groove 2a can be obtained by an experiment or the like with reference to the beam focusing angle of the THz wave. For example, when the beam focusing angle of the THz wave is 18 °, the V-groove The angle θ at the top of 2a can be about 20 °.

V溝2aの先端に狭幅の平行溝2bを設け、集束させたTHz波をこの平行溝2b内で伝搬させることで、増強したTHz波をサンプル等に導くことができる。平行溝2bの幅は狭いほど増強効果を高めることができ、THz波の波長よりも狭くするのが好ましい。例えば、THz波の波長が300μmの場合は、幅Dは300μm以下とするのが好ましい。   By providing a narrow parallel groove 2b at the tip of the V groove 2a and propagating the focused THz wave in the parallel groove 2b, the enhanced THz wave can be guided to a sample or the like. The narrower the width of the parallel groove 2b, the higher the enhancement effect, and it is preferable to make it narrower than the THz wave wavelength. For example, when the wavelength of the THz wave is 300 μm, the width D is preferably 300 μm or less.

平行溝2bの内表面もV溝2aの内表面と同様に、表面プラズモンとの結合を生じさせる金属で形成されている。
平行溝2bの内表面の表面粗さを、表面粗さ測定器で測定した結果を図2に示す。
基準長さ0.8mmにおける十点平均粗さRzを以下の式で求めた。
Similar to the inner surface of the V-groove 2a, the inner surface of the parallel groove 2b is formed of a metal that causes bonding with surface plasmons.
FIG. 2 shows the result of measuring the surface roughness of the inner surface of the parallel groove 2b with a surface roughness measuring instrument.
The ten-point average roughness Rz at a reference length of 0.8 mm was determined by the following formula.

ここで、Ypiは高い方から5番目までの山頂の高さ、Yviは深い方から5番目までの谷底の深さである。評価長さは、基準長さの三倍とした。   Here, Ypi is the height of the top from the highest to the fifth, and Yvi is the depth of the bottom from the deepest to the fifth. The evaluation length was set to three times the reference length.

図3は、本発明の位相速度制御構造の効果を測定するための実験装置の一例である。
図3の実験装置では、全長L1=35mm、平行溝2bの長さL2=5mmのアルミ製の金属ブロック1を用いた。また、THz波発生用励起光源としてフェムト秒レーザー装置を用いた。平行溝2bの幅は任意に設定できるが、以下の測定では10μmに設定した。
フェムト秒レーザー装置3から照射されたレーザー光は、ビームスプリッター31によって直進方向と90度に屈曲する方向に分割され、分割側のポンプ光はミラー32a,32b,32c,32d,レンズ33を経てダイポール型光伝導アンテナ34に入射されTHz波として出力される。このTHz波は、ミラー32e及び楕円ミラー35から金属ブロック1のV溝2aへ導入される。平行溝2bから出射されたTHz波は、楕円ミラー36からミラー38hを経て検出側のダイポール型光伝導アンテナ37に入射される。
一方、直進方向のレーザー光は、ミラー38a、遅延ステージのミラー38b,38c,ミラー38d〜38g及びレンズ39を経てダイポール型光伝導アンテナ37に入射され、THz波が検出される。
FIG. 3 is an example of an experimental apparatus for measuring the effect of the phase velocity control structure of the present invention.
In the experimental apparatus shown in FIG. 3, an aluminum metal block 1 having a total length L1 = 35 mm and a length L2 = 5 mm of the parallel groove 2b was used. A femtosecond laser device was used as an excitation light source for THz wave generation. Although the width of the parallel groove 2b can be set arbitrarily, it was set to 10 μm in the following measurement.
The laser light emitted from the femtosecond laser device 3 is split by the beam splitter 31 in a direction that is bent straight and 90 degrees, and the split-side pump light passes through the mirrors 32a, 32b, 32c, 32d, and the lens 33, and is dipole. It is incident on the photoconductive antenna 34 and output as a THz wave. The THz wave is introduced from the mirror 32e and the elliptical mirror 35 into the V groove 2a of the metal block 1. The THz wave emitted from the parallel groove 2b is incident on the detection-side dipole photoconductive antenna 37 from the elliptical mirror 36 through the mirror 38h.
On the other hand, the laser beam in the straight traveling direction is incident on the dipole photoconductive antenna 37 through the mirror 38a, the mirrors 38b and 38c of the delay stage, the mirrors 38d to 38g, and the lens 39, and the THz wave is detected.

平行溝2bの表面粗さRzを種々に変化させて、周波数と振幅透過率との関係を調べた。振幅透過率は、導波路透過後の振幅/自由空間透過後の振幅で表される。
図4は、図3の実験装置を用いて得られた周波数と振幅透過率との関係を示すグラフである。
このグラフから平行溝2bの表面が粗いほど、つまり表面粗さRzが大きいほど、高周波側の透過率が小さいことがわかる。
The relationship between the frequency and the amplitude transmittance was examined by changing the surface roughness Rz of the parallel groove 2b in various ways. The amplitude transmittance is expressed by the amplitude after transmission through the waveguide / the amplitude after transmission through free space.
FIG. 4 is a graph showing the relationship between frequency and amplitude transmittance obtained using the experimental apparatus of FIG.
From this graph, it can be seen that the higher the surface of the parallel groove 2b, that is, the higher the surface roughness Rz, the smaller the transmittance on the high frequency side.

また、平行溝2bの表面粗さRzを種々に変化させて、平行溝2bでの位相シフトについて調べた。位相シフトΔψ(rad)は、以下の式で求めることができる。   Further, the phase shift in the parallel groove 2b was examined by changing the surface roughness Rz of the parallel groove 2b in various ways. The phase shift Δψ (rad) can be obtained by the following equation.


ここで、kは波数、ΔLは平行溝2bの長さ、neffは有効屈折率、ωは周波数,cは真空中の光速である。
ここで、有効屈折率neffは以下の式で求めることができる。

Here, k is the wave number, ΔL is the length of the parallel groove 2b, n eff is the effective refractive index, ω is the frequency, and c is the speed of light in vacuum.
Here, the effective refractive index n eff can be obtained by the following equation.

ここで、n(Rz)は表面粗さパラメータRzに依存した平行溝2bのTHz波に対する屈折率を表し、n は表面が完全に平坦で、理論上の粗さがRz=0の場合(n (Rz=0)の場合)の平行平板導波路の屈折率を表す。この場合、n (Rz=0)は真空若しくは空気の屈折率に一致してn =1.0となるが、実際には表面を完全に平坦(つまりRz=0)とはできず、Rz=1μmが限界である。しかし、Rz=1μmの場合でも、THz波の位相速度はほぼ真空の光速度、すなわち有効屈折率が1.0に近いことが実験で確認されているため、上記の式ではn (Rz=1μm)として表している。
図5は、図3の実験装置を用いて得られた位相シフトΔψと周波数との関係を示すグラフである。
このグラフから、各周波数成分において位相シフトが見られ、平行溝2bの表面粗さRzが大きいほど、位相シフトが大きいことがわかる。
Here, n (Rz) represents the refractive index for THz wave parallel grooves 2b which is dependent on the surface roughness parameters Rz, n 0 is the surface completely flat, if the roughness of the theoretical of Rz = 0 ( This represents the refractive index of a parallel plate waveguide of n 0 (in the case of Rz = 0). In this case, n 0 (Rz = 0) corresponds to the refractive index of vacuum or air and becomes n 0 = 1.0. However, in reality, the surface cannot be made completely flat (that is, Rz = 0), Rz = 1 μm is the limit. However, even in the case of Rz = 1 μm, it has been experimentally confirmed that the phase velocity of the THz wave is almost the light velocity of the vacuum, that is, the effective refractive index is close to 1.0. Therefore, n 0 (Rz = 1 μm).
FIG. 5 is a graph showing the relationship between the phase shift Δψ obtained using the experimental apparatus shown in FIG. 3 and the frequency.
From this graph, it can be seen that a phase shift is observed in each frequency component, and that the phase shift increases as the surface roughness Rz of the parallel groove 2b increases.

さらに、平行溝2bの表面粗さRzを種々に変化させて、THz波に対する平行溝2bの屈折率を調べた。
図6は、図3の実験装置を用いて得られた有効屈折率neffと周波数との関係を示すグラフである。
このグラフから、平行溝2bの表面粗さRzが大きいほど、THz波に対する平行溝2bの有効屈折率が大きいことがわかる。
Furthermore, the surface roughness Rz of the parallel groove 2b was variously changed, and the refractive index of the parallel groove 2b with respect to the THz wave was examined.
FIG. 6 is a graph showing the relationship between the effective refractive index n eff and the frequency obtained using the experimental apparatus of FIG.
From this graph, it can be seen that the greater the surface roughness Rz of the parallel groove 2b, the greater the effective refractive index of the parallel groove 2b with respect to the THz wave.

図7は、有効屈折率neffと表面粗さRzとの関係を示すグラフである。
ここで、
FIG. 7 is a graph showing the relationship between the effective refractive index n eff and the surface roughness Rz.
here,

(a,bは定数)をモデル関数としてフィッティングを行った。
値はフィットの良さを示す指標で、
Fitting was performed using (a and b are constants) as a model function.
R 2 value is an index indicating the goodness of fit,

で表される。有効屈折率neffと表面粗さRzとの関係について、測定データ及びデータフィッティングにより得られた理論曲線を、縦軸を有効屈折率、横軸を表面粗さとした両対数のグラフにプロットすると、表面粗さが大きくなるに従って有効屈折率が増加する単調増加のグラフとなる。図7は、0.5THzの場合の結果を示しているが、各プロットがほぼ直線上に並ぶ関係にある。
少なくとも0.3THz〜2.5THzのTHz波、平行溝2bの表面粗さRzが1μm〜25μmの範囲内では、表面粗さRzが大きくなるほど有効屈折率neffが大きくなる単調増加の関係になり、両者の間には一定の関係、つまり、表面粗さに対して有効屈折率が一意的に決定される関係が成立する。そのため、所望の有効屈折率を得るには表面粗さをどの程度にすればよいかの推測が可能になる。
It is represented by With respect to the relationship between the effective refractive index n eff and the surface roughness Rz, when the theoretical curve obtained by measurement data and data fitting is plotted on a log-log graph with the vertical axis representing the effective refractive index and the horizontal axis representing the surface roughness, The graph is a monotonically increasing graph in which the effective refractive index increases as the surface roughness increases. FIG. 7 shows the result in the case of 0.5 THz, but the plots are in a substantially linear relationship.
When the THz wave of at least 0.3 THz to 2.5 THz and the surface roughness Rz of the parallel groove 2 b are in the range of 1 μm to 25 μm, the effective refractive index n eff increases as the surface roughness Rz increases. A certain relationship is established between the two, that is, a relationship in which the effective refractive index is uniquely determined with respect to the surface roughness. Therefore, it is possible to estimate how much the surface roughness should be in order to obtain a desired effective refractive index.

本発明の好適な実施形態について説明したが、本発明は上記の説明に限定されるものではない。
例えば、THz波を伝搬させる平行溝2bは直線状に限らず、一部又は全部が湾曲していてもよい。
また、平行平板導波路である平行溝2bに電磁波を集束して入力させる導入手段は、V溝に限らずロート状の溝又はその他先細の溝であればよく、また、溝以外にレンズによって集束させるようにしてもよい。
Although a preferred embodiment of the present invention has been described, the present invention is not limited to the above description.
For example, the parallel groove 2b for propagating the THz wave is not limited to a straight line, and a part or the whole of the groove may be curved.
Further, the introducing means for converging and inputting the electromagnetic wave to the parallel groove 2b which is a parallel plate waveguide is not limited to the V-shaped groove, but may be a funnel-shaped groove or other tapered groove. You may make it make it.

本発明は、ミリ波帯、マイクロ波帯及びテラヘルツ波帯を含む領域(周波数30GHz〜30THz:10mm〜10μm)の電磁波に好適に適用が可能である。また、本発明は各種センシング装置やイメージング装置などに適用が可能である。   The present invention can be suitably applied to electromagnetic waves in a region (frequency 30 GHz to 30 THz: 10 mm to 10 μm) including a millimeter wave band, a microwave band, and a terahertz wave band. In addition, the present invention can be applied to various sensing devices and imaging devices.

本発明の位相速度制御構造の一実施形態にかかり、その構成を説明する概略平面図である。It is a schematic plan view explaining the structure concerning one Embodiment of the phase velocity control structure of this invention. 平行溝の内表面の表面粗さを測定した結果である。It is the result of measuring the surface roughness of the inner surface of a parallel groove. 本発明の位相速度制御構造の効果を測定するための実験装置の一例である。It is an example of the experimental apparatus for measuring the effect of the phase velocity control structure of this invention. 図3の実験装置を用いて得られた周波数と振幅透過率との関係を示すグラフである。It is a graph which shows the relationship between the frequency and amplitude transmittance which were obtained using the experimental apparatus of FIG. 図3の実験装置を用いて得られた位相シフトΔψと周波数との関係を示すグラフである。It is a graph which shows the relationship between phase shift (DELTA) psi obtained using the experimental apparatus of FIG. 3, and a frequency. 図3の実験装置を用いて得られた有効屈折率neffと周波数との関係を示すグラフである。It is a graph which shows the relationship between the effective refractive index neff obtained using the experimental apparatus of FIG. 3, and a frequency. 有効屈折率neffと表面粗さRzとの関係について、測定データ及びデータフィッティングにより得られた理論曲線を両対数のグラフにプロットした結果を示すグラフである。It is a graph which shows the result of having plotted the theoretical curve obtained by measurement data and data fitting on the logarithm graph about the relationship between effective refractive index neff and surface roughness Rz.

1 金属ブロック(位相速度制御構造)
2 導波路
2a V溝(導入手段)
2b 平行溝(平行平板導波路)
1 Metal block (phase velocity control structure)
2 Waveguide 2a V groove (introduction means)
2b Parallel groove (parallel plate waveguide)

Claims (10)

電磁波照射手段から照射された30GHz〜10THzの電磁波の位相速度を制御する方法であって、
少なくとも前記電磁波が伝搬する表面が表面プラズモン結合を生じさせる金属で形成された平行平板導波路と、この平行平板導波路に前記電磁波を導入する導入手段とを準備し、
前記平行平板導波路の幅を前記電磁波の波長以下とし、
前記電磁波が伝搬する前記平行平板導波路の表面粗さを変化させることで前記電磁波に対する前記平行平板導波路の有効屈折率を変化させ、これにより前記導入手段から前記平行平板導波路に導入した電磁波の位相速度を制御すること、
を特徴とする電磁波の位相速度制御方法。
A method for controlling the phase velocity of an electromagnetic wave of 30 GHz to 10 THz irradiated from an electromagnetic wave irradiation means,
Prepare at least a parallel-plate waveguide surface where the electromagnetic wave is propagated is formed of a metal to produce a surface plasmon coupling, and means for introducing the electromagnetic wave into the parallel-plate waveguide,
The width of the parallel plate waveguide is equal to or less than the wavelength of the electromagnetic wave,
By changing the surface roughness of the parallel plate waveguide through which the electromagnetic wave propagates, the effective refractive index of the parallel plate waveguide with respect to the electromagnetic wave is changed, whereby the electromagnetic wave introduced from the introducing means into the parallel plate waveguide Controlling the phase velocity of the
An electromagnetic wave phase velocity control method characterized by
前記有効屈折率と前記表面粗さとの関係が、縦軸を有効屈折率、横軸を表面粗さとした両対数グラフにデータフィッティングの結果をプロットしたときに単調増加のグラフで表わされるものであること特徴とする請求項1に記載の電磁波の位相速度制御方法。 The relationship between the effective refractive index and the surface roughness is represented by a monotonically increasing graph when the result of data fitting is plotted on a log-log graph with the vertical axis representing the effective refractive index and the horizontal axis representing the surface roughness. electromagnetic wave phase velocity controlling method according to claim 1, characterized in that. 前記単調増加のグラフが直線的であることを特徴とする請求項2に記載の電磁波の位相速度制御方法。 3. The electromagnetic wave phase velocity control method according to claim 2, wherein the monotonically increasing graph is linear. 前記導入手段は、レンズ又は少なくとも電磁波が伝搬する表面が前記電磁波との間で表面プラズモン結合を生じさせる金属で形成され出口の幅が前記電磁波の波長以下の寸法に形成された先細状の溝であることを特徴とする請求項1〜3のいずれかに記載の電磁波の位相速度制御方法。 The introduction means is a tapered groove having a lens or at least a surface on which an electromagnetic wave propagates is formed of a metal that causes surface plasmon coupling with the electromagnetic wave, and the width of the outlet is formed to a size equal to or smaller than the wavelength of the electromagnetic wave. The method for controlling the phase velocity of an electromagnetic wave according to any one of claims 1 to 3. 前記先細状の溝がV溝で、前記V溝の頂部の角度は、前記V溝に入射される電磁波の集束角に基づいて決定されることを特徴とする請求項4に記載の電磁波の位相速度制御方法。 The phase of the electromagnetic wave according to claim 4, wherein the tapered groove is a V-groove, and the angle of the top of the V-groove is determined based on a convergence angle of the electromagnetic wave incident on the V-groove. Speed control method. 電磁波照射手段から照射された30GHz〜10THzの電磁波の位相速度を制御する構造であって、
少なくとも前記電磁波が伝搬する表面が表面プラズモン結合を生じさせる金属で形成された平行平板導波路と、
この平行平板導波路に前記電磁波を導入する導入手段とを有し、
前記平行平板導波路の幅を前記電磁波の波長以下とし、
前記平行平板導波路の表面の表面粗さが、前記平行平板導波路の有効屈折率に対して予め設定された関係で形成され、前記表面粗さを変化させることで前記平行平板導波路に導入した電磁波の位相速度を制御すること、
を特徴とする電磁波の位相速度制御構造。
A structure for controlling the phase velocity of electromagnetic waves of 30 GHz to 10 THz irradiated from the electromagnetic wave irradiation means,
A parallel-plate waveguide whose surface is formed of a metal to produce a surface plasmon coupling at least said electromagnetic wave is propagated,
Introducing means for introducing the electromagnetic wave into the parallel plate waveguide;
The width of the parallel plate waveguide is equal to or less than the wavelength of the electromagnetic wave,
The surface roughness of the surface of the parallel plate waveguide is formed in a preset relationship with respect to the effective refractive index of the parallel plate waveguide, and is introduced into the parallel plate waveguide by changing the surface roughness. Controlling the phase velocity of the electromagnetic wave,
Electromagnetic phase velocity control structure characterized by
前記表面粗さが、前記有効屈折率に対して、縦軸を有効屈折率、横軸を表面粗さとした両対数グラフにデータフィッティングの結果をプロットしたときに単調増加のグラフで表される関係で設定されていることを特徴とする請求項6に記載の電磁波の位相速度制御構造。 The surface roughness is a monotonically increasing graph when the result of data fitting is plotted on a log-log graph with the effective refractive index on the vertical axis and the surface roughness on the horizontal axis with respect to the effective refractive index. The electromagnetic wave phase velocity control structure according to claim 6, wherein: 前記単調増加のグラフが直線的であることを特徴とする請求項7に記載の電磁波の位相速度制御構造。 The electromagnetic wave phase velocity control structure according to claim 7, wherein the monotonically increasing graph is linear. 前記導入手段は、レンズ又は少なくとも電磁波が伝搬する表面が前記電磁波との間で表面プラズモン結合を生じさせる金属で形成され、出口の幅が前記電磁波の波長以下の寸法に形成された先細状の溝であることであることを特徴とする請求項6〜8のいずれかに記載の電磁波の位相速度制御構造。 The introducing means is a tapered groove formed with a lens or at least a surface on which an electromagnetic wave propagates is made of a metal that generates surface plasmon coupling with the electromagnetic wave, and the width of the outlet is formed to a dimension equal to or smaller than the wavelength of the electromagnetic wave. The structure for controlling the phase velocity of electromagnetic waves according to any one of claims 6 to 8, wherein the structure is a phase velocity control structure for electromagnetic waves. 前記先細状の溝がV溝で、前記V溝の頂部の角度は、前記V溝に入射される電磁波の集束角に基づいて決定されていることを特徴とする請求項9に記載の電磁波の位相速度制御構造。 10. The electromagnetic wave according to claim 9, wherein the tapered groove is a V-groove, and an angle of a top portion of the V-groove is determined based on a convergence angle of the electromagnetic wave incident on the V-groove. Phase velocity control structure.
JP2013102527A 2013-05-14 2013-05-14 Electromagnetic phase velocity control method and phase velocity control structure Active JP6217963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013102527A JP6217963B2 (en) 2013-05-14 2013-05-14 Electromagnetic phase velocity control method and phase velocity control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013102527A JP6217963B2 (en) 2013-05-14 2013-05-14 Electromagnetic phase velocity control method and phase velocity control structure

Publications (2)

Publication Number Publication Date
JP2014222861A JP2014222861A (en) 2014-11-27
JP6217963B2 true JP6217963B2 (en) 2017-10-25

Family

ID=52122196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013102527A Active JP6217963B2 (en) 2013-05-14 2013-05-14 Electromagnetic phase velocity control method and phase velocity control structure

Country Status (1)

Country Link
JP (1) JP6217963B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064312A (en) * 2000-08-23 2002-02-28 Japan Science & Technology Corp Electromagnetic wave element
TWI483454B (en) * 2008-11-28 2015-05-01 Univ Nat Taiwan Waveguide for guiding terahertz wave
KR101330682B1 (en) * 2011-10-26 2013-11-19 한국해양대학교 산학협력단 Terahertz Filter

Also Published As

Publication number Publication date
JP2014222861A (en) 2014-11-27

Similar Documents

Publication Publication Date Title
Gramotnev et al. Nanofocusing of electromagnetic radiation
US9178282B2 (en) Method for coupling terahertz pulses into a coaxial waveguide
Dash et al. Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR
Serita et al. Invited Article: Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms
US7633299B2 (en) Inspection apparatus using terahertz wave
Kim et al. Subwavelength focusing of Bloch surface waves
Ma et al. Terahertz particle-in-liquid sensing with spoof surface plasmon polariton waveguides
KR101002357B1 (en) Terahertz waveguide device and detection method using the same
JP6075822B2 (en) Sensor device
Wieduwilt et al. Gold-reinforced silver nanoprisms on optical fiber tapers—A new base for high precision sensing
Tarparelli et al. Surface plasmon resonance of nanoshell particles with PMMA-graphene core
Adhikari et al. A voyage from plasmonic to hybrid waveguide refractive index sensors based on wavelength interrogation technique: a review
JP2012185116A (en) Optical characteristics evaluation device and optical characteristics evaluation method
US20120170034A1 (en) Spectroscopy using nanopore cavities
Kuttge et al. Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings
Lee et al. Terahertz band gap properties by using metal slits in tapered parallel-plate waveguides
Bhatt et al. Resonant terahertz InSb waveguide device for sensing polymers
JP6217963B2 (en) Electromagnetic phase velocity control method and phase velocity control structure
Diniz et al. A long-range surface plasmon-polariton waveguide ring resonator as a platform for (bio) sensor applications
Zhu et al. Inexpensive and easy fabrication of multi-mode tapered dielectric circular probes at millimeter wave frequencies
Deibel et al. The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides
KR101039126B1 (en) Terahertz parallel-plate waveguide
KR101753898B1 (en) Apparatus for excitation of surface plasmon wave
Haron et al. Sensitivity increment of one dimensional photonic crystal biosensor
Shourie Ranjana et al. Bio-interfacing of resonant transmission characteristics of InSb-based terahertz plasmonic waveguide

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20130606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170913

R150 Certificate of patent or registration of utility model

Ref document number: 6217963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250