[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6112154B2 - 製鉄所の製造設備列及び熱電発電方法 - Google Patents

製鉄所の製造設備列及び熱電発電方法 Download PDF

Info

Publication number
JP6112154B2
JP6112154B2 JP2015154749A JP2015154749A JP6112154B2 JP 6112154 B2 JP6112154 B2 JP 6112154B2 JP 2015154749 A JP2015154749 A JP 2015154749A JP 2015154749 A JP2015154749 A JP 2015154749A JP 6112154 B2 JP6112154 B2 JP 6112154B2
Authority
JP
Japan
Prior art keywords
slab
power generation
thermoelectric power
heat storage
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015154749A
Other languages
English (en)
Other versions
JP2016059260A (ja
Inventor
純仁 小澤
純仁 小澤
高志 黒木
高志 黒木
壁矢 和久
和久 壁矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2016059260A publication Critical patent/JP2016059260A/ja
Application granted granted Critical
Publication of JP6112154B2 publication Critical patent/JP6112154B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋼材が有する熱エネルギーを電気エネルギーに変換する1つ又は複数の熱電発電装置を備える製鉄所の製造設備列及びこの製造設備列を利用した熱電発電方法に関する。
異種の導体又は半導体間に温度差を与えると起電力が生じることはゼーベック効果として古くから知られており、ゼーベック効果を利用して熱エネルギーを電気エネルギーに変換する熱電発電素子が提案されている。一方、近年、製鉄工場等の製造設備では、熱電発電素子を利用してこれまで廃熱として棄てられていた熱エネルギーを電気エネルギーとして回収する取り組みが推進されている。
このような背景から、特許文献1には、高温物体に相対峙させて受熱装置を配置し、受熱装置を利用して高温物体が有する熱エネルギーを電気エネルギーに変換して回収する熱電発電方法が提案されている。また、特許文献2には、廃熱として処理されている熱エネルギーに熱電素子モジュールを接触させることによって熱エネルギーを電気エネルギーに変換して回収する熱電発電方法が提案されている。
特開昭59−198883号公報 特開昭60−34084号公報
特許文献1には、特許文献1記載の熱電発電方法をスラブの鋳造ラインに適用できる旨の記載がある。しかしながら、特許文献1記載の熱電発電方法では、実操業におけるスラブの温度変化や処理量の変動に伴う熱源の放出熱量の変動等、操業条件の変動に伴う熱源の放出熱量の変化は考慮されていない。このため、特許文献1記載の熱電発電方法をスラブの鋳造ラインに適用することは困難である。また、特許文献2記載の熱電発電方法では、熱電素子モジュールを熱源に対して固定する必要があるために、連続鋳造設備のように移動する熱源から熱エネルギーを回収することはできない。
連続鋳造工程においてスラブが有する熱エネルギーを電気エネルギーに変換して回収する場合には、以下の点に注意する必要がある。第一に、最終製品に要求される性能を満足するためにスラブの冷却温度はスラブ毎に異なることから、熱電発電装置の設置場所におけるスラブの温度が変動する点である。第二に、最終製品の大きさに応じてスラブの幅が変化する点である。
熱電発電装置には、最大出力が得られる温度だけでなく耐久温度も決められており、耐久温度以上の熱が加わった場合、熱電発電装置は故障してしまう。しかしながら、熱電発電装置の故障を抑制するためにスラブの温度が高い場合やスラブの幅が大きい場合を基準として熱電発電装置の設置場所を決めてしまうと、スラブの温度が低い場合やスラブの幅が狭い場合、熱電発電装置の性能を十分に利用して熱エネルギーを効率的に回収することができない。
これに対して、熱エネルギーの回収効率を考慮してスラブの温度が低い場合やスラブの幅が狭い場合を基準として熱電発電装置の設置場所を決めてしまうと、スラブの温度が高い場合やスラブの幅が広い場合、熱電発電装置に耐久温度以上の熱がかかることによって、熱電発電装置が故障してしまう可能性がある。
なお、このような課題を解決するために、スラブの幅方向に配列された複数の熱電発電素子によって熱電発電装置を構成し、スラブの温度や幅に応じて複数の熱電発電素子の高さを互いに独立に制御する方法を用いることが考えられる。しかしながら、この方法を用いた場合には、制御が複雑になる上に設備費も高くなる。
本発明は、上記課題に鑑みてなされたものであって、その目的は、複雑な制御を用いることなく、鋼材が有する熱エネルギーを効率的、且つ、安価に回収可能な製鉄所の製造設備列及び熱電発電方法を提供することにある。
本発明に係る製鉄所の製造設備列は、鋼材が有する熱エネルギーを電気エネルギーに変換する1つ又は複数の熱電発電装置を備える製鉄所の製造設備列であって、前記熱電発電装置は、鋼材の熱を蓄熱可能な位置に配置された蓄熱板と、前記鋼材の幅方向に配列され、前記蓄熱板に対向配置された複数の熱電発電モジュールを備え、該複数の熱電発電モジュールを利用して前記蓄熱板が蓄熱した熱を電力に変換する熱電発電ユニットと、を備えることを特徴とする。
本発明に係る製鉄所の製造設備列は、上記発明において、前記蓄熱板及び前記熱電発電ユニットの少なくとも一方を前記鋼材に対して相対的に移動する移動手段と、前記鋼材の幅及び/又は温度に応じて、前記移動手段を制御することによって前記鋼材と前記蓄熱板及び前記熱電発電ユニットの少なくとも一方との間の距離を変化させる制御手段と、を備えることを特徴とする。
本発明に係る製鉄所の製造設備列は、上記発明において、前記蓄熱板を冷却する冷却手段と、前記鋼材の幅及び/又は温度に応じて、前記冷却手段を制御することによって前記蓄熱板の冷却量を変化させる制御手段と、を備えることを特徴とする。
本発明に係る製鉄所の製造設備列は、上記発明において、前記鋼材の幅方向における前記蓄熱板の長さが前記鋼材の最大幅以上であるであることを特徴とする。
本発明に係る製鉄所の製造設備列は、上記発明において、前記鋼材の鋳造方向における前記蓄熱板の長さが前記鋼材の鋳造方向における前記熱電発電モジュールの長さ以上であることを特徴とする。
本発明に係る製鉄所の製造設備列は、上記発明において、前記蓄熱板が、金属材料、ステンレス、及び無機材料のうちのいずれかの材料によって形成されていることを特徴とする。
本発明に係る製鉄所の製造設備列は、上記発明において、前記製造設備列が、スラブ冷却装置とスラブ切断装置とを備えたスラブを連続鋳造する連続鋳造設備列であり、前記熱電発電装置は、前記スラブ冷却装置と前記スラブ切断装置との間、前記スラブ切断装置の下面、及び前記スラブ切断装置の出側のうちの少なくとも一つの位置に配置され、前記鋼材がスラブであることを特徴とする。
本発明に係る熱電発電方法は、本発明に係る製鉄所の製造設備列を用いて前記鋼材の熱を受熱して熱電発電を行うことを特徴とする。
本発明に係る製鉄所の製造設備列及び熱電発電方法によれば、複雑な制御を用いることなく、鋼材が有する熱エネルギーを効率的、且つ、安価に回収することができる。
図1は、本発明の一実施形態である連続鋳造設備列の構成を示す模式図である。 図2は、本発明の一実施形態である熱電発電装置の構成を示す平面図である。 図3は、図2に示す熱電発電モジュールの構成を示す模式図である。 図4は、本発明の第1の実施形態である制御系の構成を示すブロック図である。 図5は、スラブの幅の変化に伴う蓄熱板の位置の変化を示す模式図である。 図6は、スラブの幅の変化に伴う熱電発電モジュールの出力の変化を示す図である。 図7は、本発明の第2の実施形態である制御系の構成を示すブロック図である。 図8は、スラブの幅の変化に伴うスラブの冷却量の変化を示す模式図である。 図9は、熱間圧延設備の構成を示す模式図である。
本発明は、例えばスラブ冷却装置とスラブ切断装置とを備えたスラブを連続鋳造する連続鋳造設備列等の、鋼材が有する熱エネルギーを電気エネルギーに変換する1つ又は複数の熱電発電装置を備える製鉄所の製造設備列に適用することができる。本発明を適用可能な製鉄所の製造設備列としては、熱延鋼板を製造する熱間圧延設備列も考えられるが、スラブは加熱炉から不連続的に抽出されるために、熱源が一定の条件とならない。このため、本発明は、熱源であるスラブが連続的に鋳造される連続鋳造設備列に適用することが望ましい。
以下、図面を参照して、本発明の一実施形態である連続鋳造設備列について詳細に説明する。
〔連続鋳造設備列の構成〕
始めに、図1を参照して、本発明の一実施形態である連続鋳造設備列の構成について説明する。図1は、本発明の一実施形態である連続鋳造設備列の構成を示す模式図である。
図1に示すように、本発明の一実施形態である連続鋳造設備列1は、取鍋2、タンディッシュ3、鋳型4、スラブ冷却装置5、ローラ群6、スラブ切断装置7、及びダミーバーテーブル8を備えている。この連続鋳造設備列1を用いてスラブを製造する際には、始めに、溶鋼が入れられた取鍋2が連続鋳造設備列1の最上部に運ばれる。次に、鋳型4内にダミーバーを装入した後、タンディッシュ3の底部から鋳型4内に溶鋼が注がれる。鋳型4に接触した溶鋼は、表面から凝固し、スラブ冷却装置5によって冷却された後にロール群6によって搬送されてスラブとなる。この際、ダミーバーは、ダミーバーテーブル8によって回収される。その後、スラブは、スラブ切断装置7によって所定の長さに切断される。
このような構成を有する連続鋳造設備列1は、スラブが有する熱エネルギーを電気エネルギーに変換して回収するために、熱電発電装置を備えている。以下、図2,図3を参照して、本発明の一実施形態である熱電発電装置の構成について説明する。
〔熱電発電装置の構成〕
図2は、本発明の一実施形態である熱電発電装置の構成を示す平面図である。図3は、図2に示す熱電発電モジュールの構成を示す模式図である。
本発明の一実施形態である熱電発電装置100は、図1に示す領域R、すなわちスラブ冷却装置5とスラブ切断装置7との間、スラブ切断装置7の下面、及びスラブ切断装置7の出側のうちの少なくとも一つの位置に配置されている。
図2に示すように、本発明の一実施形態である熱電発電装置100は、蓄熱板101と、熱電発電ユニット102と、を主な構成要素として備えている。
蓄熱板101は、金属材料、ステンレス、無機材料等の蓄熱可能な部材によって形成され、スラブSに対峙する位置等のスラブSが放出した熱を蓄熱可能な位置に配置されている。なお、熱間発電装置100がスラブ切断装置7の下面等のスラブSが滞留する位置に配置されている場合には、より多くの熱を蓄熱可能なように蓄熱板101は耐火物等の無機材料によって形成されていることが望ましい。
蓄熱板101の鋳造方向と直交する方向(スラブSの幅方向)の長さL1は、連続鋳造設備列1において製造されるスラブSの最小幅以上、本実施形態ではスラブSの最大幅W以上の長さに設計されている。これにより、連続鋳造設備列1において製造される全てのスラブSについて、スラブSの幅方向端部からの熱も蓄熱することができる。また、蓄熱板101の幅(鋳造方向の長さ)W1は、熱電発電ユニット102の鋳造方向の長さW2以上の長さに設計されている。
熱電発電ユニット102は、スラブSの幅方向に沿って配列された複数の熱電発電モジュール102a〜fによって構成され、蓄熱板101に対峙する位置等の蓄熱板101に蓄熱された熱を吸収可能な位置に配置されている。図3に示すように、熱電発電モジュール102a〜fは、熱電素子111であるP型及びN型の半導体を数十〜数百対の電極112で接続した熱電素子群を二次元的に配列することによって構成されており、電極112の外側には絶縁体113が配置されている。
蓄熱板101に蓄熱された熱を吸収する側の絶縁体113表面には受熱手段114が配置され、反対側の絶縁体113表面には放熱手段115が配置されている。なお、熱電発電モジュール102a〜fの両側又は片側に熱伝導シートや保護板を設け、熱伝導シートや保護板を受熱手段114や放熱手段115として利用してもよい。また、受熱手段114及び/又は放熱手段115が絶縁体や表面に絶縁体が被覆された部材である場合、受熱手段114及び/又は放熱手段115を絶縁体113の代替としてもよい。
蓄熱板101に蓄熱された熱を吸収する際の受熱手段114の温度は、材質にもよるが、熱電素子111の高温側の温度より数度から数十度、場合によっては数百度程度高くなる。このため、受熱手段114は、その温度において耐熱性や耐久性を有する材料によって形成されている。例えば、受熱手段114は、銅や銅合金、アルミニウム、アルミニウム合金、セラミックスの他、一般的な鉄鋼材料によって形成されている。
放熱手段115としては、フィンを具備した冷却デバイス、接触熱伝達を活用した水冷デバイス、沸騰熱伝達を活用したヒートシンク、冷媒流路を有した水冷板等を利用することができる。また、放熱手段115の低温側をスプレー冷却等によって水冷することにより、熱電発電モジュール102a〜fの低温側を効率よく冷却できる。
特に熱電発電モジュール102a〜fをスラブSの下方に設置する場合、スプレー冷却を適用しても、スプレーを適切に配置すれば、残水はテーブル下に落下するので、スラブSの加熱面を冷却することなく、熱電発電モジュール102a〜fの低温側は効率よく冷却される。スプレー冷却を行う場合には、スプレー冷媒が接触して冷却される側が放熱手段となる。
なお、受熱手段114と絶縁体113との間、絶縁体113と放熱手段115との間、絶縁体113と保護板との間等の位置に、部材同士の熱接触抵抗を低減し、熱電発電効率の一層の向上を図るために、熱伝導シートを配置してもよい。熱伝導シートとしては、所定の熱伝導率を有し、熱電素子111の使用環境下で用いることができるシートであれば特に制限はないが、グラファイトシート等を例示することができる。
また、熱電発電モジュール102a〜fの大きさは、1×10−2[m]以下、より好ましくは2.5×10−3[m]以下とすることが望ましい。熱電発電モジュール102a〜fの大きさを上述の大きさ程度とすることによって熱電発電モジュール102a〜fの変形を抑制できる。熱電発電ユニット102の大きさは、1[m]以下、より好ましく2.5×10−1[m]以下とすることが望ましい。熱電発電ユニット102の大きさを1[m]以下とすることによって熱電発電モジュール102a〜fの相互間や熱電発電モジュール102a〜f自体の変形を抑制できる。
また、この熱電発電装置100では、スラブSと熱電発電ユニット102との間に蓄熱板101が配置されているので、熱電発電ユニット102から何らかの部品が落下した場合であっても、落下した部品によってスラブSに傷が付き、欠陥品となることを抑制できる。
〔制御系の構成〕
次に、上記熱電発電装置100の制御系の構成について説明する。
〔第1の実施形態〕
始めに、図4〜図6を参照して、本発明の第1の実施形態である制御系の構成について説明する。
図4は、本発明の第1の実施形態である制御系の構成を示すブロック図である。図4に示すように、本発明の第1の実施形態である制御系120は、スラブ幅計121と、板温度計122と、制御装置123と、昇降機構124と、を備えている。
スラブ幅計121は、例えばスラブSの上下面にそれぞれ対向配置された受光器及び投光器によって構成され、熱電発電装置100の鋳造方向上流側に設置されている。スラブ幅計121は、スラブSの幅を計測し、計測されたスラブSの幅に関する情報を制御装置123に入力する。
板温度計122は、熱電対等の接触式の温度計や放射温度計等の非接触式の温度計によって構成されている。板温度計122は、蓄熱板101の温度を計測し、計測された蓄熱板101の温度に関する情報を制御装置123に入力する。
制御装置123は、マイクロコンピュータやパーソナルコンピュータ等の情報処理装置によって構成されている。制御装置123は、スラブ幅計121から入力されたスラブSの幅に関する情報と板温度計122から入力された蓄熱板101の温度に関する情報とに基づいて昇降機構124の動作を制御する。
昇降機構124は、蓄熱板101及び/又は熱電発電ユニット102をスラブSに対して相対的に昇降させることによって、蓄熱板101及び/又は熱電発電モジュール102とスラブSとの間の距離を調整する。
このような構成を有する制御系120は、以下に示すように動作することによって、スラブSが有する熱エネルギーを回収する。以下、図5,6を参照して、スラブSが有する熱エネルギーを回収する際の制御系120の動作について説明する。
図5は、スラブSの幅の変化に伴う蓄熱板101の位置の変化を示す模式図である。図6は、スラブSの幅の変化に伴う熱電発電モジュールの出力の変化を示す図である。
連続鋳造工程では、スラブSの幅が変化することが多く、幅が広いスラブSに合わせて熱電発電ユニット102の幅を設計すると、図6に破線で示すように、幅が狭いスラブSから熱エネルギーを回収する際、熱電発電ユニット102の端部側にいくに従って熱電発電モジュール102a〜fの出力が低下する。これは、熱電発電ユニット102の端部にいくに従ってスラブSと熱電発電モジュール102a〜fとの間の距離が長くなるためである。
なお、このような問題点を解決するために、熱電発電ユニット102の端部側の熱電発電モジュール(例えば熱電発電モジュール102a,102f)をスラブSに近づけることが考えられるが、この場合、熱電発電モジュール毎に昇降機構を設ける必要があり、複雑な制御が必要になると共に多くの費用を要する。
そこで、本実施形態では、図5(a)に示すように、スラブ幅計121によって計測されたスラブSの幅が基準値未満又は板温度計122によって計測された蓄熱板101の温度が基準値未満である場合、制御装置123が、昇降機構124を制御することによってスラブSと熱電発電ユニット102との間に配置された蓄熱板101の位置を通常位置PよりスラブS側に下降させる。すなわち、制御装置123は、スラブSと蓄熱板101との間の距離を通常時より短くする。
一方、図5(b)に示すように、スラブ幅計121によって計測されたスラブSの幅が基準値以上又は板温度計122によって計測された蓄熱板101の温度が基準値以上である場合には、制御装置123は、昇降機構124を制御することによって蓄熱板101の位置を通常位置Pより熱電発電ユニット102側に上昇させる。すなわち、制御装置123は、スラブSと蓄熱板101との間の距離を通常時より長くする。
これにより、蓄熱板101の長さL1はスラブSの幅Wより長く設計されているので、スラブSの幅や温度の変化に関係なく、蓄熱板101の温度を所定の温度範囲内に制御することができる。そして、蓄熱板101の長さL1は熱電発電ユニット102の長さL2よりも長く設計されているので、熱電発電モジュール102a〜fは蓄熱板101に蓄熱された熱を均等に受熱することができる。
この結果、熱電発電ユニット102の端部側にいくに従って熱電発電モジュール102a〜fの出力が低下することが抑制され、図6に実線で示すように、スラブSの幅や温度の変化に関係なく、熱電発電モジュール102a〜fの出力を平坦化できる。これにより、複雑な制御を用いることなく、スラブSが有する熱エネルギーを効率的、且つ、安価に回収することができる。
なお、上述の説明では、昇降機構124は、蓄熱板101を昇降させたが、熱電発電ユニット102又は蓄熱板101と熱電発電ユニット102との両方を昇降させることによっても同様の効果を得ることができる。
〔第2の実施形態〕
次に、図7,図8を参照して、本発明の第2の実施形態である制御系の構成について説明する。
図7は、本発明の第2の実施形態である制御系の構成を示すブロック図である。図7に示すように、本発明の第2の実施形態である制御系120は、スラブ幅計121と、板温度計122と、制御装置123と、冷却機構125と、を備えている。スラブ幅計121及び板温度計122は、図4に示すスラブ幅計121及び板温度計122と同じ構成であるので、以下ではその説明を省略する。
制御装置123は、マイクロコンピュータやパーソナルコンピュータ等の情報処理装置によって構成されている。制御装置123は、スラブ幅計121から入力されたスラブSの幅に関する情報と板温度計122から入力された蓄熱板101の温度に関する情報とに基づいて冷却機構125の動作を制御する。
冷却機構125は、空冷方式や水冷方式によって蓄熱板101を冷却する機構であり、スラブSの冷却量を制御可能なように構成されている。
このような構成を有する制御系120は、以下に示すように動作することによって、スラブSが有する熱エネルギーを回収する。以下、図8を参照して、スラブSが有する熱エネルギーを回収する際の制御系120の動作について説明する。
図8は、スラブSの幅の変化に伴う蓄熱板101の位置の変化を示す模式図である。本実施形態では、図8(a)に示すように、スラブ幅計121によって計測されたスラブSの幅が基準値未満又は板温度計122によって計測された蓄熱板101の温度が基準値未満である場合、制御装置123が、冷却機構125を制御することによって蓄熱板101の冷却量を通常時より少なくする。
一方、図8(b)に示すように、スラブ幅計121によって計測されたスラブSの幅が基準値以上又は板温度計122によって計測された蓄熱板101の温度が基準値以上である場合には、制御装置123は、冷却機構125を制御することによって蓄熱板101の冷却量を通常時より多くする。
これにより、蓄熱板101の長さL1はスラブSの幅Wより長く設計されているので、蓄熱板101の温度は、スラブSの幅や温度の変化に関係なく所定の温度範囲内に制御される。そして、蓄熱板101の長さL1は熱電発電ユニット102の長さL2よりも長く設計されているので、熱電発電モジュール102a〜fは蓄熱板101に蓄熱された熱を均等に受熱することができる。
この結果、熱電発電ユニット102の端部側にいくに従って熱電発電モジュール102a〜fの出力が低下することが抑制され、図6に実線で示すように、スラブSの幅や温度の変化に関係なく熱電発電モジュール102a〜fの出力を平坦化できる。これにより、複雑な制御を用いることなく、スラブSが有する熱エネルギーを効率的、且つ、安価に回収することができる。なお、熱電発電ユニット100を図9に示す粗圧延機201及び仕上げ圧延機202を有する熱間圧延設備の粗圧延機201の入側に適用した所、同様に、複雑な制御を用いることなく、スラブSが有する熱エネルギーを効果的、且つ、安価に回収できた。但し、加熱炉から抽出されるスラブSが間欠的であったために、連続鋳造設備に適用した場合と比較して、熱電発電ユニット100の上方にスラブSが存在する時間率が50%となり、回収された熱エネルギーの総量も約50%となった。
以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。
1 連続鋳造設備列
2 取鍋
3 タンディッシュ
4 鋳型
5 スラブ冷却装置
6 ローラ群
7 スラブ切断装置
8 ダミーバーテーブル
100 熱電発電装置
101 蓄熱板
102 熱電発電ユニット
102a〜f 熱電発電モジュール
111 熱電素子
112 電極
113 絶縁体
114 受熱手段
115 放熱手段
120 制御系
121 スラブ幅計
122 板温度計
123 制御装置
124 昇降機構
125 冷却機構
S スラブ

Claims (8)

  1. 鋼材が有する熱エネルギーを電気エネルギーに変換する1つ又は複数の熱電発電装置を備える製鉄所の製造設備列であって、
    前記熱電発電装置は、
    鋼材の熱を蓄熱可能な位置に配置された蓄熱板と、
    前記鋼材の幅方向に配列され、前記蓄熱板から離間して前記蓄熱板に対向配置された複数の熱電発電モジュールを備え、該複数の熱電発電モジュールを利用して前記蓄熱板が蓄熱した熱を電力に変換する熱電発電ユニットと、
    を備えることを特徴とする製鉄所の製造設備列。
  2. 前記蓄熱板及び前記熱電発電ユニットの少なくとも一方を前記鋼材に対して相対的に移動する移動手段と、前記鋼材の幅及び/又は温度に応じて、前記移動手段を制御することによって前記鋼材と前記蓄熱板及び前記熱電発電ユニットの少なくとも一方との間の距離を変化させる制御手段と、を備えることを特徴とする請求項1に記載の製鉄所の製造設備列。
  3. 前記蓄熱板を冷却する冷却手段と、前記鋼材の幅及び/又は温度に応じて、前記冷却手段を制御することによって前記蓄熱板の冷却量を変化させる制御手段と、を備えることを特徴とする請求項1に記載の製鉄所の製造設備列。
  4. 前記鋼材の幅方向における前記蓄熱板の長さが前記鋼材の最大幅以上であるであることを特徴とする請求項1〜3のうち、いずれか1項に記載の製鉄所の製造設備列。
  5. 前記鋼材の鋳造方向における前記蓄熱板の長さが前記鋼材の鋳造方向における前記熱電発電モジュールの長さ以上であることを特徴とする請求項1〜4のうち、いずれか1項に記載の製鉄所の製造設備列。
  6. 前記蓄熱板が、金属材料、ステンレス、及び無機材料のうちのいずれかの材料によって形成されていることを特徴とする請求項1〜5のうち、いずれか1項に記載の製鉄所の製造設備列。
  7. 前記製造設備列が、スラブ冷却装置とスラブ切断装置とを備えたスラブを連続鋳造する連続鋳造設備列であり、前記熱電発電装置は、前記スラブ冷却装置と前記スラブ切断装置との間、前記スラブ切断装置の下面、及び前記スラブ切断装置の出側のうちの少なくとも一つの位置に配置され、前記鋼材がスラブであることを特徴とする請求項1〜6のうち、いずれか1項に記載の製鉄所の製造設備列。
  8. 請求項1〜7のうち、いずれか1項に記載の製鉄所の製造設備列を用いて前記鋼材の熱を受熱して熱電発電を行うことを特徴とする熱電発電方法。
JP2015154749A 2014-09-08 2015-08-05 製鉄所の製造設備列及び熱電発電方法 Active JP6112154B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014182299 2014-09-08
JP2014182299 2014-09-08

Publications (2)

Publication Number Publication Date
JP2016059260A JP2016059260A (ja) 2016-04-21
JP6112154B2 true JP6112154B2 (ja) 2017-04-12

Family

ID=55759190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015154749A Active JP6112154B2 (ja) 2014-09-08 2015-08-05 製鉄所の製造設備列及び熱電発電方法

Country Status (1)

Country Link
JP (1) JP6112154B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3524373B1 (en) * 2016-10-04 2020-02-26 JFE Steel Corporation Cutting machine and thermoelectric power generation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568271B2 (ja) * 2009-09-17 2014-08-06 東芝三菱電機産業システム株式会社 熱回収装置
JP2012235604A (ja) * 2011-04-28 2012-11-29 Jfe Steel Corp 熱電発電方法およびそれに用いる熱電発電装置
JP5736938B2 (ja) * 2011-04-28 2015-06-17 Jfeスチール株式会社 熱電発電装置およびそれを用いた熱電発電方法
JP5920208B2 (ja) * 2011-12-28 2016-05-18 Jfeスチール株式会社 連続鋳造設備列およびそれを用いた熱電発電方法

Also Published As

Publication number Publication date
JP2016059260A (ja) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5832698B2 (ja) 熱電発電装置および熱電発電方法
JP5920208B2 (ja) 連続鋳造設備列およびそれを用いた熱電発電方法
JP2012235604A (ja) 熱電発電方法およびそれに用いる熱電発電装置
JP5832697B2 (ja) 熱電発電装置およびそれを用いた熱電発電方法
JP5954246B2 (ja) 熱電発電装置およびそれを用いた熱電発電方法
JP6112154B2 (ja) 製鉄所の製造設備列及び熱電発電方法
JP6311805B2 (ja) 製鉄所の製造設備列及び熱電発電方法
WO2014050127A1 (ja) 製造設備列および熱電発電方法
JP6217776B2 (ja) 製造設備列および熱電発電方法
JP6354703B2 (ja) 連続鋳造設備における鋳片の品質管理方法および連続鋳造設備
JP5998983B2 (ja) 連続鋳造設備列およびそれを用いた熱電発電方法
JP5957843B2 (ja) 熱電発電装置
JP5958433B2 (ja) 鋳造および圧延を行う鋼板製造設備列およびそれを用いた熱電発電方法
JP5973485B2 (ja) 熱電発電装置および熱電発電方法
JP6011208B2 (ja) 熱間圧延設備列およびそれを用いた熱電発電方法
JP6107989B2 (ja) 熱電発電装置
JP6032235B2 (ja) 熱電発電設備を備えた連続鋳造設備およびそれを用いた熱電発電方法
JP6528750B2 (ja) 連続鋳造機用ダミーバーテーブルおよび熱電発電方法
JP6011221B2 (ja) 鍛接管設備列およびそれを用いた熱電発電方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R150 Certificate of patent or registration of utility model

Ref document number: 6112154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250