JP6128772B2 - Chemical analyzer calibration method and chemical analyzer - Google Patents
Chemical analyzer calibration method and chemical analyzer Download PDFInfo
- Publication number
- JP6128772B2 JP6128772B2 JP2012167558A JP2012167558A JP6128772B2 JP 6128772 B2 JP6128772 B2 JP 6128772B2 JP 2012167558 A JP2012167558 A JP 2012167558A JP 2012167558 A JP2012167558 A JP 2012167558A JP 6128772 B2 JP6128772 B2 JP 6128772B2
- Authority
- JP
- Japan
- Prior art keywords
- chemical analyzer
- detector
- concentration
- target substance
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000126 substance Substances 0.000 title claims description 65
- 238000000034 method Methods 0.000 title claims description 30
- 238000012937 correction Methods 0.000 claims description 40
- 238000005259 measurement Methods 0.000 claims description 31
- 239000013076 target substance Substances 0.000 claims description 29
- 238000011088 calibration curve Methods 0.000 claims description 24
- 239000007789 gas Substances 0.000 claims description 23
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 8
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 4
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 claims description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 4
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 4
- 238000001514 detection method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Description
この発明は、気体の測定対象物質の濃度を検出する化学分析装置の校正方法に関する。
The present invention relates to a calibration method for a chemical analyzer that detects the concentration of a gas measurement target substance.
従来、化学分析装置において、検出部によって測定対象物質の濃度の測定が行われているが、濃度を測定する検出部は取り付けた化学分析装置毎に測定精度にばらつきがあるために、装置の校正を行う必要がある。 Conventionally, in chemical analyzers, the concentration of the substance to be measured has been measured by the detector, but the detector that measures the concentration varies in the measurement accuracy of each attached chemical analyzer, so calibration of the device Need to do.
このような化学分析装置において装置の校正を行う場合には、実際に濃度の判明している測定対象物質を使用して濃度を測定して校正するか、または別の分析方法で測定対象物質の濃度を確認し装置の表示をその値に合わせるというのが一般的である。また、例えば、模擬電流を印加し等価入力で校正する残留塩素計が知られている(特許文献1)。 When calibrating the apparatus in such a chemical analyzer, the concentration of the substance to be measured is calibrated by measuring the concentration using the substance to be measured whose concentration is actually known, or by another analytical method. It is common to check the density and adjust the display on the device to that value. Further, for example, a residual chlorine meter that applies a simulated current and calibrates with an equivalent input is known (Patent Document 1).
しかしながら、実際に濃度を測定して校正する方法では、測定対象物質の種類によっては不安定で、高圧容器詰めのガスが無かったり、また別の分析方法で濃度確認をするにしても、測定機材を現場に搬入するのは困難な場合が多い。また、模擬電流を印加し等価入力で校正するものでは、回路構成が複雑である。 However, the method of actually measuring and calibrating the concentration is unstable depending on the type of the substance to be measured, there is no gas in the high-pressure container, and even if the concentration is confirmed by another analysis method, the measurement equipment Often it is difficult to bring the material into the field. In addition, the circuit configuration is complicated in the case of calibrating with an equivalent input by applying a simulated current.
この発明は、かかる点に鑑みてなされたもので、使用開始にあたって、測定現場に測定対象の標準物質が無くても、簡単に校正が可能な化学分析装置の校正方法を提供することを目的とする。 The present invention has been made in view of such points, and an object of the present invention is to provide a calibration method for a chemical analyzer that can be easily calibrated even when there is no standard substance to be measured at the measurement site at the start of use. To do.
前記課題を解決し、かつ目的を達成するために、この発明は、以下のように構成した。 In order to solve the above-described problems and achieve the object, the present invention is configured as follows.
請求項1に記載の発明は、
気体の測定対象物質の濃度を測定する化学分析装置に交換可能な検出器を基準装置に接続する第1のステップと、
予め気体の複数の濃度が判明している基準対象物質に接触させ、基準対象物質の検出値と基準対象物質の濃度値から基準検量線を得て、この基準検量線の単位濃度当たりの基準勾配係数を求め、
前記求めた基準勾配係数を予め前記基準装置に記憶させてある理論検量線の単位濃度当たりの理論勾配係数と等しくなるように補正する補正係数を算出し、
この算出した補正係数を前記検出器に記録する第2のステップと、
前記補正係数が記録された前記検出器を化学分析装置に接続する第3のステップと、
前記化学分析装置に前記検出器に記録された補正係数を入力する第4のステップと、
前記第4のステップにおいて、
前記化学分析装置は、気体の測定対象物質を含まない大気中にてゼロ点校正を行った後、
前記化学分析装置に前記検出器に記録されている補正係数を入力することを特徴とする化学分析装置の校正方法である。
The invention described in claim 1
A first step of connecting, to a reference device, a detector that can be replaced with a chemical analysis device for measuring the concentration of a gaseous measurement target substance;
A reference calibration curve is obtained from the detected value of the reference target substance and the concentration value of the reference target substance in contact with a reference target substance whose gas concentrations are known in advance, and the reference gradient per unit concentration of the reference calibration curve Find the coefficient
Calculating a correction coefficient for correcting the calculated reference gradient coefficient to be equal to the theoretical gradient coefficient per unit concentration of the theoretical calibration curve stored in the reference device in advance;
A second step of recording the calculated correction factor in the detector;
A third step of connecting the detector in which the correction factor is recorded to a chemical analyzer;
A fourth step of inputting a correction coefficient recorded in the detector to the chemical analyzer;
In the fourth step,
The chemical analyzer, after performing a zero point calibration in the atmosphere that does not contain a gaseous measurement target substance,
A calibration method for a chemical analyzer, wherein a correction coefficient recorded in the detector is input to the chemical analyzer.
請求項2に記載の発明は、前記測定対象物質が、少なくとも酸素、水素、オゾン、硫化水素、アルシン、ホスフィンのいずれかであることを特徴とする請求項1に記載の化学分析装置の校正方法である。 The invention according to claim 2, wherein the analyte is at least oxygen, hydrogen, ozone, method for calibrating a chemical analyzer according to claim 1, characterized in that either the hydrogen sulfide, arsine, phosphine It is.
前記構成により、この発明は、以下のような効果を有する。 With the above configuration, the present invention has the following effects.
請求項1及び請求項2に記載の発明では、気体の測定対象物質の濃度を測定する化学分析装置に交換可能な検出器を基準装置に接続し、予め気体の複数の濃度が判明している基準対象物質の基準検量線の単位濃度当たりの基準勾配係数を求め、予め基準装置に記憶させてある理論検量線の単位濃度当たりの理論勾配係数と等しくなるように補正する補正係数を算出し、この算出した補正係数を検出器に記録することで、補正係数が記録された検出器を測定する化学分析装置に接続し、化学分析装置に検出器に記録された補正係数を入力することができ、測定対象物質の種類に関係なく安定で、測定機材を測定現場に搬入することなく、簡単に校正が可能である。
In the first and second aspects of the present invention, a replaceable detector is connected to the reference device for the chemical analyzer that measures the concentration of the gas measurement target substance, and a plurality of concentrations of the gas are known in advance. A reference gradient coefficient per unit concentration of the standard calibration curve of the reference target substance is obtained, and a correction coefficient is calculated that is corrected to be equal to the theoretical gradient coefficient per unit concentration of the theoretical calibration curve that is stored in advance in the reference device. By recording the calculated correction coefficient in the detector, the correction coefficient recorded in the detector can be input to the chemical analysis apparatus by connecting to the chemical analyzer that measures the detector in which the correction coefficient is recorded. It is stable regardless of the type of substance to be measured, and can be calibrated easily without bringing measurement equipment into the measurement site.
以下、この発明の化学分析装置の校正方法の実施の形態について説明する。この発明の実施の形態は、発明の最も好ましい形態を示すものであり、この発明はこれに限定されない。 Embodiments of the chemical analyzer calibration method according to the present invention will be described below. The embodiment of the present invention shows the most preferable mode of the present invention, and the present invention is not limited to this.
[化学分析装置の校正方法]
この実施の形態の化学分析装置の校正方法を、図1乃至図4に基づいて説明する。図1は化学分析装置の校正方法を説明する概略図、図2は基準装置の概略構成図、図3は化学分析装置の校正方法を説明する工程図、図4は基準勾配係数を求める方法を示す図、図5は補正係数を算出する方法を示す図、図6は測定対象物質の検量線を示す図である。
[Chemical analyzer calibration method]
A calibration method for the chemical analyzer of this embodiment will be described with reference to FIGS. 1 is a schematic diagram illustrating a calibration method for a chemical analyzer, FIG. 2 is a schematic configuration diagram of a reference device, FIG. 3 is a process diagram illustrating a calibration method for a chemical analyzer, and FIG. 4 is a method for obtaining a reference gradient coefficient. FIG. 5 is a diagram showing a method for calculating a correction coefficient, and FIG. 6 is a diagram showing a calibration curve of a substance to be measured.
この化学分析装置の校正方法の概略構成を、図1に基づき説明する。メーカー側にある基準装置10を用いる。この基準装置10は、基準オゾンガス発生装置11、検出器20を設置するチャンバー12、検出器20の検出出力を測定するデータロガー13、データロガー13からのデータに基づき補正係数を得る処理装置14を備える。この処理装置14は、データロガー13からのデータを直接得るようにしても、一旦記録して記録装置から得るようにしてもよい。 A schematic configuration of the chemical analyzer calibration method will be described with reference to FIG. The reference device 10 on the manufacturer side is used. The reference device 10 includes a reference ozone gas generator 11, a chamber 12 in which the detector 20 is installed, a data logger 13 that measures the detection output of the detector 20, and a processing device 14 that obtains a correction coefficient based on data from the data logger 13. Prepare. The processing device 14 may obtain the data from the data logger 13 directly or may record it once and obtain it from the recording device.
ユーザー側に出荷する交換可能な検出器20をチャンバー12に設置して、基準オゾンガス発生装置11から発生する基準ガスを検出器20に接触させて各濃度での検出器20の検出出力をデータロガー13により記録する。処理装置14では、データロガー13により記録した検出器20の固有の出力と濃度の検量線により、理論検量線の単位濃度当たりの理論勾配係数と等しくなるように補正する補正係数を算出する。 A replaceable detector 20 to be shipped to the user side is installed in the chamber 12, and the reference gas generated from the reference ozone gas generator 11 is brought into contact with the detector 20 to detect the detection output of the detector 20 at each concentration as a data logger. 13 to record. The processing device 14 calculates a correction coefficient to be corrected so as to be equal to the theoretical gradient coefficient per unit concentration of the theoretical calibration curve based on the inherent output of the detector 20 recorded by the data logger 13 and the calibration curve of the concentration.
この処理装置14で得られた補正係数をシール20aなどにより検出器20に記録し、この補正係数が記録された検出器20をユーザー側に備えた化学分析装置30に接続し、この化学分析装置30に検出器20に記録された補正係数を入力する。このようにして、測定対象物質の種類に関係なく安定で、測定機材を測定現場に搬入することなく、簡単に校正を可能にする。 The correction coefficient obtained by the processing device 14 is recorded on the detector 20 by a seal 20a or the like, and the detector 20 on which the correction coefficient is recorded is connected to a chemical analysis device 30 provided on the user side. The correction coefficient recorded in the detector 20 is input to 30. In this way, the calibration is stable regardless of the type of the substance to be measured, and can be easily calibrated without bringing the measurement equipment into the measurement site.
この処理装置14の構成を、図2に基づき説明する。この実施の形態の処理装置14は、検出情報入力手段A、基準検量線作成手段B、基準勾配係数算出手段C、理論勾配係数記憶手段D、補正係数算出手段Eを有し、マイクロコンピュータにより構成される。 The structure of this processing apparatus 14 is demonstrated based on FIG. The processing apparatus 14 of this embodiment has detection information input means A, reference calibration curve creation means B, reference gradient coefficient calculation means C, theoretical gradient coefficient storage means D, and correction coefficient calculation means E, and is constituted by a microcomputer. Is done.
この化学分析装置の校正方法の工程を、図3に基づき説明する。メーカー側において、交換可能な検出器20を基準装置10に接続し(S1)、この検出器20に予め気体又は液体の複数の濃度が判明している基準対象物質を接触させる(S2)。この検出器20の濃度検出情報が検出情報入力手段Aにより入力され、基準検量線作成手段Bにより基準対象物質の検出値と基準対象物質の濃度値から基準検量線を得て、基準勾配係数算出手段Cにより基準検量線の単位濃度当たりの基準勾配係数を求める(S3)。次に、予め理論勾配係数記憶手段Dに記憶させてある理論検量線の単位濃度当たりの理論勾配係数と等しくなるように、補正係数算出手段Eにより補正する補正係数を算出する(S4)。 The steps of the chemical analyzer calibration method will be described with reference to FIG. On the manufacturer side, a replaceable detector 20 is connected to the reference device 10 (S1), and a reference target substance whose gas or liquid concentrations are known in advance is brought into contact with the detector 20 (S2). The concentration detection information of the detector 20 is input by the detection information input means A, and a reference calibration curve is obtained from the detection value of the reference target substance and the concentration value of the reference target substance by the reference calibration curve creation means B, and the reference gradient coefficient is calculated. A reference gradient coefficient per unit concentration of the reference calibration curve is obtained by means C (S3). Next, a correction coefficient to be corrected by the correction coefficient calculation means E is calculated so as to be equal to the theoretical gradient coefficient per unit concentration of the theoretical calibration curve stored in advance in the theoretical gradient coefficient storage means D (S4).
この基準勾配係数を求める方法を、図4に基づいて説明する。この実施の形態では、交換可能な検出器20として電気化学センサを用い、基準装置10に検出器20接続し、予め気体又は液体の複数の濃度が判明している基準対象物質を接触させ、基準対象物質の濃度のフルスケールの約100%、80%、40%、0%で検出した電流を電圧に変換した出力電圧を測定する。得られた出力電圧と濃度による基準検量線を作成し、基準検量線の傾き即ち単位濃度当たりの基準勾配係数b(y=bX y:濃度 X:出力電圧)を求める。 A method for obtaining the reference gradient coefficient will be described with reference to FIG. In this embodiment, an electrochemical sensor is used as the replaceable detector 20, the detector 20 is connected to the reference device 10, a reference target substance in which a plurality of concentrations of gas or liquid are known in advance is brought into contact, and the reference The output voltage obtained by converting the detected current into a voltage at about 100%, 80%, 40%, and 0% of the full scale of the concentration of the target substance is measured. A reference calibration curve based on the obtained output voltage and concentration is created, and a slope of the reference calibration curve, that is, a reference gradient coefficient b per unit concentration (y = bX y: concentration X: output voltage) is obtained.
次に、補正係数を算出する方法を、図5に基づいて説明する。予め理論勾配係数記憶手段Dに記憶させてある理論検量線の単位濃度当たりの理論勾配係数a(y=aX y:濃度 X:出力電圧)と等しくなるよう補整係数F(a=bF)を算出する。理論勾配係数は電気回路設計時に決めた係数である。この実施の形態では、回路の常数計算等によりaとしているが、回路設計時にa’なるように設計することも可能である。図5においては、検出器1と検出器2として、予め理論勾配係数記憶手段Dに記憶させてある理論検量線の単位濃度当たりの理論勾配係数と等しくなるように補正する補正係数を算出する例を示している。 Next, a method for calculating the correction coefficient will be described with reference to FIG. The compensation coefficient F (a = bF) is calculated so as to be equal to the theoretical slope coefficient a (y = aX y: concentration X: output voltage) per unit concentration of the theoretical calibration curve stored in advance in the theoretical slope coefficient storage means D. To do. The theoretical gradient coefficient is a coefficient determined when designing an electric circuit. In this embodiment, a is set by a constant calculation of the circuit or the like, but it is also possible to design so as to be a 'at the time of circuit design. In FIG. 5, as the detector 1 and the detector 2, an example of calculating a correction coefficient to be corrected so as to be equal to the theoretical gradient coefficient per unit concentration of the theoretical calibration curve stored in advance in the theoretical gradient coefficient storage means D. Is shown.
この算出した補正係数を検出器20に記録する(S5)。この検出器20の方法としては、次の方法がある。例えば、シール20aに補正係数を記載し、このシール20aを検出器20に貼り付ける。また、検出器20に補正係数を直接印字する、または刻印するなどがある。また、検出器20の取扱書に記載する方法でもよい。 The calculated correction coefficient is recorded in the detector 20 (S5). As a method of the detector 20, there is the following method. For example, the correction coefficient is written on the seal 20 a and the seal 20 a is attached to the detector 20. In addition, the correction coefficient may be directly printed or stamped on the detector 20. Moreover, the method described in the instruction manual of the detector 20 may be used.
この補正係数が記録された検出器20は、メーカー側からユーザー側へ出荷され、ユーザー側では補正係数が記録された検出器20を化学分析装置30に接続する(S6)。この化学分析装置30では、測定開始に当たっては、気体又は液体の測定対象物質を含まない大気中にてゼロ点校正を行った後(S7)、化学分析装置30に検出器20に記録されている補正係数を入力する(S8)。このようにして、測定場所に、濃度の判明したスパン校正物質がなくても、装置校正が可能である。 The detector 20 in which the correction coefficient is recorded is shipped from the manufacturer side to the user side, and the user 20 connects the detector 20 in which the correction coefficient is recorded to the chemical analyzer 30 (S6). In this chemical analyzer 30, at the start of measurement, zero point calibration is performed in the atmosphere not containing a gas or liquid measurement target substance (S 7), and then recorded in the detector 20 in the chemical analyzer 30. A correction coefficient is input (S8). In this way, the apparatus can be calibrated even if there is no span calibration substance whose concentration is known at the measurement location.
この実施の形態の化学分析装置30は、測定対象物質が、少なくとも酸素、水素、オゾン、硫化水素、アルシン、ホスフィンのいずれかであり、図6に酸素、水素、オゾンについての検出値と濃度値から検量線を示す。 In the chemical analyzer 30 of this embodiment, the measurement target substance is at least one of oxygen, hydrogen, ozone, hydrogen sulfide, arsine, and phosphine. FIG. 6 shows detected values and concentration values for oxygen, hydrogen, and ozone. A calibration curve is shown.
[化学分析装置]
この実施の形態の化学分析装置30を、図7乃至図9に基づいて説明する。図7は化学分析装置の正面図、図8は化学分析装置の側面図、図9は化学分析装置の構成ブロック図である。
[Chemical analyzer]
A chemical analysis apparatus 30 according to this embodiment will be described with reference to FIGS. 7 is a front view of the chemical analyzer, FIG. 8 is a side view of the chemical analyzer, and FIG. 9 is a block diagram of the chemical analyzer.
この実施の形態の化学分析装置30は、装置本体31に、電源スイッチ32、操作部33、表示部34を備え、この装置本体31に検出器20が着脱可能になっている。この検出器20は、メーカー側から出荷されて補正係数が記録されたものであり、気体又は液体の測定対象物質の濃度に比例して検出値が変化するように構成される。この測定対象物質が、少なくとも酸素、水素、オゾン、硫化水素、アルシン、ホスフィンのいずれかである。 The chemical analyzer 30 of this embodiment includes a power switch 32, an operation unit 33, and a display unit 34 in an apparatus main body 31, and the detector 20 can be attached to and detached from the apparatus main body 31. The detector 20 is shipped from the manufacturer side and has a correction coefficient recorded thereon, and is configured such that the detection value changes in proportion to the concentration of the gas or liquid measurement target substance. This substance to be measured is at least one of oxygen, hydrogen, ozone, hydrogen sulfide, arsine, and phosphine.
操作部33には、ゼロダイヤル33a、スパンダイヤル33b、アラームダイヤル33c、テストダイヤル33d、モード切替スイッチ33dが設けられている。モード切替スイッチ33dは、「MES」表示に合わせ、測定が行われ、「ALM」表示に合わせ、アラームダイヤル33cを操作して濃度警報する数値が入力され、「FADJ」表示に合わせ、ゼロダイヤル33aを操作してゼロ点校正値が入力され、スパンダイヤル33bを操作して補正係数が入力される。 The operation unit 33 is provided with a zero dial 33a, a span dial 33b, an alarm dial 33c, a test dial 33d, and a mode switch 33d. The mode change-over switch 33d performs measurement in accordance with the “MES” display, operates the alarm dial 33c in accordance with the “ALM” display, inputs a numerical value for concentration alarm, and in accordance with the “FADJ” display, the zero dial 33a Is operated to input a zero point calibration value, and the span dial 33b is operated to input a correction coefficient.
表示部34には、測定対象物質の濃度値を表示する表示部34a、測定信号の出力示す表示部34b、測定の濃度を警報する表示部34cが設けられている。 The display unit 34 is provided with a display unit 34a that displays the concentration value of the measurement target substance, a display unit 34b that displays the output of the measurement signal, and a display unit 34c that alarms the measurement concentration.
この装置本体31には、制御装置60が備えられ、この制御装置60はアナログ回路で構成され、演算部61と、ゼロ点校正部62と、補正係数記憶部63とを有し、電源スイッチ32により駆動電源が入り、操作部33からの信号に基づき検出器20により測定対象物質の濃度を測定し、表示部34に表示するように制御する。 The apparatus main body 31 is provided with a control device 60. The control device 60 is constituted by an analog circuit, includes a calculation unit 61, a zero point calibration unit 62, and a correction coefficient storage unit 63, and a power switch 32. Then, the drive power is turned on, and the concentration of the substance to be measured is measured by the detector 20 based on the signal from the operation unit 33 and displayed on the display unit 34.
演算部61は、検出器20からの検出値に基づき測定対象物質の濃度値を得るように構成され、ゼロ点校正部62では、測定対象物質を含まない大気中にて検出器20のゼロ点校正を行い、補正係数記憶部63に化学分析装置の校正方法により得られる補正係数を記憶し、検出器20からの検出値を校正して測定対象物質の濃度値を得る。 The calculation unit 61 is configured to obtain the concentration value of the measurement target substance based on the detection value from the detector 20, and the zero point calibration unit 62 is configured to obtain the zero point of the detector 20 in the atmosphere not including the measurement target substance. Calibration is performed, the correction coefficient obtained by the calibration method of the chemical analyzer is stored in the correction coefficient storage unit 63, and the detected value from the detector 20 is calibrated to obtain the concentration value of the measurement target substance.
この実施の形態では、複数の濃度の判明しているオソンガスに電気化学センサを接触させ、その出力電圧を測定し、得られた出力電圧とオソンガスの濃度から基準検量線を作成し、この基準検量線の傾き即ち1ppmあたりの基準勾配係数b(y=bX y:濃度 X:出力電圧)が予め記憶されている理論勾配係数a(y=aX)と等しくなるよう補正係数F(a=Fb)値を算出し、電気化学センサに記録してある。 In this embodiment, an electrochemical sensor is brought into contact with a plurality of osmone gases having known concentrations, the output voltage is measured, a reference calibration curve is created from the obtained output voltage and the concentration of osmone gas, and this reference calibration is performed. Correction coefficient F (a = Fb) so that the slope of the line, that is, the reference gradient coefficient b per 1 ppm (y = bX y: concentration X: output voltage) is equal to the theoretical gradient coefficient a (y = aX) stored in advance. The value is calculated and recorded on the electrochemical sensor.
測定開始にあたっては、化学分析装置に電気化学センサを接続し、測定対象物質を含まない雰囲気中にてゼロ点校正を行った後、化学分析装置に、電気化学センサに記録されている補正係数F値を電気的に入力することにより、測定現場に標準対象物質が無くても、校正が可能となる。 At the start of measurement, an electrochemical sensor is connected to the chemical analyzer, zero-point calibration is performed in an atmosphere that does not contain the measurement target substance, and then the correction coefficient F recorded in the electrochemical sensor is stored in the chemical analyzer. By inputting the value electrically, calibration is possible even if there is no standard target substance at the measurement site.
オソンガスは、例えば食品工場での室内殺菌に使用されており、その濃度管理にオソンガスモニタが使用されるが、通常のオソンガスモニタであれば、校正時標準ガスを使用することとなるが、オゾンは不安定で濃度の安定なガスを長時間供給するのが難しく問題があったが、この発明では、スタートアップ時での校正にオソンガスを必要とせず、操作も簡単であることから特別に化学知識のある者でなくても容易に操作が可能である。 Osson gas is used for indoor sterilization in food factories, for example, and the Oson gas monitor is used to control its concentration, but if it is a normal Osson gas monitor, the standard gas at the time of calibration will be used. Although it was difficult to supply unstable and stable gas for a long time, this invention does not require Osson gas for calibration at start-up and is easy to operate. Even if it is not a certain person, operation is possible easily.
この発明は、気体の測定対象物質の濃度を検出する化学分析装置の校正方法に適用可能であり、使用開始にあたって、測定現場に測定対象の標準物質が無くても、簡単に校正が可能である。
The present invention can be applied to a calibration method for a chemical analyzer that detects the concentration of a gas measurement target substance, and can be easily calibrated even when there is no standard substance to be measured at the measurement site at the start of use. .
10 基準装置
11 基準オゾンガス発生装置
12 チャンバー
13 データロガー
14 処理装置
20 検出器
30 化学分析装置
A 検出情報入力手段
B 基準検量線作成手段
C 基準勾配係数算出手段
D 理論勾配係数記憶手段
E 補正係数算出手段
DESCRIPTION OF SYMBOLS 10 Reference apparatus 11 Reference ozone gas generator 12 Chamber 13 Data logger 14 Processing apparatus 20 Detector 30 Chemical analyzer A Detection information input means B Reference calibration curve preparation means C Reference gradient coefficient calculation means D Theoretical gradient coefficient storage means E Correction coefficient calculation means
Claims (2)
予め気体の複数の濃度が判明している基準対象物質に接触させ、基準対象物質の検出値と基準対象物質の濃度値から基準検量線を得て、この基準検量線の単位濃度当たりの基準勾配係数を求め、
前記求めた基準勾配係数を予め前記基準装置に記憶させてある理論検量線の単位濃度当たりの理論勾配係数と等しくなるように補正する補正係数を算出し、
この算出した補正係数を前記検出器に記録する第2のステップと、
前記補正係数が記録された前記検出器を化学分析装置に接続する第3のステップと、
前記化学分析装置に前記検出器に記録された補正係数を入力する第4のステップと、
前記第4のステップにおいて、
前記化学分析装置は、気体の測定対象物質を含まない大気中にてゼロ点校正を行った後、
前記化学分析装置に前記検出器に記録されている補正係数を入力することを特徴とする化学分析装置の校正方法。 A first step of connecting, to a reference device, a detector that can be replaced with a chemical analysis device for measuring the concentration of a gaseous measurement target substance;
A reference calibration curve is obtained from the detected value of the reference target substance and the concentration value of the reference target substance in contact with a reference target substance whose gas concentrations are known in advance, and the reference gradient per unit concentration of the reference calibration curve Find the coefficient
Calculating a correction coefficient for correcting the calculated reference gradient coefficient to be equal to the theoretical gradient coefficient per unit concentration of the theoretical calibration curve stored in the reference device in advance;
A second step of recording the calculated correction factor in the detector;
A third step of connecting the detector in which the correction factor is recorded to a chemical analyzer;
A fourth step of inputting a correction coefficient recorded in the detector to the chemical analyzer;
In the fourth step,
The chemical analyzer, after performing a zero point calibration in the atmosphere that does not contain a gaseous measurement target substance,
A calibration method for a chemical analyzer, wherein a correction coefficient recorded in the detector is input to the chemical analyzer.
The method for calibrating a chemical analyzer according to claim 1, wherein the measurement target substance is at least one of oxygen, hydrogen, ozone, hydrogen sulfide, arsine, and phosphine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012167558A JP6128772B2 (en) | 2012-07-27 | 2012-07-27 | Chemical analyzer calibration method and chemical analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012167558A JP6128772B2 (en) | 2012-07-27 | 2012-07-27 | Chemical analyzer calibration method and chemical analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014025854A JP2014025854A (en) | 2014-02-06 |
JP6128772B2 true JP6128772B2 (en) | 2017-05-17 |
Family
ID=50199629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012167558A Active JP6128772B2 (en) | 2012-07-27 | 2012-07-27 | Chemical analyzer calibration method and chemical analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6128772B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017078665A (en) * | 2015-10-21 | 2017-04-27 | グリーンブルー株式会社 | Method of auto-calibrating ozonometer |
KR102094235B1 (en) * | 2018-08-06 | 2020-03-30 | 강순기 | Software fusion experiment design-based active experiment system |
JP2021001768A (en) * | 2019-06-20 | 2021-01-07 | 株式会社アプリクス | Chemical analyzer calibration method |
CN113495096B (en) * | 2020-06-18 | 2024-04-09 | 中控全世科技(杭州)有限公司 | Calibration method based on FID-TVOC detector |
CN114965867A (en) * | 2021-02-26 | 2022-08-30 | 杭州三花研究院有限公司 | Gas concentration detection method, gas detection device and control method thereof |
CN114002378B (en) * | 2021-09-30 | 2024-04-26 | 四川希尔得科技有限公司 | Concentration detection method of gas concentration sensor |
CN114397396B (en) * | 2021-12-29 | 2023-08-01 | 杭州春来科技有限公司 | Automatic calibration method and system for VOCs detection and analysis |
CN118885714B (en) * | 2024-09-27 | 2024-12-31 | 三诺生物传感股份有限公司 | Calibration method for four-item blood coagulation detection system and four-item blood coagulation detection method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5775397A (en) * | 1980-10-29 | 1982-05-11 | Hitachi Ltd | Gas alarm unit |
JPH04191650A (en) * | 1990-11-26 | 1992-07-09 | Shimadzu Corp | Measuring apparatus for ion |
JPH10311815A (en) * | 1997-05-09 | 1998-11-24 | Japan Storage Battery Co Ltd | Method for judging deterioration of electrochemical carbon monoxide gas sensor and calibrating method |
JP2000002682A (en) * | 1998-06-12 | 2000-01-07 | Horiba Ltd | Gas analyzer |
JP3926039B2 (en) * | 1998-07-24 | 2007-06-06 | 日本特殊陶業株式会社 | Gas sensor controller |
JP2000338075A (en) * | 1999-05-31 | 2000-12-08 | Apurikusu:Kk | Electrochemical analysis method and device |
JP4873420B2 (en) * | 2007-08-13 | 2012-02-08 | リンナイ株式会社 | Gas concentration detection apparatus and gas concentration detection method |
WO2009108239A2 (en) * | 2007-12-10 | 2009-09-03 | Bayer Healthcare Llc | Slope-based compensation |
EP2479561A1 (en) * | 2009-09-18 | 2012-07-25 | Hitachi Chemical Company, Ltd. | Ion selective electrode cartridge |
-
2012
- 2012-07-27 JP JP2012167558A patent/JP6128772B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014025854A (en) | 2014-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6128772B2 (en) | Chemical analyzer calibration method and chemical analyzer | |
US7017386B2 (en) | Self-testing and self-calibrating detector | |
US20010045119A1 (en) | Method and apparatus for determining concentration of a gas | |
EP1980848B1 (en) | Electrochemical sensor with short-circuiting switch and method of zero-calibration | |
JPS6382354A (en) | Gas testing method and device | |
CN110514788A (en) | A kind of scaling method of gas sensor, device, equipment and storage medium | |
US9417200B2 (en) | Moisture concentration detecting device | |
Sahu et al. | Design and fabrication of data logger to measure the ambient parameters in gas detector R&D | |
JPS61128139A (en) | Pressure gauge | |
CN107607143B (en) | Method for correcting baseline drift of sensor and detection equipment | |
CN214583355U (en) | Hydrogen peroxide concentration sensor calibrator | |
JP4701020B2 (en) | Water quality meter that can provide temperature and humidity data | |
CN202916258U (en) | Calibration device for gas sensor | |
KR102448945B1 (en) | Automatic calibration method of electrochemical electrode sensor transducer through EIS measurement and algorithm method, method of diagnosing the life of electrochemical electrode sensor transducer through EIS measurement and algorithm method, and electrochemical electrode sensor transducer through EIS measurement and algorithm method Diagnosis method | |
JP2021001768A (en) | Chemical analyzer calibration method | |
JP5811632B2 (en) | Carbon dioxide concentration meter | |
JP4322555B2 (en) | Residual chlorine concentration measuring method and residual chlorine concentration measuring device | |
JP7513912B2 (en) | Measurement equipment | |
JP2020193941A (en) | Oxygen concentration measurement system and oxygen concentration measurement method | |
CN112964290A (en) | Hydrogen peroxide concentration sensor calibrator | |
JP7572607B2 (en) | Measurement equipment | |
US9915629B2 (en) | Method for identifying pH, device for same, and method for identifying ion concentration | |
KR20240138482A (en) | Method and Apparatus for Determining Concentration of Selected Component in Detected Gas | |
JPH0720075A (en) | Method and device for measuring gas concentration | |
JP5122034B1 (en) | Moisture concentration detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150713 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160801 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170410 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170411 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6128772 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |