[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010223621A - Inner surface inspection method of tubular article - Google Patents

Inner surface inspection method of tubular article Download PDF

Info

Publication number
JP2010223621A
JP2010223621A JP2009068668A JP2009068668A JP2010223621A JP 2010223621 A JP2010223621 A JP 2010223621A JP 2009068668 A JP2009068668 A JP 2009068668A JP 2009068668 A JP2009068668 A JP 2009068668A JP 2010223621 A JP2010223621 A JP 2010223621A
Authority
JP
Japan
Prior art keywords
camera
defect
inspection method
light source
tubular article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009068668A
Other languages
Japanese (ja)
Inventor
Hirotsugu Toe
博継 戸江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2009068668A priority Critical patent/JP2010223621A/en
Publication of JP2010223621A publication Critical patent/JP2010223621A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inner surface inspection method that minimizes the installation space of a camera and a light source when inner surface inspection of a tubular article is performed, certainly determines a harmful uneven defect and a harmless pattern, and can detect only the uneven defect. <P>SOLUTION: This inner surface inspection method includes a camera that has an optical center axis inclined with respect to the center axis of the tubular article and images a predetermined region of the inner surface of the tubular article from the open end of the tubular article, and a pair of light sources that are arranged symmetrically on both sides of a plane including the optical center axis of the camera and the center axis of the tubular article and illuminate the predetermined region from the open end. The same predetermined region is imaged by the camera while the illuminations from the light sources are switched sequentially, and the shading difference between the same pixels of each image is calculated, and shadows 5a, 5b, 6a and 6b appearing due to the uneven defects 5 and 6 are recognized and the uneven defects 5 and 6 are detected based on the information on the shading difference. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、管状品の内面を照明しながらカメラで撮像し、画像処理を行って凹凸欠陥を検出する管状品の内表面検査方法に関する。   The present invention relates to a method for inspecting an inner surface of a tubular article, in which an inner surface of the tubular article is imaged with a camera and image processing is performed to detect an irregularity defect.

鋼管などの管状品は、製造プロセスに起因して、その内表面に、割れや異物混入などにより凹凸が発生したり、スケールムラや汚れなどの模様が発生することがある。凹凸は品質上で有害な欠陥であり、模様は凹凸を伴わないことから無害である。このため、管状品は、品質保証の観点から、内表面の凹凸欠陥を検出する内表面検査が不可欠である。   Tubular products such as steel pipes may have irregularities on the inner surface due to the manufacturing process, or may have irregularities such as scale unevenness or dirt on the inner surface. Unevenness is a defect that is harmful in quality, and the pattern is harmless because it does not have unevenness. For this reason, from the viewpoint of quality assurance, the inner surface inspection for detecting irregularities on the inner surface is indispensable for the tubular product.

従来、管状品の内表面検査の方法としては、一方の開口端や他方の開口端から内表面を照明しながら目視で観察する方法、または開口端から内視鏡を挿入して行う方法がある。内視鏡を用いた内表面検査方法は、前方視によるものと側方視によるものに大別される。   Conventionally, as a method for inspecting the inner surface of a tubular product, there are a method of visually observing the inner surface from one opening end and the other opening end, or a method of performing insertion by inserting an endoscope from the opening end. . An inner surface inspection method using an endoscope is roughly classified into a forward view and a lateral view.

図1は、内視鏡を用いた前方視による内表面検査方法を説明するための模式図である。同図に示すように、内視鏡を用いた前方視による内表面検査方法では、光源102を搭載したカメラ101を管状品10の内部に挿入し、光源102により照明された内表面11の全周をカメラ101により撮像して検査する。   FIG. 1 is a schematic diagram for explaining an inner surface inspection method by forward viewing using an endoscope. As shown in the figure, in the front surface inspection method using the endoscope, the camera 101 on which the light source 102 is mounted is inserted into the tubular article 10 and the entire inner surface 11 illuminated by the light source 102 is inserted. The circumference is imaged by the camera 101 and inspected.

図2は、内視鏡を用いた側方視による内表面検査方法を説明するための模式図である。同図に示すように、内視鏡を用いた側方視による内表面検査方法では、光源102を搭載したカメラ101の前方に反射鏡103を設置し、これらを管状品10の内部にその中心軸に沿って挿入し、反射鏡103を介して光源102により照明された内表面11の一部の領域を、反射鏡103を介してカメラ101により撮像して検査する。このとき、カメラ101の光学中心軸を中心に反射鏡103を回転させることにより、管状品10の内表面11を全周にわたり検査することができる。   FIG. 2 is a schematic view for explaining an inner surface inspection method by side view using an endoscope. As shown in the figure, in the method of inspecting the inner surface by side view using an endoscope, a reflecting mirror 103 is installed in front of a camera 101 on which a light source 102 is mounted, and these are centered inside a tubular article 10. A part of the inner surface 11 inserted along the axis and illuminated by the light source 102 via the reflecting mirror 103 is imaged and inspected by the camera 101 via the reflecting mirror 103. At this time, the inner surface 11 of the tubular article 10 can be inspected over the entire circumference by rotating the reflecting mirror 103 around the optical center axis of the camera 101.

これらの従来の内表面検査方法では、以下の問題がある。目視観察による方法では、管状品の開口端から遠い奥側の内表面を検査するときに、観察位置から検査領域までの距離が長いため、凹凸欠陥および模様を視認するのが難しく、凹凸欠陥を見落としたり、模様を凹凸欠陥と誤認する可能性がある。   These conventional inner surface inspection methods have the following problems. In the method by visual observation, when inspecting the inner surface on the far side from the open end of the tubular product, the distance from the observation position to the inspection area is long, so it is difficult to visually recognize the irregular defect and the pattern. There is a possibility of oversight or misidentifying the pattern as a concave-convex defect.

内視鏡を用いた方法では、前方視および側方視のいずれによる場合も、カメラで撮像した画像に立体感が生じ難いことから、凹凸欠陥と模様を判別するのが難しい。また、内視鏡を用いた方法では、カメラを管状品の内部に挿入する必要があり、その作業が著しく煩雑である。   In the method using an endoscope, it is difficult to discriminate a concavo-convex defect from a pattern because a stereoscopic effect is hardly generated in an image captured by a camera in both forward and lateral views. Further, in the method using an endoscope, it is necessary to insert a camera into the tubular product, and the operation is extremely complicated.

これらのことから、内表面検査では、有害な凹凸欠陥と無害な模様を確実に判別し、凹凸欠陥のみを検出することが要求されるが、上記した従来の内表面検査方法は、その要求に十分応えることができない。   For these reasons, in the inner surface inspection, it is required to reliably discriminate harmful irregularities and harmless patterns and detect only the irregularities, but the above-mentioned conventional inner surface inspection methods meet the requirements. I cannot respond enough.

従来、凹凸欠陥と模様の判別を行う方法としては、以下の方法が提案されている。特許文献1には、チェーンなどのリンクプレートや連結ピンを検査対象とし、その外表面を検査する方法が開示されている。特許文献1に開示された検査方法は、正反射光による撮像で得られた画像から欠陥候補を抽出し、乱反射光による撮像で得られた画像での欠陥候補の有無により、凹凸欠陥か模様かの判別を行う方法である。   Conventionally, the following methods have been proposed as a method for discriminating irregularities and patterns. Patent Document 1 discloses a method of inspecting the outer surface of a link plate such as a chain or a connection pin. In the inspection method disclosed in Patent Document 1, a defect candidate is extracted from an image obtained by imaging with specularly reflected light, and whether the defect is a concavo-convex defect or a pattern depending on the presence or absence of the defect candidate in the image obtained by imaging with irregularly reflected light. This is a method of determining.

特許文献2には、薄鋼板や厚鋼板などを検査対象とし、その外表面を検査する方法が開示されている。特許文献2に開示された検査方法は、単一の光源により検査領域を照明しながら2つの方向から検査領域をほぼ垂直に撮像し、それぞれの画像の位置ズレを補正した後、両画像の同一画素間で差を取ることにより、凹凸欠陥か模様かの判別を行う方法である。   Patent Document 2 discloses a method of inspecting an outer surface of a thin steel plate or a thick steel plate as an inspection target. In the inspection method disclosed in Patent Document 2, the inspection area is imaged almost vertically from two directions while illuminating the inspection area with a single light source, the positional deviation of each image is corrected, and then both images are identical. In this method, a difference between pixels is determined to determine whether the defect is a concavo-convex defect or a pattern.

特開2007−271510号公報JP 2007-271510 A 特開2006−177852号公報JP 2006-177852 A

しかし、前記特許文献1に開示の検査方法を管状品の内表面検査に適用する場合、管状品の一方の開口端にカメラを設置し、他方の開口端に照明光の出射角度が異なる2つの光源を設置する必要がある。このため、管状品の両方の開口端の外部にカメラと光源を設置する十分なスペースが必要となり、この方法を実現する検査装置が大規模になる。   However, when the inspection method disclosed in Patent Document 1 is applied to the inner surface inspection of a tubular product, a camera is installed at one opening end of the tubular product, and two different emission angles of illumination light are provided at the other opening end. It is necessary to install a light source. For this reason, a sufficient space for installing the camera and the light source is required outside both open ends of the tubular product, and the inspection apparatus for realizing this method becomes large-scale.

前記特許文献2に開示の検査方法を管状品の内表面検査に適用する場合、2つのカメラと光源を管状品の内部に設置する必要がある。このため、内径の小さい管状品には対応が困難である。また、凹凸欠陥と模様の判別処理には、2つのカメラで撮像したそれぞれの画像を差分して評価する前に、両画像の位置ズレを補正しなければならない。このため、画像処理が極めて複雑になる。特に、管状品の軸方向にわたり内表面検査を行う際に、画像処理が一層複雑になる。カメラ位置から撮像領域までの距離が変化するため、画像の位置ズレ補正に用いる変換量を変更しなければならないからである。   When the inspection method disclosed in Patent Document 2 is applied to the inner surface inspection of a tubular product, it is necessary to install two cameras and a light source inside the tubular product. For this reason, it is difficult to cope with a tubular product having a small inner diameter. In addition, in the process of discriminating between the concave and convex defects and the pattern, the positional deviation between the two images must be corrected before evaluating each image taken by the two cameras. For this reason, image processing becomes extremely complicated. In particular, when performing an inner surface inspection over the axial direction of a tubular product, image processing becomes more complicated. This is because since the distance from the camera position to the imaging region changes, the conversion amount used for correcting the positional deviation of the image must be changed.

従って、管状品の内表面検査に、前記特許文献1、2に開示の検査方法を採用するのは、主にカメラおよび光源の設置スペースの制約から困難である。   Therefore, it is difficult to employ the inspection method disclosed in Patent Documents 1 and 2 for the inner surface inspection of a tubular product mainly due to restrictions on the installation space of the camera and the light source.

本発明は、上記の問題に鑑みてなされたものであり、管状品の内表面検査を行うに際に、カメラおよび光源の設置に要するスペースを最小限に抑えつつ、有害な凹凸欠陥と無害な模様を確実に判別し、凹凸欠陥のみを検出することができる内表面検査方法を提供することを目的とする。   The present invention has been made in view of the above problems, and when performing the inner surface inspection of a tubular product, while minimizing the space required for installation of the camera and the light source, harmful concave and convex defects and harmless It is an object of the present invention to provide an inner surface inspection method capable of reliably discriminating a pattern and detecting only uneven defects.

本発明者は、上記目的を達成するため、画像処理を用いて管状品の内表面を検査することを前提に鋭意検討を重ねた結果、カメラおよび光源の設置スペースを最小限に抑えつつ、凹凸欠陥と模様を確実に判別するには、管状品の一方の開口端の外部にカメラおよび一対の光源を集約して設置し、各光源からの照明でカメラによる撮像を行い、両画像を画像処理し、凹凸欠陥に起因して出現する影を評価するのが有効であることを知見した。   In order to achieve the above object, the present inventor has conducted extensive studies on the premise that the inner surface of the tubular product is inspected using image processing. In order to reliably detect defects and patterns, a camera and a pair of light sources are installed outside the open end of one of the tubular products, and images are captured by the camera using illumination from each light source, and both images are processed. It has been found that it is effective to evaluate the shadow appearing due to the irregular defect.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記の内表面検査方法にある。すなわち、管状品の内表面を検査する内表面検査方法であって、前記管状品の中心軸に対して傾斜した光学中心軸を有し、前記管状品の開口端から前記管状品の内表面の所定領域を撮像するカメラと、前記カメラの光学中心軸および前記管状品の中心軸を含む面を挟んで対称に配置され、前記開口端から前記所定領域を照明する一対の光源と、を用い、前記光源からの照明を順に切り替えて同一の前記所定領域を前記カメラにより撮像し、それぞれの画像の同一画素間で濃淡の差分を演算し、その濃淡差分の情報に基づいて、凹凸欠陥により出現した影を認識し凹凸欠陥を検出することを特徴とする内表面検査方法である。   The present invention has been completed based on the above findings, and the gist thereof is the following inner surface inspection method. That is, an inner surface inspection method for inspecting an inner surface of a tubular article, the optical article having an optical center axis inclined with respect to the central axis of the tubular article, and an inner surface of the tubular article from an open end of the tubular article Using a camera that captures an image of a predetermined area, and a pair of light sources that are arranged symmetrically across a plane that includes the optical central axis of the camera and the central axis of the tubular article, and that illuminates the predetermined area from the opening end, The illumination from the light source is switched in order and the same predetermined area is imaged by the camera, and a light / dark difference is calculated between the same pixels of each image. Based on the light / dark difference information, an irregular defect appears. An inner surface inspection method characterized by recognizing a shadow and detecting an uneven defect.

この検査方法は、前記管状品の中心軸を中心に前記カメラおよび前記光源を相対的に回転させるとともに、前記管状品の中心軸に対する前記カメラおよび前記光源の傾斜角度を調整して、前記光源の切り替えを伴う前記カメラによる撮像を繰り返し行い、凹凸欠陥を検出する構成にすることができる。   In this inspection method, the camera and the light source are rotated relative to each other about the central axis of the tubular article, and the inclination angle of the camera and the light source with respect to the central axis of the tubular article is adjusted. It is possible to adopt a configuration in which imaging by the camera with switching is repeatedly performed to detect uneven defects.

また、上記の検査方法は、影と認識された画素に隣接する画素の元画像での濃淡に基づいて、凸欠陥と凹欠陥を判別する構成にすることができる。この検査方法の場合、影と認識された画素の分布域に基づいて、欠陥の大きさを算出する構成にすることができる。   In addition, the above inspection method can be configured to discriminate between a convex defect and a concave defect based on light and shade in an original image of a pixel adjacent to a pixel recognized as a shadow. In the case of this inspection method, the size of the defect can be calculated based on the distribution area of the pixels recognized as a shadow.

本発明の管状品の内表面検査方法によれば、各光源からの照明でカメラによる撮像を行い、両画像を画像処理し、凹凸欠陥に起因して出現する影を評価することにより、凹凸欠陥と模様を確実に判別し、凹凸欠陥のみを検出することができる。しかも、管状品の一方の開口端の外部にカメラおよび一対の光源を集約して設置するため、カメラおよび光源の設置スペースを最小限に抑えることができる。   According to the method for inspecting the inner surface of a tubular article of the present invention, by performing imaging with a camera with illumination from each light source, performing image processing on both images, and evaluating the shadow that appears due to the irregular defect, the irregular defect And the pattern can be reliably discriminated and only the irregularity defect can be detected. In addition, since the camera and the pair of light sources are collectively installed outside the one opening end of the tubular product, the installation space for the camera and the light source can be minimized.

内視鏡を用いた前方視による内表面検査方法を説明するための模式図である。It is a schematic diagram for demonstrating the inner surface test | inspection method by the front view using an endoscope. 内視鏡を用いた側方視による内表面検査方法を説明するための模式図である。It is a schematic diagram for demonstrating the inner surface inspection method by the side view using an endoscope. 本発明の内表面検査方法を適用できる検査装置の構成を模式的に示す図であり、同図(a)は上面図、同図(b)は側面図、同図(c)は同図(a)のS矢視図、同図(d)は同図(c)のT−T断面図をそれぞれ示す。It is a figure which shows typically the structure of the test | inspection apparatus which can apply the inner surface test | inspection method of this invention, The figure (a) is a top view, The figure (b) is a side view, The figure (c) is the figure ( FIG. 4A is a view taken along the arrow S in FIG. 4A, and FIG. 本発明の内表面検査方法を説明するための模式図であり、同図(a)は右側光源の照明による撮像状態を、同図(b)は左側光源の照明による撮像状態をそれぞれ示し、同図(c)は同図(a)での画像の一例を、同図(d)は同図(b)での画像の一例をそれぞれ示す。It is a schematic diagram for demonstrating the inner surface inspection method of this invention, the figure (a) shows the imaging state by illumination of a right light source, the figure (b) shows the imaging state by illumination of a left light source, respectively. FIG. 2C shows an example of the image in FIG. 2A, and FIG. 2D shows an example of the image in FIG. 本発明の内表面検査方法における画像処理の内容を説明するため、それぞれの画像を凸欠陥、凹欠陥および模様に区分してまとめた図である。In order to explain the contents of the image processing in the inner surface inspection method of the present invention, each image is divided into convex defects, concave defects, and patterns. 本発明の内表面検査方法で採用する画像処理において、凸欠陥の大きさを算出する手法を説明するための模式図である。It is a schematic diagram for demonstrating the method of calculating the magnitude | size of a convex defect in the image process employ | adopted with the inner surface inspection method of this invention.

上記の通り、本発明の管状品の内表面検査方法は、管状品の中心軸に対して傾斜した光学中心軸を有し、前記管状品の開口端から前記管状品の内表面の所定領域を撮像するカメラと、前記カメラの光学中心軸および前記管状品の中心軸を含む面を挟んで対称に配置され、前記開口端から前記所定領域を照明する一対の光源と、を用い、前記光源からの照明を順に切り替えて同一の前記所定領域を前記カメラにより撮像し、それぞれの画像の同一画素間で濃淡の差分を演算し、その濃淡差分の情報に基づいて、凹凸欠陥により出現した影を認識し凹凸欠陥を検出する内表面検査方法である。以下に、本発明の内表面検査方法、およびその検査方法を適用できる検査装置を詳述する。   As described above, the method for inspecting the inner surface of a tubular product according to the present invention has an optical central axis that is inclined with respect to the central axis of the tubular product, and a predetermined region on the inner surface of the tubular product from the open end of the tubular product. From the light source, a camera for imaging, and a pair of light sources that are arranged symmetrically across a plane that includes the optical central axis of the camera and the central axis of the tubular product, and that illuminates the predetermined region from the opening end The same predetermined area is imaged with the camera by sequentially switching the illumination, and a light / dark difference is calculated between the same pixels of each image, and a shadow appearing due to the uneven defect is recognized based on the light / dark difference information. This is an inner surface inspection method for detecting uneven defects. Hereinafter, an inner surface inspection method of the present invention and an inspection apparatus to which the inspection method can be applied will be described in detail.

1.検査装置
図3は、本発明の内表面検査方法を適用できる検査装置の構成を模式的に示す図であり、同図(a)は上面図、同図(b)は側面図、同図(c)は同図(a)のS矢視図、同図(d)は同図(c)のT−T断面図をそれぞれ示す。なお、同図(a)および(b)において、検査対象である管状品10は、便宜上、断面図で示している。
1. FIG. 3 is a diagram schematically showing the configuration of an inspection apparatus to which the inner surface inspection method of the present invention can be applied. FIG. 3 (a) is a top view, FIG. 3 (b) is a side view, and FIG. c) is a view taken in the direction of arrow S in FIG. 4A, and FIG. 4D is a cross-sectional view taken along line TT in FIG. In addition, in the figure (a) and (b), the tubular article 10 which is a test object is shown with sectional drawing for convenience.

図3(a)〜(d)に示すように、本発明の内表面検査方法を適用できる検査装置は、1つのカメラ1と、一対の光源2A、2Bとを備える。カメラ1および光源2A、2Bは、管状品10の一方の開口端の外部に集約して設置される。   As shown in FIGS. 3A to 3D, the inspection apparatus to which the inner surface inspection method of the present invention can be applied includes one camera 1 and a pair of light sources 2A and 2B. The camera 1 and the light sources 2 </ b> A and 2 </ b> B are collectively installed outside one open end of the tubular product 10.

カメラ1は、図3(b)に示すように、管状品10の中心軸CLに対して角度θで下向きに傾斜した光学中心軸CCLを有する。カメラ1は、図3(a)および(b)に示すように、管状品10の内表面11のうち、光源2Aまたは光源2Bにより照明された検査領域11aを撮像する。   As shown in FIG. 3B, the camera 1 has an optical center axis CCL that is inclined downward at an angle θ with respect to the center axis CL of the tubular article 10. As shown in FIGS. 3A and 3B, the camera 1 images the inspection area 11 a illuminated by the light source 2 </ b> A or the light source 2 </ b> B in the inner surface 11 of the tubular article 10.

光源2A、2Bは、図3(a)に示すように、カメラ1の光学中心軸CCLおよび管状品10の中心軸CLを含む面を挟んで対称に配置される。具体的には、光源2A、2Bは、各々から出射される照明光の光中心軸LCLが、図3(b)に示すように、側面視において、管状品10の中心軸CLに対して角度αで下向きに傾斜するとともに、図3(d)に示すように、カメラ1の光学中心軸CCLに対して角度γで内向きに傾斜している。   As shown in FIG. 3A, the light sources 2A and 2B are arranged symmetrically across a plane including the optical center axis CCL of the camera 1 and the center axis CL of the tubular article 10. Specifically, in the light sources 2A and 2B, the optical center axis LCL of the illumination light emitted from each of the light sources 2A and 2B is angled with respect to the center axis CL of the tubular article 10 in a side view as shown in FIG. In addition to being inclined downward at α, as shown in FIG. 3D, it is inclined inward at an angle γ with respect to the optical center axis CCL of the camera 1.

さらに、図3(a)、(b)および(d)に示すように、光源2A、2Bの前面(出光口)の中心位置とカメラ1の前面(受光口)の中心位置は、管状品10の軸方向で互いに一致し、光源2A、2Bの各光中心軸LCLは、カメラ1の光学中心軸CCLと検査領域11aとの交点Pで交差する。光源2A、2Bは、個々に消灯/点灯が可能であり、切り替えにより管状品内表面11の検査領域11aを個別に照明する。   Further, as shown in FIGS. 3A, 3B, and 3D, the center position of the front surfaces (light exit ports) of the light sources 2A and 2B and the center position of the front surface (light receiving port) of the camera 1 are as follows. The optical center axes LCL of the light sources 2A and 2B intersect at the intersection point P between the optical center axis CCL of the camera 1 and the inspection region 11a. The light sources 2A and 2B can be turned off / on individually, and individually illuminate the inspection region 11a of the inner surface 11 of the tubular article by switching.

内表面検査に際しては、カメラ1の右側に配置された一方の光源2A(以下、「右側光源」ともいう)と、左側に配置された他方の光源2B(以下、「左側光源」ともいう)を順に切り替え、それぞれの光源2A、2Bで照明された同一の検査領域11aを個別にカメラ1により撮像する。それぞれの撮像で得られた画像について後述する画像処理を行い、これにより当該検査領域11aの検査を行うことができる。   For the inner surface inspection, one light source 2A (hereinafter also referred to as “right light source”) disposed on the right side of the camera 1 and the other light source 2B (hereinafter also referred to as “left light source”) disposed on the left side are used. It switches in order, and the same test | inspection area | region 11a illuminated with each light source 2A, 2B is imaged with the camera 1 separately. Image processing to be described later is performed on the images obtained by the respective imaging, whereby the inspection region 11a can be inspected.

また、カメラ1は、前記交点Pを支点として傾斜角度θの調整が可能に構成されるのが望ましいが、簡易的にカメラ1の前面の中心位置を支点として傾斜角度θの調整が可能に構成してもよい。一方、光源2A、2Bは、カメラ1の傾斜角度θの調整に連動し、下記(1)式を満足する条件で傾斜角度γの調整が可能に構成される。   In addition, the camera 1 is preferably configured so that the tilt angle θ can be adjusted with the intersection point P as a fulcrum, but the tilt angle θ can be easily adjusted with the center position of the front surface of the camera 1 as a fulcrum. May be. On the other hand, the light sources 2 </ b> A and 2 </ b> B are configured to be able to adjust the tilt angle γ in accordance with the adjustment of the tilt angle θ of the camera 1 and satisfy the following expression (1).

γ=tan-1((A×cosθ)/L) ・・・(1)
同式中、Aは、図3(d)に示すように、光源2A、2Bの前面の中心位置とカメラ1の光学中心軸CCLとの距離であり、一定とする。Lは、図3(b)に示すように、管状品10の軸方向におけるカメラ1の前面の中心位置と前記交点Pとの距離である。
γ = tan −1 ((A × cos θ) / L) (1)
In the equation, A is the distance between the center position of the front surfaces of the light sources 2A and 2B and the optical center axis CCL of the camera 1, as shown in FIG. L is the distance between the intersection point P and the center position of the front surface of the camera 1 in the axial direction of the tubular article 10 as shown in FIG.

カメラ1の傾斜角度θおよび光源2A、2Bの傾斜角度γを調整することにより、検査領域11aを管状品10の軸方向に順次移動させることができる。その都度、光源2A、2Bの切り替えを伴うカメラ1による撮像を繰り返し行い、画像処理を実行すれば、軸方向にわたり内表面検査を行うことが可能になる。   By adjusting the tilt angle θ of the camera 1 and the tilt angle γ of the light sources 2A and 2B, the inspection region 11a can be sequentially moved in the axial direction of the tubular article 10. In each case, by repeatedly performing imaging by the camera 1 accompanied by switching between the light sources 2A and 2B and executing image processing, it is possible to perform an inner surface inspection in the axial direction.

このとき、カメラ1は、傾斜角度θの調整に連動するズーム機能を備えるのが好ましい。検査領域11aが管状品10の軸方向に移動するのに伴い、カメラ1の視野が変動するからである。   At this time, it is preferable that the camera 1 has a zoom function linked to the adjustment of the tilt angle θ. This is because the field of view of the camera 1 varies as the inspection region 11a moves in the axial direction of the tubular article 10.

さらに、光源2A、2Bは、傾斜角度γの調整に連動する照度調整機能を備えるのが好ましい。検査領域11aが管状品10の軸方向に移動するのに伴い、検査領域11aへの照度が変動し、カメラ1で取得する画像の輝度が変動するからである。画像の輝度を調整するために、光源2A、2Bの照度調整機能に代えて、カメラ1に絞り調整機能を備えても構わない。   Furthermore, it is preferable that the light sources 2A and 2B have an illuminance adjustment function linked to the adjustment of the inclination angle γ. This is because as the inspection region 11a moves in the axial direction of the tubular article 10, the illuminance to the inspection region 11a varies, and the luminance of the image acquired by the camera 1 varies. In order to adjust the brightness of the image, the camera 1 may be provided with an aperture adjustment function instead of the illuminance adjustment function of the light sources 2A and 2B.

また、本発明では、管状品10は、その中心軸CLを中心に回転可能に構成される。管状品10を回転させることにより、検査領域11aを管状品10の周方向に順次移動させることができる。その都度、光源2A、2Bの切り替えを伴うカメラ1による撮像を繰り返し行い、画像処理を実行すれば、全周にわたり内表面検査を行うことが可能になる。全周にわたり内表面検査を行うために、管状品10の回転に代えて、カメラ1および光源2A、2Bを一体で管状品10の中心軸CLを中心に回転させる構成にすることもできる。   In the present invention, the tubular article 10 is configured to be rotatable about its central axis CL. By rotating the tubular product 10, the inspection region 11 a can be sequentially moved in the circumferential direction of the tubular product 10. In each case, if the imaging by the camera 1 accompanied by switching between the light sources 2A and 2B is repeatedly performed and image processing is executed, the inner surface inspection can be performed over the entire circumference. In order to perform the inner surface inspection over the entire circumference, the camera 1 and the light sources 2A and 2B may be integrally rotated about the central axis CL of the tubular product 10 instead of the rotation of the tubular product 10.

2.検査方法
図4は、本発明の内表面検査方法を説明するための模式図であり、同図(a)は右側光源の照明による撮像状態を、同図(b)は左側光源の照明による撮像状態をそれぞれ示し、同図(c)は同図(a)での画像の一例を、同図(d)は同図(b)での画像の一例をそれぞれ示す。同図(a)〜(d)では、検査領域に凸欠陥と模様が存在する場合を例示する。
2. Inspection Method FIGS. 4A and 4B are schematic diagrams for explaining the inner surface inspection method of the present invention. FIG. 4A shows an imaging state by illumination of the right light source, and FIG. 4B shows imaging by illumination of the left light source. FIG. 4C shows an example of the image in FIG. 4A, and FIG. 4D shows an example of the image in FIG. FIGS. 3A to 3D illustrate cases where convex defects and patterns exist in the inspection area.

図4(a)に示すように、右側光源2Aのみにより検査領域を照明し、カメラ1でその検査領域を撮像する。このとき、検査領域には、凸欠陥5の左側から奥側に延びる影5aが出現する。この場合、カメラ1の画像には、図4(c)に示すように、凸欠陥5と、その凸欠陥5の左側に出現した影5aと、模様7とが現れる。   As shown in FIG. 4A, the inspection area is illuminated only by the right light source 2 </ b> A, and the inspection area is imaged by the camera 1. At this time, a shadow 5a extending from the left side of the convex defect 5 to the back side appears in the inspection region. In this case, as shown in FIG. 4C, a convex defect 5, a shadow 5 a that appears on the left side of the convex defect 5, and a pattern 7 appear in the image of the camera 1.

次に、図4(b)に示すように、光源を切り替えて左側光源2Bのみにより同じ検査領域を照明し、カメラ1でその検査領域を撮像する。このとき、検査領域には、右側光源2Aの照明による場合とは反対に、凸欠陥5の右側から奥側に延びる影5bが出現する。この場合、カメラ1の画像には、図4(d)に示すように、凸欠陥5と、その凸欠陥5の右側に出現した影5bと、模様7とが現れる。   Next, as shown in FIG. 4B, the light source is switched, the same inspection area is illuminated only by the left light source 2 </ b> B, and the inspection area is imaged by the camera 1. At this time, a shadow 5b extending from the right side of the convex defect 5 to the back side appears in the inspection region, contrary to the case of illumination by the right light source 2A. In this case, as shown in FIG. 4D, a convex defect 5, a shadow 5b that appears on the right side of the convex defect 5, and a pattern 7 appear in the image of the camera 1.

そして、右側光源2Aおよび左側光源2Bの照明でそれぞれ得られた2つの画像に対し、下記図5を用いて説明する画像処理を行い、欠陥を検出する。   Then, the image processing described with reference to FIG. 5 below is performed on the two images respectively obtained by illumination of the right light source 2A and the left light source 2B, and a defect is detected.

図5は、本発明の内表面検査方法における画像処理の内容を説明するため、それぞれの画像を凸欠陥、凹欠陥および模様に区分してまとめた図である。同図では、上段から順に、凸欠陥、凹欠陥および模様の各画像を示し、左欄から順に、右側光源による画像、左側光源による画像、およびそれらの両画像の差分画像を示す。   FIG. 5 is a diagram in which each image is divided into a convex defect, a concave defect, and a pattern in order to explain the contents of the image processing in the inner surface inspection method of the present invention. In the figure, images of a convex defect, a concave defect, and a pattern are shown in order from the top, and an image by the right light source, an image by the left light source, and a difference image between these two images are shown in order from the left column.

右側光源および左側光源の照明でそれぞれ得られた2つの画像について、各画素の輝度情報を基に、同一位置の画素間で濃淡の差分を順次演算する。このとき、2つの画像は、同一のカメラを用い照明のみを切り替えて撮像したものであるため、両画像に位置ズレは生じることなく、前記特許文献2の画像処理で必須となる複雑な補正処理は一切不要である。演算により得られた各画素の濃淡差分の絶対値を画像として表すと、図5の右欄に示す画像となる。   For two images respectively obtained by illumination of the right light source and the left light source, the difference in shading between the pixels at the same position is sequentially calculated based on the luminance information of each pixel. At this time, since the two images are images obtained by switching only the illumination using the same camera, there is no positional deviation between the two images, and the complicated correction processing that is essential in the image processing of Patent Document 2 Is absolutely unnecessary. When the absolute value of the grayscale difference of each pixel obtained by the calculation is represented as an image, the image shown in the right column of FIG. 5 is obtained.

凸欠陥5の場合、図5の上段に示すように、凸欠陥5に起因して出現する影5a、5bの部分の画素は、右側照明の画像と左側照明の画像とで濃淡が大きく相違することから、濃淡差分の絶対値が高く、濃くなる。影5a、5bの間に存在する凸欠陥5そのものの部分の画素は、右側照明の画像と左側照明の画像とで同等に薄いことから、濃淡差分の絶対値が低く、薄くなる。   In the case of the convex defect 5, as shown in the upper part of FIG. 5, the pixels of the shadows 5a and 5b appearing due to the convex defect 5 are greatly different in density between the right illumination image and the left illumination image. Therefore, the absolute value of the light / dark difference is high and dark. Since the pixels of the convex defect 5 itself existing between the shadows 5a and 5b are equally thin in the right illumination image and the left illumination image, the absolute value of the density difference is low and thin.

このため、濃淡差分の閾値を設定することにより、閾値を超える部分は影5a、5bと認識することができ、影5a、5bを出現させる凸欠陥5を検出することが可能になる。このとき、差分画像における影5a、5bの部分に隣接する画素、すなわち影5a、5bの間の手前側に存在する画素(図5中の符号「5c」で示す部分)について、元画像における濃淡が薄ければ、その欠陥が凸欠陥であると確実に判定することができる。   For this reason, by setting the threshold value of the light and shade difference, the portion exceeding the threshold value can be recognized as the shadows 5a and 5b, and the convex defect 5 in which the shadows 5a and 5b appear can be detected. At this time, for the pixels adjacent to the shadows 5a and 5b in the difference image, that is, the pixels existing on the near side between the shadows 5a and 5b (the part indicated by the reference numeral “5c” in FIG. 5), the shading in the original image is light. If so, the defect can be reliably determined to be a convex defect.

凹欠陥6の場合、図5の中段に示すように、右側照明により凹欠陥6の内部の手前側から右側にわたり影6aが出現し、左側照明により凹欠陥6の内部の手前側から左側にわたり影6bが出現する。   In the case of the concave defect 6, as shown in the middle of FIG. 5, a shadow 6a appears from the front side to the right side inside the concave defect 6 by the right side illumination, and a shadow from the near side to the left side inside the concave defect 6 by the left side illumination. 6b appears.

凹欠陥6に起因して出現する影6a、6bの部分の画素は、手前側の部分を除き、右側照明の画像と左側照明の画像とで濃淡が大きく相違することから、濃淡差分の絶対値が高く、濃くなる。その影6a、6bの手前側部分6cの画素は、右側照明の画像と左側照明の画像とで同等に濃いことから、濃淡差分の絶対値が低く、薄くなる。凹欠陥6の内部で影6a、6bの存在しない部分の画素は、右側照明の画像と左側照明の画像とで同等に薄いことから、濃淡差分の絶対値が低く、薄くなる。   Since the pixels of the shadows 6a and 6b appearing due to the concave defect 6 are greatly different in density between the right side illumination image and the left side illumination image except for the near side part, the absolute value of the density difference Is high and dark. Since the pixels in the front side portion 6c of the shadows 6a and 6b are equally dark in the right side illumination image and the left side illumination image, the absolute value of the density difference is low and light. Since the pixels of the portion where the shadows 6a and 6b do not exist inside the concave defect 6 are equally thin in the right illumination image and the left illumination image, the absolute value of the density difference is low and thin.

このため、閾値を超える部分は影6a、6bと認識することができ、影6a、6bを出現させる凹欠陥6を検出することが可能になる。このとき、差分画像における影6a、6bの部分に隣接する画素、すなわち元画像で影6a、6bの下部に存在する画素(図5中の符号「6c」で示す部分)について、元画像における濃淡が濃ければ、その欠陥が凹欠陥であると確実に判定することができる。   For this reason, the part exceeding a threshold value can be recognized as shadow 6a, 6b, and it becomes possible to detect the concave defect 6 which makes shadow 6a, 6b appear. At this time, with respect to the pixels adjacent to the shadows 6a and 6b in the difference image, that is, the pixels existing in the lower part of the shadows 6a and 6b in the original image (portions indicated by reference numeral “6c” in FIG. 5), If it is dark, it can be reliably determined that the defect is a concave defect.

模様7の場合、図5の下段に示すように、影は出現しない。模様7の部分の画素は、右側照明の画像と左側照明の画像とで濃淡が同等であることから、濃淡差分の絶対値が低く、閾値を超えない。このため、模様7は欠陥と判定されない。   In the case of the pattern 7, no shadow appears as shown in the lower part of FIG. Since the pixels of the pattern 7 have the same shade in the right illumination image and the left illumination image, the absolute value of the shade difference is low and does not exceed the threshold value. For this reason, the pattern 7 is not determined as a defect.

このように、本発明の内表面検査方法では、各光源からの照明でカメラによる撮像を行い、両画像を画像処理し、凹凸欠陥に起因して出現する影を評価することにより、凹凸欠陥と模様を確実に判別することができる。   As described above, in the inner surface inspection method of the present invention, imaging with a camera is performed with illumination from each light source, both images are image-processed, and the shadow appearing due to the irregular defect is evaluated, thereby determining the irregular defect. The pattern can be reliably identified.

また、管状品の一方の開口端の外部にカメラおよび一対の光源を集約して設置するため、カメラおよび光源の設置スペースを最小限に抑えることができる。   In addition, since the camera and the pair of light sources are collectively installed outside the one open end of the tubular product, the installation space for the camera and the light source can be minimized.

図6は、本発明の内表面検査方法で採用する画像処理において、凸欠陥の大きさを算出する手法を説明するための模式図である。例えば、凸欠陥5の高さhは、下記(2)式により簡易的に算出することができる。   FIG. 6 is a schematic diagram for explaining a technique for calculating the size of the convex defect in the image processing employed in the inner surface inspection method of the present invention. For example, the height h of the convex defect 5 can be simply calculated by the following equation (2).

h=l/tanα ・・・(2)
同式中、lは、凸欠陥5に起因する影5a、5bの実長さであり、下記(3)式により求まる。αは、前記図3(b)に示すように、側面視における光源2A、2Bの光中心軸LCLの傾斜角度である。
h = l / tan α (2)
In the equation, l is the actual length of the shadows 5a and 5b caused by the convex defect 5, and is obtained by the following equation (3). As shown in FIG. 3B, α is an inclination angle of the optical center axis LCL of the light sources 2A and 2B in side view.

l=((X/2)2+(Y/sinθ)21/2 ・・・(3)
同式中、Xは、図6に示すように、差分画像で影5a、5bの画素が分布する全域の横方向長さであり、Yは、差分画像で影5a、5bが分布する全域の縦方向長さである。ここでいう横方向長さとは、管状品の周方向に対応する長さを意味し、縦方向長さとは、その軸方向に対応する長さを意味する。θは、前記図3(b)に示すように、カメラ1の光学中心軸CCLの傾斜角度である。
l = ((X / 2) 2 + (Y / sin θ) 2 ) 1/2 (3)
In the equation, as shown in FIG. 6, X is the horizontal length of the whole area where the pixels of the shadows 5a and 5b are distributed in the difference image, and Y is the whole area where the shadows 5a and 5b are distributed in the difference image. It is the length in the vertical direction. Here, the lateral length means a length corresponding to the circumferential direction of the tubular product, and the longitudinal length means a length corresponding to the axial direction. θ is an inclination angle of the optical center axis CCL of the camera 1 as shown in FIG.

上記(2)式および(3)式により、凸欠陥5の高さhを簡易的に求めることができ、当該凸欠陥5の大きさを算出することができる。   From the above equations (2) and (3), the height h of the convex defect 5 can be easily obtained, and the size of the convex defect 5 can be calculated.

以上説明した画像処理は、カメラ1に接続したコンピュータで実行される。   The image processing described above is executed by a computer connected to the camera 1.

その他、本発明は、上記の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。例えば、カメラの高さ位置は、管状品の内表面が臨める範囲内であれば限定はない。ただし、管状品の奥側まで精度よく検査するには、カメラの光学中心軸の傾斜角度を大きく確保するのが有効であり、このため、カメラの高さ位置は、管状品の中心軸よりも高い位置に設定するのが好ましい。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, the height position of the camera is not limited as long as the inner surface of the tubular product can be viewed. However, in order to accurately inspect the inner side of the tubular product, it is effective to secure a large tilt angle of the optical center axis of the camera. Therefore, the height position of the camera is higher than the central axis of the tubular product. It is preferable to set a high position.

また、管状品の開口端近傍の内表面を検査する際、開口端面で照明が反射することに起因して、検査領域の画像に濃淡差が生じなくなるおそれがある。これを回避するため、管状品の開口端にラッパ状のカバーを装着して検査を行うことができる。   Further, when inspecting the inner surface in the vicinity of the opening end of the tubular article, there is a possibility that the difference in density does not occur in the image in the inspection region due to the reflection of the illumination at the opening end surface. In order to avoid this, a trumpet-shaped cover can be attached to the open end of the tubular product for inspection.

本発明の管状品の内表面検査方法によれば、各光源からの照明でカメラによる撮像を行い、両画像を画像処理し、凹凸欠陥に起因して出現する影を評価することにより、凹凸欠陥と模様を確実に判別し、凹凸欠陥のみを検出することができる。しかも、管状品の一方の開口端の外部にカメラおよび一対の光源を集約して設置するため、カメラおよび光源の設置スペースを最小限に抑えることができる。   According to the method for inspecting the inner surface of a tubular article of the present invention, by performing imaging with a camera with illumination from each light source, performing image processing on both images, and evaluating the shadow that appears due to the irregular defect, the irregular defect And the pattern can be reliably discriminated and only the irregularity defect can be detected. In addition, since the camera and the pair of light sources are collectively installed outside the one opening end of the tubular product, the installation space for the camera and the light source can be minimized.

1:カメラ、 2A、2B:光源、
5:凸欠陥、 5a、5b:凸欠陥の影、 5c:凸欠陥の手前側部、
6:凹欠陥、 6a、6b:凹欠陥の影、 6c:凹欠陥の影の手前側部、
7:模様、 10:管状品、 11:内表面、 11a:検査領域、
CL:管状品の中心軸、 CCL:カメラの光学中心軸、
LCL:光源の光中心軸
1: camera, 2A, 2B: light source,
5: convex defect, 5a, 5b: shadow of convex defect, 5c: near side of convex defect,
6: concave defect, 6a, 6b: shadow of concave defect, 6c: front side of shadow of concave defect,
7: Pattern, 10: Tubular product, 11: Inner surface, 11a: Inspection area,
CL: the central axis of the tubular product, CCL: the optical central axis of the camera,
LCL: Optical center axis of the light source

Claims (4)

管状品の内表面を検査する内表面検査方法であって、
前記管状品の中心軸に対して傾斜した光学中心軸を有し、前記管状品の開口端から前記管状品の内表面の所定領域を撮像するカメラと、
前記カメラの光学中心軸および前記管状品の中心軸を含む面を挟んで対称に配置され、前記開口端から前記所定領域を照明する一対の光源と、を用い、
前記光源からの照明を順に切り替えて同一の前記所定領域を前記カメラにより撮像し、それぞれの画像の同一画素間で濃淡の差分を演算し、その濃淡差分の情報に基づいて、凹凸欠陥により出現した影を認識し凹凸欠陥を検出することを特徴とする内表面検査方法。
An inner surface inspection method for inspecting an inner surface of a tubular article,
A camera having an optical central axis inclined with respect to the central axis of the tubular article, and imaging a predetermined region of the inner surface of the tubular article from an open end of the tubular article;
A pair of light sources that are arranged symmetrically across a plane including the optical central axis of the camera and the central axis of the tubular product, and illuminate the predetermined area from the opening end,
The illumination from the light source is switched in order and the same predetermined area is imaged by the camera, and a light / dark difference is calculated between the same pixels of each image. Based on the light / dark difference information, an irregular defect appears. An inner surface inspection method characterized by recognizing a shadow and detecting an uneven defect.
前記管状品の中心軸を中心に前記カメラおよび前記光源を相対的に回転させるとともに、前記管状品の中心軸に対する前記カメラおよび前記光源の傾斜角度を調整して、前記光源の切り替えを伴う前記カメラによる撮像を繰り返し行い、凹凸欠陥を検出することを特徴とする請求項1に記載の内表面検査方法。   The camera and the light source are switched by rotating the camera and the light source relative to each other about the central axis of the tubular product, and adjusting an inclination angle of the camera and the light source with respect to the central axis of the tubular product. The inner surface inspection method according to claim 1, wherein the imaging is repeatedly performed to detect a concavo-convex defect. 影と認識された画素に隣接する画素の元画像での濃淡に基づいて、凸欠陥と凹欠陥を判別することを特徴とする請求項1または2に記載の内表面検査方法。   3. The inner surface inspection method according to claim 1, wherein a convex defect and a concave defect are discriminated based on shading in an original image of a pixel adjacent to a pixel recognized as a shadow. 影と認識された画素の分布域に基づいて、欠陥の大きさを算出することを特徴とする請求項3に記載の内表面検査方法。   The inner surface inspection method according to claim 3, wherein the size of the defect is calculated based on a distribution area of pixels recognized as a shadow.
JP2009068668A 2009-03-19 2009-03-19 Inner surface inspection method of tubular article Pending JP2010223621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068668A JP2010223621A (en) 2009-03-19 2009-03-19 Inner surface inspection method of tubular article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009068668A JP2010223621A (en) 2009-03-19 2009-03-19 Inner surface inspection method of tubular article

Publications (1)

Publication Number Publication Date
JP2010223621A true JP2010223621A (en) 2010-10-07

Family

ID=43040979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068668A Pending JP2010223621A (en) 2009-03-19 2009-03-19 Inner surface inspection method of tubular article

Country Status (1)

Country Link
JP (1) JP2010223621A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098929A1 (en) * 2013-12-27 2015-07-02 Jfeスチール株式会社 Surface defect detection method and surface defect detection device
JP2015125089A (en) * 2013-12-27 2015-07-06 Jfeスチール株式会社 Surface defect detection method and surface defect detection apparatus
JP2015152389A (en) * 2014-02-13 2015-08-24 アイシン精機株式会社 Defect determination device and defect determination method
JP2015210150A (en) * 2014-04-25 2015-11-24 Jfeスチール株式会社 Method and device for detecting surface defect
JP2015210151A (en) * 2014-04-25 2015-11-24 Jfeスチール株式会社 Method and device for detecting surface defect
DE102015209455A1 (en) * 2015-05-22 2016-11-24 Sac Sirius Advanced Cybernetics Gmbh Apparatus and method for the optical detection of inner walls
JP2016224069A (en) * 2016-09-02 2016-12-28 Jfeスチール株式会社 Surface defect detection method and surface defect detection apparatus
WO2016208626A1 (en) * 2015-06-25 2016-12-29 Jfeスチール株式会社 Surface flaw detection method, surface flaw detection device, and manufacturing method for steel material
WO2016208622A1 (en) * 2015-06-25 2016-12-29 Jfeスチール株式会社 Surface defect detection apparatus and surface defect detection method
WO2016208606A1 (en) * 2015-06-25 2016-12-29 Jfeスチール株式会社 Surface flaw detection device, surface flaw detection method, and manufacturing method for steel material
JP2017009522A (en) * 2015-06-25 2017-01-12 Jfeスチール株式会社 Surface defect detection method, surface defect detection device, and method of manufacturing steel
JP2017009523A (en) * 2015-06-25 2017-01-12 Jfeスチール株式会社 Surface defect detection method, surface defect detection device, and method of manufacturing steel
JP2017146248A (en) * 2016-02-19 2017-08-24 株式会社Screenホールディングス Defect detection device, defect detection method, and program
JP2019066371A (en) * 2017-10-03 2019-04-25 株式会社豊田中央研究所 Observation device and image analysis processing control program
CN109765183A (en) * 2019-03-28 2019-05-17 青岛海鼎通讯技术有限公司 A kind of Mobile phone screen detection device and its application method
WO2020110667A1 (en) * 2018-11-30 2020-06-04 Jfeスチール株式会社 Surface defect detecting method, surface defect detecting device, method for manufacturing steel material, steel material quality control method, steel material manufacturing equipment, method for creating surface defect determination model, and surface defect determination model
US11216936B2 (en) 2016-02-19 2022-01-04 SCREEN Holdings Co., Ltd. Defect detection device, defect detection method, and program
CN115375676A (en) * 2022-10-24 2022-11-22 微山三利特不锈钢有限公司 Stainless steel product quality detection method based on image recognition
CN118209559A (en) * 2024-04-29 2024-06-18 合肥华炫达金属科技有限公司 Metal appearance defect identification system and method based on computer vision

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10705027B2 (en) 2013-12-27 2020-07-07 Jfe Steel Corporation Surface defect detecting method and surface defect detecting apparatus
JP2015125089A (en) * 2013-12-27 2015-07-06 Jfeスチール株式会社 Surface defect detection method and surface defect detection apparatus
EP3088874A4 (en) * 2013-12-27 2017-05-17 JFE Steel Corporation Surface defect detection method and surface defect detection device
KR101832081B1 (en) * 2013-12-27 2018-02-23 제이에프이 스틸 가부시키가이샤 Surface defect detection method and surface defect detection device
EP3088874A1 (en) * 2013-12-27 2016-11-02 JFE Steel Corporation Surface defect detection method and surface defect detection device
US10180401B2 (en) 2013-12-27 2019-01-15 Jfe Steel Corporation Surface defect detecting method and surface defect detecting apparatus
WO2015098929A1 (en) * 2013-12-27 2015-07-02 Jfeスチール株式会社 Surface defect detection method and surface defect detection device
JP2015152389A (en) * 2014-02-13 2015-08-24 アイシン精機株式会社 Defect determination device and defect determination method
JP2015210150A (en) * 2014-04-25 2015-11-24 Jfeスチール株式会社 Method and device for detecting surface defect
JP2015210151A (en) * 2014-04-25 2015-11-24 Jfeスチール株式会社 Method and device for detecting surface defect
US10914687B2 (en) 2015-05-22 2021-02-09 Sac Sirius Advanced Cybernetics Gmbh Apparatus and method for the optical detection of inner walls
DE102015209455A1 (en) * 2015-05-22 2016-11-24 Sac Sirius Advanced Cybernetics Gmbh Apparatus and method for the optical detection of inner walls
CN107660266A (en) * 2015-05-22 2018-02-02 萨科希瑞斯先进控制有限公司 Apparatus and method for inwall optical detection
WO2016208622A1 (en) * 2015-06-25 2016-12-29 Jfeスチール株式会社 Surface defect detection apparatus and surface defect detection method
WO2016208606A1 (en) * 2015-06-25 2016-12-29 Jfeスチール株式会社 Surface flaw detection device, surface flaw detection method, and manufacturing method for steel material
JPWO2016208626A1 (en) * 2015-06-25 2017-06-29 Jfeスチール株式会社 Surface defect detection method, surface defect detection apparatus, and steel material manufacturing method
JPWO2016208606A1 (en) * 2015-06-25 2017-06-29 Jfeスチール株式会社 Surface defect detection apparatus, surface defect detection method, and steel material manufacturing method
WO2016208626A1 (en) * 2015-06-25 2016-12-29 Jfeスチール株式会社 Surface flaw detection method, surface flaw detection device, and manufacturing method for steel material
JP2017009523A (en) * 2015-06-25 2017-01-12 Jfeスチール株式会社 Surface defect detection method, surface defect detection device, and method of manufacturing steel
CN107709977A (en) * 2015-06-25 2018-02-16 杰富意钢铁株式会社 Surface defect detection device and surface defect detection method
JP2017009522A (en) * 2015-06-25 2017-01-12 Jfeスチール株式会社 Surface defect detection method, surface defect detection device, and method of manufacturing steel
EP3315952A4 (en) * 2015-06-25 2018-06-13 JFE Steel Corporation Surface flaw detection method, surface flaw detection device, and manufacturing method for steel material
EP3315950A4 (en) * 2015-06-25 2018-12-19 JFE Steel Corporation Surface flaw detection device, surface flaw detection method, and manufacturing method for steel material
EP3315951A4 (en) * 2015-06-25 2018-12-26 JFE Steel Corporation Surface defect detection apparatus and surface defect detection method
JP6079948B1 (en) * 2015-06-25 2017-02-15 Jfeスチール株式会社 Surface defect detection device and surface defect detection method
JP2017146248A (en) * 2016-02-19 2017-08-24 株式会社Screenホールディングス Defect detection device, defect detection method, and program
US11216936B2 (en) 2016-02-19 2022-01-04 SCREEN Holdings Co., Ltd. Defect detection device, defect detection method, and program
JP2016224069A (en) * 2016-09-02 2016-12-28 Jfeスチール株式会社 Surface defect detection method and surface defect detection apparatus
JP2019066371A (en) * 2017-10-03 2019-04-25 株式会社豊田中央研究所 Observation device and image analysis processing control program
WO2020110667A1 (en) * 2018-11-30 2020-06-04 Jfeスチール株式会社 Surface defect detecting method, surface defect detecting device, method for manufacturing steel material, steel material quality control method, steel material manufacturing equipment, method for creating surface defect determination model, and surface defect determination model
JP6753553B1 (en) * 2018-11-30 2020-09-09 Jfeスチール株式会社 Surface defect detection method, surface defect detection device, steel material manufacturing method, steel material quality control method, steel material manufacturing equipment, surface defect judgment model generation method, and surface defect judgment model
CN113196040A (en) * 2018-11-30 2021-07-30 杰富意钢铁株式会社 Surface defect detection method, surface defect detection device, steel product manufacturing method, steel product quality management method, steel product manufacturing facility, surface defect determination model generation method, and surface defect determination model
CN109765183A (en) * 2019-03-28 2019-05-17 青岛海鼎通讯技术有限公司 A kind of Mobile phone screen detection device and its application method
CN109765183B (en) * 2019-03-28 2023-11-24 青岛海鼎通讯技术有限公司 Mobile phone screen detection device and application method thereof
CN115375676A (en) * 2022-10-24 2022-11-22 微山三利特不锈钢有限公司 Stainless steel product quality detection method based on image recognition
CN118209559A (en) * 2024-04-29 2024-06-18 合肥华炫达金属科技有限公司 Metal appearance defect identification system and method based on computer vision

Similar Documents

Publication Publication Date Title
JP2010223621A (en) Inner surface inspection method of tubular article
KR101951576B1 (en) Inspection device and inspection method
US7924418B2 (en) Inspection apparatus and method
JP2011089826A (en) Internal surface defect inspection apparatus of screw hole or hole
JP6772084B2 (en) Surface defect inspection equipment and surface defect inspection method
KR100742003B1 (en) Surface defect inspecting method and device
JP2007183225A (en) Light radiation device, surface shape inspection system, and surface shape inspection method
JP2017040510A (en) Inspection apparatus, inspection method, and object manufacturing method
JP2007212283A (en) Visual inspection device and visual inspection method
JP2012026858A (en) Device for inspecting inner peripheral surface of cylindrical container
JP2009097977A (en) Visual inspection device
JP2008025990A (en) Method and apparatus for detecting surface flaw of steel strip
JP2012037425A (en) Method for inspecting polycrystal silicon wafer and device thereof
JP2008286646A (en) Surface flaw inspection device
JP5509465B2 (en) Glass bottle inspection equipment
JP2008026149A (en) Visual examination device
JP5948974B2 (en) Surface defect inspection equipment
JP6605772B1 (en) Defect inspection apparatus and defect inspection method
JP7011348B2 (en) Foreign matter inspection device and foreign matter inspection method
JP7299388B2 (en) Defect judgment device for the outer surface of iron pipes
JP4794383B2 (en) Rubber hose appearance inspection device
JP2004361085A (en) Visual examination device
JP2007271510A (en) Visual inspection method and visual inspection device
JP7111370B2 (en) Defect inspection method
JP5360467B2 (en) Defect inspection equipment