[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6259736B2 - 燃料電池モジュール - Google Patents

燃料電池モジュール Download PDF

Info

Publication number
JP6259736B2
JP6259736B2 JP2014175947A JP2014175947A JP6259736B2 JP 6259736 B2 JP6259736 B2 JP 6259736B2 JP 2014175947 A JP2014175947 A JP 2014175947A JP 2014175947 A JP2014175947 A JP 2014175947A JP 6259736 B2 JP6259736 B2 JP 6259736B2
Authority
JP
Japan
Prior art keywords
cylindrical
cylindrical wall
reforming
fuel cell
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014175947A
Other languages
English (en)
Other versions
JP2016051588A (ja
Inventor
香那子 宮▲崎▼
香那子 宮▲崎▼
信 稲垣
信 稲垣
雅史 大橋
雅史 大橋
伸二 天羽
伸二 天羽
卓也 伊東
卓也 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2014175947A priority Critical patent/JP6259736B2/ja
Publication of JP2016051588A publication Critical patent/JP2016051588A/ja
Application granted granted Critical
Publication of JP6259736B2 publication Critical patent/JP6259736B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池モジュールに関する。
燃料電池モジュールとしては、例えば、直方形の燃料電池モジュール(例えば、特許文献1参照)と、円筒形の燃料電池モジュール(例えば、特許文献2〜4参照)とがある。
また、円筒形の燃料電池モジュールとしては、例えば、燃料電池セルスタックと、改質器と、気化器と、熱交換器等とが径方向に並ぶ多層構造の燃料電池モジュールがある。このような径方向の多層構造では、複雑な構造となるためコストアップになると共に、燃料電池モジュールが径方向に大型化する。
一方、円筒形の燃料電池モジュールを径方向に小型化する例としては、燃料電池セルスタックと、燃料電池セルスタックの上方に配置されると共に平面形状が円形状の改質部と、改質部の上方に配置された気化部とを備えた燃料電池モジュールがある(例えば、特許文献5参照)。
このような燃料電池モジュールでは、改質部及び気化部に複数の部屋が必要であり、さらに、気化部の中央から周縁側に原燃料ガスを流すための渦巻き状の流路が設置されているので、結果的に構造が複雑になり、コストアップとなる。
国際公開第2009/016857号パンフレット 特表2010−504607号公報 特開2014−78348号公報 特開2013−182707号公報 特開2011−175853号公報
本発明は、上記事情に鑑みて成されたものであり、低コスト化と径方向の小型化とを両立できる燃料電池モジュールを提供することを目的とする。
前記目的を達成するために、請求項1に記載の燃料電池モジュールは、酸化剤ガスと燃料ガスとの電気化学反応により発電する燃料電池セルスタックと、前記燃料電池セルスタックの周囲に設けられた円筒状又は楕円筒状の収容部と、前記燃料電池セルスタックの上方に前記収容部と同軸上に設けられた円筒状又は楕円筒状の周壁部を有すると共に、前記燃料電池セルスタックから排出され前記周壁部の内側に供給されたスタック排ガスを燃焼し、燃焼排ガスを上方に排出する燃焼部と、前記燃焼部の上方に前記周壁部と同軸上に設けられると共に、円筒状又は楕円筒状とされ、且つ、前記燃焼排ガスの熱を利用して原燃料ガスから前記燃料ガスを生成する改質部と、前記改質部の上方に前記改質部と同軸上に設けられると共に、円筒状又は楕円筒状とされ、且つ、前記燃焼排ガスの熱を利用して原燃料を気化して前記原燃料ガスを生成する気化部と、前記気化部の上方に前記気化部と同軸上に設けられると共に、互いの間に隙間を有する少なくとも三重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該三重の筒状壁の内側から外側へ順に、断熱空間、前記原燃料が投入される原燃料流路、及び、前記原燃料との間で熱交換する前記燃焼排ガスが流れる燃焼排ガス流路を有する熱交換部と、を備える。
この燃料電池モジュールによれば、燃料電池セルスタックを収容する収容部と、燃焼部の周壁部と、改質部と、気化部と、熱交換部とが互いに同軸上に設けられている。また、熱交換部は、少なくとも三重の筒状壁によって構成され、この少なくとも三重の筒状壁に、熱交換部における断熱空間、原燃料流路、及び、燃焼排ガス流路が形成されている。従って、燃料電池モジュールが径方向に拡がることを抑制できるので、燃料電池モジュールを径方向に小型化することができる。
しかも、熱交換部は、少なくとも三重の筒状壁によって構成されている。従って、熱交換部における構造を簡素化できると共に、熱交換部の組立が容易になるので、燃料電池モジュールを低コスト化することができる。
特に、熱交換部が気化部の上方に気化部と同軸上に設けられており、収容部、周壁部、改質部、気化部、及び、熱交換部によって構成される容器がストレート状に延びる構造であるので、例えば、熱交換部が折り返されて改質部及び気化部の周囲に設けられる場合に比して、構造を簡素化できると共に、燃料電池モジュールを径方向に小型化することができる。
また、熱交換部の内側には、断熱空間が形成されている。従って、熱交換部については、径方向の厚さを薄くすることで、容積に対して伝熱面積を大きく確保することができる。これにより、熱交換部を径方向及び軸方向に小型化することができる。
なお、請求項2に記載の燃料電池モジュールのように、請求項1に記載の燃料電池モジュールにおいて、前記改質部は、互いの間に隙間を有する四重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該四重の筒状壁の内側から外側へ順に、断熱空間、前記燃焼排ガスが流れる燃焼排ガス流路、前記燃焼排ガスの熱を利用して原燃料ガスから前記燃料ガスを生成するための改質触媒層が設けられた改質流路、及び、前記酸化剤ガスが流れる酸化剤ガス流路を有し、前記気化部は、互いの間に隙間を有する四重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該四重の筒状壁の内側から外側へ順に、断熱空間、前記改質流路と連通し原燃料を気化して前記原燃料ガスを生成する気化流路、前記改質部の前記燃焼排ガス流路と連通し前記原燃料に対して気化熱を与える前記燃焼排ガスが流れる燃焼排ガス流路、及び、前記改質部の前記酸化剤ガス流路と連通し前記燃焼排ガスとの間で熱交換する前記酸化剤ガスが流れる酸化剤ガス流路を有し、前記熱交換部は、前記三重の筒状壁を含み互いの間に隙間を有する四重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該四重の筒状壁の内側から外側へ順に、断熱空間、前記気化流路と連通する前記原燃料流路、前記気化部の前記燃焼排ガス流路と連通し前記原燃料との間で熱交換する前記燃焼排ガスが流れる燃焼排ガス流路、及び、前記気化部の前記酸化剤ガス流路と連通し前記燃焼排ガスとの間で熱交換する前記酸化剤ガスが流れる酸化剤ガス流路を有していても良い。
この構成によれば、熱交換部が四重の筒状壁によって構成されることに加え、改質部及び気化部も四重の筒状壁によって構成されている。従って、改質部及び気化部における構造を簡素化できると共に、改質部及び気化部の組立が容易になるので、燃料電池モジュールをより低コスト化することができる。
また、熱交換部では、燃焼排ガス流路の径方向の両側に原燃料流路及び酸化剤ガス流路が形成されている。これにより、燃焼排ガス流路の熱を、原燃料流路と酸化剤ガス流路とに振り分けることができる。つまり、原燃料流路を流れる原燃料を気化させる構造と、酸化剤ガス流路を流れる酸化剤ガスを予熱する構造とを一体化することができる。従って、このことによっても、燃料電池モジュールを径方向に小型化することができる。
さらに、熱交換部の最も外側には、燃焼排ガスよりも温度の低い酸化剤ガスが流れる酸化剤ガス流路が形成されているので、この酸化剤ガス流路を流れる酸化剤ガスで燃焼排ガスの熱を吸収することにより、熱交換部の放熱を抑制することができる。
また、請求項3に記載の燃料電池モジュールのように、請求項2に記載の燃料電池モジュールにおいて、前記改質部を構成する四重の筒状壁のうち最も外側に位置する筒状壁と、前記気化部を構成する四重の筒状壁のうち最も外側に位置する筒状壁と、前記熱交換部を構成する四重の筒状壁のうち最も外側に位置する筒状壁とは、一体に形成され、前記改質部を構成する四重の筒状壁のうち外側から二番目の筒状壁と、前記気化部を構成する四重の筒状壁のうち外側から二番目の筒状壁と、前記熱交換部を構成する四重の筒状壁のうち外側から二番目の筒状壁とは、一体に形成されていても良い。
この構成によれば、改質部の外側の筒状壁と、気化部の外側の筒状壁と、熱交換部の外側の筒状壁とが一体に形成されると共に、改質部の外側から二番目の筒状壁と、気化部の外側から二番目の筒状壁と、熱交換部の外側から二番目の筒状壁とが一体に形成されているので、部品点数の増加を抑制することができると共に、改質部、気化部、及び、熱交換部の構造を簡素化することができる。
また、請求項4に記載の燃料電池モジュールのように、請求項3に記載の燃料電池モジュールにおいて、前記収容部は、前記燃料電池セルスタックの周囲に設けられた二重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該二重の筒状壁の間に前記酸化剤ガス流路と連通し前記燃料電池セルスタックの排熱で予熱される前記酸化剤ガスが流れる予熱流路を有する予熱部であり、前記周壁部は、前記改質部を構成する四重の筒状壁のうち最も内側の筒状壁を除く残りの筒状壁に一体に形成されると共に、前記四重の筒状壁のうち最も内側の筒状壁に対して下方に延び、前記予熱部を構成する二重の筒状壁のうち外側の筒状壁と、前記改質部を構成する四重の筒状壁のうち最も外側に位置する筒状壁とは、一体に形成され、前記予熱部を構成する二重の筒状壁のうち内側の筒状壁と、前記改質部を構成する四重の筒状壁のうち外側から二番目の筒状壁とは、一体に形成されていても良い。
この構成によれば、予熱部の外側の筒状壁と、改質部の外側の筒状壁とが一体に形成されると共に、予熱部の内側の筒状壁と、改質部の外側から二番目の筒状壁とが一体に形成されているので、部品点数の増加を抑制することができると共に、予熱部及び改質部の構造を簡素化することができる。
また、請求項5に記載の燃料電池モジュールのように、請求項1に記載の燃料電池モジュールにおいて、前記改質部は、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該三重の筒状壁の内側から外側へ順に、断熱空間、前記燃焼排ガスが流れる燃焼排ガス流路、及び、前記燃焼排ガスの熱を利用して原燃料ガスから前記燃料ガスを生成するための改質触媒層が設けられた改質流路を有し、前記気化部は、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該三重の筒状壁の内側から外側へ順に、断熱空間、前記改質流路と連通し原燃料を気化して前記原燃料ガスを生成する気化流路、及び、前記改質部の前記燃焼排ガス流路と連通し前記原燃料に対して気化熱を与える前記燃焼排ガスが流れる燃焼排ガス流路を有し、前記熱交換部は、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該三重の筒状壁の内側から外側へ順に、断熱空間、前記気化流路と連通する前記原燃料流路、及び、前記気化部の前記燃焼排ガス流路と連通し前記原燃料との間で熱交換する前記燃焼排ガスが流れる燃焼排ガス流路を有していても良い。
この構成によれば、熱交換部、気化部、及び、改質部が三重の筒状壁によって構成されている。従って、熱交換部、気化部、及び、改質部における構造を簡素化できると共に、熱交換部、気化部、及び、改質部の組立が容易になるので、燃料電池モジュールを低コスト化することができる。
また、請求項6に記載の燃料電池モジュールのように、請求項2〜請求項5のいずれか一項に記載の燃料電池モジュールにおいて、前記改質流路は、前記気化流路よりも径方向外側に位置し、前記気化流路の下端部と前記改質流路の上端部とは、前記気化部の周方向の一部から径方向外側に延びる連結管によって接続されていても良い。
この構成によれば、気化流路の下端部と改質流路の上端部とを接続する連結管は、気化部の周方向の一部から径方向外側に延びている。従って、改質流路と気化流路との間を改質部及び気化部の燃焼排ガス流路が通っていても、この燃焼排ガス流路を流れる燃焼排ガスが連結管を避けて通ることで、改質部の燃焼排ガス流路から気化部の燃焼排ガス流路に燃焼排ガスを供給することができる。
また、気化流路の下端部と改質流路の上端部とを接続するために、気化部の下端部における周方向の一部から径方向外側に延びる連結管を用いているので、気化流路及び改質流路の接続構造を簡素化することができる。
また、請求項7に記載の燃料電池モジュールのように、請求項2又は請求項5に記載の燃料電池モジュールにおいて、前記熱交換部、前記気化部、及び、前記改質部における前記断熱空間は、空洞でも良い。
この構成によれば、熱交換部、気化部、及び、改質部における断熱空間は、空洞であるので、熱交換部、気化部、及び、改質部の構造を簡素化することができる。
また、請求項8に記載の燃料電池モジュールのように、請求項2又は請求項5に記載の燃料電池モジュールにおいて、前記熱交換部、前記気化部、及び、前記改質部における前記断熱空間には、断熱材が充填されていても良い。
この構成によれば、熱交換部、気化部、及び、改質部における断熱空間には、断熱材が充填されているので、熱交換部、気化部、及び、改質部の熱効率を向上させることができる。
また、請求項9に記載の燃料電池モジュールのように、酸化剤ガスと燃料ガスとの電気化学反応により発電する燃料電池セルスタックと、前記燃料電池セルスタックの周囲に設けられた円筒状又は楕円筒状の収容部と、前記燃料電池セルスタックの上方に前記収容部と同軸上に設けられた円筒状又は楕円筒状の周壁部を有すると共に、前記燃料電池セルスタックから排出され前記周壁部の内側に供給されたスタック排ガスを燃焼し、燃焼排ガスを上方に排出する燃焼部と、前記燃焼部の上方に前記周壁部と同軸上に設けられると共に、円筒状又は楕円筒状とされ、且つ、前記燃焼排ガスの熱を利用して原燃料ガスから前記燃料ガスを生成する改質部と、前記改質部の上方に前記改質部と同軸上に設けられると共に、互いの間に隙間を有する四重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該四重の筒状壁の内側から外側へ順に、断熱空間、原燃料を気化して前記原燃料ガスを生成する気化流路、前記原燃料に対して気化熱を与える前記燃焼排ガスが流れる燃焼排ガス流路、及び、前記燃焼排ガスとの間で熱交換する前記酸化剤ガスが流れる酸化剤ガス流路を有する気化部と、前記気化部の上方に前記気化部と同軸上に設けられると共に、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該三重の筒状壁の内側から外側へ順に、断熱空間、前記気化部の前記燃焼排ガス流路と連通し前記燃焼排ガスが流れる燃焼排ガス流路、及び、前記気化部の前記酸化剤ガス流路と連通し前記燃焼排ガスとの間で熱交換する前記酸化剤ガスが流れる酸化剤ガス流路を有する熱交換部と、を備えていても良い。
この燃料電池モジュールによれば、燃料電池セルスタックを収容する収容部と、燃焼部の周壁部と、改質部と、気化部と、熱交換部とが互いに同軸上に設けられている。また、気化部は、四重の筒状壁によって構成され、この四重の筒状壁に、気化部における断熱空間、気化流路、燃焼排ガス流路、及び、酸化剤ガス流路が形成されている。さらに、熱交換部は、三重の筒状壁によって構成され、この三重の筒状壁に、熱交換部における断熱空間、燃焼排ガス流路、及び、酸化剤ガス流路が形成されている。以上の構成より、燃料電池モジュールが径方向に拡がることを抑制できるので、燃料電池モジュールを径方向に小型化することができる。
しかも、気化部は、四重の筒状壁によって構成され、熱交換部は、三重の筒状壁によって構成されている。従って、気化部及び熱交換部における構造を簡素化できると共に、気化部及び熱交換部の組立が容易になるので、燃料電池モジュールを低コスト化することができる。
特に、熱交換部が気化部の上方に気化部と同軸上に設けられており、収容部、周壁部、改質部、気化部、及び、熱交換部によって構成される容器がストレート状に延びる構造であるので、例えば、熱交換部が折り返されて改質部及び気化部の周囲に設けられる場合に比して、構造を簡素化できると共に、燃料電池モジュールを径方向に小型化することができる。
また、熱交換部の内側には、断熱空間が形成されている。従って、熱交換部については、径方向の厚さを薄くすることで、容積に対して伝熱面積を大きく確保することができる。これにより、熱交換部を径方向及び軸方向に小型化することができる。
さらに、熱交換部の最も外側には、燃焼排ガスよりも温度の低い酸化剤ガスが流れる酸化剤ガス流路が形成されているので、この酸化剤ガス流路を流れる酸化剤ガスで燃焼排ガスの熱を吸収することにより、熱交換部の放熱を抑制することができる。
また、熱交換部には原燃料流路が設けられておらず、この熱交換部では、原燃料と燃焼排ガスとの間で熱交換が行われないので、熱交換部において燃焼排ガスを冷却し過ぎることを抑制することができる。これにより、燃焼排ガス流路の出口にて適切な燃焼排ガスの温度を実現でき、ひいては、燃料電池モジュール全体の温度バランスを適正化することができる。
また、請求項10に記載の燃料電池モジュールのように、請求項9に記載の燃料電池モジュールにおいて、前記改質部は、互いの間に隙間を有する四重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該四重の筒状壁の内側から外側へ順に、断熱空間、前記気化部の前記燃焼排ガス流路と連通し前記燃焼排ガスが流れる燃焼排ガス流路、前記気化流路と連通し前記燃焼排ガスの熱を利用して原燃料ガスから前記燃料ガスを生成するための改質触媒層が設けられた改質流路、及び、前記気化部の前記酸化剤ガス流路と連通し前記酸化剤ガスが流れる酸化剤ガス流路を有していても良い。
この構成によれば、気化部が四重の筒状壁によって構成され、熱交換部が三重の筒状壁によって構成されることに加え、改質部も四重の筒状壁によって構成されている。従って、改質部における構造を簡素化できると共に、改質部の組立が容易になるので、燃料電池モジュールをより低コスト化することができる。
また、請求項11に記載の燃料電池モジュールのように、請求項10に記載の燃料電池モジュールにおいて、前記熱交換部を構成する三重の筒状壁のうち最も内側の筒状壁と、前記気化部を構成する四重の筒状壁のうち内側から二番目の筒状壁とは、共通の管材に形成され、前記気化部を構成する四重の筒状壁のうち最も内側の筒状壁は、前記管材の径方向内側に位置していても良い。
この構成によれば、熱交換部の内側の筒状壁と、気化部の内側から二番目の筒状壁とは、共通の管材に形成されており、気化部の最も内側の筒状壁(気化流路を構成する一対の筒状壁のうち内側の筒状壁)は、この共通の管材の径方向内側に位置する。従って、気化部の最も内側の筒状壁の上端の位置は、高さ方向の制約が無いので、これにより、気化流路の長さを容易に変更することができる。この結果、気化流路の長さを最適化することができるので、気化流路の下流側に位置する改質流路の入口を通過する原燃料ガスの温度が上昇し過ぎることを抑制することができる。
また、このように改質流路に流入する原燃料ガスの温度を下げることができるので、改質触媒層における炭素析出(コーキング)の発生を抑制することができる。
また、請求項12に記載の燃料電池モジュールのように、請求項11に記載の燃料電池モジュールにおいて、前記熱交換部の内側を通り、前記気化流路の上端部に接続された原燃料供給管をさらに備えていても良い。
この構成によれば、気化流路へ原燃料を投入するための構造として、気化流路の上端部に接続された原燃料供給管が用いられている。従って、気化流路へ原燃料を投入するための構造を簡素化することができるので、コストダウンすることができる。
しかも、原燃料供給管は、熱交換部の内側を通るので、この原燃料供給管が熱交換部の径方向外側に張り出すことを抑制することができる。これにより、燃料電池モジュールの径方向への小型化を図ることができる。
また、請求項13に記載の燃料電池モジュールのように、請求項10〜請求項12のいずれか一項に記載の燃料電池モジュールにおいて、前記改質部と前記気化部との間に前記改質部及び前記気化部と同軸上に設けられると共に、互いの間に隙間を有する五重の円筒状又は楕円筒状の筒状壁によって構成された流路切替部をさらに備え、前記流路切替部を構成する五重の筒状壁のうち内側から一番目の筒状壁は、前記改質部を構成する四重の筒状壁のうち内側から一番目の筒状壁を上方に延長して形成され、前記流路切替部を構成する五重の筒状壁のうち内側から二番目の筒状壁は、前記気化部を構成する四重の筒状壁のうち内側から一番目の筒状壁を下方に延長して形成され、前記流路切替部を構成する五重の筒状壁のうち内側から三番目の筒状壁は、前記気化部を構成する四重の筒状壁のうち内側から二番目の筒状壁を下方に延長して形成され、前記流路切替部を構成する五重の筒状壁のうち内側から四番目の筒状壁は、前記気化部を構成する四重の筒状壁のうち内側から三番目の筒状壁と、前記改質部を構成する四重の筒状壁のうち内側から三番目の筒状壁とに連続して形成され、前記流路切替部を構成する五重の筒状壁のうち内側から一番目の筒状壁と内側から二番目の筒状壁との間には、前記改質部の前記燃焼排ガス流路を上方に延長した上方延長排ガス流路が形成され、前記流路切替部を構成する五重の筒状壁のうち内側から三番目の筒状壁と内側から四番目の筒状壁との間には、前記上方延長排ガス流路よりも径方向外側に位置し前記気化部の前記燃焼排ガス流路を下方に延長した下方延長排ガス流路が形成され、前記流路切替部を構成する五重の筒状壁のうち内側から二番目の筒状壁と三番目の筒状壁には、前記流路切替部の周方向の一部に設けられ前記上方延長排ガス流路と前記下方延長排ガス流路とを連通する連通管が接続され、前記流路切替部を構成する五重の筒状壁のうち内側から二番目の筒状壁の下端部は、前記改質部を構成する四重の筒状壁のうち内側から二番目の筒状壁の上端部に結合されていても良い。
この構成によれば、改質部の燃焼排ガス流路を上方に延長した上方延長排ガス流路と、気化部の燃焼排ガス流路を下方に延長した下方延長排ガス流路とは、流路切替部の周方向の一部に設けられた連通管によって接続されている。従って、上方延長排ガス流路と下方延長排ガス流路との間に気化流路の下方への延長流路が形成されていても、この延長流路を流れる原燃料ガスが連通管を避けて通ることができるので、気化流路からの原燃料ガスを改質流路に供給することができる。
また、流路切替部を構成する五重の筒状壁のうち内側から二番目の筒状壁の下端部は、改質部を構成する四重の筒状壁のうち内側から二番目の筒状壁の上端部に結合されている。従って、連通管の近くに流路切替部及び改質部の結合部が設けられているので、流路切替部及び改質部を構成する筒状壁が熱膨張した場合でも、連通管と筒状壁との接合部に応力が生じることを抑制することができる。
また、請求項14に記載の燃料電池モジュールのように、請求項10〜請求項13のいずれか一項に記載の燃料電池モジュールにおいて、前記改質部を構成する四重の筒状壁のうち最も外側に位置する筒状壁と、前記気化部を構成する四重の筒状壁のうち最も外側に位置する筒状壁と、前記熱交換部を構成する三重の筒状壁における外側の筒状壁とは、一体に形成され、前記改質部を構成する四重の筒状壁のうち外側から二番目の筒状壁と、前記気化部を構成する四重の筒状壁のうち外側から二番目の筒状壁と、前記熱交換部を構成する三重の筒状壁における中央の筒状壁とは、一体に形成されていても良い。
この構成によれば、改質部の外側の筒状壁と、気化部の外側の筒状壁と、熱交換部の外側の筒状壁とが一体に形成されると共に、改質部の外側から二番目の筒状壁と、気化部の外側から二番目の筒状壁と、熱交換部の中央の筒状壁とが一体に形成されているので、部品点数の増加を抑制することができると共に、改質部、気化部、及び、熱交換部の構造を簡素化することができる。
また、請求項15に記載の燃料電池モジュールのように、請求項14に記載の燃料電池モジュールにおいて、前記収容部は、前記燃料電池セルスタックの周囲に設けられた二重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該二重の筒状壁の間に前記酸化剤ガス流路と連通し前記燃料電池セルスタックの排熱で予熱される前記酸化剤ガスが流れる予熱流路を有する予熱部であり、前記周壁部は、前記改質部を構成する四重の筒状壁のうち最も内側の筒状壁を除く残りの筒状壁に一体に形成されると共に、前記四重の筒状壁のうち最も内側の筒状壁に対して下方に延び、前記予熱部を構成する二重の筒状壁のうち外側の筒状壁と、前記改質部を構成する四重の筒状壁のうち最も外側に位置する筒状壁とは、一体に形成され、前記予熱部を構成する二重の筒状壁のうち内側の筒状壁と、前記改質部を構成する四重の筒状壁のうち外側から二番目の筒状壁とは、一体に形成されていても良い。
この構成によれば、予熱部の外側の筒状壁と、改質部の外側の筒状壁とが一体に形成され、予熱部の内側の筒状壁と、改質部の外側から二番目の筒状壁とが一体に形成されているので、部品点数の増加を抑制することができると共に、予熱部及び改質部の構造を簡素化することができる。
また、請求項16に記載の燃料電池モジュールのように、請求項2又は請求項9に記載の燃料電池モジュールにおいて、前記熱交換部の前記酸化剤ガス流路及び前記燃焼排ガス流路は、螺旋形成部によって前記熱交換部の軸方向回りに螺旋状に形成されていても良い。
この構成によれば、熱交換部の酸化剤ガス流路及び燃焼排ガス流路は、熱交換部の軸方向回りに螺旋状に形成されている。これにより、酸化剤ガス流路及び燃焼排ガス流路の全長が増加するので、酸化剤ガス流路を流れる酸化剤ガスと、燃焼排ガス流路を流れる燃焼排ガスとの間の熱交換効率を向上させることができる。
また、螺旋形成部が熱交換部の酸化剤ガス流路及び燃焼排ガス流路を形成する筒状壁間に介在するスペーサの役割を果たすので、酸化剤ガス流路及び燃焼排ガス流路の流路の幅を維持することができる。
また、請求項17に記載の燃料電池モジュールのように、請求項2、又は請求項9に記載の燃料電池モジュールにおいて、前記熱交換部の前記燃焼排ガス流路は、螺旋形成部によって前記熱交換部の軸方向回りに螺旋状に形成され、前記気化流路は、螺旋形成部によって前記気化部の軸方向回りに螺旋状に形成され、前記熱交換部の前記燃焼排ガス流路は、前記気化流路よりも螺旋のピッチが大きくても良い。
この構成によれば、熱交換部の燃焼排ガス流路は、気化流路よりも螺旋のピッチが大きいので、流量が多い燃焼排ガス流路における圧損を気化流路と同程度に低減することができる。これにより、燃焼排ガス流路における流体の圧送動力を低減することができる。
また、請求項18に記載の燃料電池モジュールのように、請求項16又は請求項17に記載の燃料電池モジュールにおいて、前記熱交換部の前記酸化剤ガス流路における前記酸化剤ガスの流れと、前記熱交換部の前記燃焼排ガス流路における前記燃焼排ガスの流れとは、前記熱交換部の軸方向に逆向きでも良い。
この構成によれば、熱交換部では、酸化剤ガス流路における酸化剤ガスの流れと、燃焼排ガス流路における燃焼排ガスの流れとが軸方向に逆向きであるので、酸化剤ガスと燃焼排ガスとの熱交換効率を向上させることができる。
また、請求項19に記載の燃料電池モジュールのように、請求項1〜請求項18のいずれか一項に記載の燃料電池モジュールにおいて、前記収容部、前記周壁部、前記改質部、前記気化部、及び、前記熱交換部は、容器を構成し、前記容器は、断熱材によって覆われていても良い。
この構成によれば、収容部、燃焼部の周壁部、改質部、気化部、及び、熱交換部を構成する容器は、断熱材によって覆われている。これにより、収容部、燃焼部の周壁部、改質部、気化部、及び、熱交換部からの放熱を抑制することができるので、熱効率を向上させることができる。
また、請求項20に記載の燃料電池モジュールのように、酸化剤ガスと燃料ガスとの電気化学反応により発電する燃料電池セルスタックと、前記燃料電池セルスタックの周囲に設けられた二重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該二重の筒状壁の間に前記燃料電池セルスタックの排熱で予熱される前記酸化剤ガスが流れる予熱流路を有する予熱部と、前記予熱部を構成する前記二重の筒状壁及び前記予熱流路の上方への延長部分を含むと共に前記燃料電池セルスタックの上方に前記予熱部と同軸上に設けられた円筒状又は楕円筒状の周壁部を有し、前記燃料電池セルスタックから排出され前記周壁部の内側に供給されたスタック排ガスを燃焼して燃焼排ガスを上方に排出する燃焼部と、前記燃焼部の上方に前記周壁部と同軸上に設けられると共に、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該三重の筒状壁の内側から外側へ順に、断熱空間、前記燃焼排ガスが流れる燃焼排ガス流路、及び、前記燃焼排ガスの熱を利用して原燃料ガスから前記燃料ガスを生成するための改質触媒層が設けられた改質流路を有する改質部と、を備えていても良い。
この燃料電池モジュールによれば、予熱部と、燃焼部の周壁部と、改質部とが互いに同軸上に設けられている。また、改質部は、三重の筒状壁によって構成され、この三重の筒状壁に、改質部における断熱空間、燃焼排ガス流路、及び、改質流路が形成されている。従って、燃料電池モジュールが径方向に拡がることを抑制できるので、燃料電池モジュールを径方向に小型化することができる。
しかも、改質部は、上述の通り三重の筒状壁によって構成されている。従って、改質部における構造を簡素化できると共に、改質部の組立が容易になるので、燃料電池モジュールを低コスト化することができる。
さらに、改質部から酸化剤ガス流路が省かれているので、燃焼部から排出された燃焼排ガスの熱を酸化剤ガスで吸収することができないが、改質部の構造を簡素化することができるので、燃料電池モジュールをより低コスト化することができる。
また、改質部から酸化剤ガス流路が省かれているので、改質部の熱が酸化剤ガスにて直接吸収されない。そのため、改質触媒層の温度上昇を効率的に促すことができるので、改質触媒層での改質反応の転化率を向上させることができる。
また、改質部において、燃焼排ガスの熱は、改質触媒層の改質反応による吸熱と、原燃料に含まれる改質用水の気化熱、及び、原燃料の予熱のみに利用されるため、改質部の伝熱面積を小さくすることができると共に、改質部を簡素化及び小型化することができる。
また、請求項21に記載の燃料電池モジュールのように、請求項20に記載の燃料電池モジュールにおいて、前記予熱流路の上端部には、前記予熱流路に前記酸化剤ガスを供給する酸化剤ガス供給管が接続されていても良い。
この構成によれば、改質部から酸化剤ガス流路が省かれて、予熱流路の上端部に酸化剤ガス供給管が接続されることにより、予熱流路を流れる酸化剤ガスの温度は、改質部に酸化剤ガス流路が設けられている場合に比して低くなる。従って、燃料電池セルスタックの放熱を、温度の低い酸化剤ガスで吸収することができるので、燃料電池セルスタックから外部への放熱を抑制でき、ひいては、燃料電池モジュールの発電効率を向上させることができる。
また、請求項22に記載の燃料電池モジュールのように、請求項20又は請求項21に記載の燃料電池モジュールにおいて、前記改質部の上方に前記改質部と同軸上に設けられると共に、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該三重の筒状壁の内側から外側へ順に、断熱空間、前記改質流路と連通し原燃料を気化して前記原燃料ガスを生成する気化流路、及び、前記改質部の前記燃焼排ガス流路と連通し前記原燃料に対して気化熱を与える前記燃焼排ガスが流れる燃焼排ガス流路を有する気化部と、前記気化部の上方に前記気化部と同軸上に設けられると共に、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該三重の筒状壁の内側から外側へ順に、断熱空間、前記気化流路と連通し前記原燃料が投入される原燃料流路、及び、前記気化部の前記燃焼排ガス流路と連通し前記原燃料との間で熱交換する前記燃焼排ガスが流れる燃焼排ガス流路を有する熱交換部とをさらに備えていても良い。
この構成によれば、改質部が三重の筒状壁によって構成されることに加え、気化部及び熱交換部も三重の筒状壁によって構成されている。従って、気化部及び熱交換部における構造を簡素化できると共に、気化部及び熱交換部の組立が容易になるので、燃料電池モジュールをより低コスト化することができる。
また、請求項23に記載の燃料電池モジュールのように、請求項20又は請求項21に記載の燃料電池モジュールにおいて、前記改質部の上方に前記改質部と同軸上に設けられると共に、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該三重の筒状壁の内側から外側へ順に、断熱空間、前記改質部の前記燃焼排ガス流路と連通し前記燃焼排ガスが流れる燃焼排ガス流路、及び、前記改質流路と連通し原燃料を気化して前記原燃料ガスを生成する気化流路を有する気化部をさらに備えていても良い。
この構成によれば、改質部では燃焼排ガス流路が径方向内側に位置すると共に改質流路が径方向外側に位置し、気化部では燃焼排ガス流路が径方向内側に位置すると共に気化流路が径方向外側に位置する。従って、改質部の燃焼排ガス流路から気化部の燃焼排ガス流路に通じる流路と、気化流路から改質流路に通じる流路とが交差しないので、改質部及び気化部の構造を簡素化することができる。
また、請求項24に記載の燃料電池モジュールのように、請求項23に記載の燃料電池モジュールにおいて、前記予熱部、前記周壁部、前記改質部、及び、前記気化部は、容器を構成し、前記気化部は、前記容器の上部を構成していても良い。
この構成によれば、気化部は、容器の上部を構成しており、この燃料電池モジュール(容器)からは熱交換部が省かれているので、燃料電池モジュールをより小型化及び低コスト化することができる。
また、請求項25に記載の燃料電池モジュールのように、請求項24に記載の燃料電池モジュールにおいて、前記容器は、断熱材によって覆われていても良い。
この構成によれば、予熱部、燃焼部の周壁部、改質部、及び、気化部を構成する容器は、断熱材によって覆われている。これにより、予熱部、燃焼部の周壁部、改質部、及び、気化部からの放熱を抑制することができるので、熱効率を向上させることができる。
また、請求項26に記載の燃料電池モジュールのように、酸化剤ガスと燃料ガスとの電気化学反応により発電する燃料電池セルスタックと、前記燃料電池セルスタックの周囲に設けられた二重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該二重の筒状壁の間に前記燃料電池セルスタックの排熱で予熱される前記酸化剤ガスが流れる予熱流路を有する予熱部と、前記燃料電池セルスタックの上方に前記予熱部と同軸上に設けられた円筒状又は楕円筒状の周壁部を有すると共に、前記燃料電池セルスタックから排出され前記周壁部の内側に供給されたスタック排ガスを燃焼し、燃焼排ガスを上方に排出する燃焼部と、前記燃焼部の上方に前記周壁部と同軸上に設けられると共に、互いの間に隙間を有する五重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該五重の筒状壁の内側から外側へ順に、断熱空間、前記燃焼排ガスが流れる燃焼排ガス流路、前記燃焼排ガスの熱を利用して原燃料ガスから前記燃料ガスを生成するための改質触媒層が設けられた改質流路、断熱空間、及び、前記予熱流路と連通し前記酸化剤ガスが流れる酸化剤ガス流路を有する改質部と、を備えていても良い。
この燃料電池モジュールによれば、燃料電池セルスタックの周囲に設けられた予熱部と、燃焼部の周壁部と、改質部とが互いに同軸上に設けられている。また、改質部は、五重の筒状壁によって構成され、この五重の筒状壁に、改質部における断熱空間、燃焼排ガス流路、改質流路、断熱空間、及び、酸化剤ガス流路が形成されている。以上の構成より、燃料電池モジュールが径方向に拡がることを抑制できるので、燃料電池モジュールを径方向に小型化することができる。
しかも、改質部は、五重の筒状壁によって構成されている。従って、改質部における構造を簡素化できると共に、改質部の組立が容易になるので、燃料電池モジュールを低コスト化することができる。
また、五重の筒状壁のうち改質流路と酸化剤ガス流路との隔壁を形成する筒状壁は、二重の筒状壁によって構成されており、この二重の筒状壁の間は、断熱空間として形成されている。従って、改質部における酸化剤ガス流路を流れる酸化剤ガスに改質触媒層から熱が奪われることを抑制することができる。これにより、改質触媒層の温度を効率的に上昇させることができる。
また、予熱流路を流れる酸化剤ガスの温度は、改質流路の径方向外側に断熱空間が無い場合と比較して低くなるので、燃料電池セルスタックの放熱を、温度の低い酸化剤ガスで吸収することができる。これにより、燃料電池セルスタックから外部への放熱を抑制することができる。
また、酸化剤ガスの予熱を燃料電池セルスタックの周囲のみで賄おうとすると、予熱量が不十分になる可能性があるが、改質部に酸化剤ガス流路を設けることにより、改質部において酸化剤ガスの予熱を行うことができるので、酸化剤ガスの予熱を燃料電池セルスタックの周囲のみで賄う場合と比較して、予熱量を確保することができる。
また、請求項27に記載の燃料電池モジュールのように、請求項26に記載の燃料電池モジュールにおいて、前記改質流路の径方向外側の前記断熱空間は、空洞でも良い。
この構成によれば、改質流路の径方向外側の断熱空間は、空洞であるので、改質部の構造を簡素化することができる。
以上詳述したように、本発明の燃料電池モジュールによれば、低コスト化と径方向の小型化とを両立することができる。
第一実施形態に係る燃料電池モジュールの縦断面図である。 図1の要部拡大図である。 図1の要部拡大図である。 図1の要部拡大図である。 第二実施形態に係る燃料電池モジュールの縦断面図である。 図5の要部拡大図である。 図5の要部拡大図である。 第三実施形態に係る燃料電池モジュールの縦断面図である。 図8の要部拡大図である。 図8の要部拡大図である。 図8の要部拡大図である。 第四実施形態に係る燃料電池モジュールの縦断面図である。 図12の要部拡大図である。 図12の要部拡大図である。 第五実施形態に係る燃料電池モジュールの縦断面図である。 燃料電池モジュールの第一変形例を示す縦断面図である。 図16AのF16B−F16B線断面図である。 燃料電池モジュールの第二変形例を示す縦断面図である。 図17AのF17B−F17B線断面図である。 平板形の燃料電池セルスタックの構成を説明する図である。 円筒形の燃料電池セルスタックの構成を説明する図である。 円筒平板形の燃料電池セルスタックの構成を説明する図である。 第一実施形態に係る燃料電池モジュールを対象として行う第一の評価試験における測定箇所を説明する図である。 第一実施形態に係る燃料電池モジュールを対象として行う第二の評価試験における測定箇所を説明する図である。 第二実施形態に係る燃料電池モジュールを対象として行う第二の評価試験における測定箇所を説明する図である。
[第一実施形態]
はじめに、本発明の第一実施形態について説明する。
<燃料電池モジュール>
図1に示されるように、第一実施形態に係る燃料電池モジュールM1は、燃料電池セルスタック10と、容器20と、断熱材140とを備える。
<燃料電池セルスタック>
燃料電池セルスタック10には、一例として、固体酸化物形燃料電池(SOFC)が適用されている。この燃料電池セルスタック10は、一例として、鉛直方向に積層された複数の平板形のセル12と、マニホールド14と有している。各セル12は、燃料極、電解質層、空気極を有する。
各セル12の燃料極には、改質ガスが供給され、各セル12の空気極には、酸化剤ガスが供給される。各セル12は、酸化剤ガスと燃料ガスとの電気化学反応により発電すると共に、発電に伴い発熱する。
<容器>
容器20は、複数(八個)の管材21〜28により構成されている。この複数の管材21〜28は、いずれも横断面が真円形状である円筒状に形成され、伝熱性の高い金属で形成される。この複数の管材21〜28のうち管材21〜26は、容器20の内側から外側に順に配置されている。
一番目の管材21は、燃料電池セルスタック10の上方から容器20の上端部に亘って設けられている。二番目の管材22及び三番目の管材23は、一番目の管材21の高さ方向の中央部に対応する長さで形成されており、二番目の管材22は、一番目の管材21の外側から管材21の高さ方向の中央部に位置している。
四番目の管材24は、二番目の管材22及び三番目の管材23よりも下側に設けられており、五番目の管材25及び六番目の管材26は、容器20の下端部から上端部に亘って設けられている。七番目の管材27は、一番目の管材21の上部の外側に設けられており、八番目の管材28は、七番目の管材27と五番目の管材25との間に設けられている。
七番目の管材27の下端部は、二番目の管材22の上端部に固定され、八番目の管材28の下端部は、三番目の管材23の上端部に固定されている。八番目の管材28の上端部は、七番目の管材27の上端部に固定され、五番目の管材25の上端部は、八番目の管材28の上端部に固定され、六番目の管材26の上端部は、五番目の管材25の上端部に固定されている。
五番目の管材25の下端部は、底壁部34に固定されており、六番目の管材26の下端部は、底壁部35に固定されている。底壁部34には、燃料電池セルスタック10が載置されており、また、底壁部34と底壁部35とは、スペーサ36により固定されている。底壁部34,35には、燃料電池セルスタック10から延びる図示しない出力線が貫通している。出力線が貫通する底壁部34,35の穴の内周と出力線の外周との間は、適宜シールされる。
この複数の管材21〜28によって構成される容器20は、機能別には、気化部40と、改質部60と、燃焼部90と、予熱部100(収容部)と、熱交換部110とを有する。
<気化部>
気化部40は、四重の筒状壁41〜44によって構成されている。四重の筒状壁41〜44のうち最も内側に位置する筒状壁41は、一番目の管材21と、二番目の管材22とによって構成され、四重の筒状壁41〜44のうち内側から二番目の筒状壁42は、三番目の管材23によって構成されている。また、四重の筒状壁41〜44のうち内側から三番目の筒状壁43は、五番目の管材25によって構成され、四重の筒状壁41〜44のうち最も外側の筒状壁44は、六番目の管材26によって構成されている。
この四重の筒状壁41〜44によって構成された気化部40は、後述する改質部60の上方に改質部60と同軸上に設けられている。図2,図3に示されるように、この気化部40を構成する四重の筒状壁41〜44は、互いの間に隙間を有しており、この四重の筒状壁41〜44の内側から外側には、断熱空間45、気化流路46、燃焼排ガス流路47、及び、酸化剤ガス流路48が順に形成されている。
つまり、一番目の筒状壁41の内側の空間は、断熱空間45として形成され、一番目の筒状壁41と、二番目の筒状壁42との間の隙間は、気化流路46として形成されている。また、二番目の筒状壁42と、三番目の筒状壁43との間の隙間は、燃焼排ガス流路47として形成され、三番目の筒状壁43と、四番目の筒状壁44との間の隙間は、酸化剤ガス流路48として形成されている。図2,図3において、断熱空間45は、空洞とされているが、この断熱空間45には、断熱材49が充填されても良い。
気化流路46の上流側に設けられた後述の原燃料流路116の上端部には、容器20の径方向外側に延びる原燃料供給管50(図1参照)が接続されている。気化流路46は、鉛直方向上側を上流側として形成されており、この気化流路46には、原燃料供給管50から供給された原燃料161(図2参照)が鉛直方向上側から下側に流れる。原燃料供給管50から供給される原燃料161としては、例えば、都市ガス等の炭化水素系ガス又は炭化水素系液体である炭化水素系燃料に改質用の水が混合されたものが使用される。
この気化流路46には、気化部40の軸方向回りに螺旋状に形成された螺旋凸部51(螺旋形成部)が設けられており、この螺旋凸部51により、気化流路46は、気化部40の軸方向回りに螺旋状に形成されている。螺旋凸部51は、気化流路46を形成する筒状壁41,42の両方と接触しており、筒状壁41及び筒状壁42の間に介在するスペーサの役割を果たしている。
図3に示されるように、気化部40の下端部には、トラップ部54が設けられている。このトラップ部54は、後述する連結管81(オリフィス82)に対する下方に位置している。このトラップ部54は、気化流路46の下端部と連通する空間を有する凹状に形成されている。気化流路46の幅W1、すなわち、一番目の筒状壁41と、二番目の筒状壁42との間の隙間は、後述する改質部60に形成された改質流路67の幅W2よりも狭くなっている。
燃焼排ガス流路47の下端部は、後述する改質部60に形成された燃焼排ガス流路66を介して燃焼部90に形成された燃焼室94(図4参照)と連通されている。燃焼排ガス流路47は、鉛直方向下側を上流側として形成されており、この燃焼排ガス流路47には、燃焼部90から排出されると共に改質部60の燃焼排ガス流路66を通じて供給された燃焼排ガス166が鉛直方向下側から上側に流れる。
酸化剤ガス流路48の上端部は、後述する熱交換部110に形成された酸化剤ガス流路117(図2参照)と連通されている。この酸化剤ガス流路48は、鉛直方向上側を上流側として形成されており、この酸化剤ガス流路48には、熱交換部110の酸化剤ガス流路117から供給された酸化剤ガス164が鉛直方向上側から下側に流れる。
<改質部>
図1に示されるように、改質部60は、上述の気化部40の下方に設けられた四重の筒状壁61〜64によって構成されている。四重の筒状壁61〜64のうち最も内側に位置する筒状壁61は、一番目の管材21によって構成され、四重の筒状壁61〜64のうち内側から二番目の筒状壁62は、四番目の管材24によって構成されている。また、四重の筒状壁61〜64のうち内側から三番目の筒状壁63は、五番目の管材25によって構成され、四重の筒状壁61〜64のうち最も外側の筒状壁64は、六番目の管材26によって構成されている。
この四重の筒状壁61〜64によって構成された改質部60は、後述する燃焼部90(図4参照)の上方に燃焼部90と同軸上に設けられている。図3,図4に示されるように、改質部60を構成する四重の筒状壁61〜64は、互いの間に隙間を有している。そして、この四重の筒状壁61〜64の内側から外側には、断熱空間65、燃焼排ガス流路66、改質流路67、及び、酸化剤ガス流路68が順に形成されている。
つまり、一番目の筒状壁61の内側の空間は、断熱空間65として形成され、一番目の筒状壁61と、二番目の筒状壁62との間の隙間は、燃焼排ガス流路66として形成されている。また、二番目の筒状壁62と、三番目の筒状壁63との間の隙間は、改質流路67として形成され、三番目の筒状壁63と、四番目の筒状壁64との間の隙間は、酸化剤ガス流路68として形成されている。
断熱空間65は、上述の気化部40の断熱空間45と連通している。図3において、断熱空間65は、空洞とされているが、この断熱空間65には、断熱材69が充填されても良い。燃焼排ガス流路66の下端部は、後述する燃焼部90に形成された燃焼室94(図4参照)と連通されている。燃焼排ガス流路66は、鉛直方向下側を上流側として形成されており、この燃焼排ガス流路66には、後述する燃焼部90から排出された燃焼排ガス166が鉛直方向下側から上側に流れる。
<混合部及び分散部>
図3に示されるように、改質部60の上端部には、鉛直方向上側に延長された混合部80が形成されている。この混合部80は、気化部40と改質部60との間、すなわち、より具体的には、改質部60の上側且つ気化部40の下端部の径方向外側に位置する。気化部40の下端部における周方向の一部からは、連結管81が径方向外側に延びている。連結管81は、混合部80における気化部40との接続部を構成しており、この連結管81の内側は、水平方向に貫通するオリフィス82として形成されている。連結管81(オリフィス82)は、気化流路46の径方向外側に位置しており、気化流路46の下端部と連通する。混合部80は、連結管81(オリフィス82)を一つのみ有する。混合部80には、オリフィス82に対する改質流路67側(径方向外側)に位置しオリフィス82と対向する対向壁部86が設けられている。
改質流路67の入口(上端)は、混合部80及び連結管81を介して気化流路46と連通されている。改質流路67は、鉛直方向上側を上流側として形成されており、この改質流路67には、気化流路46から供給された原燃料ガス162が鉛直方向上側から下側に流れる。
この改質流路67の入口には、改質流路67の周方向に沿って環状に形成された仕切板83が設けられている。この仕切板83には、周方向に一定の間隔を空けて複数のオリフィス84が形成されている。この複数のオリフィス84は、仕切板83の板厚方向(鉛直方向)に貫通しており、改質流路67には、複数のオリフィス84を通じて原燃料ガス162が流入する。この仕切板83は、鉛直方向に間隔を空けて複数設けられていても良い。
この改質流路67の入口の径方向外側には、酸化剤ガス流路68が位置している。改質流路67には、原燃料ガス162から燃料ガス(改質ガス)を生成するための改質触媒層70が改質流路67の周方向及び軸方向の全長に亘って設けられている。改質触媒層70には、例えば、活性金属としてニッケル、ルテニウム、白金、ロジウム等の金属を担持した粒状触媒又はハニカム触媒等が用いられる。
酸化剤ガス流路68の上端部は、上述の気化部40に形成された酸化剤ガス流路48と連通されている。この酸化剤ガス流路68は、鉛直方向上側を上流側として形成されており、この酸化剤ガス流路68には、気化部40の酸化剤ガス流路48から供給された酸化剤ガス164が鉛直方向上側から下側に流れる。
<燃焼部>
図1に示されるように、燃焼部90は、上述の改質部60の下方に設けられており、周壁部91と、点火電極92と、隔壁部93とを有する。周壁部91は、上述の改質部60を構成する四重の筒状壁61〜64のうち最も内側の筒状壁61を除く残りの筒状壁62〜64に一体に形成されている。
つまり、四重の筒状壁61〜64のうち最も内側の筒状壁61を除く残りの筒状壁62〜64は、内側の筒状壁61に対して下方に延びている。そして、この筒状部62〜64における下方に延びた延長部分は、燃焼部90の周壁部91として形成されている。図4に示されるように、周壁部91を構成する三重の筒状壁62〜64において、筒状壁62と筒状壁63との間には、改質部60の改質流路67が延長して形成されており、筒状壁63と筒状壁64との間には、改質部60の酸化剤ガス流路68が延長して形成されている。
この周壁部91は、燃料電池セルスタック10の上方に位置すると共に、後述する燃料電池セルスタック10の周囲を囲う予熱部100と同軸上に設けられている。この周壁部91の内側は、燃焼室94として形成されており、この燃焼室94は、後述する予熱部100の内側空間104と、上述の改質部60の燃焼排ガス流路66とに連通されている。
周壁部91の内側には、テーパ部95が設けられている。このテーパ部95は、上述の改質部60を構成する四重の筒状壁61〜64のうち最も内側の筒状壁61の下端部に一体に形成されている。このテーパ部95は、改質部60の側から燃焼部90の側に突出すると共に、燃焼部90の側から改質部60の側に向かうに従って拡径するテーパ状に形成されている、
点火電極92は、テーパ部95の先端部(下端部)から燃焼室94内に突出されており、燃焼室94の中心部に配置されている。この点火電極92は、燃料電池セルスタック10の上方に燃料電池セルスタック10と離間して設けられている。上述の気化部40及び改質部60を構成する一番目の管材21の内側には、パイプ150が収容され、このパイプ150の内側には、点火電極92と接続され碍子で絶縁された導電部151が挿入されている。
隔壁部93は、周壁部91の内周面に沿って環状に形成されている。この隔壁部93は、点火電極92と燃料電池セルスタック10との間に開口する絞り孔96を有している。この絞り孔96には、燃料電池セルスタック10から排出されたスタック排ガス165が通過する。絞り孔96を通過したスタック排ガス165は、点火電極92とパイプ150等との間に形成されるスパークによって燃焼される。燃焼室94にて発生した燃焼排ガス166は、上方(燃料電池セルスタック10と反対側)に排出され、テーパ部95に沿って改質部60の燃焼排ガス流路66に流入する。
<予熱部>
図1に示されるように、予熱部100(収容部)は、上述の燃焼部90の下方に設けられた二重の筒状壁101,102によって構成されている。二重の筒状壁101,102のうち内側の筒状壁101は、五番目の管材25の下部によって構成され、二重の筒状壁101,102のうち外側の筒状壁102は、六番目の管材26の下部によって構成されている。
この予熱部100は、燃料電池セルスタック10の周囲に設けられており、燃料電池セルスタック10を収容している。図4に示されるように、予熱部100の内側には、内側空間104が形成されており、予熱部100を構成する二重の筒状壁101,102の間には、予熱流路105が形成されている。
この予熱流路105には、予熱部100の軸方向回りに螺旋状に形成された螺旋凸部106が設けられており、この螺旋凸部106により、予熱流路105は、予熱部100の軸方向回りに螺旋状に形成されている。螺旋凸部106は、予熱流路105を形成する筒状壁101,102の両方と接触しており、筒状壁101及び筒状壁102の間に介在するスペーサの役割を果たしている。
この予熱流路105の上端部は、上述の改質部60の酸化剤ガス流路68と連通され、予熱流路105の下端部は、図1に示される底壁部34と底壁部35との間に形成された導入路37を通じて燃料電池セルスタック10の酸化剤ガス取入口15と連通されている。図4に示されるように、予熱流路105は、鉛直方向上側を上流側として形成されており、この予熱流路105には、改質部60の酸化剤ガス流路68を通じて供給された酸化剤ガス164が鉛直方向上側から下側に流れる。
図1に示されるように、予熱部100の内側には、上述の改質流路67と、燃料電池セルスタック10の燃料ガス取入口16とを接続する燃料ガス配管107が設けられている。図4に示されるように、上述の隔壁部93の外周部には、水平方向に延在する仕切板97が一体に形成されており、この仕切板97には、鉛直方向に貫通するオリフィス98が仕切板97の周方向に間隔を空けて複数形成されている。改質流路67と燃料ガス配管107の内側とは、オリフィス98を通じて連通されている。
<熱交換部>
図1に示されるように、熱交換部110は、気化部40の上方に気化部40と同軸上に設けられており、容器20の上部に設けられた四重の筒状壁111〜114によって構成されている。四重の筒状壁111〜114のうち最も内側に位置する筒状壁111は、七番目の管材27によって構成され、四重の筒状壁111〜114のうち内側から二番目の筒状壁112は、八番目の管材28によって構成されている。また、四重の筒状壁111〜114のうち内側から三番目の筒状壁113は、五番目の管材25の上部によって構成され、四重の筒状壁111〜114のうち最も外側に位置する筒状壁114は、六番目の管材26の上部によって構成されている。
図2に示されるように、熱交換部110を構成する四重の筒状壁111〜114は、互いの間に隙間を有しており、この四重の筒状壁111〜114の内側から外側には、断熱空間115、原燃料流路116、燃焼排ガス流路118、及び、酸化剤ガス流路117が順に形成されている。
つまり、一番目の筒状壁111の内側の空間は、断熱空間115として形成され、一番目の筒状壁111と、二番目の筒状壁112との間の隙間は、原燃料流路116として形成されている。また、二番目の筒状壁112と、三番目の筒状壁113との間の隙間は、燃焼排ガス流路118として形成され、三番目の筒状壁113と、四番目の筒状壁111〜114との間の隙間は、酸化剤ガス流路117として形成されている。図2において、断熱空間115は、空洞とされているが、この断熱空間115には、断熱材124が充填されても良い。
原燃料流路116の上端部には、容器20の径方向外側に延びる原燃料供給管50(図1参照)が接続されている。原燃料流路116は、鉛直方向上側を上流側として形成されており、この原燃料流路116には、原燃料供給管50から供給された原燃料161が鉛直方向上側から下側に流れる。原燃料流路116の下端部は、気化流路46と連通されている。
気化流路46の入口(上端)には、気化流路46の周方向に沿って環状に形成された整流筒171が設けられている。この整流筒171によって、気化流路46の入口には、連通路172が形成されている。なお、この整流筒171は、省かれても良い。
酸化剤ガス流路117の上端部には、容器20の径方向外側に延びる酸化剤ガス供給管122(図1参照)が接続されており、酸化剤ガス流路117の下端部は、気化部40に形成された酸化剤ガス流路48と連通されている。酸化剤ガス流路117は、鉛直方向上側を上流側として形成されており、この酸化剤ガス流路117には、酸化剤ガス供給管122から供給された酸化剤ガス164が鉛直方向上側から下側に流れる。
燃焼排ガス流路118の上端部には、容器20の径方向外側に延びるガス排出管123(図1参照)が接続されており、燃焼排ガス流路118の下端部は、気化部40に形成された燃焼排ガス流路47と連通されている。燃焼排ガス流路118は、鉛直方向下側を上流側として形成されており、この燃焼排ガス流路118には、気化部40の燃焼排ガス流路47から供給された燃焼排ガス166が鉛直方向下側から上側に流れる。
酸化剤ガス流路117には、熱交換部110の軸方向回りに螺旋状に形成された螺旋凸部120(螺旋形成部)が設けられており、この螺旋凸部120により、酸化剤ガス流路117は、熱交換部110の軸方向回りに螺旋状に形成されている。同様に、燃焼排ガス流路118には、熱交換部110の軸方向回りに螺旋状に形成された螺旋凸部121(螺旋形成部)が設けられており、この螺旋凸部121により、燃焼排ガス流路118は、熱交換部110の軸方向回りに螺旋状に形成されている。
酸化剤ガス流路117及び燃焼排ガス流路118は、気化流路46よりも螺旋のピッチが大きくなっている。螺旋凸部120は、酸化剤ガス流路117を形成する筒状壁113,114の両方と接触しており、筒状壁113及び筒状壁114の間に介在するスペーサの役割を果たしている。同様に、螺旋凸部121は、燃焼排ガス流路118を形成する筒状壁112,113の両方と接触しており、筒状壁112及び筒状壁113の間に介在するスペーサの役割を果たしている。
<断熱材>
図1に示されるように、断熱材140は、有底円筒状に形成されており、容器20の外周部と底部とを覆っている。断熱材140の上端部は、鉛直方向上側から固定部材144により固定されている。この断熱材140の表面は、被覆シート145によって覆われている。
次に、第一実施形態に係る燃料電池モジュールM1の動作について説明する。
図1に示される原燃料供給管50を通じて図2に示される原燃料流路116に原燃料161(炭化水素系燃料に改質用の水が混合されたもの)が供給されると、この原燃料161は、原燃料流路116を鉛直方向上側から下側に流れる。このとき、熱交換部110では、燃焼部90(図4参照)から排出された燃焼排ガス166が燃焼排ガス流路118を鉛直方向上側から下側に流れる。そして、原燃料流路116を流れる原燃料161は、燃焼排ガス流路118を流れる燃焼排ガス166との間で熱交換され予熱される。この原燃料流路116で予熱された原燃料161は、気化流路46に供給される。
気化流路46に原燃料161が供給されると、この原燃料161は、螺旋状に形成された気化流路46を鉛直方向上側から下側へ流れる。気化流路46を流れる原燃料161は、上述の熱交換部110の燃焼排ガス流路118と同様に燃焼排ガス流路47を鉛直方向下側から上側に流れる燃焼排ガス166との間で熱交換される。そして、気化流路46では、燃焼排ガス166から原燃料161に気化熱が与えられて原燃料161が気化され、原燃料161から原燃料ガス162(図3参照)が生成される。
図3に示されるように、気化流路46で気化された原燃料ガス162は、連結管81の内側に形成されたオリフィス82を通り、改質部60の上方に形成された混合部80の内側空間85に流入する。このとき、気化流路46で気化された原燃料ガス162は、連結管81の内側のオリフィス82を通過する際に流速が高められて噴流となり、混合部80における径方向外側の対向壁部86に衝突する。そして、原燃料ガス162が対向壁部86に衝突することにより乱流が生じ、原燃料ガス162に含まれる炭化水素系ガス及び水蒸気が混合される。
このようにして混合された原燃料ガス162は、対向壁部86に衝突することにより径方向外側から鉛直方向下側に向きを変え、改質流路67の入口に形成された複数のオリフィス84を通じて改質流路67に流入する。複数のオリフィス84は、改質流路67の周方向に一定の間隔を空けて並んでいるので、この複数のオリフィス84を通過することで、改質流路67には、原燃料ガス162が周方向に分散して流入する。
また、このとき、改質部60では、燃焼部90(図4参照)から排出された燃焼排ガス166が燃焼排ガス流路66を鉛直方向下側から上側に流れる。改質流路67に隣接する燃焼排ガス流路66に燃焼排ガス166が流れると、改質流路67を流れる原燃料ガス162と燃焼排ガス166との間で熱交換される。そして、改質流路67では、燃焼排ガス166の熱を利用して改質触媒層70により原燃料ガス162から燃料ガス163(改質ガス)が生成される。
改質流路67にて生成された燃料ガス163は、図4に示されるように、仕切板97に形成されたオリフィス98を通過し、燃料ガス配管107の内側に流入する。そして、この燃料ガス163は、燃料ガス配管107を通じて燃料電池セルスタック10の燃料ガス取入口16(図1参照)に供給される。
一方、このとき、図2に示される熱交換部110では、酸化剤ガス供給管122(図1参照)を通じて酸化剤ガス流路117に酸化剤ガス164が供給される。この酸化剤ガス164は、螺旋状に形成された酸化剤ガス流路117を鉛直方向下側から上側に流れる。このとき、熱交換部110では、燃焼部90(図4参照)から排出された燃焼排ガス166が燃焼排ガス流路118を鉛直方向上側から下側に流れる。この燃焼排ガス166は、図1に示されるガス排出管123を通じて燃料電池モジュールM1の外部に排出される。
図2に示されるように、酸化剤ガス流路117に隣接する燃焼排ガス流路118に燃焼排ガス166が流れると、酸化剤ガス流路117を流れる酸化剤ガス164と燃焼排ガス166との間で熱交換される。そして、燃料電池モジュールM1の外部へ排出される燃焼排ガス166の温度が低下され、燃料電池モジュールM1の外部への放熱が抑制される。一方、酸化剤ガス164は、燃焼排ガス166の熱を吸収し、予熱される。この熱交換部110にて予熱された酸化剤ガス164は、気化部40の酸化剤ガス流路48に流入し、その後、気化部40の酸化剤ガス流路48及び改質部60の酸化剤ガス流路68(図3,図4参照)を鉛直方向上側から下側に流れる。
このとき、気化部40の酸化剤ガス流路48から改質部60の酸化剤ガス流路68に供給される酸化剤ガス164により、改質触媒層70の入口が冷却されるので、改質触媒層70の入口における炭素析出(コーキング)の発生が抑制される。
図3に示される気化部40では、上述の通り、燃焼部90(図4参照)から排出された燃焼排ガス166が燃焼排ガス流路47を鉛直方向下側から上側に流れる。酸化剤ガス流路48に隣接する燃焼排ガス流路47に燃焼排ガス166が流れると、酸化剤ガス流路48を流れる酸化剤ガス164と燃焼排ガス166との間で熱交換され、酸化剤ガス164がさらに予熱される。
同様に、改質部60では、燃焼部90(図4参照)から排出された燃焼排ガス166が燃焼排ガス流路66を鉛直方向下側から上側に流れる。改質流路67を挟んだ酸化剤ガス流路68と反対側の燃焼排ガス流路66に燃焼排ガス166が流れると、酸化剤ガス流路68を流れる酸化剤ガス164と燃焼排ガス166とが改質流路67(改質触媒層70)を介して熱交換し、このことによっても、酸化剤ガス164が予熱される。
このように酸化剤ガス流路48,68を流れることで予熱された酸化剤ガス164は、図4に示される予熱流路105に流入し、この螺旋状に形成された予熱流路105を鉛直方向上側から下側に流れる。この予熱流路105を流れる酸化剤ガス164は、燃料電池セルスタック10の熱によってさらに予熱される。そして、この予熱流路105にて予熱された酸化剤ガス164は、燃料電池セルスタック10の酸化剤ガス取入口15(図1参照)に供給される。
以上のようにして、図1に示される燃料電池セルスタック10の燃料ガス取入口16に燃料ガスが供給されると共に、燃料電池セルスタック10の酸化剤ガス取入口15に酸化剤ガスが供給されると、燃料電池セルスタック10では、各セル12において、酸化剤ガスと燃料ガスとの電気化学反応により発電する。また、各セル12は、発電に伴い発熱する。
図4に示されるように、燃料電池セルスタック10からは、燃料極排ガス及び空気極排ガスを含むスタック排ガス165が排出される。この燃料電池セルスタック10から排出されたスタック排ガス165は、隔壁部93に形成された絞り孔96を通じて燃焼部90の内側に形成された燃焼室94に流入する。このとき、燃料極排ガス及び空気極排ガスを含むスタック排ガス165は、絞り孔96を通過することで混合される。
この燃焼室94に流入したスタック排ガス165には、各セル12において未反応の水素及び酸素が含まれており、この水素を含むスタック排ガス165は、点火電極92とパイプ150等との間に形成されるスパークによって燃焼される。点火電極92は、燃料電池セルスタック10と鉛直方向に離間しているため、スタック排ガス165は、燃料電池セルスタック10から離れた位置で燃焼される。
そして、このようにして燃焼室94においてスタック排ガス165が燃焼されると、燃焼室94にて燃焼排ガス166が発生する。この燃焼室94にて発生した燃焼排ガス166は、上方(燃料電池セルスタック10と反対側)に排出され、テーパ部95に沿って改質部60の燃焼排ガス流路66に流入する。また、この燃焼部90から排出され改質部60の燃焼排ガス流路66に流入した燃焼排ガス166は、上述の通り、改質部60の燃焼排ガス流路66、気化部40の燃焼排ガス流路47(図3参照)、及び、熱交換部110の燃焼排ガス流路118(図2参照)を流れた後、図1に示されるガス排出管123を通じて燃料電池モジュールM1の外部に排出される。
次に、第一実施形態の作用及び効果について説明する。
以上詳述したように、第一実施形態に係る燃料電池モジュールM1によれば、図1に示されるように、予熱部100と、燃焼部90の周壁部91と、改質部60と、気化部40と、熱交換部110とは、互いに同軸上に設けられている。また、改質部60、気化部40、及び、熱交換部110は、四重の筒状壁によって構成され、この各四重の筒状壁によって、断熱空間及び各流路が形成されている。従って、燃料電池モジュールM1が径方向に拡がることを抑制できるので、この燃料電池モジュールM1によれば、径方向に小型化することができる。
しかも、上述の通り、改質部60、気化部40、及び、熱交換部110は、四重の筒状壁によって構成されている。従って、改質部60、気化部40、及び、熱交換部110における構造を簡素化できると共に、改質部60、気化部40、及び、熱交換部110の組立が容易になるので、燃料電池モジュールM1を低コスト化することができる。
このように、第一実施形態に係る燃料電池モジュールM1によれば、低コスト化と径方向の小型化とを両立することができる。
特に、熱交換部110が気化部40の上方に気化部40と同軸上に設けられており、予熱部100、周壁部91、改質部60、気化部40、及び、熱交換部110によって構成される容器20がストレート状に延びる構造であるので、例えば、熱交換部110が折り返されて改質部60及び気化部40の周囲に設けられる場合に比して、構造を簡素化できると共に、燃料電池モジュールM1を径方向に小型化することができる。
また、図2に示されるように、熱交換部110の内側には、断熱空間115が形成されている。従って、熱交換部110については、径方向の厚さを薄くすることで、容積に対して伝熱面積を大きく確保することができる。これにより、熱交換部110を径方向及び軸方向に小型化することができる。
また、図2に示されるように、熱交換部110では、燃焼排ガス流路118の径方向の両側に原燃料流路116及び酸化剤ガス流路117が形成されている。これにより、燃焼排ガス流路118の熱を、原燃料流路116と酸化剤ガス流路117とに振り分けることができる。つまり、原燃料流路116を流れる原燃料161を気化させる構造と、酸化剤ガス流路117を流れる酸化剤ガス164を予熱する構造とを一体化することができる。従って、このことによっても、燃料電池モジュールM1を径方向に小型化することができる。
さらに、熱交換部110の最も外側には、燃焼排ガス166よりも温度の低い酸化剤ガス164が流れる酸化剤ガス流路117が形成されているので、この酸化剤ガス流路117を流れる酸化剤ガス164で燃焼排ガス166の熱を吸収することにより、熱交換部110の放熱を抑制することができる。
また、図1に示されるように、改質部60の外側の筒状壁64と、気化部40の外側の筒状壁44と、熱交換部110の外側の筒状壁114とが一体に形成されると共に、改質部60の外側から二番目の筒状壁63と、気化部40の外側から二番目の筒状壁43と、熱交換部110の外側から二番目の筒状壁113とが一体に形成されているので、部品点数の増加を抑制することができると共に、改質部60、気化部40、及び、熱交換部110の構造を簡素化することができる。
また、予熱部100の外側の筒状壁102と、改質部60の外側の筒状壁64とが一体に形成されると共に、予熱部100の内側の筒状壁101と、改質部60の外側から二番目の筒状壁63とが一体に形成されているので、部品点数の増加を抑制することができると共に、予熱部100及び改質部60の構造を簡素化することができる。
また、図3に示されるように、気化流路46の下端部と改質流路67の上端部とを接続する連結管81は、気化部40の周方向の一部から径方向外側に延びている。従って、改質流路67と気化流路46との間を改質部60及び気化部40の燃焼排ガス流路66,47が通っていても、この燃焼排ガス流路66,47を流れる燃焼排ガス166が連結管81を避けて通ることで、改質部60の燃焼排ガス流路66から気化部40の燃焼排ガス流路47に燃焼排ガス166を供給することができる。
また、気化流路46の下端部と改質流路67の上端部とを接続するために、気化部40の下端部における周方向の一部から径方向外側に延びる連結管81を用いているので、気化流路46及び改質流路67の接続構造を簡素化することができる。
また、熱交換部110の酸化剤ガス流路117及び燃焼排ガス流路118は、熱交換部110の軸方向回りに螺旋状に形成されている。これにより、酸化剤ガス流路117及び燃焼排ガス流路118の全長が増加するので、酸化剤ガス流路117を流れる酸化剤ガス164と、燃焼排ガス流路118を流れる燃焼排ガス166との間の熱交換効率を向上させることができる。
また、螺旋凸部120,121(螺旋形成部)が酸化剤ガス流路117を形成する筒状壁113,114、及び、燃焼排ガス流路118を形成する筒状壁112,113間に介在するスペーサの役割を果たすので、酸化剤ガス流路117及び燃焼排ガス流路118の流路の幅を維持することができる。
また、熱交換部110の酸化剤ガス流路117及び燃焼排ガス流路118は、気化流路46よりも螺旋のピッチが大きいので、流量が多い酸化剤ガス流路117及び燃焼排ガス流路118における圧損を気化流路46と同程度に低減することができる。これにより、酸化剤ガス流路117及び燃焼排ガス流路118における流体の圧送動力を低減することができる。
また、熱交換部110では、酸化剤ガス流路117における酸化剤ガス164の流れと、燃焼排ガス流路118における燃焼排ガス166の流れとが軸方向に逆向きであるので、酸化剤ガス164と燃焼排ガス166との熱交換効率を向上させることができる。
また、予熱部100、燃焼部90の周壁部91、改質部60、気化部40、及び、熱交換部110を構成する容器20は、断熱材140によって覆われている。これにより、予熱部100、燃焼部90の周壁部91、改質部60、気化部40、及び、熱交換部110からの放熱を抑制することができるので、熱効率を向上させることができる。
なお、図2に示される熱交換部110、気化部40、及び、改質部60における断熱空間115,45,65が空洞であると、熱交換部110、気化部40、及び、改質部60の構造を簡素化することができる。一方、熱交換部110、気化部40、及び、改質部60における断熱空間115,45,65に断熱材124、49、69が充填されていると、熱交換部110、気化部40、及び、改質部60の熱効率を向上させることができる。
[第二実施形態]
次に、本発明の第二実施形態について説明する。
図5に示される第二実施形態に係る燃料電池モジュールM2は、上述の第一実施形態に係る燃料電池モジュールM1に対し、次のように構造が変更されている。
すなわち、第二実施形態に係る燃料電池モジュールM2において、六番目の管材26は、鉛直方向の長さが縮められており、容器20の下部にのみ設けられている。そして、予熱部100を構成する二重の筒状壁101,102のうち内側の筒状壁101は、五番目の管材25の下部によって構成され、二重の筒状壁101のうち外側の筒状壁102は、六番目の管材26によって構成されている。
六番目の管材26が容器20の下部にのみ設けられることにより、熱交換部110は、三重の筒状壁111〜113によって構成されている(図6も参照)。同様に、気化部40は、三重の筒状壁41〜43によって構成され、改質部60は、三重の筒状壁61〜63によって構成されている(図7も参照)。熱交換部110、気化部40、及び、改質部60がそれぞれ三重の筒状壁によって構成されることにより、熱交換部110、気化部40、及び、改質部60からは、酸化剤ガス流路がそれぞれ省かれている。
また、予熱部100を構成する二重の筒状壁101,102及び予熱流路105は、隔壁部93まで上方へ延長されており、燃焼部90の周壁部91の下部(隔壁部93よりも下側の部分)には、予熱部100を構成する二重の筒状壁101,102及び予熱流路105の上方への延長部分が含まれている。
図7に示されるように、予熱流路105の上端部には、容器20の径方向外側に延びる酸化剤ガス供給管122が接続されている。予熱流路105を流れる酸化剤ガスの予熱は、燃料電池セルスタック10からの輻射、燃料極及び空気極から排出された排ガスからの伝熱、及び、燃焼部90からの伝熱によって賄われる。
この第二実施形態に係る燃料電池モジュールM2は、熱交換部110、気化部40、及び、改質部60から酸化剤ガス流路がそれぞれ省かれた以外は、第一実施形態に係る燃料電池モジュールM1と同様の構造であり、第一実施形態に係る燃料電池モジュールM1と同様に動作する。また、この第二実施形態に係る燃料電池モジュールM2は、第一実施形態に係る燃料電池モジュールM1と同様の構造については、この燃料電池モジュールM1と同様の作用及び効果を奏する。
この第二実施形態に係る燃料電池モジュールM2によれば、熱交換部110、気化部40、及び、改質部60が三重の筒状壁によって構成されているので、燃料電池モジュールM2が径方向に拡がることを抑制できる。これにより、燃料電池モジュールM2を径方向に小型化することができる。
また、熱交換部110、気化部40、及び、改質部60から酸化剤ガス流路がそれぞれ省かれているので、燃焼部90から排出された燃焼排ガス166の熱を酸化剤ガスで吸収することができないが、熱交換部110、気化部40、及び、改質部60の構造を簡素化できると共に、熱交換部110、気化部40、及び、改質部60の組立が容易になるので、燃料電池モジュールM2を低コスト化することができる。
また、改質部60から酸化剤ガス流路が省かれているので、改質部60の熱が酸化剤ガスにて直接吸収されない。そのため、改質触媒層70の温度上昇を効率的に促すことができるので、改質触媒層70での改質反応の転化率を向上させることができる。
また、改質部60において、燃焼排ガス166の熱は、改質触媒層70の改質反応による吸熱と、原燃料161に含まれる改質用水の気化熱、及び、原燃料161の予熱のみに利用されるため、改質部60の伝熱面積を小さくすることができると共に、改質部60を簡素化及び小型化することができる。
また、気化部40及び改質部60から酸化剤ガス流路が省かれて、予熱流路105の上端部に酸化剤ガス供給管122が接続されることにより、予熱流路105を流れる酸化剤ガス164の温度は、気化部40及び改質部60に酸化剤ガス流路が設けられている場合に比して低くなる。従って、燃料電池セルスタック10の放熱を、温度の低い酸化剤ガスで吸収することができるので、燃料電池セルスタック10から外部への放熱を抑制でき、ひいては、燃料電池モジュールM2の発電効率を向上させることができる。
また、改質部60から酸化剤ガス流路が省かれることにより、吸熱反応を示す改質部60から熱が奪われることを抑制することができるので、熱効率を向上させることができる。
さらに、気化部40及び改質部60から酸化剤ガス流路が省かれることにより、気化部40及び改質部60では、燃焼排ガス166が改質反応と気化とに熱を奪われるのみであるので、これにより、熱交換部110、気化部40、及び、改質部60の伝熱面積を小さくすることができる。
[第三実施形態]
次に、本発明の第三実施形態について説明する。
図8に示される第三実施形態に係る燃料電池モジュールM3は、上述の第一実施形態に係る燃料電池モジュールM1に対し、次のように構造が変更されている。
すなわち、第三実施形態に係る燃料電池モジュールM3において、容器20は、上述の第一実施形態よりも二つ少ない六個の管材21〜26により構成されている。一番目の管材21は、容器20の高さ方向の中央部に設けられており、二番目の管材22及び三番目の管材23は、一番目の管材21の上側且つ外側に配置されている。
三番目の管材23は、二番目の管材22よりも上方に延びている。四番目の管材24は、一番目の管材21の外側で、且つ、二番目の管材22及び三番目の管材23よりも下側に配置されている。五番目の管材25、及び、六番目の管材26は、三番目の管材23及び四番目の管材24の外側に配置され、容器20の上端部から下端部に亘って設けられている。
三番目の管材23の上端部と、五番目の管材25の上端部は、容器20の上端部に設けられた天壁部181に固定され、六番目の管材26の上端部は、五番目の管材25の上端部に固定されている。
熱交換部110は、三重の筒状壁111〜113によって構成されている。三重の筒状壁111〜113における内側の筒状壁111は、三番目の管材23の上部によって構成され、三重の筒状壁111〜113における中央の筒状壁112は、五番目の管材25の上部によって構成されている。また、三重の筒状壁111〜113における外側の筒状壁113は、六番目の管材26の上部によって構成されている。
図9に示されるように、熱交換部110を構成する三重の筒状壁111〜113は、互いの間に隙間を有しており、この三重の筒状壁111〜113の内側から外側には、断熱空間115、燃焼排ガス流路118、及び、酸化剤ガス流路117が順に形成されている。
気化部40は、四重の筒状壁41〜44によって構成されている。四重の筒状壁41〜44のうち最も内側に位置する筒状壁41は、二番目の管材22によって構成され、四重の筒状壁41〜44のうち内側から二番目の筒状壁42は、三番目の管材23によって構成されている。また、四重の筒状壁41〜44のうち内側から三番目の筒状壁43は、五番目の管材25の高さ方向の中央部によって構成され、四重の筒状壁41〜44のうち最も外側に位置する筒状壁44は、六番目の管材26の高さ方向の中央部によって構成されている。
この気化部40を構成する四重の筒状壁41〜44は、互いの間に隙間を有しており、この四重の筒状壁41〜44の内側から外側には、断熱空間45、気化流路46、燃焼排ガス流路47、及び、酸化剤ガス流路48が順に形成されている。気化流路46の上端部には、熱交換部110の内側を通る原燃料供給管50が接続されている。
熱交換部110を構成する三重の筒状壁111〜113のうち最も内側の筒状壁111と、気化部40を構成する四重の筒状壁41〜44のうち内側から二番目の筒状壁42とは、共通の管材23に形成されており、気化部40を構成する四重の筒状壁41〜44のうち最も内側の筒状壁41は、この管材23の径方向内側に位置している。この筒状壁41の上方には、熱交換部110の断熱空間115が位置しており、筒状壁41の上端の位置は、高さ方向の制約が無い。このため、本実施形態では、気化流路46の長さを自由に設定することが可能であり、気化流路46の長さは、気化流路46が原燃料161を気化させるために必要な長さを有するように最適化されている。
図10に示されるように、改質部60の上端部には、鉛直方向上側に延長された混合部190が形成されている。この混合部190は、容器20の高さ方向における気化部40と改質部60との間に位置する。混合部190には、混合部190の周方向に沿って環状に形成された整流筒191が設けられており、この整流筒191には、整流筒191の径方向(水平方向)に貫通するオリフィス192が形成されている。このオリフィス192は、気化流路46の径方向外側に位置しており、気化流路46の下端部と連通する。混合部190は、オリフィス192を一つのみ有する。混合部190には、オリフィス192に対する改質流路67側(径方向外側)に位置しオリフィス192と対向する対向壁部196が設けられている。
改質流路67の入口(上端)は、オリフィス192、及び、混合部190の内側空間195を介して気化流路46と連通されている。改質流路67の入口には、改質流路67の周方向に沿って環状に形成された一対の仕切板193が設けられている。この一対の仕切板193は、鉛直方向に並んでいる。各仕切板193には、周方向に一定の間隔を空けて複数のオリフィス194が形成されている。この複数のオリフィス194は、仕切板193の板厚方向に貫通しており、改質流路67には、複数のオリフィス194を通じて原燃料ガス162が流入する。なお、仕切板193は、一枚でも良い。
気化流路46で気化された原燃料ガス162は、オリフィス192を通り、改質部60の上方に形成された混合部190の内側空間195に流入する。このとき、気化流路46で気化された原燃料ガス162は、オリフィス192を通過する際に流速が高められ、混合部190における径方向外側の対向壁部196に衝突する。そして、原燃料ガス162が混合部190における径方向外側の対向壁部196に衝突することにより乱流が生じ、原燃料ガス162に含まれる炭化水素系ガス及び水蒸気が混合される。
このようにして混合された原燃料ガス162は、対向壁部196に衝突することにより径方向外側から鉛直方向下側に向きを変え、改質流路67の入口に形成された複数のオリフィス194を通じて改質流路67に流入する。複数のオリフィス194は、改質流路67の周方向に一定の間隔を空けて並んでいるので、この複数のオリフィス194を通過することで、改質流路67には、原燃料ガス162が分散して流入する。
また、改質部60と気化部40との間には、より具体的には、流路切替部300が設けられている。流路切替部300は、改質部60及び気化部40と同軸上に設けられると共に、互いの間に隙間を有する五重の筒状壁301〜305によって構成されている。
この五重の筒状壁301〜305のうち内側から一番目の筒状壁301は、改質部60を構成する四重の筒状壁61〜64のうち内側から一番目の筒状壁61を上方に延長して形成されており、流路切替部300を構成する五重の筒状壁301〜305のうち内側から二番目の筒状壁302は、気化部40を構成する四重の筒状壁41〜44のうち内側から一番目の筒状壁41を下方に延長して形成されている。
また、流路切替部300を構成する五重の筒状壁301〜305のうち内側から三番目の筒状壁303は、気化部40を構成する四重の筒状壁41〜44のうち内側から二番目の筒状壁42を下方に延長して形成されており、流路切替部300を構成する五重の筒状壁301〜305のうち内側から四番目の筒状壁304は、気化部40を構成する四重の筒状壁41〜44のうち内側から三番目の筒状壁43と、改質部60を構成する四重の筒状壁61〜64のうち内側から三番目の筒状壁63とに連続して形成されている。
流路切替部300を構成する五重の筒状壁301〜305のうち内側から一番目の筒状壁301と内側から二番目の筒状壁302との間には、改質部60の燃焼排ガス流路66を上方に延長した上方延長排ガス流路306が形成されており、流路切替部300を構成する五重の筒状壁301〜305のうち内側から三番目の筒状壁303と内側から四番目の筒状壁304との間には、気化部40の燃焼排ガス流路47を下方に延長した下方延長排ガス流路307が形成されている。
流路切替部300を構成する五重の筒状壁301〜305のうち内側から二番目の筒状壁302と三番目の筒状壁303には、連通管197が接続されている。この連通管197は、流路切替部300の周方向の一部に設けられており、流路切替部300の径方向を軸方向として配置されている。上方延長排ガス流路306と下方延長排ガス流路307とは、連通管197の内側を通じて連通されており、改質部60の燃焼排ガス流路66を流れる燃焼排ガス166は、上方延長排ガス流路306、連通管197の内側、及び、下方延長排ガス流路307を通じて気化部40の燃焼排ガス流路47に流入する。
流路切替部300を構成する五重の筒状壁300〜305のうち内側から二番目の筒状壁302の下端部302Aは、改質部60を構成する四重の筒状壁61〜64のうち内側から二番目の筒状壁62の上端部62Aに例えば溶接等により結合されている。
また、混合部190には、トラップ部198が設けられている。このトラップ部198は、上述のオリフィス192に対する下方に位置している。このトラップ部198は、気化流路46の下端部と連通する空間を有する凹状に形成されている。
図11に示されるように、燃焼部90には、ノズル部材200が設けられている。このノズル部材200は、燃料電池セルスタック10の上面に設けられ、燃料極排ガスノズル201及び空気極排ガスノズル202を有する。ノズル部材200は、点火電極92と燃料電池セルスタック10との間に位置する隔壁部203を有し、燃料極排ガスノズル201は、この隔壁部203の中心部に形成されている。
燃料極排ガスノズル201は、燃料電池セルスタック10における燃料極の排ガス排出口と連通され、空気極排ガスノズル202は、燃料電池セルスタック10における空気極の排ガス排出口と連通されている。燃料極排ガスノズル201は、燃焼部90における径方向の中心部に位置しており、空気極排ガスノズル202は、燃料極排ガスノズル201の周囲に複数設けられている。なお、燃料極排ガスノズル201は、例えば、円板状に形成された隔壁部203の径方向に並んで複数形成されていても良く、また、隔壁部203に分散して複数形成されていても良い。
燃料極排ガスノズル201は、鉛直方向上側に開口し、空気極排ガスノズル202は、燃焼部90の径方向内側に開口する。つまり、燃料極排ガスノズル201と空気極排ガスノズル202とは、互いに直交する方向に開口している。
点火電極92は、複数の空気極排ガスノズル202の中心部に燃料極排ガスノズル201と対向して配置されている。燃料極排ガスノズル201及び空気極排ガスノズル202から排出されたガスは、混合され、スタック排ガスが生成される。このスタック排ガスは、点火電極92と隔壁部203との間に形成されるスパークによって燃焼される。点火電極92は、燃料電池セルスタック10と鉛直方向に離間しているため、スタック排ガスは、燃料電池セルスタック10から離れた位置で燃焼される。
この第三実施形態に係る燃料電池モジュールM3は、上記構成以外は、第一実施形態に係る燃料電池モジュールM1と同様の構造であり、第一実施形態に係る燃料電池モジュールM1と同様に動作する。また、この第三実施形態に係る燃料電池モジュールM3は、第一実施形態に係る燃料電池モジュールM1と同様の構造については、この燃料電池モジュールM1と同様の作用及び効果を奏する。
この第三実施形態に係る燃料電池モジュールM3によれば、熱交換部110は、三重の筒状壁111〜113によって構成され、この三重の筒状壁111〜113に、熱交換部110における断熱空間115、燃焼排ガス流路118、及び、酸化剤ガス流路117が形成されている。従って、熱交換部110が四重の筒状壁によって構成される場合に比して、燃料電池モジュールM3の径方向への小型化を図ることができる。
また、図9に示されるように、熱交換部110には原燃料流路が設けられておらず、この熱交換部110では、原燃料161と燃焼排ガス166との間で熱交換が行われないので、熱交換部110において燃焼排ガス166を冷却し過ぎることを抑制することができる。これにより、燃焼排ガス流路118の出口にて適切な燃焼排ガス166の温度を実現でき、ひいては、燃料電池モジュールM3全体の温度バランスを適正化することができる。
また、熱交換部110の内側の筒状壁111と、気化部40の内側から二番目の筒状壁42とは、共通の管材23に形成されており、気化部40の最も内側の筒状壁41(気化流路46を構成する一対の筒状壁41,42のうち内側の筒状壁41)は、この共通の管材23の径方向内側に位置する。従って、気化部40の最も内側の筒状壁41の上端の位置は、高さ方向の制約が無いので、これにより、気化流路46の長さを容易に変更することができる。この結果、気化流路46の長さを最適化することができるので、気化流路46の下流側に位置する改質流路67の入口を通過する原燃料ガス162の温度が上昇し過ぎることを抑制することができる。
また、このように改質流路67に流入する原燃料ガス162の温度を下げることができるので、改質触媒層70における炭素析出(コーキング)の発生を抑制することができる。
また、図9に示されるように、気化流路46へ原燃料161を投入するための構造として、気化流路46の上端部に接続された原燃料供給管50が用いられている。従って、気化流路46へ原燃料161を投入するための構造を簡素化することができるので、コストダウンすることができる。
しかも、原燃料供給管50は、熱交換部110の内側を通るので、この原燃料供給管50が熱交換部110の径方向外側に張り出すことを抑制することができる。これにより、燃料電池モジュールM3の径方向への小型化を図ることができる。
また、図10に示されるように、改質部60の燃焼排ガス流路66を上方に延長した上方延長排ガス流路306と、気化部40の燃焼排ガス流路47を下方に延長した下方延長排ガス流路307とは、流路切替部300の周方向の一部に設けられた連通管197によって接続されている。従って、上方延長排ガス流路306と下方延長排ガス流路307との間に気化流路46の下方への延長流路308が形成されていても、この延長流路308を流れる原燃料ガス162が連通管197を避けて通ることができるので、気化流路46からの原燃料ガス162を改質流路67に供給することができる。
また、流路切替部300を構成する五重の筒状壁301〜305のうち内側から二番目の筒状壁302の下端部302Aは、改質部60を構成する四重の筒状壁61〜64のうち内側から二番目の筒状壁62の上端部62Aに結合されている。従って、連通管197の近くに流路切替部300及び改質部60の結合部が設けられているので、流路切替部300及び改質部60を構成する筒状壁が熱膨張した場合でも、連通管197と筒状壁302,303との接合部に応力が生じることを抑制することができる。
また、図8に示されるように、改質部60の外側の筒状壁64と、気化部40の外側の筒状壁44と、熱交換部110の外側の筒状壁113とが一体に形成されると共に、改質部60の外側から二番目の筒状壁63と、気化部40の外側から二番目の筒状壁43と、熱交換部110の中央の筒状壁112とが一体に形成されているので、部品点数の増加を抑制することができると共に、改質部60、気化部40、及び、熱交換部110の構造を簡素化することができる。
また、予熱部100の外側の筒状壁102と、改質部60の外側の筒状壁64とが一体に形成され、予熱部100の内側の筒状壁101と、改質部60の外側から二番目の筒状壁63とが一体に形成されているので、部品点数の増加を抑制することができると共に、予熱部100及び改質部60の構造を簡素化することができる。
[第四実施形態]
次に、本発明の第四実施形態について説明する。
図12に示される第四実施形態に係る燃料電池モジュールM4は、上述の第一実施形態に係る燃料電池モジュールM1に対し、次のように構造が変更されている。
すなわち、第四実施形態に係る燃料電池モジュールM4において、容器20は、上述の第一実施形態よりも三つ少ない五個の管材21〜25により構成されている。一番目の管材21及び二番目の管材22は、容器20の高さ方向の中央部から上端部に亘って設けられており、二番目の管材22は、一番目の管材21の外側に配置されている。
三番目の管材23及び四番目の管材24は、二番目の管材22の外側に配置されている。三番目の管材23は、二番目の管材22の上部に対応する長さで形成されている。四番目の管材24は、容器20の高さ方向の中央部から下端部に亘って設けられており、三番目の管材23の下側に配置されている。五番目の管材25は、四番目の管材24の下部に対応する長さで形成され、四番目の管材24の下部の外側に配置されている。
一番目の管材21の上端部と、二番目の管材22の上端部は、容器20の上端部に設けられた天壁部181に固定され、三番目の管材23の上端部は、二番目の管材22の上端部に固定されている。四番目の管材24の下端部は、底壁部34に固定され、五番目の管材25の下端部は、底壁部35に固定されている。
容器20からは、熱交換部が省かれており、この容器20には、気化部40と、改質部60と、燃焼部90と、予熱部100(収容部)とが設けられている。
気化部40は、三重の筒状壁41〜43によって構成されている。三重の筒状壁41〜43における内側の筒状壁41は、一番目の管材21の上部によって構成され、三重の筒状壁41〜43における中央の筒状壁42は、二番目の管材22の上部によって構成されている。また、三重の筒状壁41〜43における外側の筒状壁43は、三番目の管材23によって構成されている。
図13に示されるように、この気化部40を構成する三重の筒状壁41〜43は、互いの間に隙間を有しており、内側の筒状壁41と中央の筒状壁42との間には、燃焼排ガス流路47が形成され、外側の筒状壁43と中央の筒状壁42との間には、気化流路46が形成されている。燃焼排ガス流路47の上端部には、容器20の径方向外側に延びるガス排出管123(図12参照)が接続され、気化流路46の上端部には、容器20の径方向外側に延びる原燃料供給管50(図12参照)が接続されている。
また、気化流路46には、気化部40の軸方向回りに螺旋状に形成された螺旋凸部51が設けられており、この螺旋凸部51により、気化流路46は、気化部40の軸方向回りに螺旋状に形成されている。同様に、燃焼排ガス流路47には、気化部40の軸方向回りに螺旋状に形成された螺旋凸部55が設けられており、この螺旋凸部55により、燃焼排ガス流路47は、気化部40の軸方向回りに螺旋状に形成されている。
改質部60は、三重の筒状壁61〜63によって構成されている。三重の筒状壁61〜63における内側の筒状壁61は、一番目の管材21の下部によって構成され、三重の筒状壁61〜63における中央の筒状壁62は、二番目の管材22の下部によって構成されている。また、三重の筒状壁61〜63における外側の筒状壁63は、四番目の管材24の上部によって構成されている。
この改質部60を構成する三重の筒状壁61〜63は、互いの間に隙間を有しており、内側の筒状壁61と中央の筒状壁62との間には、燃焼排ガス流路66が形成され、外側の筒状壁63と中央の筒状壁62との間には、改質流路67が形成されている。
改質流路67の入口には、改質部60の周方向に沿って環状に形成された一対の仕切板212が設けられている。この一対の仕切板212は、鉛直方向に並んでいる。各仕切板212には、周方向に一定の間隔を空けて複数のオリフィス213が形成されている。オリフィス213は、仕切板212の板厚方向(鉛直方向)に貫通しており、改質流路67には、複数のオリフィス213を通じて原燃料ガス162が流入する。
複数のオリフィス213は、改質流路67の周方向に一定の間隔を空けて並んでいるので、この複数のオリフィス213を通過することで、改質流路67には、原燃料ガス162が分散して流入する。なお、仕切板212は、一枚でも良い。
図14に示されるように、予熱部100は、二重の筒状壁101,102によって構成されている。二重の筒状壁101,102のうち内側の筒状壁101は、四番目の管材24の下部によって構成され、二重の筒状壁101,102のうち外側の筒状壁102は、五番目の管材25によって構成されている。予熱流路105の上端部には、容器20の径方向外側に延びる酸化剤ガス供給管122が接続されている。
予熱流路105を流れる酸化剤ガス164の予熱は、燃料電池セルスタック10からの輻射、燃料極及び空気極から排出された排ガスからの伝熱、及び、燃焼部90からの伝熱によって賄われる。
五番目の管材25が容器20の下部にのみ設けられることにより、上述の如く、気化部40は、三重の筒状壁41〜43によって構成され、改質部60は、三重の筒状壁61〜63によって構成されている。また、気化部40及び改質部60がそれぞれ三重の筒状壁によって構成されることにより、気化部40及び改質部60からは、酸化剤ガス流路がそれぞれ省かれている。
この第四実施形態に係る燃料電池モジュールM4は、上記構成以外は、第一実施形態に係る燃料電池モジュールM1と同様の構造であり、第一実施形態に係る燃料電池モジュールM1と同様に動作する。また、この第四実施形態に係る燃料電池モジュールM4は、第一実施形態に係る燃料電池モジュールM1と同様の構造については、この燃料電池モジュールM1と同様の作用及び効果を奏する。
この第四実施形態に係る燃料電池モジュールM4によれば、気化部40及び改質部60が三重の筒状壁によって構成されているので、燃料電池モジュールM4が径方向に拡がることを抑制できる。これにより、燃料電池モジュールM4を径方向に小型化することができる。
また、気化部40及び改質部60から酸化剤ガス流路がそれぞれ省かれているので、燃焼部90から排出された燃焼排ガス166の熱を酸化剤ガスで吸収することができないが、気化部40及び改質部60の構造を簡素化できると共に、気化部40及び改質部60の組立が容易になるので、燃料電池モジュールM4を低コスト化することができる。
また、改質部60から酸化剤ガス流路が省かれているので、改質部60の熱が酸化剤ガスにて直接吸収されない。そのため、改質触媒層70の温度上昇を効率的に促すことができるので、改質触媒層70での改質反応の転化率を向上させることができる。
また、改質部60において、燃焼排ガス166の熱は、改質触媒層70の改質反応による吸熱と、原燃料161に含まれる改質用水の気化熱、及び、原燃料161の予熱のみに利用されるため、改質部60の伝熱面積を小さくすることができると共に、改質部60を簡素化及び小型化することができる。
また、図14に示されるように、気化部40及び改質部60から酸化剤ガス流路が省かれて、予熱流路105の上端部に酸化剤ガス供給管122が接続されることにより、予熱流路105を流れる酸化剤ガス164の温度は、気化部40及び改質部60に酸化剤ガス流路が設けられている場合に比して低くなる。従って、燃料電池セルスタック10の放熱を、温度の低い酸化剤ガスで吸収することができるので、燃料電池セルスタック10から外部への放熱を抑制でき、ひいては、燃料電池モジュールM4の発電効率を向上させることができる。
また、改質部60から酸化剤ガス流路が省かれることにより、吸熱反応を示す改質部60から熱が奪われることを抑制することができるので、熱効率を向上させることができる。
さらに、気化部40及び改質部60から酸化剤ガス流路が省かれることにより、気化部40及び改質部60では、燃焼排ガス166が改質反応と気化とに熱を奪われるのみであるので、これにより、気化部40及び改質部60の伝熱面積を小さくすることができる。
また、図13に示されるように、改質部60では燃焼排ガス流路66が径方向内側に位置すると共に改質流路67が径方向外側に位置し、気化部40では燃焼排ガス流路47が径方向内側に位置すると共に気化流路46が径方向外側に位置する。従って、改質部60の燃焼排ガス流路66から気化部40の燃焼排ガス流路47に通じる流路と、気化流路46から改質流路67に通じる流路とが交差しないので、改質部60及び気化部40の構造を簡素化することができる。
また、図12に示されるように、気化部40は、容器20の上部(改質部60と容器20の上端部(天壁部)との間)を構成しており、この燃料電池モジュールM4(容器20)からは熱交換部(上記各実施形態の熱交換部110を参照)が省かれているので、燃料電池モジュールM4をより小型化及び低コスト化することができる。
また、予熱部100、燃焼部90の周壁部91、改質部60、及び、気化部40を構成する容器20は、断熱材140によって覆われている。これにより、予熱部100、燃焼部90の周壁部91、改質部60、及び、気化部40からの放熱を抑制することができるので、熱効率を向上させることができる。
[第五実施形態]
次に、本発明の第五実施形態について説明する。
図15に示される第五実施形態に係る燃料電池モジュールM5は、上述の第一実施形態に係る燃料電池モジュールM1に対し、次のように構造が変更されている。
すなわち、第五実施形態に係る燃料電池モジュールM5において、改質部60を構成する四重の筒状壁61〜64のうち内側から三番目の筒状壁63は、二重の筒状壁63A,63Bにより構成されている。この筒状壁63Aと筒状壁63Bとの間は、断熱空間71として形成されている。
なお、改質部60は、互いの間に隙間を有する四重の筒状壁61,62,63,64によって構成されていると捉えられても良いし、互いの間に隙間を有する五重の筒状壁61,62,63A,63B,64,65によって構成されていると捉えられても良い。
改質部60が、互いの間に隙間を有する四重の筒状壁61,62,63,64によって構成されていると捉えられる場合、この四重の筒状壁61,62,63,64の内側から外側には、断熱空間65、燃焼排ガス流路66、改質流路67、及び、酸化剤ガス流路68が順に形成されていると言える。
一方、改質部60が、互いの間に隙間を有する五重の筒状壁61,62,63A,63B,64,65によって構成されていると捉えられる場合、この五重の筒状壁61,62,63A,63B,64の内側から外側には、断熱空間65、燃焼排ガス流路66、改質流路67、断熱空間71、及び、酸化剤ガス流路68が順に形成されていると言える。
周壁部91は、改質部60を構成する五重の筒状壁61,62,63A,63B,64,65のうち最も内側の筒状壁61を除く残りの筒状壁62,63A,63B,64,65の下方への延長部分を有する。この残りの筒状壁62,63A,63B,64,65は、より具体的には、隔壁部93にまで延びている。
二重の筒状壁63A,63Bのうち外側の筒状壁63Bの上端部は、改質部60の内側から二番目の筒状壁62の上端部と同様に、上方に延長されて混合部80に設けられている。
この第五実施形態に係る燃料電池モジュールM5は、筒状壁63が二重の筒状壁63A,63Bによって構成された以外は、第一実施形態に係る燃料電池モジュールM1と同様の構造であり、第一実施形態に係る燃料電池モジュールM1と同様に動作する。また、この第五実施形態に係る燃料電池モジュールM5は、第一実施形態に係る燃料電池モジュールM1と同様の構造については、この燃料電池モジュールM1と同様の作用及び効果を奏する。
この第五実施形態に係る燃料電池モジュールM5によれば、改質部60は、五重の筒状壁61,62,63A,63B,64,65(四重の筒状壁61,62,63,64)によって構成されている。従って、改質部60における構造を簡素化できると共に、改質部60の組立が容易になるので、燃料電池モジュールM5を低コスト化することができる。
また、改質流路67と酸化剤ガス流路68との隔壁を形成する筒状壁63は、二重の筒状壁63A,63Bにより構成されており、この二重の筒状壁63A,63Bの間は、断熱空間71として形成されている。従って、改質部60における酸化剤ガス流路68を流れる酸化剤ガス164に改質触媒層70から熱が奪われることを抑制することができる。これにより、改質触媒層70の温度を効率的に上昇させることができる。
また、予熱流路105を流れる酸化剤ガス164の温度は、改質流路67の径方向外側に断熱空間71が無い場合と比較して低くなるので、燃料電池セルスタック10の放熱を、温度の低い酸化剤ガス164で吸収することができる。これにより、燃料電池セルスタック10から外部への放熱を抑制することができる。
また、酸化剤ガス164の予熱を燃料電池セルスタック10の周囲のみで賄おうとすると、予熱量が不十分になる可能性があるが、改質部60に酸化剤ガス流路68を設けることにより、改質部60において酸化剤ガス164の予熱を行うことができるので、酸化剤ガス164の予熱を燃料電池セルスタック10の周囲のみで賄う場合と比較して、予熱量を確保することができる。
また、改質流路67の径方向外側の断熱空間71は、空洞であるので、改質部60の構造を簡素化することができる。
次に、上述の第一乃至第五実施形態に共通の変形例について説明する。
上述の第一乃至第五実施形態に係る燃料電池モジュールM1〜M5において、燃料電池セルスタック10は、より具体的には、図18に示されるように、鉛直方向に積層された複数の平板形のセル12を有する。各セル12は、燃料極271、電解質層272、空気極273、一対のセパレータ274を有する。燃料極271には、燃料ガス163が供給され、空気極273には、酸化剤ガス164が供給される。
しかしながら、第一乃至第五実施形態に係る燃料電池モジュールM1〜M5において、燃料電池セルスタック10のセル12は、図19に示されるように、円筒形に形成されても良い。この円筒形の各セル12は、燃料極281、電解質層282、空気極283、インターコネクタ284を有する。燃料極281には、燃料ガス163が供給され、空気極283には、酸化剤ガス164が供給される。
また、第一乃至第五実施形態に係る燃料電池モジュールM1〜M5において、燃料電池セルスタック10のセル12は、図20に示されるように、円筒平板形に形成されても良い。この円筒平板形の各セル12は、燃料極291、電解質層292、空気極293、インターコネクタ294を有する。燃料極291には、燃料ガス163が供給され、空気極293には、酸化剤ガス164が供給される。
図16A,図16Bには、一例として、第一実施形態に係る燃料電池モジュールM1において、上述の図19に示される複数の円筒形のセル12を有する燃料電池セルスタック10が搭載された例が示されている。また、図17A,図17Bには、第一実施形態に係る燃料電池モジュールM1において、上述の図20に示される複数の円筒平板形のセル12を有する燃料電池セルスタック10が搭載された例が示されている。円筒形のセル12及び円筒平板形のセル12のいずれも、セル12が鉛直方向に沿って延びるように配置されている。
なお、図16A〜図17Bに示されるように、予熱部100を構成する二重の筒状壁101,102のうち内側の筒状壁101の下端部には、予熱部100の内側空間104と予熱流路105の下端部とを連通する酸化剤ガス供給口109が形成されている。酸化剤ガス供給口109は、予熱部100の周方向に間隔を空けて複数形成されている。また、底壁部34には、各セル12に対応して一又は複数の燃料ガス取入口16が形成されている。
また、第一乃至第五実施形態に係る燃料電池モジュールM1〜M5において、予熱部100、燃焼部90の周壁部91、改質部60を構成する複数の筒状壁、気化部40を構成する複数の筒状壁、及び、熱交換部110等を構成する複数の筒状壁は、いずれも横断面が真円形状である円筒状に形成されている(例えば、図17Bの二点鎖線で示された予熱部100を参照)。
しかしながら、第一乃至第五実施形態に係る燃料電池モジュールM1〜M5において、予熱部100、燃焼部90の周壁部91、改質部60を構成する複数の筒状壁、気化部40を構成する複数の筒状壁、及び、熱交換部110等を構成する複数の筒状壁は、いずれも横断面が楕円形状である楕円筒状に形成されていても良い(例えば、図17Bの実線で示された予熱部100を参照)。
また、第一乃至第五実施形態に係る燃料電池モジュールM1〜M5において、予熱部100、燃焼部90の周壁部91、改質部60を構成する複数の筒状壁、気化部40を構成する複数の筒状壁、及び、熱交換部110等を構成する複数の筒状壁は、横断面が真円形状である円筒状に形成されたものと、横断面が楕円形状である楕円筒状に形成されたものの両方を含んでいても良い。
また、第一乃至第五実施形態に係る燃料電池モジュールM1〜M5では、燃料電池セルスタック10の形状(例えば、燃料電池セルスタック10が複数の円筒平板形のセル12を有する場合)に応じて、予熱部100のみ楕円筒状に形成されても良い(図17B参照)。
また、第五実施形態に係る燃料電池モジュールM5のように、改質部60の筒状壁63が互いの間に断熱空間71を有する二重の筒状壁63A,63Bによって構成された構造が、第二乃至第四実施形態に係る燃料電池モジュールM2〜M4に適用されても良い。
また、第五実施形態に係る燃料電池モジュールM5において、改質部60の筒状壁63は、互いの間に断熱空間71を有する二重の筒状壁63A,63Bによって構成されていたが、これと同様に、第一乃至第五実施形態に係る燃料電池モジュールM1〜M5において、各部を構成する複数の筒状壁は、適宜、互いの間に断熱空間を形成する二重の筒状壁によって構成されても良い。
また、第一乃至第五実施形態に係る燃料電池モジュールM1〜M5において、燃料電池セルスタック10には、固体酸化物形燃料電池(SOFC)が適用されているが、その他の形式の燃料電池が適用されても良い。
また、原燃料に含まれる炭化水素系燃料として、都市ガスが用いられているが、都市ガスの代わりにメタンガスなど水素を主成分とするガスが用いられても良い。また、炭化水素系燃料は、炭化水素系液体でも良い。
次に、第一の評価試験について説明する。
第一の評価試験として、上述の第一実施形態に係る燃料電池モジュールM1を例にシミュレーションを行う。
表1には、シミュレーションにおける第一回目の結果が示されており、表2には、シミュレーションにおける第二回目の結果が示されている。図21に示されるように、本シミュレーションにおいて、Q1は、気化部40における気化熱及び予熱を合わせた吸熱量、Q2は、改質部60の吸熱量、Q3は、予熱部100の予熱量、Q4は、燃料電池セルスタック10の発熱量、Q5は、燃焼部90の燃焼熱量、Q6は、熱交換部110の回収熱量を示す。また、E1は、燃料電池セルスタックの発電量(DC出力)を示す。なお、符号50は、原燃料供給管を示し、符号122は、酸化剤ガス供給管を示し、符号123は、ガス排出管を示す。炭化水素系ガスには、都市ガスが使用される。
Figure 0006259736
Figure 0006259736
この第一の評価試験より、各部の温度を適正にするための交換熱量Q1〜Q6が求まる。この交換熱量Q1〜Q6を適正に熱交換する各部の伝熱面積を設定することにより、燃料電池モジュールの所定の性能が得られると言える。
次に、第二の評価試験について説明する。
第二の評価試験では、一例として、上述の第一実施形態に係る燃料電池モジュール、及び、第二実施形態に係る燃料電池モジュールについて、シミュレーション及び測定試験を行う。
表3には、第二の評価試験の結果が示されている。第二の評価試験において、NO.1〜NO.12は、図22に示される第一実施形態に係る燃料電池モジュールM1、及び、図23に示される第二実施形態に係る燃料電池モジュールM2の測定点番号を示す。
NO.1では、原燃料供給管50に供給される原燃料に含まれる都市ガスの流量が測定され、NO.2では、酸化剤ガス供給管122に供給される酸化剤ガスの流量が測定され、NO.3では、原燃料供給管50に供給される水の流量が測定され、NO.4では、原燃料供給管50に供給される原燃料の圧力が測定される。
また、NO.5では、酸化剤ガス供給管122に供給される酸化剤ガスの圧力が測定され、NO.6では、熱交換部110の出口における燃焼排ガスの温度が測定され、NO.7では、燃料電池セルスタック10に供給される燃料ガスの温度が測定され、NO.8では、燃料電池セルスタック10に供給される酸化剤ガスの温度が測定される。
また、NO.9では、燃料電池セルスタック10の平均温度が測定され、NO.10では、燃料電池セルスタック10からのスタック排ガスの平均温度が測定され、NO.11では、改質部60の出口(改質流路の出口)における燃料ガス(改質ガス)の温度が測定され、NO.12では、気化部40の出口における原燃料ガスの温度が測定される。
この第二の評価試験では、燃料電池セルスタック10の代わりに、反応及び発電を伴わない模擬セルスタックが使用される。発電時に想定される原燃料ガスの流量から発電に使用される原燃料ガスの量を差し引いた量の原燃料ガスが原燃料供給管50に投入されることで、発電時に想定される燃料電池モジュールの温度バランス状態が作り出される。
第二の評価試験における試験条件は、次の通りである。すなわち、発電時に想定される原燃料ガスの流量は、2.0L/min(1370WLHV)である。シミュレーションにおいて発電量は820Wであり、実際に発電を行わない測定試験においては、発電相当熱量を差し引いた原燃料で燃料電池モジュール内部での発熱量を模擬する必要がある。つまり、発電模擬に使用される原燃料ガスの量は、1370Wから820Wを減じた熱量として、550WLHV(0.8L/min)を基準としている。水の流量、酸化剤ガスの流量は、燃料電池モジュール内部での吸熱量を模擬するためにシミュレーション通りの流量とする。以上の条件で各部の温度を測定する。そして、シミュレーション通りの熱交換が実施され、各部の温度が適正であるか否かを判断する。
Figure 0006259736
この第二の評価試験より、第一及び第二実施形態において、シミュレーションに近い温度分布を実現することができると言える。
以上、本発明の第一乃至第五実施形態について説明したが、本発明は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
M1〜M4…燃料電池モジュール、10…燃料電池セルスタック、20…容器、23…共通の管材、40…気化部、41〜44…筒状壁、45…断熱空間、46…気化流路、47…燃焼排ガス流路、48…酸化剤ガス流路、49…断熱材、50…原燃料供給管、60…改質部、61〜64…筒状壁、65…断熱空間、66…燃焼排ガス流路、67…改質流路、68…酸化剤ガス流路、69…断熱材、70…改質触媒層、71…断熱空間、81…連結管、90…燃焼部、91…周壁部、100…予熱部(収容部)、101,102…筒状壁、105…予熱流路、107…燃料ガス配管、110…熱交換部、111〜114…筒状壁、115…断熱空間、116…原燃料流路、117…酸化剤ガス流路、118…燃焼排ガス流路、122…酸化剤ガス供給管、123…ガス排出管、124…断熱材、140…断熱材、161…原燃料、162…原燃料ガス、163…燃料ガス、164…酸化剤ガス、165…スタック排ガス、166…燃焼排ガス、300…流路切替部、301〜305…筒状壁、306…上方延長排ガス流路、307…下方延長排ガス流路

Claims (27)

  1. 酸化剤ガスと燃料ガスとの電気化学反応により発電する燃料電池セルスタックと、
    前記燃料電池セルスタックの周囲に設けられた円筒状又は楕円筒状の収容部と、
    前記燃料電池セルスタックの上方に前記収容部と同軸上に設けられた円筒状又は楕円筒状の周壁部を有すると共に、前記燃料電池セルスタックから排出され前記周壁部の内側に供給されたスタック排ガスを燃焼し、燃焼排ガスを上方に排出する燃焼部と、
    前記燃焼部の上方に前記周壁部と同軸上に設けられると共に、円筒状又は楕円筒状とされ、且つ、前記燃焼排ガスの熱を利用して原燃料ガスから前記燃料ガスを生成する改質部と、
    前記改質部の上方に前記改質部と同軸上に設けられると共に、円筒状又は楕円筒状とされ、且つ、前記燃焼排ガスの熱を利用して原燃料を気化して前記原燃料ガスを生成する気化部と、
    前記気化部の上方に前記気化部と同軸上に設けられると共に、互いの間に隙間を有する少なくとも三重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該三重の筒状壁の内側から外側へ順に、断熱空間、前記原燃料が投入される原燃料流路、及び、前記原燃料との間で熱交換する前記燃焼排ガスが流れる燃焼排ガス流路を有する熱交換部と、
    を備える燃料電池モジュール。
  2. 前記改質部は、互いの間に隙間を有する四重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該四重の筒状壁の内側から外側へ順に、断熱空間、前記燃焼排ガスが流れる燃焼排ガス流路、前記燃焼排ガスの熱を利用して原燃料ガスから前記燃料ガスを生成するための改質触媒層が設けられた改質流路、及び、前記酸化剤ガスが流れる酸化剤ガス流路を有し、
    前記気化部は、互いの間に隙間を有する四重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該四重の筒状壁の内側から外側へ順に、断熱空間、前記改質流路と連通し原燃料を気化して前記原燃料ガスを生成する気化流路、前記改質部の前記燃焼排ガス流路と連通し前記原燃料に対して気化熱を与える前記燃焼排ガスが流れる燃焼排ガス流路、及び、前記改質部の前記酸化剤ガス流路と連通し前記燃焼排ガスとの間で熱交換する前記酸化剤ガスが流れる酸化剤ガス流路を有し、
    前記熱交換部は、前記三重の筒状壁を含み互いの間に隙間を有する四重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該四重の筒状壁の内側から外側へ順に、断熱空間、前記気化流路と連通する前記原燃料流路、前記気化部の前記燃焼排ガス流路と連通し前記原燃料との間で熱交換する前記燃焼排ガスが流れる燃焼排ガス流路、及び、前記気化部の前記酸化剤ガス流路と連通し前記燃焼排ガスとの間で熱交換する前記酸化剤ガスが流れる酸化剤ガス流路を有する、
    請求項1に記載の燃料電池モジュール。
  3. 前記改質部を構成する四重の筒状壁のうち最も外側に位置する筒状壁と、前記気化部を構成する四重の筒状壁のうち最も外側に位置する筒状壁と、前記熱交換部を構成する四重の筒状壁のうち最も外側に位置する筒状壁とは、一体に形成され、
    前記改質部を構成する四重の筒状壁のうち外側から二番目の筒状壁と、前記気化部を構成する四重の筒状壁のうち外側から二番目の筒状壁と、前記熱交換部を構成する四重の筒状壁のうち外側から二番目の筒状壁とは、一体に形成されている、
    請求項2に記載の燃料電池モジュール。
  4. 前記収容部は、前記燃料電池セルスタックの周囲に設けられた二重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該二重の筒状壁の間に前記酸化剤ガス流路と連通し前記燃料電池セルスタックの排熱で予熱される前記酸化剤ガスが流れる予熱流路を有する予熱部であり、
    前記周壁部は、前記改質部を構成する四重の筒状壁のうち最も内側の筒状壁を除く残りの筒状壁に一体に形成されると共に、前記四重の筒状壁のうち最も内側の筒状壁に対して下方に延び、
    前記予熱部を構成する二重の筒状壁のうち外側の筒状壁と、前記改質部を構成する四重の筒状壁のうち最も外側に位置する筒状壁とは、一体に形成され、
    前記予熱部を構成する二重の筒状壁のうち内側の筒状壁と、前記改質部を構成する四重の筒状壁のうち外側から二番目の筒状壁とは、一体に形成されている、
    請求項3に記載の燃料電池モジュール。
  5. 前記改質部は、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該三重の筒状壁の内側から外側へ順に、断熱空間、前記燃焼排ガスが流れる燃焼排ガス流路、及び、前記燃焼排ガスの熱を利用して原燃料ガスから前記燃料ガスを生成するための改質触媒層が設けられた改質流路を有し、
    前記気化部は、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該三重の筒状壁の内側から外側へ順に、断熱空間、前記改質流路と連通し原燃料を気化して前記原燃料ガスを生成する気化流路、及び、前記改質部の前記燃焼排ガス流路と連通し前記原燃料に対して気化熱を与える前記燃焼排ガスが流れる燃焼排ガス流路を有し、
    前記熱交換部は、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該三重の筒状壁の内側から外側へ順に、断熱空間、前記気化流路と連通する前記原燃料流路、及び、前記気化部の前記燃焼排ガス流路と連通し前記原燃料との間で熱交換する前記燃焼排ガスが流れる燃焼排ガス流路を有する、
    請求項1に記載の燃料電池モジュール。
  6. 前記改質流路は、前記気化流路よりも径方向外側に位置し、
    前記気化流路の下端部と前記改質流路の上端部とは、前記気化部の周方向の一部から径方向外側に延びる連結管によって接続されている、
    請求項2〜請求項5のいずれか一項に記載の燃料電池モジュール。
  7. 前記熱交換部、前記気化部、及び、前記改質部における前記断熱空間は、空洞である。
    請求項2又は請求項5に記載の燃料電池モジュール。
  8. 前記熱交換部、前記気化部、及び、前記改質部における前記断熱空間には、断熱材が充填されている。
    請求項2又は請求項5に記載の燃料電池モジュール。
  9. 酸化剤ガスと燃料ガスとの電気化学反応により発電する燃料電池セルスタックと、
    前記燃料電池セルスタックの周囲に設けられた円筒状又は楕円筒状の収容部と、
    前記燃料電池セルスタックの上方に前記収容部と同軸上に設けられた円筒状又は楕円筒状の周壁部を有すると共に、前記燃料電池セルスタックから排出され前記周壁部の内側に供給されたスタック排ガスを燃焼し、燃焼排ガスを上方に排出する燃焼部と、
    前記燃焼部の上方に前記周壁部と同軸上に設けられると共に、円筒状又は楕円筒状とされ、且つ、前記燃焼排ガスの熱を利用して原燃料ガスから前記燃料ガスを生成する改質部と、
    前記改質部の上方に前記改質部と同軸上に設けられると共に、互いの間に隙間を有する四重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該四重の筒状壁の内側から外側へ順に、断熱空間、原燃料を気化して前記原燃料ガスを生成する気化流路、前記原燃料に対して気化熱を与える前記燃焼排ガスが流れる燃焼排ガス流路、及び、前記燃焼排ガスとの間で熱交換する前記酸化剤ガスが流れる酸化剤ガス流路を有する気化部と、
    前記気化部の上方に前記気化部と同軸上に設けられると共に、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該三重の筒状壁の内側から外側へ順に、断熱空間、前記気化部の前記燃焼排ガス流路と連通し前記燃焼排ガスが流れる燃焼排ガス流路、及び、前記気化部の前記酸化剤ガス流路と連通し前記燃焼排ガスとの間で熱交換する前記酸化剤ガスが流れる酸化剤ガス流路を有する熱交換部と、
    を備える燃料電池モジュール。
  10. 前記改質部は、互いの間に隙間を有する四重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該四重の筒状壁の内側から外側へ順に、断熱空間、前記気化部の前記燃焼排ガス流路と連通し前記燃焼排ガスが流れる燃焼排ガス流路、前記気化流路と連通し前記燃焼排ガスの熱を利用して原燃料ガスから前記燃料ガスを生成するための改質触媒層が設けられた改質流路、及び、前記気化部の前記酸化剤ガス流路と連通し前記酸化剤ガスが流れる酸化剤ガス流路を有する、
    請求項9に記載の燃料電池モジュール。
  11. 前記熱交換部を構成する三重の筒状壁のうち最も内側の筒状壁と、前記気化部を構成する四重の筒状壁のうち内側から二番目の筒状壁とは、共通の管材に形成され、
    前記気化部を構成する四重の筒状壁のうち最も内側の筒状壁は、前記管材の径方向内側に位置する、
    請求項10に記載の燃料電池モジュール。
  12. 前記熱交換部の内側を通り、前記気化流路の上端部に接続された原燃料供給管をさらに備える、
    請求項11に記載の燃料電池モジュール。
  13. 前記改質部と前記気化部との間に前記改質部及び前記気化部と同軸上に設けられると共に、互いの間に隙間を有する五重の円筒状又は楕円筒状の筒状壁によって構成された流路切替部をさらに備え、
    前記流路切替部を構成する五重の筒状壁のうち内側から一番目の筒状壁は、前記改質部を構成する四重の筒状壁のうち内側から一番目の筒状壁を上方に延長して形成され、
    前記流路切替部を構成する五重の筒状壁のうち内側から二番目の筒状壁は、前記気化部を構成する四重の筒状壁のうち内側から一番目の筒状壁を下方に延長して形成され、
    前記流路切替部を構成する五重の筒状壁のうち内側から三番目の筒状壁は、前記気化部を構成する四重の筒状壁のうち内側から二番目の筒状壁を下方に延長して形成され、
    前記流路切替部を構成する五重の筒状壁のうち内側から四番目の筒状壁は、前記気化部を構成する四重の筒状壁のうち内側から三番目の筒状壁と、前記改質部を構成する四重の筒状壁のうち内側から三番目の筒状壁とに連続して形成され、
    前記流路切替部を構成する五重の筒状壁のうち内側から一番目の筒状壁と内側から二番目の筒状壁との間には、前記改質部の前記燃焼排ガス流路を上方に延長した上方延長排ガス流路が形成され、
    前記流路切替部を構成する五重の筒状壁のうち内側から三番目の筒状壁と内側から四番目の筒状壁との間には、前記上方延長排ガス流路よりも径方向外側に位置し前記気化部の前記燃焼排ガス流路を下方に延長した下方延長排ガス流路が形成され、
    前記流路切替部を構成する五重の筒状壁のうち内側から二番目の筒状壁と三番目の筒状壁には、前記流路切替部の周方向の一部に設けられ前記上方延長排ガス流路と前記下方延長排ガス流路とを連通する連通管が接続され、
    前記流路切替部を構成する五重の筒状壁のうち内側から二番目の筒状壁の下端部は、前記改質部を構成する四重の筒状壁のうち内側から二番目の筒状壁の上端部に結合されている、
    請求項10〜請求項12のいずれか一項に記載の燃料電池モジュール。
  14. 前記改質部を構成する四重の筒状壁のうち最も外側に位置する筒状壁と、前記気化部を構成する四重の筒状壁のうち最も外側に位置する筒状壁と、前記熱交換部を構成する三重の筒状壁における外側の筒状壁とは、一体に形成され、
    前記改質部を構成する四重の筒状壁のうち外側から二番目の筒状壁と、前記気化部を構成する四重の筒状壁のうち外側から二番目の筒状壁と、前記熱交換部を構成する三重の筒状壁における中央の筒状壁とは、一体に形成されている、
    請求項10〜請求項13のいずれか一項に記載の燃料電池モジュール。
  15. 前記収容部は、前記燃料電池セルスタックの周囲に設けられた二重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該二重の筒状壁の間に前記酸化剤ガス流路と連通し前記燃料電池セルスタックの排熱で予熱される前記酸化剤ガスが流れる予熱流路を有する予熱部であり、
    前記周壁部は、前記改質部を構成する四重の筒状壁のうち最も内側の筒状壁を除く残りの筒状壁に一体に形成されると共に、前記四重の筒状壁のうち最も内側の筒状壁に対して下方に延び、
    前記予熱部を構成する二重の筒状壁のうち外側の筒状壁と、前記改質部を構成する四重の筒状壁のうち最も外側に位置する筒状壁とは、一体に形成され、
    前記予熱部を構成する二重の筒状壁のうち内側の筒状壁と、前記改質部を構成する四重の筒状壁のうち外側から二番目の筒状壁とは、一体に形成されている、
    請求項14に記載の燃料電池モジュール。
  16. 前記熱交換部の前記酸化剤ガス流路及び前記燃焼排ガス流路は、螺旋形成部によって前記熱交換部の軸方向回りに螺旋状に形成されている、
    請求項2又は請求項9に記載の燃料電池モジュール。
  17. 前記熱交換部の前記燃焼排ガス流路は、螺旋形成部によって前記熱交換部の軸方向回りに螺旋状に形成され、
    前記気化流路は、螺旋形成部によって前記気化部の軸方向回りに螺旋状に形成され、
    前記熱交換部の前記燃焼排ガス流路は、前記気化流路よりも螺旋のピッチが大きい、
    請求項2又は請求項9に記載の燃料電池モジュール。
  18. 前記熱交換部の前記酸化剤ガス流路における前記酸化剤ガスの流れと、前記熱交換部の前記燃焼排ガス流路における前記燃焼排ガスの流れとは、前記熱交換部の軸方向に逆向きである、
    請求項16又は請求項17に記載の燃料電池モジュール。
  19. 前記収容部、前記周壁部、前記改質部、前記気化部、及び、前記熱交換部は、容器を構成し、
    前記容器は、断熱材によって覆われている、
    請求項1〜請求項18のいずれか一項に記載の燃料電池モジュール。
  20. 酸化剤ガスと燃料ガスとの電気化学反応により発電する燃料電池セルスタックと、
    前記燃料電池セルスタックの周囲に設けられた二重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該二重の筒状壁の間に前記燃料電池セルスタックの排熱で予熱される前記酸化剤ガスが流れる予熱流路を有する予熱部と、
    前記予熱部を構成する前記二重の筒状壁及び前記予熱流路の上方への延長部分を含むと共に前記燃料電池セルスタックの上方に前記予熱部と同軸上に設けられた円筒状又は楕円筒状の周壁部を有し、前記燃料電池セルスタックから排出され前記周壁部の内側に供給されたスタック排ガスを燃焼して燃焼排ガスを上方に排出する燃焼部と、
    前記燃焼部の上方に前記周壁部と同軸上に設けられると共に、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該三重の筒状壁の内側から外側へ順に、断熱空間、前記燃焼排ガスが流れる燃焼排ガス流路、及び、前記燃焼排ガスの熱を利用して原燃料ガスから前記燃料ガスを生成するための改質触媒層が設けられた改質流路を有する改質部と、
    を備える燃料電池モジュール。
  21. 前記予熱流路の上端部には、前記予熱流路に前記酸化剤ガスを供給する酸化剤ガス供給管が接続されている、
    請求項20に記載の燃料電池モジュール。
  22. 前記改質部の上方に前記改質部と同軸上に設けられると共に、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該三重の筒状壁の内側から外側へ順に、断熱空間、前記改質流路と連通し原燃料を気化して前記原燃料ガスを生成する気化流路、及び、前記改質部の前記燃焼排ガス流路と連通し前記原燃料に対して気化熱を与える前記燃焼排ガスが流れる燃焼排ガス流路を有する気化部と、
    前記気化部の上方に前記気化部と同軸上に設けられると共に、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該三重の筒状壁の内側から外側へ順に、断熱空間、前記気化流路と連通し前記原燃料が投入される原燃料流路、及び、前記気化部の前記燃焼排ガス流路と連通し前記原燃料との間で熱交換する前記燃焼排ガスが流れる燃焼排ガス流路を有する熱交換部とをさらに備える、
    請求項20又は請求項21に記載の燃料電池モジュール。
  23. 前記改質部の上方に前記改質部と同軸上に設けられると共に、互いの間に隙間を有する三重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該三重の筒状壁の内側から外側へ順に、断熱空間、前記改質部の前記燃焼排ガス流路と連通し前記燃焼排ガスが流れる燃焼排ガス流路、及び、前記改質流路と連通し原燃料を気化して前記原燃料ガスを生成する気化流路を有する気化部をさらに備える、
    請求項20又は請求項21に記載の燃料電池モジュール。
  24. 前記予熱部、前記周壁部、前記改質部、及び、前記気化部は、容器を構成し、
    前記気化部は、前記容器の上部を構成している、
    請求項23に記載の燃料電池モジュール。
  25. 前記容器は、断熱材によって覆われている、
    請求項24に記載の燃料電池モジュール。
  26. 酸化剤ガスと燃料ガスとの電気化学反応により発電する燃料電池セルスタックと、
    前記燃料電池セルスタックの周囲に設けられた二重の円筒状又は楕円筒状の筒状壁によって構成されると共に、該二重の筒状壁の間に前記燃料電池セルスタックの排熱で予熱される前記酸化剤ガスが流れる予熱流路を有する予熱部と、
    前記燃料電池セルスタックの上方に前記予熱部と同軸上に設けられた円筒状又は楕円筒状の周壁部を有すると共に、前記燃料電池セルスタックから排出され前記周壁部の内側に供給されたスタック排ガスを燃焼し、燃焼排ガスを上方に排出する燃焼部と、
    前記燃焼部の上方に前記周壁部と同軸上に設けられると共に、互いの間に隙間を有する五重の円筒状又は楕円筒状の筒状壁によって構成され、且つ、該五重の筒状壁の内側から外側へ順に、断熱空間、前記燃焼排ガスが流れる燃焼排ガス流路、前記燃焼排ガスの熱を利用して原燃料ガスから前記燃料ガスを生成するための改質触媒層が設けられた改質流路、断熱空間、及び、前記予熱流路と連通し前記酸化剤ガスが流れる酸化剤ガス流路を有する改質部と、
    を備える燃料電池モジュール。
  27. 前記改質流路の径方向外側の前記断熱空間は、空洞である、
    請求項26に記載の燃料電池モジュール。
JP2014175947A 2014-08-29 2014-08-29 燃料電池モジュール Active JP6259736B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014175947A JP6259736B2 (ja) 2014-08-29 2014-08-29 燃料電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014175947A JP6259736B2 (ja) 2014-08-29 2014-08-29 燃料電池モジュール

Publications (2)

Publication Number Publication Date
JP2016051588A JP2016051588A (ja) 2016-04-11
JP6259736B2 true JP6259736B2 (ja) 2018-01-10

Family

ID=55658961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014175947A Active JP6259736B2 (ja) 2014-08-29 2014-08-29 燃料電池モジュール

Country Status (1)

Country Link
JP (1) JP6259736B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5436196B2 (ja) * 2009-12-22 2014-03-05 リンナイ株式会社 発電装置
JP5383550B2 (ja) * 2010-02-24 2014-01-08 京セラ株式会社 燃料電池モジュール
JP2014072053A (ja) * 2012-09-28 2014-04-21 Toto Ltd 固体酸化物型燃料電池装置
JP5975426B2 (ja) * 2012-09-28 2016-08-23 Toto株式会社 固体酸化物型燃料電池装置

Also Published As

Publication number Publication date
JP2016051588A (ja) 2016-04-11

Similar Documents

Publication Publication Date Title
JP6291375B2 (ja) 燃料電池モジュール
US9799902B2 (en) Pre-reformer for selective reformation of higher hydrocarbons
JP2019091683A (ja) 燃料電池モジュール及びこれに使用される流体供給装置
JP5580644B2 (ja) 固体酸化物形燃料電池,および固体酸化物形燃料電池システム
JP6278871B2 (ja) 燃料電池モジュール
JP5725443B2 (ja) 燃料電池モジュール
JP6545577B2 (ja) 燃焼器及び燃料電池モジュール
JP6246088B2 (ja) 燃料電池モジュール
JP6506856B2 (ja) 改質器、セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP5907751B2 (ja) 固体酸化物形燃料電池
JP5809365B2 (ja) 燃料電池用加湿熱交換器
JP6259736B2 (ja) 燃料電池モジュール
JP6753930B2 (ja) 改質器、セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP2016115537A (ja) 燃料電池モジュール
JP6402049B2 (ja) 燃料電池システム
JP7126395B2 (ja) 燃料電池モジュール
JP6234904B2 (ja) 燃料電池モジュール及び燃料電池モジュールの製造方法
JP6545562B2 (ja) 燃焼器及び燃料電池モジュール
JP2019212487A (ja) 燃料電池モジュール
JP2014165118A (ja) 燃料電池装置
JP6177359B2 (ja) 固体酸化物形燃料電池
WO2015068479A1 (ja) 燃料電池モジュール
EP3486988A1 (en) Fuel cell module and fluid supply device used therefor
JP6422323B2 (ja) 燃料電池モジュール
JP6612166B2 (ja) 燃料処理装置及び燃料電池モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6259736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250