JP6119663B2 - Surface defect detection method and surface defect detection apparatus - Google Patents
Surface defect detection method and surface defect detection apparatus Download PDFInfo
- Publication number
- JP6119663B2 JP6119663B2 JP2014090995A JP2014090995A JP6119663B2 JP 6119663 B2 JP6119663 B2 JP 6119663B2 JP 2014090995 A JP2014090995 A JP 2014090995A JP 2014090995 A JP2014090995 A JP 2014090995A JP 6119663 B2 JP6119663 B2 JP 6119663B2
- Authority
- JP
- Japan
- Prior art keywords
- dark
- bright
- surface defect
- dark part
- bright part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007547 defect Effects 0.000 title claims description 158
- 238000001514 detection method Methods 0.000 title claims description 59
- 238000000034 method Methods 0.000 claims description 54
- 238000005286 illumination Methods 0.000 claims description 53
- 238000012545 processing Methods 0.000 claims description 46
- 229910000831 Steel Inorganic materials 0.000 claims description 36
- 239000010959 steel Substances 0.000 claims description 36
- 238000007689 inspection Methods 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 21
- 230000001678 irradiating effect Effects 0.000 claims description 11
- 238000002372 labelling Methods 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 4
- 230000010339 dilation Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 9
- 230000005484 gravity Effects 0.000 description 8
- 239000000284 extract Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000003705 background correction Methods 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Description
本発明は、鋼材の表面欠陥を光学的に検出する表面欠陥検出方法及び表面欠陥検出装置に関する。 The present invention relates to a surface defect detection method and a surface defect detection device for optically detecting a surface defect of a steel material.
近年、鉄鋼製品の製造工程では、大量不適合防止による歩留まり向上の観点から、熱間又は冷間で鋼材の表面欠陥を検出することが求められている。ここで述べる鋼材とは、継目無鋼管、溶接鋼管、熱延鋼板、冷延鋼板、厚板等の鋼板や形鋼をはじめとする鉄鋼製品、及びこれら鉄鋼製品が製造される過程で生成されるスラブ等の半製品のことを意味する。このため、鋼材の表面欠陥を検出する方法として、継目無鋼管の製造工程におけるビレットに光を照射して反射光を受光し、反射光の光量によって表面欠陥の有無を判別する方法が提案されている(特許文献1参照)。また、熱間鋼材から放射される自発光と相互に影響を及ぼさず、互いに影響を及ぼしあうことのない複数の波長域の可視光を、熱間鋼材表面の法線に対し互いに対称な斜め方向から照射し、合成反射光による像及び個々の反射光による像を熱間鋼材表面の法線方向で得て、これらの像の組み合わせから熱間鋼材の表面欠陥を検出する方法も提案されている(特許文献2参照)。 In recent years, in the manufacturing process of steel products, it has been required to detect surface defects of steel materials hot or cold from the viewpoint of improving yield by preventing mass nonconformity. The steel materials described here are steel products such as seamless steel pipes, welded steel pipes, hot-rolled steel sheets, cold-rolled steel sheets, thick steel plates, and other steel products, and are produced in the process of manufacturing these steel products. It means semi-finished products such as slabs. For this reason, as a method for detecting surface defects in steel materials, a method has been proposed in which a billet in the manufacturing process of a seamless steel pipe is irradiated with light to receive reflected light, and the presence or absence of surface defects is determined by the amount of reflected light. (See Patent Document 1). In addition, visible light in multiple wavelength ranges that do not affect each other and do not affect each other with the self-emission emitted from the hot steel material are obliquely symmetric with respect to the normal line of the hot steel surface. A method is also proposed in which an image by synthetic reflected light and an image by individual reflected light are obtained in the normal direction of the surface of the hot steel material, and surface defects of the hot steel material are detected from a combination of these images. (See Patent Document 2).
特許文献1記載の方法によれば、スケールや無害模様の反射率が地鉄部分の反射率とは異なることから、表面欠陥ではない健全なスケールや無害模様を表面欠陥と誤検出してしまう可能性がある。このため、特許文献1記載の方法では、ビレットの形状が直線状であることを利用してビレットとスケールとを弁別している。しかしながら、鋼材の表面欠陥は直線状だけでなく円形状等の様々な形状を有している。このため、特許文献1記載の方法を鋼材の表面欠陥の検出処理に適用することは難しい。一方、特許文献2記載の方法では、表面欠陥、スケール、無害模様等の種類が膨大にあることから、単純に像を組み合わせるだけではスケールや無害模様と表面欠陥とを弁別することは困難である。また、膨大な像の組み合わせに対応した検出ロジックを構築することは現実的には困難である。 According to the method described in Patent Document 1, since the reflectance of the scale and harmless pattern is different from the reflectance of the ground iron portion, it is possible to erroneously detect a healthy scale or harmless pattern that is not a surface defect as a surface defect. There is sex. For this reason, in the method of patent document 1, a billet and a scale are discriminated using the fact that the shape of a billet is linear. However, the surface defects of the steel material have various shapes such as a circular shape as well as a straight shape. For this reason, it is difficult to apply the method of patent document 1 to the detection process of the surface defect of steel materials. On the other hand, in the method described in Patent Document 2, since there are a large number of types of surface defects, scales, harmless patterns, etc., it is difficult to discriminate scales and harmless patterns from surface defects simply by combining images. . Moreover, it is practically difficult to construct a detection logic corresponding to a large number of image combinations.
本発明は、上記課題に鑑みてなされたものであって、その目的は、スケールや無害模様と表面欠陥とを精度よく弁別可能な表面欠陥検出方法及び表面欠陥検出装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a surface defect detection method and a surface defect detection apparatus capable of accurately distinguishing scales and harmless patterns from surface defects.
本発明に係る表面欠陥検出方法は、鋼材の表面欠陥を光学的に検出する表面欠陥検出方法であって、2つ以上の弁別可能な光源を利用して同一の検査対象部位に異なる方向から略同一の入射角度で照明光を照射する照射ステップと、各照明光の反射光による画像を取得し、取得した画像間で差分処理を行うことによって得られた画像の明部及び暗部を抽出し、抽出された明部及び暗部の位置関係と前記照明光の照射方向とから凹凸性の表面欠陥の有無を判定する判定ステップと、を含むことを特徴とする。 The surface defect detection method according to the present invention is a surface defect detection method for optically detecting a surface defect of a steel material, and is substantially the same from different directions to the same inspection target site using two or more distinguishable light sources. An irradiation step of irradiating illumination light at the same incident angle, and acquiring images by reflected light of each illumination light, extracting a bright part and a dark part of an image obtained by performing a difference process between the acquired images, A determination step of determining the presence or absence of uneven surface defects from the extracted positional relationship between the bright and dark portions and the irradiation direction of the illumination light.
本発明に係る表面欠陥検出方法は、上記発明において、前記判定ステップは、前記明部及び前記暗部の画像に対して膨張処理を施し、膨張処理された明部及び暗部の画像の重なり部分を抽出することによって明部及び暗部の位置関係を算出するステップを含むことを特徴とする。 In the surface defect detection method according to the present invention as set forth in the invention described above, the determination step performs an expansion process on the bright part and dark part images, and extracts an overlapping part of the bright part and dark part images subjected to the expansion process. And calculating a positional relationship between the bright part and the dark part.
本発明に係る表面欠陥検出方法は、上記発明において、前記判定ステップは、前記明部及び前記暗部の画像に対して二値化処理及びラベリング処理を施し、ラベリング処理された画像の重心位置を比較することによって明部及び暗部の位置関係を算出するステップを含むことを特徴とする。 In the surface defect detection method according to the present invention, in the above invention, the determination step performs binarization processing and labeling processing on the image of the bright portion and the dark portion, and compares the gravity center positions of the images subjected to the labeling processing. And calculating a positional relationship between the bright part and the dark part.
本発明に係る表面欠陥検出方法は、上記発明において、前記判定ステップは、前記明部及び前記暗部の画像に対してフィルタリング処理を施すことによって明部及び暗部を強調することによって、明部及び暗部の位置関係を算出するステップを含むことを特徴とする。 In the surface defect detection method according to the present invention, in the above invention, the determination step emphasizes the bright part and the dark part by performing a filtering process on the image of the bright part and the dark part. The step of calculating the positional relationship of is included.
本発明に係る表面欠陥検出方法は、上記発明において、前記判定ステップは、明部及び暗部の位置関係を算出することによって得られた前記明部と前記暗部との組み合わせから明部及び暗部の輝度比、面積比、及び円形度のうちの少なくとも1つを特徴量として算出し、算出された特徴量に基づいて凹凸性の表面欠陥の有無を判定するステップを含むことを特徴とする。 In the surface defect detection method according to the present invention, in the above invention, the determination step includes brightness of the bright part and the dark part from a combination of the bright part and the dark part obtained by calculating a positional relationship between the bright part and the dark part. And calculating at least one of the ratio, the area ratio, and the circularity as a feature amount, and determining the presence or absence of uneven surface defects based on the calculated feature amount.
本発明に係る表面欠陥検出装置は、鋼材の表面欠陥を光学的に検出する表面欠陥検出装置であって、2つ以上の弁別可能な光源を利用して同一の検査対象部位に異なる方向から略同一の入射角度で照明光を照射する照射手段と、各照明光の反射光による画像を取得し、取得した画像間で差分処理を行うことによって得られた画像の明部及び暗部を抽出し、抽出された明部及び暗部の位置関係と前記照明光の照射方向とから凹凸性の表面欠陥の有無を判定する判定手段と、を備えることを特徴とする。 The surface defect detection apparatus according to the present invention is a surface defect detection apparatus that optically detects a surface defect of a steel material, and is substantially the same from different directions to the same inspection target site using two or more distinguishable light sources. An irradiation unit that irradiates illumination light at the same incident angle, and obtains an image by reflected light of each illumination light, extracts a bright part and a dark part of an image obtained by performing a difference process between the acquired images, And determining means for determining the presence or absence of uneven surface defects from the extracted positional relationship between the bright part and the dark part and the irradiation direction of the illumination light.
本発明に係る表面欠陥検出方法及び表面欠陥検出装置によれば、スケールや無害模様と表面欠陥とを精度よく弁別することができる。 According to the surface defect detection method and the surface defect detection apparatus according to the present invention, it is possible to accurately discriminate between scales, harmless patterns, and surface defects.
以下、図面を参照して、本発明の一実施形態である表面欠陥検出装置の構成及びその動作について説明する。 Hereinafter, the configuration and operation of a surface defect detection apparatus according to an embodiment of the present invention will be described with reference to the drawings.
〔表面欠陥検出装置の構成〕
図1は、本発明の一実施形態である表面欠陥検出装置の構成を示す模式図である。図1に示すように、本発明の一実施形態である表面欠陥検出装置1は、図示矢印方向に搬送される円筒形状の鋼管Pの表面欠陥を検出する装置であり、光源2a,2b、ファンクションジェネレータ3、エリアセンサ4a,4b、画像処理装置5、及びモニター6を主な構成要素として備えている。
[Configuration of surface defect detection device]
FIG. 1 is a schematic diagram showing a configuration of a surface defect detection apparatus according to an embodiment of the present invention. As shown in FIG. 1, a surface defect detection apparatus 1 according to an embodiment of the present invention is an apparatus that detects a surface defect of a cylindrical steel pipe P that is conveyed in the direction of an arrow in the figure, and includes light sources 2a and 2b, functions A generator 3, area sensors 4a and 4b, an image processing device 5, and a monitor 6 are provided as main components.
光源2a,2bは、ファンクションジェネレータ3からのトリガー信号に従って鋼管Pの表面上の同一の検査対象部位に対して弁別可能な照明光Lを照射する。光源2a,2bは、検査対象部位に対して対称に配置されている。すなわち、光源2a,2bは、鋼管P表面の法線ベクトルに対して同一の入射角だけずらし、照明光Lの照射方向ベクトルと鋼管P表面の法線ベクトルとが同一平面上となるように配置されている。 The light sources 2 a and 2 b irradiate the illumination light L that can be discriminated against the same site to be inspected on the surface of the steel pipe P in accordance with a trigger signal from the function generator 3. The light sources 2a and 2b are arranged symmetrically with respect to the inspection target part. That is, the light sources 2a and 2b are shifted by the same incident angle with respect to the normal vector on the surface of the steel pipe P, and are arranged so that the irradiation direction vector of the illumination light L and the normal vector of the steel pipe P surface are on the same plane. Has been.
ここで、照明光Lの入射角を同一にする目的は、異なる入射方向の光源を弁別した時に光学条件をできるだけ等しくし、スケールや無害模様を含む健全部の信号を後述する差分処理によって大きく低減できるようにすることにある。しかしながら、健全部の信号は検査対象部位の表面性状に大きく依存し、一概に健全部の信号の同一性を同一の入射角で保証することは困難である。従って、25〜55°の範囲内であれば、多少入射角が異なっていても健全部の信号を後述する差分処理によって低減できている限り同一の入射角と表現する。 Here, the purpose of making the incident angle of the illumination light L the same is to make the optical conditions as equal as possible when discriminating light sources of different incident directions, and to reduce the signal of a healthy part including a scale and a harmless pattern by differential processing described later. There is to be able to do it. However, the signal of the healthy part greatly depends on the surface property of the examination target part, and it is difficult to guarantee the identity of the signal of the healthy part at the same incident angle. Therefore, within the range of 25 to 55 °, even if the incident angles are somewhat different, the same incident angle is expressed as long as the signal of the healthy part can be reduced by the differential processing described later.
また、本実施形態では、光源の数を2つとしたが、弁別可能であれば光源の数を3つ以上にしてもよい。ここで述べる弁別可能な光源とは、検査対象部位から得られる反射光についてそれぞれの光源別に反射光量を求めることが可能な光源を意味する。 In this embodiment, the number of light sources is two, but the number of light sources may be three or more as long as discrimination is possible. The discriminable light source described here means a light source capable of obtaining the amount of reflected light for each light source with respect to the reflected light obtained from the region to be inspected.
エリアセンサ4a,4bは、ファンクションジェネレータ3からのトリガー信号に従って光源2a,2bから照射された照明光Lの反射光による2次元画像を撮影する。エリアセンサ4a,4bは、撮影した2次元画像のデータを画像処理装置5に入力する。エリアセンサ4a,4bは、それぞれの撮像視野を確保した状態で可能な限り検査対象部位の法線ベクトル上に設置されている。 The area sensors 4 a and 4 b capture a two-dimensional image of the reflected light of the illumination light L emitted from the light sources 2 a and 2 b according to the trigger signal from the function generator 3. The area sensors 4 a and 4 b input captured two-dimensional image data to the image processing device 5. The area sensors 4a and 4b are installed on the normal vector of the region to be inspected as much as possible in a state where each imaging field of view is secured.
画像処理装置5は、エリアセンサ4a,4bから入力された2つの2次元画像間で後述する差分処理を行うことによって検査対象部位における表面欠陥を検出する装置である。画像処理装置5は、エリアセンサ4a,4bから入力された2次元画像や表面欠陥の検出結果に関する情報をモニター6に出力する。 The image processing device 5 is a device that detects a surface defect in a region to be inspected by performing difference processing described later between two two-dimensional images input from the area sensors 4a and 4b. The image processing device 5 outputs to the monitor 6 information related to the two-dimensional images and surface defect detection results input from the area sensors 4a and 4b.
このような構成を有する表面欠陥検出装置1は、以下に示す表面欠陥検出処理を実行することによって、検査対象部位におけるスケールや無害模様と凹凸性の表面欠陥とを弁別する。なお、スケールや無害模様とは、厚さ数〜数十μm程度の地鉄部分とは光学特性の異なる表面皮膜や表面性状を有する部分のことを意味し、表面欠陥検出処理においてノイズ要因となる部分である。 The surface defect detection apparatus 1 having such a configuration discriminates scales and harmless patterns and uneven surface defects in a region to be inspected by executing the following surface defect detection process. The scale and harmless pattern means a part having a surface film or surface properties with different optical characteristics from a part having a thickness of several to several tens of μm, which becomes a noise factor in surface defect detection processing. Part.
〔表面欠陥検出処理〕
本発明の一実施形態である表面欠陥検出処理では、画像処理装置5が、エリアセンサ4a,4bから入力された2つの2次元画像に対して予め導出しておいたカメラパラメータを用いてキャリブレーション、シェーディング補正、及びノイズ除去等の画像処理を施した後、2次元画像間で差分処理を行うことによって差分画像を生成し、生成された差分画像から検査対象部位における凹凸性の表面欠陥を検出する。
[Surface defect detection processing]
In the surface defect detection process according to an embodiment of the present invention, the image processing apparatus 5 performs calibration using the camera parameters previously derived for the two two-dimensional images input from the area sensors 4a and 4b. After performing image processing such as shading correction and noise removal, a difference image is generated by performing difference processing between the two-dimensional images, and uneven surface defects in the inspection target part are detected from the generated difference image To do.
具体的には、光源2aから照明光Lを照射した時に得られた2次元画像Iaを構成する各画素の輝度値をIa(x,y)(但し、画素数X×Yとし、x座標を1≦x≦X、y座標を1≦y≦Yとする)、光源2bから照明光Lを照射した時に得られた2次元画像Ibを構成する各画素の輝度値をIb(x,y)とした時、差分処理によって得られる差分画像I_diffの各画素の輝度値I_diff(x,y)は以下に示す数式(1)で表される。 Specifically, the luminance value of each pixel constituting the two-dimensional image Ia obtained when the illumination light L is emitted from the light source 2a is Ia (x, y) (where the number of pixels is X × Y, and the x coordinate is 1 ≦ x ≦ X, y coordinate is 1 ≦ y ≦ Y), and the luminance value of each pixel constituting the two-dimensional image Ib obtained when the illumination light L is irradiated from the light source 2b is expressed as Ib (x, y). , The luminance value I_diff (x, y) of each pixel of the difference image I_diff obtained by the difference processing is expressed by the following formula (1).
ここで、凹凸性の表面欠陥と表面欠陥で無い健全なスケール及び無害模様を撮像した2次元画像Ia、Ib及びその差分画像I_diffの例をそれぞれ図2(a),(b),(c)に示す。図2(a),(b),(c)に示すように、健全部では、スケールや無害模様の有無に関わらず表面の法線ベクトルと光源2aの成す角と表面の法線ベクトルと光源2bの成す角とが等しいため、輝度値Ia(x,y)=輝度値Ib(x,y)、すなわち輝度値I_diff(x,y)=0となる。 Here, examples of the two-dimensional images Ia and Ib and the difference image I_diff obtained by imaging a rough surface defect and a healthy scale and harmless pattern that is not a surface defect are shown in FIGS. 2A, 2B, and 2C, respectively. Shown in As shown in FIGS. 2 (a), 2 (b), and 2 (c), in the healthy part, the surface normal vector, the angle formed by the light source 2a, the surface normal vector, and the light source regardless of the presence or absence of the scale or harmless pattern. Since the angle formed by 2b is equal, luminance value Ia (x, y) = luminance value Ib (x, y), that is, luminance value I_diff (x, y) = 0.
しかしながら、凹凸性の表面欠陥部分では、表面が凹凸形状を有するため、表面の法線ベクトルと光源2aの成す角と表面の法線ベクトルと光源2bの成す角とが等しくない箇所が必ず存在し、輝度値Ia(x,y)≠輝度値Ib(x,y)、すなわち輝度値I_diff(x,y)≠0となる。従って、差分器11によって2つの2次元画像の差分画像I_diffを生成することによって表面欠陥でない健全なスケールや無害模様の画像を除去することができる。 However, since the surface has a concavo-convex shape in the uneven surface defect portion, there is always a place where the angle formed by the surface normal vector and the light source 2a is not equal to the angle formed by the surface normal vector and the light source 2b. , Luminance value Ia (x, y) ≠ luminance value Ib (x, y), that is, luminance value I_diff (x, y) ≠ 0. Therefore, by generating the difference image I_diff of two two-dimensional images by the differentiator 11, it is possible to remove a sound scale or harmless pattern image that is not a surface defect.
次に、差分画像I_diffから凹凸性の表面欠陥を検出するロジックについて説明する。図3(a),(b)はそれぞれ、検査対象部位の表面形状が凹形状及び凸形状である場合における一方の光源から検査対象部位に照明光を照射した時の陰影を示す図である。図3(a)に示すように、検査対象部位の表面形状が凹形状である場合、光源の手前側が単位面積当たりの照射光の光量低下によって暗くなり、光源の奥側が正反射方向に近づくため明るくなる。これに対して、図3(b)に示すように、検査対象部位の表面形状が凸形状である場合には、光源の手前側が正反射方向に近づくため明るくなり、光源の奥側が凸形状の影となり暗くなる。 Next, logic for detecting uneven surface defects from the difference image I_diff will be described. FIGS. 3A and 3B are diagrams showing shadows when illumination light is irradiated from one light source to the inspection target part when the surface shape of the inspection target part is a concave shape and a convex shape. As shown in FIG. 3A, when the surface shape of the inspection target part is a concave shape, the near side of the light source becomes dark due to a decrease in the amount of irradiation light per unit area, and the back side of the light source approaches the regular reflection direction. It becomes brighter. On the other hand, as shown in FIG. 3B, when the surface shape of the region to be inspected is a convex shape, the front side of the light source approaches the specular reflection direction so that it becomes brighter, and the back side of the light source has a convex shape. It becomes a shadow and darkens.
すなわち、検査対象部位の表面形状が凹形状である場合と凸形状である場合とで照明光の反射光の明暗パターンが異なる。従って、反射光の明暗パターンを認識することによって凹凸性の表面欠陥の有無を検出することができる。そこで、以下では、反射光の明暗パターンを認識することによって凹凸性の表面欠陥を検出する方法について述べる。なお、以下では、凹凸性の表面欠陥のうち、凹形状の表面欠陥を検出するものとするが、凸形状の表面欠陥も同様のロジックで検出することができる。また、以下で述べる明部とは、差分画像I_diffにおいて輝度が所定閾値以上である画素に対して連結処理を行うことによって得られる所定値以上の面積を持つブロブを意味する。また、以下で述べる暗部とは、差分画像I_diffにおいて輝度が所定閾値以下である画素に対して連結処理を行うことによって得られるある所定値以上の面積を持つブロブを指す。ブロブとはラベリングされた画素の集合を意味する。 That is, the brightness / darkness pattern of the reflected light of the illumination light differs depending on whether the surface shape of the region to be inspected is concave or convex. Therefore, the presence or absence of uneven surface defects can be detected by recognizing the light / dark pattern of the reflected light. Therefore, in the following, a method for detecting uneven surface defects by recognizing a light / dark pattern of reflected light will be described. In the following description, it is assumed that concave surface defects are detected among uneven surface defects, but convex surface defects can also be detected by the same logic. The bright part described below means a blob having an area of a predetermined value or more obtained by performing a concatenation process on a pixel whose luminance is a predetermined threshold or more in the difference image I_diff. The dark part described below refers to a blob having an area greater than or equal to a predetermined value obtained by performing concatenation processing on pixels whose luminance is equal to or lower than a predetermined threshold in the difference image I_diff. A blob means a set of labeled pixels.
本実施形態では、閾値処理を行うことによって明部と暗部とを抽出することにより明暗パターンを認識する。具体的には、図1に示す表面欠陥検出装置1では、光源2a,2bは検査対象部位の法線ベクトルに対して左右対称に配置されているため、表面の凹凸形状に起因する反射光の明暗パターンは左右方向に発生する。明暗の左右は差分処理の順番によって逆となるため、ここでは右が明・左が暗である場合を凹形状、右が暗・左が明である場合を凸形状とする。従って、凹形状の表面欠陥の差分画像I_diffは図4に示すようになる。そこで、明部と暗部の画像をそれぞれ輝度閾値The,−Theによって二値化すると、明部及び暗部の二値化画像I_blight,I_darkはそれぞれ以下に示す数式(2)のように表される。 In this embodiment, a light / dark pattern is recognized by extracting a bright part and a dark part by performing threshold processing. Specifically, in the surface defect detection apparatus 1 shown in FIG. 1, the light sources 2 a and 2 b are arranged symmetrically with respect to the normal vector of the inspection target part, so that the reflected light caused by the uneven surface shape is reflected. Light and dark patterns occur in the left-right direction. Since the right and left of the light and dark are reversed depending on the order of the difference processing, here, the right is bright and the left is dark, and the right is dark and the left is bright is the convex shape. Accordingly, the difference image I_diff of the concave surface defect is as shown in FIG. Therefore, when the images of the bright part and the dark part are binarized by the luminance threshold values The and -The, respectively, the binarized images I_blight and I_dark of the bright part and the dark part are respectively expressed by the following formula (2).
そして、このようにして明部及び暗部の画像を二値化し、必要に応じて連結・孤立点除去を行った後、明部及び暗部の位置関係を算出することによって凹凸性の表面欠陥の有無を検出する。なお、明部及び暗部の位置関係の算出方法には様々な方法があり、以下では代表的な3つの算出方法を述べるが、その他の算出方法であっても明部と暗部の位置関係が算出できれば良い。 Then, after binarizing the image of the bright part and the dark part in this way, performing connection / isolation point removal as necessary, calculating the positional relationship between the bright part and the dark part, the presence or absence of uneven surface defects Is detected. There are various methods for calculating the positional relationship between the bright part and the dark part. In the following, three representative calculation methods will be described, but the positional relation between the bright part and the dark part is calculated even with other calculation methods. I can do it.
第1の位置関係算出方法は、明部及び暗部に対して特定方向の膨張収縮処理を施すことによって明部及び暗部の位置関係を算出する方法である。本算出方法のフローチャートを図5に示す。本実施形態では、凹形状の表面欠陥を検出するため、右が明、左が暗である明暗のパターンを認識する場合について説明する。右が明、左が暗ということは明部の左側には必ず暗部があり、暗部の右側には必ず明部があるということである。そこで、本算出方法では、始めに、画像処理装置5が、暗部に対して右方向に膨張処理を施し、明部に対しては左方向に膨張処理を施す(ステップS1a,S1b)。ここで、膨張処理が施された明部及び暗部の画像をそれぞれI_blight_extend、I_dark_extendとし、膨張する長さをWとすると膨張処理は以下に示す数式(3)のように表される。但し、二次元画像の左上を原点として下方向をy軸方向正、右方向をx軸方向正とする。 The first positional relationship calculation method is a method of calculating the positional relationship between the bright part and the dark part by performing an expansion / contraction process in a specific direction on the bright part and the dark part. A flowchart of this calculation method is shown in FIG. In the present embodiment, a case will be described in which a bright and dark pattern in which the right is bright and the left is dark in order to detect a concave surface defect is recognized. Light on the right and dark on the left means that there is always a dark part on the left side of the bright part, and there is always a bright part on the right side of the dark part. Therefore, in this calculation method, first, the image processing apparatus 5 performs an expansion process in the right direction with respect to the dark part and performs an expansion process in the left direction with respect to the bright part (steps S1a and S1b). Here, if the images of the bright part and the dark part on which the expansion process has been performed are I_blight_extend and I_dark_extend, respectively, and the expansion length is W, the expansion process is expressed as the following Expression (3). However, the upper left of the two-dimensional image is the origin, the lower direction is positive in the y-axis direction, and the right direction is positive in the x-axis direction.
なお、本実施形態では、明部と暗部とを同じ長さWだけ膨張させているが、膨張する長さWは必ずしも同じである必要は無く、極端に述べれば明部及び暗部の一方のみに対して膨張処理を施してもよい。また、膨張する長さWは検出したい表面欠陥の大きさにも依存する。 In the present embodiment, the bright portion and the dark portion are expanded by the same length W, but the expanded length W is not necessarily the same. In extreme cases, only the bright portion and the dark portion are included. On the other hand, an expansion process may be performed. Further, the expanding length W depends on the size of the surface defect to be detected.
次に、画像処理装置5は、以下に示す数式(4)のように膨張処理が施された明部及び暗部の画像I_blight_extend、I_dark_extendに対してand処理を行うことにより、膨張処理が施された明部及び暗部の画像I_blight_extend、I_dark_extendの重なり部分を欠陥候補部画像I_defectとして抽出する(ステップS2a,S2b)。 Next, the image processing apparatus 5 performs an expansion process by performing an AND process on the bright and dark images I_blight_extend and I_dark_extend that have been subjected to the expansion process as shown in Equation (4) below. The overlapping part of the bright part and dark part images I_blight_extend and I_dark_extend is extracted as a defect candidate part image I_defect (steps S2a and S2b).
次に、画像処理装置5は、得られた各欠陥候補部画像I_defectに対して、必要に応じて連結・孤立点除去処理を行った後、ラベリング処理を行うことによって、欠陥候補ブロブI_defect_blobを生成する(ステップS3)。そして、画像処理装置5は、各欠陥候補ブロブI_defect_blobの特徴量を抽出し、抽出結果に基づいて各欠陥候補ブロブI_defect_blobが凹形状の表面欠陥であるか否かを判別する(ステップS4a,4b)。なお、欠陥候補ブロブI_defect_blobの特徴量を調査するためには、明部及び暗部の情報が必要となるため、欠陥候補ブロブI_defect_blobから明部と暗部を復元する。 Next, the image processing apparatus 5 generates a defect candidate blob I_defect_blob by performing a labeling process on the obtained defect candidate part images I_defect after performing a connection / isolated point removal process as necessary. (Step S3). Then, the image processing apparatus 5 extracts the feature amount of each defect candidate blob I_defect_blob, and determines whether each defect candidate blob I_defect_blob is a concave surface defect based on the extraction result (steps S4a and 4b). . Note that in order to investigate the feature amount of the defect candidate blob I_defect_blob, information on the bright part and the dark part is necessary, so the bright part and the dark part are restored from the defect candidate blob I_defect_blob.
具体的には、欠陥候補部の右側には必ず明部が存在し、左側には必ず暗部が存在するため、画像処理装置5は、欠陥候補ブロブI_defect_blobの重心を起点として暗部二値化画像I_darkを左側に探索し、最初に見つかったブロブを暗部欠陥候補ブロブI_dark_blobとする。同様に、画像処理装置5は、欠陥候補ブロブI_defect_blobの重心を起点として明部二値化画像I_blightを右側に探索し、最初に見つかったブロブを明部欠陥候補ブロブI_blight_blobとする。そして、画像処理装置5は、こうして復元された明部欠陥候補ブロブI_blight_blob及び暗部欠陥候補ブロブI_dark_blobから特徴量を抽出し、抽出された特徴量に基づいて各欠陥候補ブロブI_defect_blobが凹形状の表面欠陥であるか否かを判別する。具体的な特徴量は欠陥により異なるため、ここでは述べず後述する実施例で一例を挙げる。 Specifically, since the bright part always exists on the right side of the defect candidate part and the dark part always exists on the left side, the image processing apparatus 5 starts from the center of gravity of the defect candidate blob I_defect_blob as the starting point, and the dark part binarized image I_dark. To the left, and the first found blob is a dark defect candidate blob I_dark_blob. Similarly, the image processing apparatus 5 searches the right part binarized image I_blight on the right side starting from the center of gravity of the defect candidate blob I_defect_blob, and sets the first found blob as the bright part defect candidate blob I_blight_blob. Then, the image processing apparatus 5 extracts the feature amount from the bright part defect candidate blob I_blight_blob and the dark part defect candidate blob I_dark_blob restored in this way, and each defect candidate blob I_defect_blob is a concave surface defect based on the extracted feature quantity. It is determined whether or not. Since the specific feature amount varies depending on the defect, an example will be given in an embodiment described later without being described here.
第2の位置関係算出方法では、上述の閾値処理を行い、必要に応じて連結・孤立点除去処理を行った後、明部及び暗部を抽出してラベリングを実施し、明部及び暗部の位置関係を認識することにより凹形状の表面欠陥を検出する。具体的には、始めに、画像処理装置5は、ラベリングにより明部及び暗部を個別に認識し、明部及び暗部の重心情報を得る。次に、画像処理装置5は、明部及び暗部の重心情報から各明部の右側の所定範囲内に暗部の重心が存在するか否かを判定する。そして、暗部の重心が存在する場合、画像処理装置5は、対となる明部と暗部との組み合わせを明暗パターンとして認識し、明暗パターンの特徴量解析を行うことによって、凹形状の表面欠陥であるか否かを判別する。なお、ここでは重心情報を用いて明暗パターンを認識したが、明部及び暗部の位置が把握できる情報(例えば上端位置や下端位置等)であれば、明暗パターンの認識に用いる情報は必ずしも重心情報でなくてよい。 In the second positional relationship calculation method, after performing the above-described threshold processing and performing connection / isolated point removal processing as necessary, the bright portion and the dark portion are extracted and labeling is performed, and the positions of the bright portion and the dark portion are determined. Recognizing the relationship detects a concave surface defect. Specifically, first, the image processing apparatus 5 individually recognizes the bright part and the dark part by labeling, and obtains the gravity center information of the bright part and the dark part. Next, the image processing apparatus 5 determines whether the center of gravity of the dark part exists within a predetermined range on the right side of each bright part from the center of gravity information of the bright part and the dark part. And when the gravity center of a dark part exists, the image processing apparatus 5 recognizes the combination of a bright part and a dark part which are a pair as a bright and dark pattern, and performs feature quantity analysis of the bright and dark pattern, thereby detecting a concave surface defect. It is determined whether or not there is. Here, the light / dark pattern is recognized using the center-of-gravity information. However, as long as the information of the bright part and the dark part can be grasped (for example, the upper end position and the lower end position), the information used for recognizing the light / dark pattern is not necessarily the center of gravity information Not necessary.
第3の位置関係算出方法では、上述の閾値処理を行わず、フィルターを用いて明暗パターンを認識することによって、凹形状の表面欠陥を検出する。具体的には、図1に示す表面欠陥検出装置1では、光源2a,2bが検査対象部位の法線に対して左右対称に配置されているため、表面の凹凸に起因する明暗パターンは左右方向に発生する。図6(a),(b)はそれぞれ、差分画像の一例及び図6(a)に示す線分Lにおける明暗パターンの一次元プロファイルを示す図である。 In the third positional relationship calculation method, a concave surface defect is detected by recognizing a light / dark pattern using a filter without performing the above threshold processing. Specifically, in the surface defect detection apparatus 1 shown in FIG. 1, since the light sources 2a and 2b are arranged symmetrically with respect to the normal line of the inspection target part, the light and dark pattern resulting from the surface unevenness is in the horizontal direction. Occurs. FIGS. 6A and 6B are diagrams showing an example of a difference image and a one-dimensional profile of a light and dark pattern in the line segment L shown in FIG.
図6(a),(b)に示すように、凹形状の表面欠陥では右が明、左が暗であるため、明暗パターンの一次元プロファイルは右側が山形、左側が谷形の特徴的な一次元プロファイルになる。そこで、本実施形態では、右側が山形、左側が谷形となるようなフィルターHを予め作成し、以下の数式(5)に示すように差分画像I_diffにフィルターHをかけることにより、高周波数のノイズが低減され、明暗パターンのみが強調された二次元画像I_contを生成する。 As shown in FIGS. 6 (a) and 6 (b), the concave surface defects are bright on the right and dark on the left, so the one-dimensional profile of the light / dark pattern is characteristic of a mountain shape on the right side and a valley shape on the left side. Become a one-dimensional profile. Therefore, in the present embodiment, a filter H having a mountain shape on the right side and a valley shape on the left side is created in advance, and the filter H is applied to the difference image I_diff as shown in the following formula (5), whereby a high frequency is obtained. A two-dimensional image I_cont in which noise is reduced and only a light / dark pattern is enhanced is generated.
図7(a),(b)はそれぞれ予め作成したフィルターHの二次元画像及びその左右方向の一次元プロファイルの一例を示す図である。図8(a),(b)はそれぞれ、図7(a),(b)に示すフィルターHを用いたフィルター処理が施された差分画像及びその左右方向の一次元プロファイルを示す図である。図8(a),(b)に示すように、高周波数のノイズが低減され、明暗パターンのみが強調された二次元画像が得られることがわかる。 FIGS. 7A and 7B are diagrams showing an example of a two-dimensional image of the filter H created in advance and a one-dimensional profile thereof in the horizontal direction. FIGS. 8A and 8B are views showing a difference image subjected to the filter processing using the filter H shown in FIGS. 7A and 7B and a one-dimensional profile thereof in the left-right direction. As shown in FIGS. 8A and 8B, it can be seen that a two-dimensional image in which high-frequency noise is reduced and only the bright and dark pattern is enhanced is obtained.
なお、必要に応じて、幅方向にレンジが異なるフィルターを数種類用意しておくことにより、多くの表面欠陥サイズに対応できるようにしてもよい。画像処理装置5は、このようにして明暗パターンが強調された二元画像に対して、必要に応じて連結・孤立点除去処理を施した後、閾値処理を行うことによって欠陥候補部画像I_defectを抽出する。そして、画像処理装置5は、抽出された欠陥候補部画像I_defectに対して第1の位置関係算出方法と同様の処理を施すことによって、凹形状の表面欠陥を検出する。 If necessary, it may be possible to cope with many surface defect sizes by preparing several types of filters having different ranges in the width direction. The image processing apparatus 5 performs the threshold processing after performing the connection / isolated point removal processing on the binary image in which the light / dark pattern is emphasized in this way as necessary, thereby obtaining the defect candidate portion image I_defect. Extract. Then, the image processing apparatus 5 detects a concave surface defect by performing the same processing as the first positional relationship calculation method on the extracted defect candidate portion image I_defect.
以上の説明から明らかなように、本発明の一実施形態である表面欠陥検出処理は、2つの弁別可能な光源2a,2bを利用して同一の検査対象部位に異なる方向から略同一の入射角度で照明光Lを照射する照射し、各照明光Lの反射光による画像を取得し、取得した画像間で差分処理を行うことによって得られた画像の明部及び暗部を抽出し、抽出された明部及び暗部の位置関係と照明光Lの照射方向とから凹凸性の表面欠陥の有無を判定するので、スケールや無害模様と凹凸性の表面欠陥とを精度よく弁別することができる。 As is apparent from the above description, the surface defect detection processing according to an embodiment of the present invention uses the two light sources 2a and 2b that can be distinguished to substantially the same incident angle from different directions to the same inspection target site. The illumination light L is irradiated and the images of the reflected light of each illumination light L are acquired, and the bright part and the dark part of the image obtained by performing the difference process between the acquired images are extracted and extracted. Since the presence or absence of uneven surface defects is determined from the positional relationship between the bright part and the dark part and the irradiation direction of the illumination light L, it is possible to accurately discriminate between scales and harmless patterns and uneven surface defects.
なお、本実施形態では、光源を左右対称に設置したために左右の明暗パターンを認識したが、光源の設置位置が左右ではなく、上下対称又は対称でなかったとしても同様の処理によって凹凸性の表面欠陥を検出することができる。具体的には、光源が上下対称に配置されている場合には、明暗パターンが左右方向から上下方向に変わるだけであるので、明暗パターンを90度回転させれば同様の処理によって凹凸性の表面欠陥を検出することができる。 In the present embodiment, the left and right light and dark patterns are recognized because the light sources are installed symmetrically. However, even if the installation position of the light sources is not left and right, and is not symmetrical or symmetric, the same processing is performed. Defects can be detected. Specifically, when the light sources are arranged vertically symmetrically, the light / dark pattern only changes from the left / right direction to the vertical direction. Defects can be detected.
また、図9に示すように照明光の照射方向が90度異なるように光源2a,2bを設置した場合には、表面欠陥が凹形状であれば光源の手前側が暗く奥側が明るくなり、表面欠陥が凸形状であれば光源の手前側が明るく、奥側が暗くなる。具体的には、表面欠陥が凹形状である場合、光源2aからの照明光によって得られる二次元画像は図10(a)に示すようになり、光源2bからの照明光によって得られる二次元画像は図10(b)に示すようになる。このため、差分画像は図10(c)に示すような左下から右上にかけてコントラストがある明暗パターンとなる。従って、明暗パターンを45度回転させれば、左右方向の明暗パターンと同様の方法によって凹形状の表面欠陥を検出することができる。さらに、3つ以上の光源を用いることによって、それぞれ複数パターンの差分画像を得ることができるので、表面欠陥の検出精度をより向上させることができる。 Also, as shown in FIG. 9, when the light sources 2a and 2b are installed so that the irradiation direction of the illumination light differs by 90 degrees, if the surface defect is concave, the near side of the light source is dark and the back side is bright, and the surface defect If is convex, the front side of the light source is bright and the back side is dark. Specifically, when the surface defect has a concave shape, the two-dimensional image obtained by the illumination light from the light source 2a is as shown in FIG. 10A, and the two-dimensional image obtained by the illumination light from the light source 2b. Is as shown in FIG. For this reason, the difference image becomes a bright and dark pattern having contrast from the lower left to the upper right as shown in FIG. Therefore, if the light and dark pattern is rotated by 45 degrees, a concave surface defect can be detected by the same method as the light and dark pattern in the left-right direction. Furthermore, since three or more patterns of difference images can be obtained by using three or more light sources, the surface defect detection accuracy can be further improved.
また、本実施形態では検査対象部位の法線に対して対称となる方向から照明光を照射した場合について凹凸性の表面欠陥を検出したが、照明光の照射方向は必ずしも対称である必要はない。また、本実施形態の表面欠陥検出処理は熱間、冷間に関わらず鋼材の製造ライン全般に適用することができる。 Further, in the present embodiment, the uneven surface defect is detected when the illumination light is irradiated from the direction that is symmetric with respect to the normal line of the inspection target part, but the irradiation direction of the illumination light is not necessarily symmetric. . Moreover, the surface defect detection process of this embodiment can be applied to the entire production line of steel regardless of whether it is hot or cold.
本実施例では、ピット疵が形成されている検査対象部位とピット疵が形成されていない健全な検査対象部位に対して上記第1の位置関係算出方法を用いた表面欠陥検出処理を適用した。本実施例では、特徴量として、明部及び暗部の輝度比、面積比、及び円形度を算出した。円形度とは、明部及び暗部の面積をその周の長さの二乗で割って正規化した値であり、明部及び暗部の形状が円形状に近いか否かを判定する際に用いられる。同一起因の表面欠陥であれば、左右の信号で輝度や面積が著しく異なるということは考えにくく、輝度比や面積比を用いて左右のバランスを評価することによって表面欠陥の検出精度が向上する。また、陰影を評価するため明部及び暗部が円形状になることはほとんどなく、円形状に近いものは別起因であると判断できるために、特徴量に円形度を組み入れた。また、明部及び暗部の面積を算出し、面積が所定値以上である表面欠陥のみを検出できるようにした。検出結果を図11に示す。図11に示すように、本実施例によれば、ピット疵とピット疵が形成されていない健全部とを精度よく弁別できることが確認された。 In the present embodiment, the surface defect detection process using the first positional relationship calculation method is applied to the inspection target portion where the pit ridge is formed and the healthy inspection target portion where the pit ridge is not formed. In this example, the brightness ratio, area ratio, and circularity of the bright part and the dark part were calculated as the feature amount. The circularity is a value obtained by dividing the area of the bright part and the dark part by the square of the circumference of the circumference, and is used when determining whether the shape of the bright part and the dark part is close to a circular shape. . If the surface defect has the same cause, it is unlikely that the luminance and area are significantly different between the left and right signals, and the detection accuracy of the surface defect is improved by evaluating the left and right balance using the luminance ratio and area ratio. Further, in order to evaluate the shadow, the bright part and the dark part rarely have a circular shape, and it is possible to determine that a thing close to the circular shape is caused by another, so the circularity is incorporated into the feature amount. In addition, the areas of the bright part and the dark part are calculated so that only surface defects whose area is a predetermined value or more can be detected. The detection results are shown in FIG. As shown in FIG. 11, according to the present Example, it was confirmed that the pit ridge and the healthy part in which the pit ridge was not formed can be distinguished with high accuracy.
以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。 The embodiment to which the invention made by the present inventors is applied has been described above, but the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.
1 表面欠陥検出装置
2a,2b 光源
3 ファンクションジェネレータ
4a,4b エリアセンサ
5 画像処理装置
6 モニター
L 照明光
P 鋼管
DESCRIPTION OF SYMBOLS 1 Surface defect detection apparatus 2a, 2b Light source 3 Function generator 4a, 4b Area sensor 5 Image processing apparatus 6 Monitor L Illumination light P Steel pipe
Claims (15)
2つ以上の弁別可能な光源を利用して同一の検査対象部位に異なる方向から略同一の入射角度で照明光を照射する照射ステップと、
各照明光の反射光による画像を取得し、取得した画像間で差分処理を行うことによって得られた画像の隣り合った明部及び暗部を抽出し、前記抽出された隣り合った明部及び暗部の位置関係と前記照明光の照射方向とから凹凸性の表面欠陥の有無を判定する判定ステップと、
を含むことを特徴とする表面欠陥検出方法。 A surface defect detection method for optically detecting a surface defect of a steel material,
An irradiation step of irradiating illumination light at substantially the same incident angle from different directions to the same inspection target site using two or more distinguishable light sources,
Acquiring an image by the reflected light of each illumination light obtained by extracting a bright portion and a dark portion adjacent the image obtained by performing difference processing between images, the bright portion and dark portion adjacent which said extracted A determination step of determining the presence or absence of uneven surface defects from the positional relationship and the irradiation direction of the illumination light,
A method for detecting surface defects, comprising:
2つ以上の弁別可能な光源を利用して同一の検査対象部位に異なる方向から略同一の入射角度で照明光を照射する照射手段と、
各照明光の反射光による画像を取得し、取得した画像間で差分処理を行うことによって得られた画像の隣り合った明部及び暗部を抽出し、前記抽出された隣り合った明部及び暗部の位置関係と前記照明光の照射方向とから凹凸性の表面欠陥の有無を判定する判定手段と、
を備えることを特徴とする表面欠陥検出装置。 A surface defect detection device for optically detecting a surface defect of a steel material,
Irradiation means for irradiating illumination light at substantially the same incident angle from different directions to the same inspection target site using two or more distinguishable light sources;
Acquiring an image by the reflected light of each illumination light obtained by extracting a bright portion and a dark portion adjacent the image obtained by performing difference processing between images, the bright portion and dark portion adjacent which said extracted Determining means for determining the presence or absence of uneven surface defects from the positional relationship and the irradiation direction of the illumination light,
A surface defect detection apparatus comprising:
2つ以上の弁別可能な光源を利用して同一の検査対象部位に異なる方向から略同一の入射角度で照明光を照射する照射ステップと、An irradiation step of irradiating illumination light at substantially the same incident angle from different directions to the same inspection target site using two or more distinguishable light sources,
各照明光の反射光による画像を取得し、取得した画像間で差分処理を行うことによって得られた画像の明部及び暗部を抽出し、前記抽出された明部及び暗部の位置関係と前記照明光の照射方向とから凹凸性の表面欠陥の有無を判定する判定ステップと、を含み、The image obtained by the reflected light of each illumination light is acquired, the difference between the acquired images is extracted, the bright part and the dark part of the image obtained are extracted, the positional relationship between the extracted bright part and the dark part and the illumination A determination step of determining the presence or absence of uneven surface defects from the light irradiation direction,
前記判定ステップは、前記明部及び前記暗部の画像に対して膨張処理を施し、膨張処理された明部及び暗部の画像の重なり部分を抽出することによって明部及び暗部の位置関係を算出するステップを含むことを特徴とする表面欠陥検出方法。The determination step includes calculating a positional relationship between the bright part and the dark part by performing an expansion process on the bright part and the dark part images and extracting an overlapping part of the bright part and dark part images that have undergone the expansion process. A method for detecting surface defects, comprising:
2つ以上の弁別可能な光源を利用して同一の検査対象部位に異なる方向から略同一の入射角度で照明光を照射する照射ステップと、An irradiation step of irradiating illumination light at substantially the same incident angle from different directions to the same inspection target site using two or more distinguishable light sources,
各照明光の反射光による画像を取得し、取得した画像間で差分処理を行うことによって得られた画像の明部及び暗部を抽出し、前記抽出された明部及び暗部の位置関係と前記照明光の照射方向とから凹凸性の表面欠陥の有無を判定する判定ステップと、を含み、The image obtained by the reflected light of each illumination light is acquired, the difference between the acquired images is extracted, the bright part and the dark part of the image obtained are extracted, the positional relationship between the extracted bright part and the dark part and the illumination A determination step of determining the presence or absence of uneven surface defects from the light irradiation direction,
前記判定ステップは、前記明部及び前記暗部の画像に対して二値化処理及びラベリング処理を施し、ラベリング処理された画像の重心位置を比較することによって明部及び暗部の位置関係を算出するステップを含むことを特徴とする表面欠陥検出方法。In the determination step, a binarization process and a labeling process are performed on the images of the bright part and the dark part, and a positional relationship between the bright part and the dark part is calculated by comparing the barycentric positions of the labeled images. A method for detecting surface defects, comprising:
2つ以上の弁別可能な光源を利用して同一の検査対象部位に異なる方向から略同一の入射角度で照明光を照射する照射ステップと、An irradiation step of irradiating illumination light at substantially the same incident angle from different directions to the same inspection target site using two or more distinguishable light sources,
各照明光の反射光による画像を取得し、取得した画像間で差分処理を行うことによって得られた画像の明部及び暗部を抽出し、前記抽出された明部及び暗部の位置関係と前記照明光の照射方向とから凹凸性の表面欠陥の有無を判定する判定ステップと、を含み、The image obtained by the reflected light of each illumination light is acquired, the difference between the acquired images is extracted, the bright part and the dark part of the image obtained are extracted, the positional relationship between the extracted bright part and the dark part and the illumination A determination step of determining the presence or absence of uneven surface defects from the light irradiation direction,
前記判定ステップは、前記明部及び前記暗部の画像に対してフィルタリング処理を施すことによって明部及び暗部を強調することによって、明部及び暗部の位置関係を算出するステップを含むことを特徴とする表面欠陥検出方法。The determining step includes a step of calculating a positional relationship between the bright part and the dark part by emphasizing the bright part and the dark part by performing a filtering process on the image of the bright part and the dark part. Surface defect detection method.
2つ以上の弁別可能な光源を利用して同一の検査対象部位に異なる方向から略同一の入射角度で照明光を照射する照射ステップと、An irradiation step of irradiating illumination light at substantially the same incident angle from different directions to the same inspection target site using two or more distinguishable light sources,
各照明光の反射光による画像を取得し、取得した画像間で差分処理を行うことによって得られた画像の明部及び暗部を抽出し、前記抽出された明部及び暗部の位置関係と前記照明光の照射方向とから凹凸性の表面欠陥の有無を判定する判定ステップと、を含み、The image obtained by the reflected light of each illumination light is acquired, the difference between the acquired images is extracted, the bright part and the dark part of the image obtained are extracted, the positional relationship between the extracted bright part and the dark part and the illumination A determination step of determining the presence or absence of uneven surface defects from the light irradiation direction,
前記判定ステップは、明部及び暗部の位置関係を算出することによって得られた前記明部と前記暗部との組み合わせから明部及び暗部の輝度比、面積比、及び円形度のうちの少なくとも1つを特徴量として算出し、算出された特徴量に基づいて凹凸性の表面欠陥の有無を判定するステップを含むことを特徴とする表面欠陥検出方法。The determination step includes at least one of a brightness ratio, an area ratio, and a circularity of a bright part and a dark part from a combination of the bright part and the dark part obtained by calculating a positional relationship between the bright part and the dark part. As a feature quantity, and determining the presence or absence of uneven surface defects based on the computed feature quantity.
2つ以上の弁別可能な光源を利用して同一の検査対象部位に異なる方向から略同一の入射角度で照明光を照射する照射手段と、Irradiation means for irradiating illumination light at substantially the same incident angle from different directions to the same inspection target site using two or more distinguishable light sources;
各照明光の反射光による画像を取得し、取得した画像間で差分処理を行うことによって得られた画像の明部及び暗部を抽出し、前記抽出された明部及び暗部の位置関係と前記照明光の照射方向とから凹凸性の表面欠陥の有無を判定する判定手段と、を備え、The image obtained by the reflected light of each illumination light is acquired, the difference between the acquired images is extracted, the bright part and the dark part of the image obtained are extracted, the positional relationship between the extracted bright part and the dark part and the illumination Determination means for determining the presence or absence of uneven surface defects from the light irradiation direction,
前記判定手段は、前記明部及び前記暗部の画像に対して膨張処理を施し、膨張処理された明部及び暗部の画像の重なり部分を抽出することによって明部及び暗部の位置関係を算出する手段を含むことを特徴とする表面欠陥検出装置。The determination means performs a dilation process on the bright part and dark part images, and calculates a positional relationship between the bright part and the dark part by extracting an overlapped part of the dilated bright part and dark part images. A surface defect detection apparatus comprising:
2つ以上の弁別可能な光源を利用して同一の検査対象部位に異なる方向から略同一の入射角度で照明光を照射する照射手段と、Irradiation means for irradiating illumination light at substantially the same incident angle from different directions to the same inspection target site using two or more distinguishable light sources;
各照明光の反射光による画像を取得し、取得した画像間で差分処理を行うことによって得られた画像の明部及び暗部を抽出し、前記抽出された明部及び暗部の位置関係と前記照明光の照射方向とから凹凸性の表面欠陥の有無を判定する判定手段と、を備え、The image obtained by the reflected light of each illumination light is acquired, the difference between the acquired images is extracted, the bright part and the dark part of the image obtained are extracted, the positional relationship between the extracted bright part and the dark part and the illumination Determination means for determining the presence or absence of uneven surface defects from the light irradiation direction,
前記判定手段は、前記明部及び前記暗部の画像に対して二値化処理及びラベリング処理を施し、ラベリング処理された画像の重心位置を比較することによって明部及び暗部の位置関係を算出する手段を含むことを特徴とする表面欠陥検出装置。The determination means performs binarization processing and labeling processing on the images of the bright portion and the dark portion, and calculates a positional relationship between the bright portion and the dark portion by comparing the barycentric positions of the labeled images. A surface defect detection apparatus comprising:
2つ以上の弁別可能な光源を利用して同一の検査対象部位に異なる方向から略同一の入射角度で照明光を照射する照射手段と、Irradiation means for irradiating illumination light at substantially the same incident angle from different directions to the same inspection target site using two or more distinguishable light sources;
各照明光の反射光による画像を取得し、取得した画像間で差分処理を行うことによって得られた画像の明部及び暗部を抽出し、前記抽出された明部及び暗部の位置関係と前記照明光の照射方向とから凹凸性の表面欠陥の有無を判定する判定手段と、を備え、The image obtained by the reflected light of each illumination light is acquired, the difference between the acquired images is extracted, the bright part and the dark part of the image obtained are extracted, the positional relationship between the extracted bright part and the dark part and the illumination Determination means for determining the presence or absence of uneven surface defects from the light irradiation direction,
前記判定手段は、前記明部及び前記暗部の画像に対してフィルタリング処理を施すことによって明部及び暗部を強調することによって、明部及び暗部の位置関係を算出する手段を含むことを特徴とする表面欠陥検出装置。The determination means includes means for calculating a positional relationship between the bright part and the dark part by emphasizing the bright part and the dark part by performing a filtering process on the image of the bright part and the dark part. Surface defect detection device.
2つ以上の弁別可能な光源を利用して同一の検査対象部位に異なる方向から略同一の入射角度で照明光を照射する照射手段と、Irradiation means for irradiating illumination light at substantially the same incident angle from different directions to the same inspection target site using two or more distinguishable light sources;
各照明光の反射光による画像を取得し、取得した画像間で差分処理を行うことによって得られた画像の明部及び暗部を抽出し、前記抽出された明部及び暗部の位置関係と前記照明光の照射方向とから凹凸性の表面欠陥の有無を判定する判定手段と、を備え、The image obtained by the reflected light of each illumination light is acquired, the difference between the acquired images is extracted, the bright part and the dark part of the image obtained are extracted, the positional relationship between the extracted bright part and the dark part and the illumination Determination means for determining the presence or absence of uneven surface defects from the light irradiation direction,
前記判定手段は、明部及び暗部の位置関係を算出することによって得られた前記明部と前記暗部との組み合わせから明部及び暗部の輝度比、面積比、及び円形度のうちの少なくとも1つを特徴量として算出し、算出された特徴量に基づいて凹凸性の表面欠陥の有無を判定する手段を含むことを特徴とする表面欠陥検出装置。The determination means includes at least one of a brightness ratio, an area ratio, and a circularity of a bright part and a dark part from a combination of the bright part and the dark part obtained by calculating a positional relationship between the bright part and the dark part. As a feature amount, and includes means for determining the presence or absence of uneven surface defects based on the calculated feature amount.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014090995A JP6119663B2 (en) | 2014-04-25 | 2014-04-25 | Surface defect detection method and surface defect detection apparatus |
CN201480071110.5A CN105849534B (en) | 2013-12-27 | 2014-12-24 | Surface defect detection method and surface defect detection device |
PCT/JP2014/084077 WO2015098929A1 (en) | 2013-12-27 | 2014-12-24 | Surface defect detection method and surface defect detection device |
CA2934796A CA2934796C (en) | 2013-12-27 | 2014-12-24 | Surface defect detecting method and surface defect detecting apparatus |
KR1020167016851A KR101832081B1 (en) | 2013-12-27 | 2014-12-24 | Surface defect detection method and surface defect detection device |
US15/107,241 US10180401B2 (en) | 2013-12-27 | 2014-12-24 | Surface defect detecting method and surface defect detecting apparatus |
EP14873854.5A EP3088874B1 (en) | 2013-12-27 | 2014-12-24 | Surface defect detection method and surface defect detection device |
CA3013438A CA3013438C (en) | 2013-12-27 | 2014-12-24 | Surface defect detecting method and surface defect detecting apparatus |
RU2016129424A RU2637723C1 (en) | 2013-12-27 | 2014-12-24 | Method of detecting surface defects and device for detecting surface defects |
ES14873854T ES2942266T3 (en) | 2013-12-27 | 2014-12-24 | Surface Defect Detection Method and Surface Defect Detection Device |
US16/112,939 US10705027B2 (en) | 2013-12-27 | 2018-08-27 | Surface defect detecting method and surface defect detecting apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014090995A JP6119663B2 (en) | 2014-04-25 | 2014-04-25 | Surface defect detection method and surface defect detection apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015210150A JP2015210150A (en) | 2015-11-24 |
JP6119663B2 true JP6119663B2 (en) | 2017-04-26 |
Family
ID=54612443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014090995A Active JP6119663B2 (en) | 2013-12-27 | 2014-04-25 | Surface defect detection method and surface defect detection apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6119663B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019152379A1 (en) * | 2018-01-31 | 2019-08-08 | Zygo Corporation | Surface topography apparatus and method |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10495581B2 (en) | 2016-01-08 | 2019-12-03 | SCREEN Holdings Co., Ltd. | Defect detection device and defect detection method |
JP6688629B2 (en) * | 2016-02-19 | 2020-04-28 | 株式会社Screenホールディングス | Defect detecting device, defect detecting method and program |
WO2017141611A1 (en) | 2016-02-19 | 2017-08-24 | 株式会社Screenホールディングス | Defect detection apparatus, defect detection method, and program |
FR3049709B1 (en) * | 2016-04-05 | 2019-08-30 | Areva Np | METHOD OF DETECTING A DEFECT ON A SURFACE BY MULTIDIRECTIONAL LIGHTING AND ASSOCIATED DEVICE |
JP6506784B2 (en) * | 2017-01-30 | 2019-04-24 | 名古屋電機工業株式会社 | Inspection information display device, inspection information display method and inspection information display program |
JP6874441B2 (en) * | 2017-03-16 | 2021-05-19 | コニカミノルタ株式会社 | Defect inspection methods, defect inspection programs, and defect inspection equipment |
CN113196040A (en) | 2018-11-30 | 2021-07-30 | 杰富意钢铁株式会社 | Surface defect detection method, surface defect detection device, steel product manufacturing method, steel product quality management method, steel product manufacturing facility, surface defect determination model generation method, and surface defect determination model |
JP7540235B2 (en) | 2020-08-07 | 2024-08-27 | 株式会社ジェイテクト | METHOD FOR MANUFACTURING LEARNING MODEL USED IN QUALITY ASSESSMENT, LEARNING SYSTEM, QUALITY ASSESSMENT SYSTEM, AND QUALITY ASSESSMENT METHOD |
CN116482104B (en) * | 2023-02-10 | 2023-12-05 | 中恒永创(北京)科技有限公司 | Thermal transfer film detection method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06229929A (en) * | 1993-01-30 | 1994-08-19 | Inax Corp | Inspection of indentation defect |
JP2010223621A (en) * | 2009-03-19 | 2010-10-07 | Sumitomo Metal Ind Ltd | Inner surface inspection method of tubular article |
JP5342987B2 (en) * | 2009-12-02 | 2013-11-13 | 三井住友建設株式会社 | Concrete surface inspection equipment |
-
2014
- 2014-04-25 JP JP2014090995A patent/JP6119663B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019152379A1 (en) * | 2018-01-31 | 2019-08-08 | Zygo Corporation | Surface topography apparatus and method |
US10451413B2 (en) | 2018-01-31 | 2019-10-22 | Zygo Corporation | Surface topography apparatus and method |
Also Published As
Publication number | Publication date |
---|---|
JP2015210150A (en) | 2015-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6119663B2 (en) | Surface defect detection method and surface defect detection apparatus | |
JP6753553B1 (en) | Surface defect detection method, surface defect detection device, steel material manufacturing method, steel material quality control method, steel material manufacturing equipment, surface defect judgment model generation method, and surface defect judgment model | |
JP6447637B2 (en) | Surface defect detection apparatus, surface defect detection method, and steel material manufacturing method | |
WO2015098929A1 (en) | Surface defect detection method and surface defect detection device | |
JP6079948B1 (en) | Surface defect detection device and surface defect detection method | |
JP6646339B2 (en) | Surface defect detection method, surface defect detection device, and steel material manufacturing method | |
JP7028091B2 (en) | Surface defect detection device and surface defect detection method | |
JP2017009523A (en) | Surface defect detection method, surface defect detection device, and method of manufacturing steel | |
JP6064942B2 (en) | Surface defect detection method and surface defect detection apparatus | |
JP6357046B2 (en) | Work item identification device | |
JP6387909B2 (en) | Surface defect detection method, surface defect detection apparatus, and steel material manufacturing method | |
CN116309589B (en) | Sheet metal part surface defect detection method and device, electronic equipment and storage medium | |
JP5452035B2 (en) | Defect inspection method and defect inspection apparatus | |
JP6397292B2 (en) | Item identification and image discrimination method by image processing | |
JP7131509B2 (en) | Surface defect detection device, surface defect detection method, and steel manufacturing method | |
US20220292665A1 (en) | Workpiece surface defect detection device and detection method, workpiece surface inspection system, and program | |
JP4720742B2 (en) | Material flow rate measuring method and material flow rate measuring device | |
JP2016217877A (en) | Deficiency inspection device and deficiency inspection method | |
JP2005345386A (en) | Inspection method for chip component, and inspection device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170313 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6119663 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |