JPS61157539A - Decomposition treatment of ion exchange resin - Google Patents
Decomposition treatment of ion exchange resinInfo
- Publication number
- JPS61157539A JPS61157539A JP59279395A JP27939584A JPS61157539A JP S61157539 A JPS61157539 A JP S61157539A JP 59279395 A JP59279395 A JP 59279395A JP 27939584 A JP27939584 A JP 27939584A JP S61157539 A JPS61157539 A JP S61157539A
- Authority
- JP
- Japan
- Prior art keywords
- exchange resin
- ion exchange
- decomposition
- iron
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
し、特に各種原子力施設より発生する使用済イオン交換
樹脂(廃樹脂)の減容化に好適な化学分解処理方法に関
する。DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention particularly relates to a chemical decomposition treatment method suitable for reducing the volume of used ion exchange resins (waste resins) generated from various nuclear facilities.
イオン交換樹脂は、水の精製、廃水処理、各種元素の分
離などに広く利用されており、特に原子力分野において
原子炉冷却水の精製、廃水処理、希土類元素や超プルト
ニウム元素の分離精製などに使用されている。近年、原
子力発電所の稼動数が多くなるにつれて様々な固体廃棄
物が増大し、その処理方法および最終処分方法が問題と
なっている。固体廃棄物の中でも、液体系の処理に使用
された後に廃棄されるイオン交換樹脂の容量は大きく、
したがって、その減容化は重大な課題となっている。Ion exchange resins are widely used for water purification, wastewater treatment, separation of various elements, etc., and are particularly used in the nuclear field for purification of reactor cooling water, wastewater treatment, separation and purification of rare earth elements and ultra-plutonium elements, etc. has been done. In recent years, as the number of nuclear power plants in operation has increased, the amount of various solid wastes has increased, and the treatment and final disposal methods have become a problem. Among solid wastes, ion exchange resins have a large capacity and are discarded after being used to treat liquid systems.
Therefore, its volume reduction has become a serious issue.
このイオン交換樹脂の減容化処理方法として、燃焼法、
熱分解法、酸分解法などが提案されているが、いずれも
決定的なものとなっていない。燃焼法は処理速度が大き
いという特徴を有するが、!’−+lk、HJ+++1
−+xth+a−9J−u、+IkJ/−yhnfil
系が複雑となり、また揮発性の放射性化合物を生ずるこ
となどの欠点がある。また、熱分解法では、放射性揮発
物の発生はないが、炭酸質残分量が多く、焼却法と同様
に流れ系統が複雑となる欠点がある。さらに、酸分解法
は、濃硫酸と濃硝酸を用いて高?L (260℃程度)
で使用済イオン交換樹脂を分解する方式であり、この方
式では樹脂を90%程度まで分解することができ、そし
て上記のような方法の欠点はないものの、以下に記載の
ような反応に従ってSOx、NOxなどの有害なガスが
発生するという欠点がある。The combustion method,
A thermal decomposition method, an acid decomposition method, etc. have been proposed, but none of them have been definitive. The combustion method is characterized by high processing speed, but! '-+lk, HJ+++1
-+xth+a-9J-u, +IkJ/-yhnfil
There are drawbacks such as a complicated system and the production of volatile radioactive compounds. In addition, although the pyrolysis method does not generate radioactive volatiles, it has the drawback that it produces a large amount of carbonate residue and, like the incineration method, the flow system is complicated. Furthermore, the acid decomposition method uses concentrated sulfuric acid and concentrated nitric acid. L (about 260℃)
This method decomposes used ion exchange resin by decomposing the resin to about 90%, and although it does not have the drawbacks of the above methods, it also decomposes SOx, The disadvantage is that harmful gases such as NOx are generated.
イオン交換樹脂(Cm)(n)と硫酸との反応では
CmHn+n/2HzSO4−
nHzO+n/2SOt↑+mC
C+ 2 Has 04 →
2 HzO+ 2 S Oz + CO□↑上で生成
したCと硝酸との反応では
3 C+ 4 HN Os →
4NO↑ ト 2H,O+3CO□↑
5C+4HNO,→
2Nz T+2HtO+5COz↑
2 C+ 2 HN Oa →
NzO+ HzO+ 2 COz↑
上記の酸分解法は、また、非常に高温で実施されるため
に非常に高価な耐熱材料(タンタルなど)を反応槽に使
用する必要があった。In the reaction between the ion exchange resin (Cm) (n) and sulfuric acid, CmHn+n/2HzSO4- nHzO+n/2SOt↑+mC C+ 2 Has 04 → 2 HzO+ 2 SOz + CO□↑In the reaction between C generated above and nitric acid, 3 C+ 4 HN Os → 4NO↑ 2H,O+3CO□↑ 5C+4HNO,→ 2Nz T+2HtO+5COz↑ 2 C+ 2 HN Oa → NzO+ HzO+ 2 COz↑ The acid decomposition method described above can also be carried out at very high temperatures. very to be It was necessary to use expensive heat-resistant materials (such as tantalum) in the reactor.
そこで、過酸化水素と鉄イオン触媒を用いてイオン交換
樹脂を100℃程度の温度で分解する方法が提案された
(特開昭57−1446号)。Therefore, a method has been proposed in which ion exchange resin is decomposed at a temperature of about 100° C. using hydrogen peroxide and an iron ion catalyst (Japanese Patent Laid-Open No. 1446/1983).
しかしながら、この方法では陽イオン交換樹脂は容易に
95%程度まで分解することができるが、陰イオン交換
樹脂を分解する場合に問題があった。However, although this method can easily decompose the cation exchange resin to about 95%, there is a problem when decomposing the anion exchange resin.
即ち、分解処理の結果として鉄などのスラッジが発生す
る。この種のスラッジの生成はイオン交換樹脂の減容化
効果を低減させてしまう。この対策として、添加する鉄
の濃度を低くすることが考えられるが、鉄の濃度には最
適値があり、低くしすぎると分解率が低下してしまう欠
点があった。また、もう一つの解決方法として、反応系
のPHを下げることが考えられるが、PHをあまり低く
くしすぎると(即ち、あまりにも酸性にしすぎる)と、
後で行なう反応液の中和処理で塩が大量に発生してしま
う。例えば、硫酸によってPHを低くした場合には、後
で行なわれる中和処理ではHzSOa +2NaOH−
N a zS O4+ 21(20
の反応が起こり、N a 2S O,が生じる。このN
a zS Oaの生成は、減容化の観点から少ない方
が好ましい。That is, as a result of the decomposition process, sludge of iron or the like is generated. The formation of this type of sludge reduces the volume reduction effect of the ion exchange resin. One possible countermeasure to this problem is to lower the concentration of iron added, but there is an optimum value for the iron concentration, and if it is too low, the decomposition rate will decrease. Another solution is to lower the pH of the reaction system, but if the pH is lowered too low (i.e., too acidic),
A large amount of salt will be generated during the later neutralization treatment of the reaction solution. For example, when the pH is lowered with sulfuric acid, the reaction of HzSOa + 2NaOH- Na zSO4+ 21 (20) occurs in the neutralization treatment performed later to produce Na 2S O.
From the viewpoint of volume reduction, it is preferable that the production of a zS Oa be as small as possible.
実際の使用済イオン交換樹脂は陽イオン交換樹脂と陰イ
オン交換樹脂を含むので、そのような混合物を過酸化水
素で分解処理するにあたっては、上記のようなスラッジ
量をいかに低減させるかが課題となっている。Actual used ion exchange resin contains cation exchange resin and anion exchange resin, so when decomposing such a mixture with hydrogen peroxide, the challenge is how to reduce the amount of sludge as described above. It has become.
本発明は、イオン交換樹脂を過酸化水素で分解処理する
にあたって、より分解効率が高く、よりスラッジ発生量
が少ない分解処理方法を提供する特に、本発明は、゛各
種原子力施設から発生する放射性使用済イオン交換樹脂
の減容化に特に有効な分解処理方法を提供することを目
的とする。The present invention provides a decomposition treatment method that has higher decomposition efficiency and generates less sludge when decomposing ion exchange resins with hydrogen peroxide. It is an object of the present invention to provide a decomposition treatment method that is particularly effective for reducing the volume of used ion exchange resins.
上記の目的は、本発明によって達成される。要約すれば
、本発明は、イオン交換樹脂を過酸化水素により分解処
理するにあたり、分解触媒として鉄とニッケルを用いる
ことを特徴とするイオン交換樹脂の分解処理方法にある
。The above objects are achieved by the present invention. To summarize, the present invention resides in a method for decomposing an ion exchange resin, which is characterized by using iron and nickel as a decomposition catalyst when decomposing the ion exchange resin with hydrogen peroxide.
前述したように、イオン交換樹脂、特に陰イオン交換樹
脂を鉄を触媒として分解する場合にはスラッジが多量に
発生する。これを避けようとして鉄触媒の濃度を低下さ
せれば分解率が低下し、またPHを下げれば反応液の処
分の際に行なわれる中和処理で多量の塩が発生する。こ
こに、鉄触媒にニッケルを助触媒として添加することに
より、鉄濃度を低くしても分解率が高く、しかもスラッ
ジの発生量も少ない分解処理が可能となることが見出さ
れた。As mentioned above, when ion exchange resins, especially anion exchange resins, are decomposed using iron as a catalyst, a large amount of sludge is generated. If the concentration of the iron catalyst is lowered in an attempt to avoid this, the decomposition rate will be lowered, and if the pH is lowered, a large amount of salt will be generated during the neutralization treatment performed when the reaction solution is disposed of. It has now been discovered that by adding nickel to the iron catalyst as a co-catalyst, it is possible to perform a decomposition process with a high decomposition rate and a small amount of sludge even when the iron concentration is low.
およびニッケルはイオンの形で用いられる。分解反応は
、水性系で行われるので、鉄およびニッケルは水に溶解
して各イオンを生成できるものであればいかなる鉄およ
びニッケル化合物も用いることができる。特に好ましい
鉄およびニッケル化合物は、鉄およびニッケルの硫酸塩
、硝酸塩などである。鉄およびニッケルは、好ましくは
それぞれ、Feイオン濃度が0.001乃至0.OIM
およびNiイオン濃度が0.005乃至0.03Mの範
囲である。and nickel are used in ionic form. Since the decomposition reaction is carried out in an aqueous system, any iron and nickel compound can be used as long as the iron and nickel can be dissolved in water to produce the respective ions. Particularly preferred iron and nickel compounds are iron and nickel sulfates, nitrates, and the like. Iron and nickel each preferably have a Fe ion concentration of 0.001 to 0.00. OIM
and the Ni ion concentration is in the range of 0.005 to 0.03M.
酸化剤として用いられる過酸化水素は、通常水溶液(過
酸化水素水)の形で市販されているものを用いることが
できる。分解反応は、反応槽にイオン交換樹脂と過酸化
水素水と触媒を仕込み、攪拌しながら行われる。反応は
常温以上の温度から100℃程度までの温度で行うのが
好ましい。反応液のPHは低いほどスラッジの生成が少
ないが、後で行う中和処理での塩の生成量を考慮して、
1.8以上、好ましくは2以上のPHで実施することが
できる。As the hydrogen peroxide used as the oxidizing agent, those commercially available in the form of an aqueous solution (hydrogen peroxide solution) can be used. The decomposition reaction is carried out by charging an ion exchange resin, a hydrogen peroxide solution, and a catalyst into a reaction tank, and stirring the mixture. The reaction is preferably carried out at a temperature from room temperature or higher to about 100°C. The lower the pH of the reaction solution, the less sludge will be produced, but considering the amount of salt produced in the later neutralization treatment,
It can be carried out at a pH of 1.8 or higher, preferably 2 or higher.
本発明の分解処理方法を適用できるイオン交換樹脂は、
各種の用途から生ずる使用済(廃)樹脂である。本発明
の方法は、陽イオン交換樹脂(−3O,Hl−COOH
基などを含むH型)の使用済のもののみならず、陰イオ
ン交換樹脂(=NOH基などを含むOH型)の使用済の
ものにも、さらには使用済の両イオン交換樹脂の混合物
(通常の廃樹脂は混合物状である)にも同等に適用する
ことができる。Ion exchange resins to which the decomposition treatment method of the present invention can be applied are:
This is used (waste) resin generated from various uses. The method of the present invention uses a cation exchange resin (-3O, Hl-COOH
Not only used anion exchange resins (=OH type containing NOH groups, etc.), but also mixtures of used amphoteric ion exchange resins ( It can equally be applied to ordinary waste resins (which are in the form of mixtures).
以下、実施例を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using Examples.
太土桝土
第1図に、イオン交換樹脂の過酸化水素による分解に用
いた実験装置の概略図を示す。ここで、1は反応槽であ
り、この中に触媒を溶解した水溶液とイオン交換樹脂を
入れる。この液は2のマグネチックスクーラーで攪拌さ
れる。3ば水浴であり、反応系の温度を一定に保持する
ためのものである。4は過酸化水素供給口であり、ここ
から一定流量で過酸化水素が供給される。触媒濃度は触
媒供給口5から触媒溶液を供給することにより一定に保
持される。Figure 1 shows a schematic diagram of the experimental equipment used to decompose ion exchange resin with hydrogen peroxide. Here, 1 is a reaction tank, into which an aqueous solution in which a catalyst is dissolved and an ion exchange resin are placed. This liquid is stirred by magnetic cooler 2. The third is a water bath, which is used to keep the temperature of the reaction system constant. 4 is a hydrogen peroxide supply port, from which hydrogen peroxide is supplied at a constant flow rate. The catalyst concentration is kept constant by supplying the catalyst solution from the catalyst supply port 5.
本装置を用いて、陰イオン交換樹脂を分解する実験を行
った。分解条件は次の通りである。Using this device, we conducted an experiment to decompose anion exchange resin. The decomposition conditions are as follows.
陰イオン交換樹脂 5AN−1(OH型、三菱化成製
)2g(乾燥)
供給H,O□濃度 30%
Ht O2供給速度 1ml/5inPH2
樹脂添加量 2g(乾燥)
触媒溶液 硫酸第一鉄溶液
硫酸ニッケル溶液
温度 95℃
得られた実験結果を第2図に示す。第2図に示した分解
率は、炭素の収支から計算したもので、以下の式で表わ
される。Anion exchange resin 5AN-1 (OH type, manufactured by Mitsubishi Kasei) 2g (dry) Supply H, O□ concentration 30% Ht O2 supply rate 1ml/5inPH2 Resin addition amount 2g (dry) Catalyst solution Ferrous sulfate solution Nickel sulfate Solution temperature: 95°C The experimental results obtained are shown in Figure 2. The decomposition rate shown in Figure 2 was calculated from the carbon balance and is expressed by the following formula.
分解率(%)=
分解前の樹脂の炭素含有量
この分解率は、処理前の有機炭素量が分解によた割合を
示す。Decomposition rate (%) = carbon content of resin before decomposition This decomposition rate indicates the proportion of organic carbon content before treatment due to decomposition.
第2図に示すように、鉄触媒のみの場合は0.01M以
下で分解率が極端に減少するが、ニッケルと鉄とを用い
た場合には鉄イオン濃度がO,01M以下となっても9
0%以上の良好な分解率が得られる。As shown in Figure 2, when only an iron catalyst is used, the decomposition rate is extremely reduced below 0.01M, but when nickel and iron are used, even when the iron ion concentration is below 0.01M. 9
A good decomposition rate of 0% or more can be obtained.
第3図に、それぞれの場合のスラッジ生成量を示した。Figure 3 shows the amount of sludge produced in each case.
スラ・ノジ生成量は、スラッジ中の鉄イオンの量(mm
oj1)で示しである。図に示したように、鉄イオン濃
度に比例してスラッジ量が増加することがわかる。The amount of sludge produced is determined by the amount of iron ions in the sludge (mm
It is indicated by oj1). As shown in the figure, it can be seen that the amount of sludge increases in proportion to the iron ion concentration.
叉施勇士
実施例1記載の方法と同様であるが、ただし鉄触媒のみ
の場合のイオン濃度0.01M、鉄+ニッケルの場合の
イオン濃度を鉄0.002M+ニッケル0.OIM
とすることによって、陰イオン交換樹脂の分解を行ない
、反応系のPHとスラッジ生成量との関係を調べた。結
果を第4図に示す。この図から明らかなように、鉄とニ
ッケルを併用した場合は、鉄イオン濃度が低くても分解
率が大であるために同じPHでもスラッジ生成量が低い
ことがわかる。The method is the same as that described in Example 1 by Yuji Kase, except that the ion concentration is 0.01M in the case of iron catalyst only, and the ion concentration in the case of iron + nickel is 0.002M iron + 0.02M nickel. The anion exchange resin was decomposed using OIM, and the relationship between the pH of the reaction system and the amount of sludge produced was investigated. The results are shown in Figure 4. As is clear from this figure, when iron and nickel are used together, the decomposition rate is high even when the iron ion concentration is low, so the amount of sludge produced is low even at the same pH.
同様にして、C1型およびS04型イオン交換樹脂につ
いても上記の分解実験を行なったが、ニッケルを助触媒
として加えることによって分解率が高くなるとともにス
ラッジ生成量が低くなることが確認された。Similarly, the above decomposition experiments were conducted for C1 type and S04 type ion exchange resins, and it was confirmed that the addition of nickel as a cocatalyst increased the decomposition rate and lowered the amount of sludge produced.
叉隻桝主
通常の使用済イオン交換樹脂(廃樹脂)は、陽イオン交
換樹脂と陰イオン交換樹脂が1=1または2:1の程度
の比で混合されたものである。よって、このような混合
物について分解実験を行った0分解条件および結果を表
1に要約する。A common used ion exchange resin (waste resin) is a mixture of a cation exchange resin and an anion exchange resin in a ratio of 1=1 or 2:1. Therefore, the zero decomposition conditions and results of decomposition experiments conducted on such mixtures are summarized in Table 1.
これらの結果から、鉄イオン濃度を低減させても、分解
率が大であり、スラッジ減少効果が大であることが明ら
かである。From these results, it is clear that even if the iron ion concentration is reduced, the decomposition rate is high and the sludge reduction effect is large.
本発明により、過酸化水素を酸化剤とし、鉄触媒を用い
てイオン交換樹脂を分解するにあたり、ニッケルを助触
媒として使用することにより、鉄触媒のみの場合よりも
分解率が高く、かつスラッジ発生量の少ない分解処理が
可能となった。According to the present invention, when hydrogen peroxide is used as an oxidizing agent and ion exchange resin is decomposed using an iron catalyst, by using nickel as a co-catalyst, the decomposition rate is higher than when using only an iron catalyst, and sludge is generated. It has become possible to perform decomposition processing in small quantities.
第1図はイオン交換樹脂の分解実験に用いられた装置の
概略図、第2図は鉄触媒濃度と分解率との関係、第3図
は鉄触媒濃度とスラッジ量の関係および第4図はPHと
スラッジ発生量との関係を示す各グラフである。
1・・反応槽、2・・マグニチックスターラー3・・水
浴、4・・過酸化水素供給口、5・・触媒供給口
答Z目
鉄触媒’=U!しくFl、Fe’n1’)停9目Figure 1 is a schematic diagram of the equipment used in the ion exchange resin decomposition experiment, Figure 2 is the relationship between iron catalyst concentration and decomposition rate, Figure 3 is the relationship between iron catalyst concentration and sludge amount, and Figure 4 is the relationship between iron catalyst concentration and sludge amount. 3 is each graph showing the relationship between PH and the amount of sludge generated. 1...Reaction tank, 2...Magnetic stirrer 3...Water bath, 4...Hydrogen peroxide supply port, 5...Catalyst supply port Answer Z Metetsu catalyst'=U! Shiku Fl, Fe'n1') Stop 9th
Claims (1)
あたり、分解触媒として鉄とニッケルを用いることを特
徴とするイオン交換樹脂の分解処理方法。 2)特許請求の範囲第1項記載の分解処理方法において
、酸化分解系の鉄イオン濃度が0.001乃至0.01
Mおよびニッケルイオン濃度が0.005乃至0.03
Mの範囲内であることを特徴とする分解処理方法。 3)特許請求の範囲第1項記載の分解処理方法において
、イオン交換樹脂が各種原子力施設より発生する使用済
放射性イオン交換樹脂であることを特徴とする分解処理
方法。[Scope of Claims] 1) A method for decomposing an ion exchange resin, which comprises using iron and nickel as a decomposition catalyst in decomposing the ion exchange resin with hydrogen peroxide. 2) In the decomposition treatment method according to claim 1, the iron ion concentration in the oxidative decomposition system is from 0.001 to 0.01.
M and nickel ion concentration from 0.005 to 0.03
A decomposition processing method characterized by being within the range of M. 3) The decomposition treatment method according to claim 1, wherein the ion exchange resin is a spent radioactive ion exchange resin generated from various nuclear facilities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59279395A JPS61157539A (en) | 1984-12-28 | 1984-12-28 | Decomposition treatment of ion exchange resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59279395A JPS61157539A (en) | 1984-12-28 | 1984-12-28 | Decomposition treatment of ion exchange resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61157539A true JPS61157539A (en) | 1986-07-17 |
Family
ID=17610524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59279395A Pending JPS61157539A (en) | 1984-12-28 | 1984-12-28 | Decomposition treatment of ion exchange resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61157539A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010059301A (en) * | 2008-09-03 | 2010-03-18 | National Institute Of Advanced Industrial Science & Technology | Method for decomposing fluorine-based ion-exchange resin film |
WO2012140981A1 (en) * | 2011-04-15 | 2012-10-18 | ハイモ株式会社 | Water-soluble ionic polymer and method for producing same |
JP2013018672A (en) * | 2011-07-08 | 2013-01-31 | Hymo Corp | Additive for concrete or mortar, and use thereof |
JP2014066086A (en) * | 2012-09-26 | 2014-04-17 | Zenitaka Corp | Boring method |
JP2015160888A (en) * | 2014-02-27 | 2015-09-07 | 株式会社東芝 | Treatment method and treatment equipment of used ion exchange resin |
-
1984
- 1984-12-28 JP JP59279395A patent/JPS61157539A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010059301A (en) * | 2008-09-03 | 2010-03-18 | National Institute Of Advanced Industrial Science & Technology | Method for decomposing fluorine-based ion-exchange resin film |
WO2012140981A1 (en) * | 2011-04-15 | 2012-10-18 | ハイモ株式会社 | Water-soluble ionic polymer and method for producing same |
JP5839412B2 (en) * | 2011-04-15 | 2016-01-06 | ハイモ株式会社 | Water-soluble ionic polymer and production method thereof |
JP2013018672A (en) * | 2011-07-08 | 2013-01-31 | Hymo Corp | Additive for concrete or mortar, and use thereof |
JP2014066086A (en) * | 2012-09-26 | 2014-04-17 | Zenitaka Corp | Boring method |
JP2015160888A (en) * | 2014-02-27 | 2015-09-07 | 株式会社東芝 | Treatment method and treatment equipment of used ion exchange resin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60235099A (en) | Chemical decontamination method of structure part made of metal of nuclear reactor | |
JPH02172590A (en) | Process for removing nitrite and nitrate from aqueous solution without leaving residue | |
EP0257192B1 (en) | Method of treating radioactive ion-exchange resins by oxidative decomposition | |
GB2064852A (en) | Decontaminating reagents for radioactive systems | |
JPS61157539A (en) | Decomposition treatment of ion exchange resin | |
JP2005181256A (en) | Method for treating waste ion exchange resin | |
JPS5872099A (en) | Treatment of radioactive organic waste | |
JPH1164590A (en) | Solid waste treatment method | |
CN109961867B (en) | Method for treating radioactive mixed ion exchange resin by Fenton-like oxidation method | |
JPS571446A (en) | Decomposition of ion exchange resin | |
JPH06178995A (en) | Anaerobic digestion treatment of organic waste water | |
US12033766B2 (en) | Method for conditioning ion exchange resins and apparatus for carrying out the method | |
JPS5834080A (en) | Treatment of acid-digested waste liquid | |
JP3759930B2 (en) | Waste liquid treatment method and apparatus | |
JP2005326361A (en) | Treating method and treating device of anticorrosive | |
JPS6218230B2 (en) | ||
JPS61157540A (en) | Decomposition treatment of ion exchange resin | |
JPS5944700A (en) | Method of decomposing radioactive ion-exchange resin waste | |
TWI839848B (en) | Processing method of radioactive ionic resins | |
JPH0544640B2 (en) | ||
JP2728335B2 (en) | Decomposition method of organic matter in radioactive liquid waste | |
KR102052582B1 (en) | Method for decomposing hydrazine in aqueous solution | |
JPH0564318B2 (en) | ||
JPS57105284A (en) | Purification of waste water used in desulfurization of exhaust gas | |
JPS59141099A (en) | Method of decomposing spent radioactive ion exchange resin |