[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6100185B2 - Processing method and processing apparatus for used ion exchange resin - Google Patents

Processing method and processing apparatus for used ion exchange resin Download PDF

Info

Publication number
JP6100185B2
JP6100185B2 JP2014036594A JP2014036594A JP6100185B2 JP 6100185 B2 JP6100185 B2 JP 6100185B2 JP 2014036594 A JP2014036594 A JP 2014036594A JP 2014036594 A JP2014036594 A JP 2014036594A JP 6100185 B2 JP6100185 B2 JP 6100185B2
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
used ion
radionuclide
heavy metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014036594A
Other languages
Japanese (ja)
Other versions
JP2015160888A (en
Inventor
俊昭 杉森
俊昭 杉森
宮本 真哉
真哉 宮本
清一 村山
清一 村山
隆昭 村田
隆昭 村田
矢板 由美
由美 矢板
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014036594A priority Critical patent/JP6100185B2/en
Publication of JP2015160888A publication Critical patent/JP2015160888A/en
Application granted granted Critical
Publication of JP6100185B2 publication Critical patent/JP6100185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

本発明は、使用済みイオン交換樹脂の処理方法及び処理装置に関する。   The present invention relates to a processing method and a processing apparatus for used ion exchange resins.

原子力発電所において、冷却水の浄化や廃液処理にイオン交換樹脂が使用されている。原子力発電所の冷却水や廃液中には放射性物質が含まれており、これらの放射性物質を吸着した使用済みのイオン交換樹脂は、比較的放射能が高い。このため、放射性物質を吸着した使用済みイオン交換樹脂を分解することにより放射能を低減し、放射性廃棄物の容量を低減することが求められている。   At nuclear power plants, ion exchange resins are used for cooling water purification and waste liquid treatment. Radioactive substances are contained in the cooling water and waste liquid of nuclear power plants, and used ion exchange resins that adsorb these radioactive substances have relatively high radioactivity. For this reason, it is required to reduce the radioactivity by decomposing the used ion exchange resin that has adsorbed the radioactive substance and to reduce the capacity of the radioactive waste.

また、重金属元素を含む産業排水を無害化処理するために、イオン交換樹脂が使用されている。産業排水中には様々な重金属元素が含まれており、これらの重金属元素を吸着した使用済みイオン交換樹脂を産業廃棄物として処理する際に、廃棄物量を低減することが求められている。   In addition, ion exchange resins are used to detoxify industrial wastewater containing heavy metal elements. Industrial wastewater contains various heavy metal elements, and it is required to reduce the amount of waste when treating used ion exchange resin adsorbing these heavy metal elements as industrial waste.

また、これまで、使用済みイオン交換樹脂の処理方法として、超臨界水分解や過酸化水素酸化などを用いて樹脂を完全無機化する方法が提案されている(例えば、特許文献1参照。)。しかし、この方法では、大規模な装置が必要である、あるいは二次廃棄物が大量に発生するといった課題がある。また、酸化剤によって使用済みイオン交換樹脂のイオン交換基を不能化して、減容処理する方法が検討されている(例えば、特許文献2参照。)。しかし、この方法では、酸化剤や、イオン交換基の不能化後の廃液を中和するための薬剤や装置が必要になり、処理工程や処理装置が複雑化する場合がある。   In addition, as a method for treating used ion exchange resins, a method of completely mineralizing a resin using supercritical water decomposition, hydrogen peroxide oxidation, or the like has been proposed (for example, see Patent Document 1). However, this method has a problem that a large-scale device is required or a large amount of secondary waste is generated. Further, a method of reducing the volume by disabling the ion exchange group of the used ion exchange resin with an oxidizing agent has been studied (for example, see Patent Document 2). However, this method requires an oxidizing agent or a chemical or an apparatus for neutralizing the waste liquid after the ion exchange group is disabled, and the processing steps and the processing apparatus may be complicated.

特開平10−324768号公報JP-A-10-324768 特開2011−214971号公報JP 2011-214971 A

本発明は、上記した課題を解消するためになされたものであり、処理工程や処理装置を簡素化し、二次廃棄物の発生量を低減させることのできる使用済みイオン交換樹脂の処理方法及び処理装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and it is possible to simplify a treatment process and a treatment apparatus and reduce the amount of secondary waste generated, and a treatment method and treatment of a used ion exchange resin. An object is to provide an apparatus.

本発明の使用済みイオン交換樹脂の処理方法の一態様は、放射性核種又は重金属元素を吸着した使用済みイオン交換樹脂を処理する使用済みイオン交換樹脂の処理方法であって、前記使用済みイオン交換樹脂を、80℃以上90℃以下で、鉄の化合物、過酸化水素及びオゾンと接触させて、前記使用済みイオン交換樹脂の前記放射性核種又は重金属元素吸着部位であるイオン交換基を脱離させるイオン交換基脱離工程と、前記放射性核種又は重金属元素を脱離させた前記使用済みイオン交換樹脂と前記放射性核種又は重金属元素を分離する分離工程とを備えることを特徴とする。 One aspect of the method for treating a used ion exchange resin of the present invention is a method for treating a used ion exchange resin for treating a used ion exchange resin adsorbed with a radionuclide or a heavy metal element. Exchange at 80 ° C. or higher and 90 ° C. or lower with an iron compound , hydrogen peroxide and ozone to desorb an ion exchange group which is an adsorption site of the radionuclide or heavy metal element of the used ion exchange resin And a separation step of separating the radionuclide or heavy metal element from the used ion exchange resin from which the radionuclide or heavy metal element has been desorbed.

本発明の使用済みイオン交換樹脂の処理装置の一態様は、放射性核種又は重金属元素を吸着した使用済みイオン交換樹脂を処理する使用済みイオン交換樹脂の処理装置であって、前記使用済みイオン交換樹脂、鉄の化合物、過酸化水素及びオゾンを内部に収容して、80℃以上90℃以下で、前記イオン交換樹脂の前記放射性核種又は重金属元素吸着部位であるイオン交換基を脱離させる分解槽と、前記分解槽に前記使用済みイオン交換樹脂を供給する使用済みイオン交換樹脂貯蔵装置と、前記分解槽に前記鉄の化合物を供給する金属塩供給装置と、前記分解槽に前記過酸化水素を供給する過酸化水素供給装置と、前記分解槽に前記オゾンを供給するオゾン供給装置と、前記放射性核種又は重金属元素を脱離させた前記使用済みイオン交換樹脂と前記放射性核種又は重金属元素を含む廃棄物を分離する分離機と、前記廃棄物を減容する減容装置とを備えることを特徴とする。 One aspect of the processing apparatus for a used ion exchange resin of the present invention is a processing apparatus for a used ion exchange resin for processing a used ion exchange resin adsorbed with a radionuclide or a heavy metal element, wherein the used ion exchange resin is used. A decomposition tank containing therein an iron compound , hydrogen peroxide and ozone, and desorbing an ion exchange group which is an adsorption site of the radionuclide or heavy metal element of the ion exchange resin at 80 ° C. or higher and 90 ° C. or lower; A used ion exchange resin storage device for supplying the used ion exchange resin to the decomposition tank; a metal salt supply device for supplying the iron compound to the decomposition tank; and supplying the hydrogen peroxide to the decomposition tank A hydrogen peroxide supply device, an ozone supply device for supplying the ozone to the decomposition tank, and the used ion exchange tree from which the radionuclide or heavy metal element is desorbed. It is provided with the separator which isolate | separates the waste containing fat and the said radionuclide or a heavy metal element, and the volume reduction apparatus which reduces the said waste.

本発明の使用済みイオン交換樹脂の処理方法及び処理装置によれば、処理工程や処理装置を簡素化し、二次廃棄物の発生量を低減させることができる。   According to the processing method and processing apparatus of the used ion exchange resin of this invention, a process process and a processing apparatus can be simplified and the generation amount of a secondary waste can be reduced.

実施形態の使用済みイオン交換樹脂の処理方法を示すフロー図。The flowchart which shows the processing method of the used ion exchange resin of embodiment. (a)および(b)は実施形態に係る使用済みイオン交換樹脂の処理方法の原理を説明するための図。(A) And (b) is a figure for demonstrating the principle of the processing method of the used ion exchange resin which concerns on embodiment. 実施形態の使用済みイオン交換樹脂の処理装置を示す概略構成図。The schematic block diagram which shows the processing apparatus of the used ion exchange resin of embodiment. 実施例におけるコバルト脱離率と処理条件の関係を示すグラフ。The graph which shows the relationship between the cobalt detachment | desorption rate and process conditions in an Example. 実施例におけるコバルト脱離率と処理温度の関係を示すグラフ。The graph which shows the relationship between the cobalt desorption rate and processing temperature in an Example.

以下、本発明の使用済みイオン交換樹脂の処理方法及び処理装置の実施形態を、図面を参照して説明する。   Hereinafter, embodiments of a processing method and a processing apparatus for used ion exchange resins according to the present invention will be described with reference to the drawings.

図1は、本実施形態の使用済みイオン交換樹脂の処理方法を示すフロー図である。図2は、本実施形態に係る使用済みイオン交換樹脂の処理方法の原理を説明するための図である。   FIG. 1 is a flowchart showing a method of treating a used ion exchange resin according to this embodiment. FIG. 2 is a view for explaining the principle of the processing method of the used ion exchange resin according to the present embodiment.

本実施形態の処理対象は、例えば原子力発電所で冷却水の浄化や廃液処理、あるいは産業排水の処理に使用された使用済みのイオン交換樹脂である。本実施形態の使用済みイオン交換樹脂の処理方法及び処理装置では、使用済みイオン交換樹脂の放射線量を低減するために、使用済みイオン交換樹脂に捕捉されている放射性物質(放射性核種)を取り除く。または、廃棄物量を低減するために、使用済みイオン交換樹脂に捕捉されている重金属元素を取り除く。   The processing target of the present embodiment is a used ion exchange resin used for purification of cooling water, waste liquid processing, or industrial wastewater processing at a nuclear power plant, for example. In the processing method and processing apparatus for the used ion exchange resin of this embodiment, in order to reduce the radiation dose of the used ion exchange resin, the radioactive substance (radionuclide) captured by the used ion exchange resin is removed. Alternatively, in order to reduce the amount of waste, heavy metal elements captured by the used ion exchange resin are removed.

具体的には、図1に示すイオン交換基脱離工程S1で、金属塩1、過酸化水素2及びオゾン3を用いて、使用済みイオン交換樹脂100の、放射性物質(放射性核種)又は重金属元素の吸着部位であるイオン交換基をイオン交換樹脂の骨格から脱離させる。過酸化水素2とオゾン3が溶解した液相に少量の金属塩1を共存させることにより、ヒドロキシラジカルを生成させ、生成したヒドロキシラジカルが、放射性物質(放射性核種)又は重金属元素の吸着した官能基を、イオン交換樹脂の骨格部分から脱離させる。   Specifically, in the ion exchange group elimination step S1 shown in FIG. 1, the radioactive material (radionuclide) or heavy metal element of the used ion exchange resin 100 using the metal salt 1, hydrogen peroxide 2 and ozone 3 is used. The ion exchange group which is the adsorption site is removed from the skeleton of the ion exchange resin. By allowing a small amount of metal salt 1 to coexist in the liquid phase in which hydrogen peroxide 2 and ozone 3 are dissolved, a hydroxy radical is generated, and the generated hydroxy radical is a functional group on which a radioactive substance (radionuclide) or heavy metal element is adsorbed. From the skeleton of the ion exchange resin.

図2(a)に示すように、使用済みイオン交換樹脂(陽イオン交換樹脂)100のイオン交換基101には、放射性核種(又は重金属元素、以下同じ。)102が吸着されている。このような放射性核種102としては、例えば、使用済みイオン交換樹脂100に高線量率をもたらすコバルト(Co−60)等が挙げられる。   As shown in FIG. 2A, a radionuclide (or heavy metal element, the same applies hereinafter) 102 is adsorbed on the ion exchange group 101 of the used ion exchange resin (cation exchange resin) 100. Examples of such a radionuclide 102 include cobalt (Co-60) that provides a high dose rate to the used ion exchange resin 100.

イオン交換基脱離工程(図1のS1)では、この使用済みイオン交換樹脂100を、液相、例えば水溶液中で、金属塩1、過酸化水素2及びオゾン3と混合して、放射性核種102の吸着したイオン交換基101をイオン交換樹脂骨格103から脱離させる
なお、図2(a)では、陽イオン交換樹脂を例に示すが、使用済みイオン交換樹脂100としては、陽イオン交換樹脂、陰イオン交換樹脂、これらの混床のいずれであってもよい。
In the ion exchange group elimination step (S1 in FIG. 1), this used ion exchange resin 100 is mixed with a metal salt 1, hydrogen peroxide 2 and ozone 3 in a liquid phase, for example, an aqueous solution, to form a radionuclide 102. In FIG. 2A, a cation exchange resin is shown as an example. As the used ion exchange resin 100, a cation exchange resin, Either an anion exchange resin or a mixed bed thereof may be used.

金属塩1としては、過酸化水素2と反応してヒドロキシラジカルを発生させる金属化合物が用いられる。金属塩1として、過酸化水素2と反応してヒドロキシラジカルを発生させる金属化合物であれば特に限定されないが、鉄の化合物であることが好ましく、ヒドロキシラジカルを発生させやすいことから、例えば塩化鉄(II)を用いることが好ましい。鉄の化合物は、炉水中で生じるスラッジ等、イオン交換樹脂の使用される環境下に豊富に存在することからも好適である。また、この場合、過酸化水素2の濃度は、イオン交換基を脱離させることのできる濃度であり、例えば、金属塩1、過酸化水素2、オゾン3及び使用済みイオン交換樹脂100を含む混合物の全体に対して3質量%以下程度とする。オゾン3の供給量は、イオン交換基を脱離させることのできる量であれば特に限定されず、例えば50g/m程度とする。 As the metal salt 1, a metal compound that reacts with the hydrogen peroxide 2 to generate a hydroxy radical is used. The metal salt 1 is not particularly limited as long as it is a metal compound that reacts with hydrogen peroxide 2 to generate a hydroxy radical, but is preferably an iron compound, and since it easily generates a hydroxy radical, for example, iron chloride ( It is preferred to use II). The iron compound is also suitable because it is abundant in the environment in which the ion exchange resin is used, such as sludge generated in the reactor water. In this case, the concentration of hydrogen peroxide 2 is a concentration at which ion exchange groups can be eliminated. For example, a mixture containing metal salt 1, hydrogen peroxide 2, ozone 3, and used ion exchange resin 100 is used. The total amount is about 3% by mass or less. The supply amount of the ozone 3 is not particularly limited as long as the ion exchange group can be eliminated, and is set to, for example, about 50 g / m 3 .

また、ヒドロキシラジカルの発生を促進する点から、イオン交換基脱離工程S1における処理温度は、常温(25℃)以上90℃以下であることが好ましく、60℃以上90℃以下であることがより好ましく、略80℃であることが特に好ましい。処理時間は、処理される使用済みイオン交換樹脂100の量や、吸着された放射性核種102の量にもよるが、1時間以上程度とする。   Further, from the point of promoting the generation of hydroxy radicals, the treatment temperature in the ion exchange group elimination step S1 is preferably normal temperature (25 ° C.) or higher and 90 ° C. or lower, more preferably 60 ° C. or higher and 90 ° C. or lower. It is preferably about 80 ° C. The treatment time depends on the amount of used ion exchange resin 100 to be treated and the amount of adsorbed radionuclide 102, but is about 1 hour or more.

イオン交換基脱離工程S1においては、金属塩1、過酸化水素2及びオゾン3を用いることで、加圧や減圧を行うことなく、イオン交換基脱離性能を向上させることができる。また、処理液のpHを調整するpH調整剤としての酸又は塩基を添加することなく、優れたイオン交換基脱離性能を得ることができる。そのため、処理工程や処理装置を簡素化することが可能である。   In the ion exchange group desorption step S1, by using the metal salt 1, hydrogen peroxide 2 and ozone 3, the ion exchange group desorption performance can be improved without pressurization or decompression. Further, excellent ion exchange group elimination performance can be obtained without adding an acid or base as a pH adjuster for adjusting the pH of the treatment liquid. Therefore, it is possible to simplify a processing process and a processing apparatus.

このように、イオン交換基脱離工程S1において、使用済みイオン交換樹脂100から放射性物質(放射性核種)を離脱させることが可能となり、使用済みイオン交換樹脂100を、低放射性のイオン交換樹脂(処理済みイオン交換樹脂103)に変換することができる。   In this way, in the ion exchange group elimination step S1, it becomes possible to detach the radioactive substance (radionuclide) from the used ion exchange resin 100, and the used ion exchange resin 100 is made to be a low radioactive ion exchange resin (treatment). Used ion exchange resin 103).

イオン交換基脱離工程S1を経た処理済みイオン交換樹脂103は、図2(b)に示すように、放射性核種102がイオン交換基101ごと離脱した状態となる。   The treated ion exchange resin 103 that has undergone the ion exchange group elimination step S1 is in a state in which the radionuclide 102 has been released together with the ion exchange groups 101, as shown in FIG.

そして、イオン交換基101脱離後、図1に示す固液分離工程S2で、使用済みイオン交換樹脂100から離脱した放射性核種102を含む廃液4と、放射性核種102脱離後の処理済みイオン交換樹脂(イオン交換樹脂骨格)103とを分離する。   Then, after desorption of the ion exchange group 101, in the solid-liquid separation step S2 shown in FIG. 1, the waste liquid 4 containing the radionuclide 102 desorbed from the used ion exchange resin 100 and the treated ion exchange after desorption of the radionuclide 102 are performed. The resin (ion exchange resin skeleton) 103 is separated.

放射性核種102を含む廃液4は、必要に応じて濃縮、あるいは希釈の上、例えばセメント固化により処理される。処理済みイオン交換樹脂103は、焼却等により減容した上、セメント固化等により処理される。   The waste liquid 4 containing the radionuclide 102 is treated by, for example, cement solidification after concentration or dilution as necessary. The treated ion exchange resin 103 is treated by cement solidification after volume reduction by incineration or the like.

図3は、本実施形態の処理方法に用いられる処理装置の概略構成図である。
図3に示す処理装置10は、使用済みイオン交換樹脂100と、金属塩1と、過酸化水素2と、オゾン3とを内部に収容して反応させる分解槽5を備えている。また、使用済みイオン交換樹脂100を貯蔵し、分解槽5に供給する使用済みイオン交換樹脂貯蔵タンク6を備えている。
FIG. 3 is a schematic configuration diagram of a processing apparatus used in the processing method of the present embodiment.
The processing apparatus 10 shown in FIG. 3 includes a decomposition tank 5 in which a used ion exchange resin 100, a metal salt 1, hydrogen peroxide 2, and ozone 3 are housed and reacted. Further, a used ion exchange resin storage tank 6 for storing the used ion exchange resin 100 and supplying it to the decomposition tank 5 is provided.

また、処理装置10は、分解槽5に、金属塩1を供給する金属塩供給装置7と、過酸化水素2を供給する過酸化水素供給装置8と、オゾン3を供給するオゾン供給装置9とを備えている。分解槽5の下部には、使用済みイオン交換樹脂100のイオン交換基101とともに脱離した放射性核種102を含む廃液4と処理済みイオン交換樹脂103を分離する固液分離機11が設けられている。この固液分離機11は、分離フィルタ等から構成されている。
さらに、処理装置10は、廃液4を濃縮して減容する減容装置12を備えている。廃液4は減容装置12で減容された上、例えばセメント固化等により処理される。
The processing apparatus 10 includes a metal salt supply device 7 that supplies the metal salt 1 to the decomposition tank 5, a hydrogen peroxide supply device 8 that supplies hydrogen peroxide 2, and an ozone supply device 9 that supplies ozone 3. It has. A solid-liquid separator 11 for separating the waste liquid 4 containing the radionuclide 102 desorbed together with the ion exchange groups 101 of the used ion exchange resin 100 and the treated ion exchange resin 103 is provided at the lower part of the decomposition tank 5. . The solid-liquid separator 11 is composed of a separation filter and the like.
Furthermore, the processing apparatus 10 includes a volume reduction device 12 that concentrates and reduces the volume of the waste liquid 4. The waste liquid 4 is reduced in volume by the volume reduction device 12 and then processed by, for example, cement solidification.

(例1〜6)
放射性物質および重金属元素の一例としてコバルトを吸着させた樹脂を分解処理し、コバルトの吸着した官能基を脱離させる試験を行った。
(Examples 1-6)
As an example of a radioactive substance and a heavy metal element, a resin on which cobalt was adsorbed was decomposed, and a test was performed to desorb a functional group on which cobalt was adsorbed.

試験用樹脂として、一般的に使用されている強酸性陽イオン交換樹脂を使用した。まず、試験用樹脂を硫酸コバルト溶液に浸漬し、コバルトを吸着させた。浸漬前後の液相中のコバルト濃度を測定することで試験用樹脂へのコバルト吸着量を算出した。   As a test resin, a generally used strong acid cation exchange resin was used. First, the test resin was immersed in a cobalt sulfate solution to adsorb cobalt. The amount of cobalt adsorbed on the test resin was calculated by measuring the cobalt concentration in the liquid phase before and after immersion.

コバルトを吸着した試験用樹脂を分解槽に収容し、例1では、オゾンガスを供給した状態で、過酸化水素水、および塩化鉄(II)を添加して撹拌した。塩化鉄(II)、過酸化水素、オゾン及び試験用樹脂を含む混合物の全量に対する、オゾンガスの供給量は50g/m、過酸化水素は2.8質量%、塩化鉄(II)は鉄換算で50ppmとした。液相pHの調整は行わず、液相の温度を80℃、大気圧下で、反応時間を1時間として試験を行った。試験後の液相中のコバルト濃度を測定し、上記コバルト吸着量を用いてコバルト脱離率を求めた。 The test resin adsorbing cobalt was placed in a decomposition tank, and in Example 1, hydrogen peroxide solution and iron (II) chloride were added and stirred while ozone gas was supplied. The supply amount of ozone gas is 50 g / m 3 , hydrogen peroxide is 2.8% by mass, and iron (II) chloride is iron equivalent to the total amount of the mixture containing iron (II) chloride, hydrogen peroxide, ozone and test resin. To 50 ppm. The liquid phase pH was not adjusted, and the test was conducted at a liquid phase temperature of 80 ° C. and atmospheric pressure, with a reaction time of 1 hour. The cobalt concentration in the liquid phase after the test was measured, and the cobalt desorption rate was determined using the cobalt adsorption amount.

試験用樹脂を、例2では、50g/mのオゾンのみで処理した。例3では、2.8質量%の過酸化水素のみで処理した。例4では、50ppmの塩化鉄(II)のみで処理した。例5では、上記供給量のオゾン及び上記濃度の過酸化水素で処理した。例6では、上記濃度の過酸化水素及び塩化鉄(II)を共存させて処理した。 The test resin was treated with 50 g / m 3 ozone only in Example 2. In Example 3, the treatment was performed with only 2.8% by mass of hydrogen peroxide. In Example 4, it was treated only with 50 ppm iron (II) chloride. Example 5 was treated with ozone at the above feed and hydrogen peroxide at the above concentrations. In Example 6, the treatment was performed in the presence of hydrogen peroxide and iron (II) chloride at the above concentrations.

上記試験の結果を、試験条件とともに表1に示す。また、試験条件とコバルト脱離率の関係を、コバルト脱離率を縦軸として、図4のグラフに示す。   The results of the above test are shown in Table 1 together with the test conditions. Further, the relationship between the test conditions and the cobalt desorption rate is shown in the graph of FIG. 4 with the cobalt desorption rate as the vertical axis.

Figure 0006100185
Figure 0006100185

表1及び図4より、オゾン、過酸化水素、塩化鉄(II)をそれぞれ単独で作用させた場合ではコバルト脱離率がいずれも0.01%に満たなかった。またオゾンと過酸化水素を共存させた条件でも脱離率は0.01%に満たなかった。また、過酸化水素と塩化鉄(II)を共存させた条件では脱離率が1%となった。これに対し、オゾンと過酸化水素と塩化鉄(II)を共存させることにより、脱離率53%を示した。このように、オゾンと過酸化水素と塩化鉄(II)を共存させることでコバルト脱離率が向上したことが分かる。   From Table 1 and FIG. 4, when ozone, hydrogen peroxide, and iron (II) chloride were each acted alone, the cobalt desorption rate was less than 0.01%. Further, the desorption rate was less than 0.01% even under the condition where ozone and hydrogen peroxide coexisted. In addition, the desorption rate was 1% under the condition where hydrogen peroxide and iron (II) chloride coexist. On the other hand, when ozone, hydrogen peroxide, and iron (II) chloride were allowed to coexist, a desorption rate of 53% was shown. Thus, it can be seen that the cobalt desorption rate was improved by the coexistence of ozone, hydrogen peroxide, and iron (II) chloride.

(例7〜10)
オゾン、過酸化水素及び塩化鉄(II)を用いた条件での樹脂分解について、温度を変化させた際のイオン交換基脱離性能について調べた。例7〜10において、それぞれ温度を25℃、60℃、80℃、90℃に調節した他は例1と同様の条件で試験を行い、コバルト脱離率を測定した。
(Examples 7 to 10)
Regarding the resin decomposition under conditions using ozone, hydrogen peroxide and iron (II) chloride, the ion exchange group elimination performance when the temperature was changed was investigated. In Examples 7 to 10, tests were performed under the same conditions as in Example 1 except that the temperatures were adjusted to 25 ° C., 60 ° C., 80 ° C., and 90 ° C., and the cobalt desorption rate was measured.

結果を、試験条件とともに表2に示す。また、試験条件とコバルト脱離率の関係を、コバルト脱離率を縦軸として、図5に示す。   The results are shown in Table 2 together with the test conditions. FIG. 5 shows the relationship between the test conditions and the cobalt desorption rate, with the cobalt desorption rate as the vertical axis.

Figure 0006100185
Figure 0006100185

脱離反応は25℃から温度上昇に伴い活発になり60℃で0.04%、80℃で53%に達し、90℃ではコバルト脱離率は減少し5%であった。これは温度上昇に伴ってヒドロキシラジカルの発生量が増加するものの、ヒドロキシラジカルの発生には最適温度が存在するためであり、略80℃とすることでオゾンと過酸化水素と塩化鉄(II)を共存させた際に、イオン交換樹脂が分解されてコバルトが吸着した官能基が効率的に脱離された。   The desorption reaction became active as the temperature increased from 25 ° C., reaching 0.04% at 60 ° C. and 53% at 80 ° C., and the cobalt desorption rate decreased to 5% at 90 ° C. This is because although the amount of hydroxy radicals generated increases as the temperature rises, there is an optimum temperature for the generation of hydroxy radicals. Ozone, hydrogen peroxide, and iron (II) chloride can be obtained at approximately 80 ° C. When coexisting, the ion exchange resin was decomposed, and the functional group to which cobalt was adsorbed was efficiently eliminated.

なお、上記試験において、塩化鉄(II)、過酸化水素及びオゾンを用いることで、pH調整のための薬剤添加は行わずに、コバルト脱離率が向上している。したがって、本実施例の処理方法によれば、イオン交換樹脂の分解処理のために薬剤の添加をする必要がなく、処理工程を簡素化することができる。また、大気圧下で処理を行い、コバルト脱離率が向上している。したがって、本実施例の処理方法によれば、圧力調整を行う機器が不要であり、処理装置を簡素化することができる。また本実施例ではコバルトを使用して試験を実施したが、分解原理としては官能基の脱離反応であるので、コバルトに限らず放射性核種あるいは重金属元素が吸着した使用済みイオン交換樹脂の分解が可能である。   In the above test, the use of iron (II) chloride, hydrogen peroxide, and ozone improves the cobalt desorption rate without adding chemicals for pH adjustment. Therefore, according to the processing method of the present embodiment, it is not necessary to add a chemical agent for the decomposition treatment of the ion exchange resin, and the processing steps can be simplified. Further, the treatment is performed under atmospheric pressure, and the cobalt desorption rate is improved. Therefore, according to the processing method of the present embodiment, a device for adjusting the pressure is unnecessary, and the processing apparatus can be simplified. In this example, the test was carried out using cobalt. However, since the decomposition principle is a functional group elimination reaction, not only cobalt but also the used ion exchange resin adsorbed with radionuclides or heavy metal elements can be decomposed. Is possible.

このように、実施形態の使用済みイオン交換樹脂の処理方法及び処理装置によれば、処理工程や処理装置を簡素化し、二次廃棄物の発生量を低減することができる。   Thus, according to the processing method and processing apparatus of the used ion exchange resin of embodiment, a processing process and a processing apparatus can be simplified and the generation amount of a secondary waste can be reduced.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…金属塩、2…過酸化水素、3…オゾン、4…廃液、5…分解槽、6…イオン交換樹脂貯蔵タンク、7…金属塩供給装置、8…過酸化水素供給装置、9…オゾン供給装置、10…処理装置、11…固液分離機、12…減容装置、100…イオン交換樹脂、101…イオン交換基、102…放射性核種、103…処理済みイオン交換樹脂(イオン交換樹脂骨格)、S1…イオン交換基脱離工程、S2…固液分離工程。   DESCRIPTION OF SYMBOLS 1 ... Metal salt, 2 ... Hydrogen peroxide, 3 ... Ozone, 4 ... Waste liquid, 5 ... Decomposition tank, 6 ... Ion exchange resin storage tank, 7 ... Metal salt supply apparatus, 8 ... Hydrogen peroxide supply apparatus, 9 ... Ozone Supply device, 10 ... treatment device, 11 ... solid-liquid separator, 12 ... volume reduction device, 100 ... ion exchange resin, 101 ... ion exchange group, 102 ... radionuclide, 103 ... treated ion exchange resin (ion exchange resin skeleton) ), S1 ... ion exchange group elimination step, S2 ... solid-liquid separation step.

Claims (5)

放射性核種又は重金属元素を吸着した使用済みイオン交換樹脂を処理する使用済みイオン交換樹脂の処理方法であって、
前記使用済みイオン交換樹脂を、80℃以上90℃以下で、鉄の化合物、過酸化水素及びオゾンと接触させて、前記使用済みイオン交換樹脂の前記放射性核種又は重金属元素吸着部位であるイオン交換基を脱離させるイオン交換基脱離工程と、
前記放射性核種又は重金属元素を脱離させた前記使用済みイオン交換樹脂と前記放射性核種又は重金属元素を分離する分離工程と
を備えることを特徴とする使用済みイオン交換樹脂の処理方法。
A method of treating a used ion exchange resin for treating a used ion exchange resin adsorbed with a radionuclide or a heavy metal element,
The used ion exchange resin is brought into contact with an iron compound , hydrogen peroxide, and ozone at 80 ° C. or more and 90 ° C. or less, and the ion exchange group that is the adsorption site of the radionuclide or heavy metal element of the used ion exchange resin. An ion exchange group elimination step for eliminating
A method for treating a used ion exchange resin, comprising: the used ion exchange resin from which the radionuclide or heavy metal element is desorbed and a separation step for separating the radionuclide or heavy metal element.
前記イオン交換基脱離工程において、前記鉄の化合物、前記過酸化水素及び前記オゾンを共存させることによりヒドロキシラジカルを発生させ、前記ヒドロキシラジカルによって前記イオン交換基を脱離させることを特徴とする請求項1記載の使用済みイオン交換樹脂の処理方法。 In the ion exchange group elimination step, a hydroxy radical is generated by coexistence of the iron compound, the hydrogen peroxide and the ozone, and the ion exchange group is eliminated by the hydroxy radical. A method for treating a used ion exchange resin according to Item 1. 前記イオン交換基脱離工程において、pH調整剤としての酸又は塩基を添加しないことを特徴とする請求項1又は2記載の使用済みイオン交換樹脂の処理方法。 The method for treating a used ion exchange resin according to claim 1 or 2 , wherein an acid or a base as a pH adjusting agent is not added in the ion exchange group elimination step. 前記イオン交換基脱離工程は、大気圧下で行うことを特徴とする請求項1乃至のいずれか1項記載の使用済みイオン交換樹脂の処理方法。 The used ion exchange resin treatment method according to any one of claims 1 to 3 , wherein the ion exchange group elimination step is performed under atmospheric pressure. 放射性核種又は重金属元素を吸着した使用済みイオン交換樹脂を処理する使用済みイオン交換樹脂の処理装置であって、
前記使用済みイオン交換樹脂、鉄の化合物、過酸化水素及びオゾンを内部に収容して、80℃以上90℃以下で、前記イオン交換樹脂の前記放射性核種又は重金属元素吸着部位であるイオン交換基を脱離させる分解槽と、
前記分解槽に前記使用済みイオン交換樹脂を供給する使用済みイオン交換樹脂貯蔵装置と、
前記分解槽に前記鉄の化合物を供給する金属塩供給装置と、
前記分解槽に前記過酸化水素を供給する過酸化水素供給装置と、
前記分解槽に前記オゾンを供給するオゾン供給装置と、
前記放射性核種又は重金属元素を脱離させた前記使用済みイオン交換樹脂と前記放射性核種又は重金属元素を含む廃棄物を分離する分離機と、
前記廃棄物を減容する減容装置と
を備えることを特徴とする使用済みイオン交換樹脂の処理装置。
A processing apparatus for used ion exchange resins for treating used ion exchange resins adsorbed with radionuclides or heavy metal elements,
The spent ion exchange resin, iron compound , hydrogen peroxide and ozone are housed inside, and the ion exchange group which is an adsorption site of the radionuclide or heavy metal element of the ion exchange resin at 80 ° C. or more and 90 ° C. or less. A decomposition tank for desorption,
A used ion exchange resin storage device for supplying the used ion exchange resin to the decomposition tank;
A metal salt supply device for supplying the iron compound to the decomposition tank;
A hydrogen peroxide supply device for supplying the hydrogen peroxide to the decomposition tank;
An ozone supply device for supplying the ozone to the decomposition tank;
A separator for separating the spent ion-exchange resin from which the radionuclide or heavy metal element is desorbed and the waste containing the radionuclide or heavy metal element;
A treatment apparatus for used ion exchange resin, comprising a volume reduction device for reducing the volume of waste.
JP2014036594A 2014-02-27 2014-02-27 Processing method and processing apparatus for used ion exchange resin Active JP6100185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014036594A JP6100185B2 (en) 2014-02-27 2014-02-27 Processing method and processing apparatus for used ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014036594A JP6100185B2 (en) 2014-02-27 2014-02-27 Processing method and processing apparatus for used ion exchange resin

Publications (2)

Publication Number Publication Date
JP2015160888A JP2015160888A (en) 2015-09-07
JP6100185B2 true JP6100185B2 (en) 2017-03-22

Family

ID=54184224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014036594A Active JP6100185B2 (en) 2014-02-27 2014-02-27 Processing method and processing apparatus for used ion exchange resin

Country Status (1)

Country Link
JP (1) JP6100185B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400505B2 (en) 2015-02-24 2018-10-03 株式会社東芝 Processing method and processing apparatus for used ion exchange resin
JP6422842B2 (en) * 2015-10-22 2018-11-14 株式会社東芝 Ion exchange resin processing method and processing apparatus
CN109790979B (en) * 2016-09-29 2020-03-06 太平洋水泥株式会社 Method for treating carbon-containing waste
JP6762890B2 (en) * 2017-02-21 2020-09-30 太平洋セメント株式会社 Carbon-containing waste treatment method
WO2018061404A1 (en) * 2016-09-29 2018-04-05 太平洋セメント株式会社 Method for treating carbon-containing waste

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213300A (en) * 1982-06-04 1983-12-12 株式会社日立製作所 Method of processing radioactive waste
JPS59141099A (en) * 1983-02-01 1984-08-13 東洋エンジニアリング株式会社 Method of decomposing spent radioactive ion exchange resin
JPS61157540A (en) * 1984-12-28 1986-07-17 Fuji Electric Co Ltd Decomposition treatment of ion exchange resin
JPS61157539A (en) * 1984-12-28 1986-07-17 Fuji Electric Co Ltd Decomposition treatment of ion exchange resin
JPS62297219A (en) * 1986-06-16 1987-12-24 Ishikawajima Harima Heavy Ind Co Ltd Method for separating and recovering radioactive element
JPS6491099A (en) * 1987-10-02 1989-04-10 Fuji Electric Co Ltd Operation control method and apparatus for waste ion exchange resin processing system
JPH01193699A (en) * 1988-01-29 1989-08-03 Nippon Atom Ind Group Co Ltd Treatment of decontamination waste liquid
JP3657747B2 (en) * 1996-11-25 2005-06-08 独立行政法人産業技術総合研究所 Decomposition method of ion exchange resin
JP3691937B2 (en) * 1997-06-27 2005-09-07 株式会社東芝 Treatment method of ion exchange resin
JP3846820B2 (en) * 1997-08-20 2006-11-15 株式会社東芝 Solid waste treatment method
JP2009162646A (en) * 2008-01-08 2009-07-23 Toshiba Corp Method for treating used ion-exchange resin
JP2011214971A (en) * 2010-03-31 2011-10-27 Toshiba Corp Method and device for processing spent ion exchange resin
JP2012159419A (en) * 2011-02-01 2012-08-23 Jgc Corp Radioactive organic waste solidification processing method
JP5839412B2 (en) * 2011-04-15 2016-01-06 ハイモ株式会社 Water-soluble ionic polymer and production method thereof
JP2013061296A (en) * 2011-09-14 2013-04-04 Toshiba Corp Method and device for processing waste ion exchange resin
JP5058373B2 (en) * 2011-12-26 2012-10-24 株式会社東芝 Processing method of used ion exchange resin

Also Published As

Publication number Publication date
JP2015160888A (en) 2015-09-07

Similar Documents

Publication Publication Date Title
JP6100185B2 (en) Processing method and processing apparatus for used ion exchange resin
RU2011121343A (en) METHOD FOR DEACTIVATING A LIQUID EFFLUENT CONTAINING ONE OR MORE RADIOACTIVE CHEMICAL ELEMENTS BY PROCESSING IN A BOILING LAYER
Gad et al. Treatment of rice husk ash to improve adsorption capacity of cobalt from aqueous solution
JP3657747B2 (en) Decomposition method of ion exchange resin
US9108865B2 (en) Method for treating boron-containing water
JP2014198286A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
JP6302634B2 (en) Method of highly enriching radioactive cesium separated from wastewater
JP2009162646A (en) Method for treating used ion-exchange resin
JP2010107450A (en) Method and system for treating used ion exchange resin
JP2019001855A (en) Treatment method and treatment device of used ion exchange resin decomposition waste liquid
US9999880B2 (en) Purification method for purifying water in a spent fuel pool in a nuclear power plant
JP2014134404A (en) Method for decontaminating cesium contamination
JP2016176742A (en) Radioactive cesium immobilization method and radioactive cesium absorbing inorganic mineral
JP2017020892A (en) Method and apparatus for treating used ion exchange resin
JP2011214971A (en) Method and device for processing spent ion exchange resin
JP2008006331A (en) Recycling method of iron powder for arsenic removal
US9301542B1 (en) Recyclable high capacity selective sorbant for heavy metals, radionuclides, and actinides
JP2014134403A (en) Method for decontaminating cesium contamination
JP6577388B2 (en) Used ion exchange resin processing method and used ion exchange resin processing apparatus
Nakajima et al. Removal of selenium (VI) from simulated wet flue gas desulfurization wastewater using photocatalytic reduction
JP5058373B2 (en) Processing method of used ion exchange resin
US20230182116A1 (en) Regenerating agent for radionuclide adsorbent, method for regenerating spent radionuclide adsorbent using same, and method for treating spent regenerating agent
EP3061527B1 (en) Treatment method for used ion exchange resin
JP2008006330A (en) Recycling method of iron powder for arsenic removal
JP4551888B2 (en) Iodine separation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170222

R151 Written notification of patent or utility model registration

Ref document number: 6100185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151