[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6161357B2 - 発電システム - Google Patents

発電システム Download PDF

Info

Publication number
JP6161357B2
JP6161357B2 JP2013067301A JP2013067301A JP6161357B2 JP 6161357 B2 JP6161357 B2 JP 6161357B2 JP 2013067301 A JP2013067301 A JP 2013067301A JP 2013067301 A JP2013067301 A JP 2013067301A JP 6161357 B2 JP6161357 B2 JP 6161357B2
Authority
JP
Japan
Prior art keywords
working fluid
heat exchanger
power generation
generation system
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013067301A
Other languages
English (en)
Other versions
JP2014190276A (ja
Inventor
由起彦 井上
由起彦 井上
裕 利根川
裕 利根川
福田 憲弘
憲弘 福田
紀人 香月
紀人 香月
篤 藤井
篤 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013067301A priority Critical patent/JP6161357B2/ja
Publication of JP2014190276A publication Critical patent/JP2014190276A/ja
Application granted granted Critical
Publication of JP6161357B2 publication Critical patent/JP6161357B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、熱源と作動流体との間で熱交換を行い、発電を行う発電システムに関するものである。
熱源と作動流体との間で熱交換を行い、熱源で作動流体を加熱することで作動流体を蒸気として、当該蒸気を蒸気タービンに導入して発電するバイナリーサイクル方式の発電システムがある。バイナリーサイクル方式では、作動流体をランキンサイクルで循環させている。
バイナリーサイクル方式を用いた発電システムは、熱源として、地球を利用した地熱や、産業廃熱、空調設備の廃熱等を利用することができ、地上で燃料を燃焼させることがないため、CO2排出量が極めて少なく、環境に優しい発電システムとなる。発電システムは、例えば、熱源として地熱を用いる場合、地熱流体を熱交換器に導き、熱交換器で地熱流体と作動流体との間で熱交換して熱だけを作動流体に回収して、地熱流体は全量地下へ還元する。発電システムは、地熱流体で加熱された作動流体の蒸気を、蒸気タービンに導入して発電する。
ここで、作動流体をランキンサイクルで循環させるバイナリーサイクル方式を用いた発電システムは、作動流体として、水以外の媒体(以下、本件では有機媒体ともいう。)を用いる場合がある。有機媒体には、流通経路から漏れると問題となる媒体もある。これに対して、特許文献1には、炭化水素蒸発器の上流に配置され、炭化水素蒸発器からの漏れが検出された後、炭化水素蒸発器の内容物を不活性ガスでパージするように構成された不活性ガス源を備える有機ランキンサイクルエネルギー回収システムが記載されている。
特開2012−31863号公報
特許文献1に記載されているように、不活性ガスを炭化水素蒸発器、つまり熱交換器に供給することで、熱交換器を安全な状態とすることができるが、発電システムとして改善の余地がある。
本発明は、上記問題に鑑み、より安全性の高い発電システムを提供することを目的とする。
上述した課題を解決するための本発明は、有機媒体を作動流体としてランキンサイクルで発電を行う発電システムであって、熱源と前記作動流体とで熱交換を行い、前記作動流体を蒸気とする熱交換器と、前記熱交換器で加熱された前記蒸気が供給され、前記蒸気で回転される蒸気タービンと、前記蒸気タービンと連結した発電機と、前記蒸気タービンを通過した前記蒸気を冷却し、液体の作動流体とする復水器と、前記復水器から供給される前記作動流体を加圧し、前記熱交換器に送液する送液ポンプと、前記熱交換器、前記蒸気タービン、前記復水器及び前記送液ポンプを接続し、前記作動流体及び前記蒸気を流通させる循環経路と、前記循環経路に配置され、前記熱交換器に供給される前記作動流体の温度を低下させる温度低減部と、前記作動流体の漏洩を検知する漏洩検知部と、前記漏洩検知部で前記作動流体の漏洩を検知した場合、前記温度低減部を稼動させて、前記熱交換器に供給される前記作動流体の温度を低下させる制御装置と、を有することを特徴とする。
また、前記温度低減部は、前記循環経路と接続された回収ラインと、前記回収ラインを開閉させる回収弁と、前記回収ラインに接続され、前記作動流体を貯留させる回収タンクと、を有し、前記回収弁を開いて、前記循環経路を流れる前記作動流体の少なくとも一部を、前記回収ラインを介して前記回収タンクに回収する作動流体回収機構であることが好ましい。
また、前記回収ラインは、前記循環経路の前記送液ポンプと前記熱交換器との間に接続されていることが好ましい。
また、前記循環経路に接続され、前記循環経路から前記熱交換器の前記作動流体が流れる経路に不活性ガスを供給するパージガス供給機構をさらに有することが好ましい。
前記制御装置は、メンテナンスを実行すると判定した場合、前記温度低減部を稼動させて、前記熱交換器に供給される前記作動流体の温度を低下させることが好ましい。
また、前記作動流体は、水よりも沸点の低い可燃性の媒体であることが好ましい。
また、前記作動流体は、沸点25℃以上の化合物で構成される媒体であることが好ましい。
また、前記作動流体は、ペンタン、イソペンタン、ペンテン、ヘキサン、イソヘキサン、ヘキセン、メチルシクロブタン、メチルシクロペンタン、シクロペンタンおよびシクロヘキサンのいずれか1つまたは混合物であることが好ましい。
本発明によれば、安全性をより高くすることができる。
図1は、本発明の発電システムの一実施例に係る地熱発電システムを示す概略図である。 図2は、地熱発電システムの動作の一例を示すフローチャートである。 図3は、地熱発電システムの動作の一例を示すフローチャートである。
以下、本発明を実施するための実施例につき、図面を参照しつつ詳細に説明する。なお、本発明は以下の実施例に記載した内容により限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施例で開示した構成要素は適宜組み合わせることが可能である。
本発明の発電システムを地熱発電システムに適用した場合について、図面を参照して説明する。図1は、本発明の発電システムの一実施例に係る地熱発電システムを示す概略図である。本実施例に係る地熱発電システム10は、地熱の熱源流体18で作動流体(作動媒体)19を加熱し、加熱した作動流体19により蒸気タービン13を回転駆動することで発電を行うバイナリー方式の地熱発電システムである。地熱発電システム10は、作動流体19に対して、加圧、吸熱、断熱膨張、放熱を繰り返すランキンサイクルで作動流体19を循環させ、断熱膨張工程の蒸気で蒸気タービン13を回転させる。
図1に示すように、本実施例に係る地熱発電システム10は、熱交換器(蒸発器)12と、蒸気タービン13と、発電機14と、復水器15と、冷却塔16と、制御装置30と、漏洩検知部32と、作動流体回収機構40と、パージガス供給機構50と、送液ポンプP1,P2を備えている。また、地熱発電システム10は、熱源流体18を流通させる熱源流体供給ラインL11と、作動流体19を流通させる循環経路11と、を有する。
循環経路11は、作動流体供給ラインL12と作動流体蒸気供給ラインL13とを含み、熱交換器12と、蒸気タービン13と、復水器15と、送液ポンプP1の間を接続し、この順で循環させる。また、循環経路11は、送液ポンプP1と熱交換器12とも接続しており、作動流体19を送液ポンプP1から熱交換器12に供給する。作動流体供給ラインL12は、作動流体19の流路であり、復水器15と送液ポンプP1と熱交換器12とを接続している。送液ポンプP1は、作動流体19を復水器15側から熱交換器12側に送る。また、作動流体供給ラインL12の送液ポンプP1と熱交換器12との間には、作動流体19の流量を調節可能な調節弁V12とが配設されている。作動流体蒸気供給ラインL13は、作動流体19の蒸気である作動流体蒸気23の流路であり、熱交換器12と蒸気タービン13と復水器15とを接続している。
熱源流体18としては、例えば、地熱蒸気、地熱水、地熱ガスまたはこれらの2種以上を含むものなどが挙げられる。作動流体19は、作動流体供給ラインL12を通って熱交換器12に供給され、熱交換器12において熱源流体18と熱交換され、加熱される。なお、熱源流体18、作動流体19の供給量は、熱源流体供給ラインL11、作動流体供給ラインL12に設けた調節弁V11,V12により調整される。
作動流体19としては、水以外の媒体(有機媒体)を用いることができる。ここで、作動流体19は、水よりも沸点が低い媒体を用いることが好ましく、水よりも沸点の低い可燃性の媒体を用いることがより好ましい。また、作動流体19は、沸点25℃以上の化合物で構成される媒体であることも好ましい。また、作動流体19は、各種炭化水素、具体的には、メタノール(沸点65℃)、エタノール(沸点78℃)、プロパノール(沸点82℃か97℃)、ペンタン(沸点36℃)、イソペンタン(沸点28℃)、ペンテン(沸点37℃)、ヘキサン(沸点69℃)、イソヘキサン(沸点70℃)、ヘキセン(沸点63℃)、メチルシクロブタン(沸点36℃)、メチルシクロペンタン(沸点72℃)、シクロペンタン(沸点49℃)およびシクロヘキサン(沸点81℃)のいずれか1つまたは混合物を用いることがより好ましい。また、作動流体19としては、不燃性の媒体を用いてもよく、この場合、フロン、アンモニア等のような低沸点媒体が例示される。上記媒体を用いることで、効率よく熱交換を行うことができ、作動流体を円滑に循環させることができる。
熱交換器12は、生産井戸(生産井)21から噴出される熱源流体18により作動流体19を加熱して作動流体19を蒸発させて蒸気とするものである。生産井戸21より噴出した熱源流体18は、熱源流体供給ラインL11を通って熱交換器12に通流され、熱交換器12で作動流体19と熱交換して作動流体19を加熱した後、還元井戸(還元井)22に戻される。また、熱交換器12には、上述したように循環経路11が接続されており、作動流体19が供給される。
熱交換器12は、熱源流体18と作動流体19とを熱交換できるものであればよく、例えば、外郭(シェル)内部の蒸発室を直列に貫通して熱源流体18が通流するチューブを配管したシェル・アンド・チューブ型などが用いられる。
熱交換器(蒸発器)12は、熱源流体18と作動流体19との間で熱交換を行い、熱源流体18で作動流体19を加熱する。作動流体19は、熱交換器12で熱源流体18と熱交換し、加熱されることで蒸発(気化)し、高温の作動流体19の蒸気(作動流体蒸気)23となる。
蒸気タービン13は、熱交換器12で作動流体19が加熱されることにより蒸気になった作動流体蒸気23の圧力より回転力を得て、タービン軸26が回転駆動する。発電機14は、タービン軸26に連結されており、タービン軸26から回転力を得て駆動回転することにより、発電する。
復水器15は、蒸気タービン13の駆動源に用いられて蒸気タービン13から排出された作動流体蒸気23を冷却して復水29にする。復水器15には、冷却水28が流れる冷却媒体供給ラインL14と冷却媒体回収ラインL15とを介して冷却塔16が接続されている。復水器15は、冷却水28と作動流体蒸気23との間で熱交換を行い、作動流体蒸気23を冷却する。
具体的には、復水器15は、冷却媒体供給ラインL14を介して冷却塔16から供給される冷却水28によって作動流体蒸気23を冷却することが可能になっており、冷却媒体供給ラインL14上には、冷却水28を冷却塔16から復水器15に供給する送液ポンプP2が配設されている。
また、復水器15と冷却塔16との間には、復水器15での作動流体蒸気23の冷却後の冷却水28が流れる冷却媒体回収ラインL15が配設されている。冷却塔16は、冷却媒体回収ラインL15で復水器15から排出された冷却水28を回収する。冷却塔16は、ファン等の放熱機構を備えており、回収した冷却水28を放熱機構で冷却し、冷却媒体供給ラインL14を介して、復水器15に供給する。
制御装置30は、地熱発電システム10の各部から情報を取得して処理し、各部の動作を制御する。制御装置30は、CPU(Central Processing Unit)等を有する処理部や、RAM(Random Access Memory)等の記憶部等を備えた公知の構成である。
漏洩検知部32は、循環経路11の外部に配置され、循環経路11の近傍で作動流体19の漏洩を検知する。本実施形態の漏洩検知部32は、蒸気タービン13の車室とタービン軸26との間の近傍に取り付けられている。なお、漏洩検知部32は、蒸気タービン13の車室の連結部(上側の車室と下側の車室の連結部)に配置してもよい。また、循環経路11の近傍であればよく、蒸気タービン13の近傍以外に設けてもよい。また、漏洩検知部32は、循環経路11の複数箇所に設けてもよい。
漏洩検知部32は、作動流体19を検知するセンサであり、作動流体19を検知することにより、循環経路11から作動流体19が漏洩しているかを検知する。ここで、地熱発電システム10は、作動流体19に被検知物質を添加し、漏洩検知部32で被検知物質を検知するようにしてもよい。なお、漏洩検知部32は、漏洩を検出することができればよく、検知対象の作動流体(または被検知物質)19の有無を検出してもよいし、濃度を検出してもよいし、量を検出してもよい。漏洩検知部32は、作動流体(または被検知物質)19が大気中にある物質の場合、濃度や量を検出し、その変動によって漏洩を検出することが好ましい。
漏洩検知部32は、地熱発電システム10の各部を制御する制御装置30に接続されており、漏洩検知部32は、作動流体19の漏洩を検知した信号を、制御装置30に伝達する。地熱発電システム10は、漏洩検知部32で漏洩の有無を判定しても、制御装置30で漏洩の有無を判定してもよい。
作動流体回収機構40は、作動流体19を回収する機構であり、循環経路11に接続されている。作動流体回収機構40は、回収タンク41と、回収ライン42と、回収弁44と、を有する。回収タンク41は、作動流体19を貯留するタンクである。回収ライン42は、作動流体供給ラインL12と、回収タンク41とを繋げる配管である。回収ライン42は、作動流体供給ラインL12の送液ポンプP1と調節弁V12との間に接続されている。回収弁44は、回収ライン42に設けられており、回収ライン42の流路を開閉させる弁である。作動流体回収機構40は、回収弁44を閉じることで、回収ライン42及び回収タンク41に作動流体19が流れない状態となる。作動流体回収機構40は、回収弁44を開くことで、作動流体供給ラインL12から回収ライン42及び回収タンク41に作動流体19が流れる状態となる。作動流体回収機構40は、制御装置30により動作が制御される。
パージガス供給機構50は、不活性ガスであるパージガスを供給してパージガスを循環経路11内に流入させる機構であり、循環経路11に接続されている。パージガス供給機構50は、パージガス貯蔵タンク52と、パージガスライン54と、パージガス弁56と、を有する。パージガス貯蔵タンク52は、パージガスである不活性ガスを貯留するタンクである。不活性ガスとしては、窒素、アルゴン等を用いることができる。なお、不活性ガスに換えて、不燃性のガスをパージガスとして用いてもよい。パージガスライン54は、作動流体供給ラインL12と、パージガス貯蔵タンク52とを繋げる配管である。パージガスライン54は、作動流体供給ラインL12の調節弁V12と熱交換器12との間に接続されている。パージガス弁56は、パージガスライン54に設けられており、パージガスライン54の流路を開閉させる弁である。パージガス供給機構50は、パージガス弁56を閉じることで、パージガスライン54及びパージガス貯蔵タンク52から作動流体供給ラインL12に向けてパージガスが流れない状態となる。パージガス供給機構50は、パージガス弁56を開くことで、パージガスライン54及びパージガス貯蔵タンク52から作動流体供給ラインL12に向けてパージガスが流れる状態となる。パージガス供給機構50は、制御装置30により動作が制御される。
次に、地熱発電システム10の動作について説明する。地熱発電システム10は、発電を行う場合、送液ポンプP1を駆動することにより、作動流体供給ラインL12内の作動流体19を、復水器15から熱交換器12に圧送する。これにより、復水器15の作動流体19は、加圧されて熱交換器12に供給される。また、地熱発電システム10は、作動流体供給ラインL12に設けた調節弁V12の開度や送液ポンプP1の駆動を調整することで、熱交換器12への作動流体19の供給量や供給時の圧力を調整することができる。
地熱発電システム10は、熱交換器12に供給された作動流体19と、生産井戸21より噴出して熱源流体供給ラインL11を通って熱交換器12に通流する熱源流体18との間で熱交換を行う。これにより、作動流体19は加熱され、高温の作動流体蒸気23になる。また、熱交換器12で作動流体19と熱交換した熱源流体18は、熱源流体供給ラインL11を通り、還元井戸22に流入する。また、地熱発電システム10は、熱源流体供給ラインL11に設けた調節弁V11を調整することで、熱源流体供給ラインL11を流れる熱源流体18の流量を調整することができる。これにより、熱交換器12で交換する熱量、つまり、作動流体19の加熱量を調整することができる。
熱交換器12で高温の蒸気になった作動流体蒸気23は、作動流体蒸気供給ラインL13を通って蒸気タービン13に供給される。蒸気タービン13では、作動流体蒸気23の圧力によりタービン軸26が回転駆動し、この回転駆動によって発電機14が駆動回転することにより、発電機14で発電が行われる。
蒸気タービン13の駆動源に用いられた作動流体蒸気23は、作動流体供給ラインL12を通って、復水器15に供給される。また、復水器15には、冷却塔16で冷却された冷却水28が、送液ポンプP2で圧送されることにより冷却媒体供給ラインL14を通って供給される。
復水器15は、作動流体蒸気23と冷却水28とで熱交換を行い、作動流体蒸気23を冷却して凝縮させることにより、復水29にする。復水29は、復水器15から作動流体供給ラインL12に流れ、送液ポンプP1によって再び熱交換器12に供給される。循環経路11では、これらのように作動流体19に対して膨張と凝縮とを繰り返し行わせながら、作動流体19を循環させる。地熱発電システム10は、以上のように各部を動作し作動流体19を循環させ、熱源流体18の熱を作動流体19で回収し、当該回収した熱エネルギで蒸気タービン13を回転させて、発電を行う。
次に、地熱発電システム10は、作動流体19が循環経路11を循環している間は、漏洩検知部32によって、循環経路11からの作動流体19の漏洩を継続的に検知する。具体的には、地熱発電システム10は、漏洩検知部32によって被検知物質を検知する。漏洩検知部32は、検出した結果を電気信号により制御装置30に伝達する。制御装置30は、作動流体19の漏洩の有無に応じて、作動流体回収機構40の回収弁44やパージガス供給機構50のパージガス弁56の開閉制御を行う。制御装置30は、作動流体19の漏洩がない通常時、回収弁44とパージガス弁56を、共に閉じている。
次に、本実施形態に係る地熱発電システム10で漏洩時制御を行う場合における処理手順の概略について説明する。図2は、地熱発電システムの動作の一例を示すフローチャートである。図2に示す動作は、制御装置30が各部の検出結果に基づいて処理を実行することで実現することができる。
制御装置30は、漏洩検知部32での検知結果に基づいて、作動流体19の漏洩があるかを判定する(ステップS12)。つまり、制御装置30は、循環経路11の外部に配設される漏洩検知部32が、漏洩を検知したか否かに基づいて、作動流体19の漏洩があるか否かを判定する。制御装置30は、作動流体19の漏洩がないと判定した場合(ステップS12でNo)、作動流体19の漏洩があるか判定を再び行う(ステップS12)。
次に、制御装置30は、作動流体19の漏洩があると判定した場合(ステップS12でYes)、回収弁44を開く(ステップS14)。地熱発電システム10は、回収弁44を開くことで、作動流体供給ラインL12を通って送液ポンプP1から熱交換器12に向けて供給される作動流体19のうち、少なくとも一部の作動流体19を回収タンク41に流入させる。これにより、循環経路11を循環する作動流体19の量を減少させ、循環経路11内の圧力を低減させる。また、圧力が低減することで作動流体19の温度も低減される。また、熱交換器12の上流側の作動流体19を回収することで、液体の作動流体19を回収タンク41に回収することができる。これにより、作動流体19を円滑に回収することができる。
次に、制御装置30は、パージガス弁56を開き(ステップS16)、本処理を終了する。地熱発電システム10は、パージガス弁56を開くことで、パージガス貯蔵タンク52のパージガスが作動流体供給ラインL12に流入する。循環経路11にパージガスを供給することで、循環経路11に充填される気体内及び循環経路11から外に漏洩する気体を不活性なガスとすることができる。これにより、外部に悪影響を与えることを抑制することができる。また、作動流体19に可燃性化合物が用いられた場合でも、可燃性化合物が多く漏洩することを抑制できる。
地熱発電システム10は、作動流体19の漏洩を漏洩検知部32で検知し、作動流体19が漏洩した場合、作動流体回収機構40とパージガス供給機構50とを作動させることにより、地熱発電システム10を安全に稼動させることができる。地熱発電システム10は、作動流体回収機構40で作動流体19を回収することで、循環経路11内をより迅速に低温、低圧化することができる。これにより、循環経路11と外との差圧を低減できるため、循環経路11内の作動流体19が漏洩している部分から漏洩する量を減らすことができる。
また、本実施形態の地熱発電システム10は、熱交換器12の上流側で作動流体19を回収することで、液体で回収することができるため、より多くの量の作動流体19を迅速に回収することができる。また、加圧する送液ポンプP1を回収ライン42と作動流体供給ラインL12との連結部よりも上流に設けることで、送液ポンプP1を作動流体回収機構40の送液手段として用いることができ、作動流体19を回収タンク41に流入させやすくすることができる。
また、地熱発電システム10は、作動流体19を回収タンク41に回収することで、回収した作動流体19を再利用することもできる。
地熱発電システム10は、さらに作動流体19として、可燃性の媒体を用いる場合、外部への漏洩を迅速に抑制できることで、作動流体19が燃焼される恐れを低減することができる。また、作動流体19を外部に排出せずに回収タンク41に貯留させることで、循環経路11を安全な状態に移行させつつ、回収時に作動流体19が燃焼される恐れを低減することができる。
また、地熱発電システム10は、作動流体19の漏洩時以外でも、作動流体回収機構40で作動流体19を回収してもよい。例えば、地熱発電システム10は、メンテナンス時に作動流体回収機構40で作動流体19を回収してもよい。
図3は、地熱発電システムの動作の一例を示すフローチャートである。制御装置30は、メンテナンスを実行するかを判定する(ステップS22)。制御装置30は、オペレータからの入力や、設定された条件に基づいて、メンテナンスを実行するかを判定する。制御装置30は、メンテナンスを実行しないと判定した場合(ステップS22でNo)、メンテナンスを実行するかの判定を再び行う(ステップS22)。
次に、制御装置30は、メンテナンスを実行すると判定した場合(ステップS22でYes)、回収弁44を開く(ステップS24)。地熱発電システム10は、回収弁44を開くことで、作動流体供給ラインL12を通って送液ポンプP1から熱交換器12に向けて供給される作動流体19のうち、少なくとも一部の作動流体19を回収タンク41に流入させる。
次に、制御装置30は、パージガス弁56を開き(ステップS26)、本処理を終了する。地熱発電システム10は、パージガス弁56を開くことで、パージガス貯蔵タンク52のパージガスを作動流体供給ラインL12に流入させる。
地熱発電システム10は、このように、メンテナンス時も作動流体19を作動流体回収機構40に回収することで、迅速かつ安全に循環経路11内に作動流体19が充填されていない状態とすることができる。また、地熱発電システム10は、作動流体回収機構40の作動流体19を循環経路11内に再び充填することで、回収した作動流体19を有効活用することができる。
ここで、本実施形態の地熱発電システム10は、パージガス供給機構50を設けたが、パージガス供給機構50を備えていなくてもよい。
本発明を地熱発電システムに適用した実施例について説明したが、本発明はこれに限定されるものではなく、作動流体を用いて熱源から熱を回収し、ランキンサイクルを用いて、作動流体を循環させ、作動流体の蒸気でタービンを回転させ、発電を行う各種システムに用いることができる。つまり、作動流体を加熱する熱源として、種々の機構の熱を用いることができる。熱源としては、例えば、舶用機械から生じる熱、工場の廃熱、ガスタービンの廃熱、太陽熱、産業廃棄物の燃焼により生ずる熱等を用いることができる。つまり、発電システムは、舶用機械から生じる熱、工場の廃熱、ガスタービンの廃熱、太陽熱、産業廃棄物の燃焼により生ずる熱、から発電を行うことができる。また、発電システムは、海洋温度差発電システムとすることもできる。この場合、熱源は、海洋表層の温水となる。また、冷却塔に換えて、深海の冷水による冷却機構を用いる。
10 地熱発電システム
11 循環経路
12 熱交換器
13 蒸気タービン
14 発電機
15 復水器
16 冷却塔
18 熱源流体
19 作動流体
21 生産井戸(生産井)
22 還元井戸(還元井)
23 作動流体の蒸気(作動流体蒸気)
26 タービン軸
28 冷却水
29 復水
30 制御装置
32 漏洩検知部
40 作動流体回収機構
41 回収タンク
42 回収ライン
44 回収弁
50 パージガス供給機構
52 パージガス貯蔵タンク
54 パージガスライン
56 パージガス弁
L11 熱源流体供給ライン
L12 作動流体供給ライン
L13 作動流体蒸気供給ライン
L14 冷却媒体供給ライン
L15 冷却媒体回収ライン
P1,P2 送液ポンプ

Claims (6)

  1. 有機媒体を作動流体としてランキンサイクルで発電を行う発電システムであって、
    熱源と前記作動流体とで熱交換を行い、前記作動流体を蒸気とする熱交換器と、
    前記熱交換器で加熱された前記蒸気が供給され、前記蒸気で回転される蒸気タービンと、
    前記蒸気タービンと連結した発電機と、
    前記蒸気タービンを通過した前記蒸気を冷却し、液体の作動流体とする復水器と、
    前記復水器から供給される前記作動流体を加圧し、前記熱交換器に送液する送液ポンプと、
    前記熱交換器、前記蒸気タービン、前記復水器及び前記送液ポンプを接続し、前記作動流体及び前記蒸気を流通させる循環経路と、
    前記循環経路に配置され、前記熱交換器に供給される前記作動流体の温度を低下させる温度低減部と、
    前記作動流体の漏洩を検知する漏洩検知部と、
    前記漏洩検知部で前記作動流体の漏洩を検知した場合、前記温度低減部を稼動させて、前記熱交換器に供給される前記作動流体の温度を低下させる制御装置と、
    前記循環経路に接続され、前記循環経路から前記熱交換器の前記作動流体が流れる経路に不活性ガスを供給するパージガス供給機構と、を有し
    前記温度低減部は、前記循環経路の前記送液ポンプと前記熱交換器との間に接続された回収ラインと、前記回収ラインを開閉させる回収弁と、前記回収ラインに接続され、前記作動流体を貯留させる回収タンクと、を有し、前記回収弁を開いて、前記循環経路を流れる前記作動流体の少なくとも一部を、前記回収ラインを介して前記回収タンクに回収する作動流体回収機構であって、
    前記制御装置は、前記漏洩検知部で前記作動流体の漏洩を検知した場合、前記温度低減部を稼動させた次に、前記パージガス供給機構を可動させることを特徴とする発電システム。
  2. 前記循環経路の前記送液ポンプと前記熱交換器との間に流体の供給量を調整する調節弁が設けられており、前記回収ラインが前記送液ポンプと前記調節弁との間に接続されていることを特徴とする請求項1に記載の発電システム。
  3. 前記制御装置は、メンテナンスを実行すると判定した場合、前記温度低減部を稼動させて、前記熱交換器に供給される前記作動流体の温度を低下させることを特徴とする請求項1または2に記載の発電システム。
  4. 前記作動流体は、水よりも沸点の低い可燃性の媒体であることを特徴とする請求項1からのいずれか一項に記載の発電システム。
  5. 前記作動流体は、沸点25℃以上の化合物で構成される媒体であることを特徴とする請求項1からのいずれか一項に記載の発電システム。
  6. 前記作動流体は、ペンタン、イソペンタン、ペンテン、ヘキサン、イソヘキサン、ヘキセン、メチルシクロブタン、メチルシクロペンタン、シクロペンタンおよびシクロヘキサンのいずれか1つまたは混合物であることを特徴とする請求項1からのいずれか一項に記載の発電システム。
JP2013067301A 2013-03-27 2013-03-27 発電システム Active JP6161357B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013067301A JP6161357B2 (ja) 2013-03-27 2013-03-27 発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067301A JP6161357B2 (ja) 2013-03-27 2013-03-27 発電システム

Publications (2)

Publication Number Publication Date
JP2014190276A JP2014190276A (ja) 2014-10-06
JP6161357B2 true JP6161357B2 (ja) 2017-07-12

Family

ID=51836773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067301A Active JP6161357B2 (ja) 2013-03-27 2013-03-27 発電システム

Country Status (1)

Country Link
JP (1) JP6161357B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101684148B1 (ko) * 2015-07-13 2016-12-07 현대자동차주식회사 랭킨사이클 폐열회수시스템의 작동유체 수거장치
US10570784B2 (en) 2017-09-22 2020-02-25 Tenneco Gmbh Rankine power system for use with exhaust gas aftertreatment system
CN114458406B (zh) * 2022-01-14 2024-01-30 东营市纬地热力有限公司 一种用于发电厂蒸汽输送控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963311A (ja) * 1982-10-04 1984-04-11 Toshiba Corp リポペプチド(Lipopeptides)、それらの製造方法及び乳化剤としての利用法
JP2008255923A (ja) * 2007-04-06 2008-10-23 Sanden Corp 内燃機関の廃熱利用装置
US20120023943A1 (en) * 2010-07-30 2012-02-02 General Electric Company Fire extinguishing system for an organic rankine cycle hydrocarbon evaporator
JP5923890B2 (ja) * 2011-08-01 2016-05-25 株式会社Ihi 発電装置

Also Published As

Publication number Publication date
JP2014190276A (ja) 2014-10-06

Similar Documents

Publication Publication Date Title
JP6161358B2 (ja) 有機ランキンサイクルシステム
JP6021526B2 (ja) 冷却水供給システムおよびこれを備えたバイナリ発電装置
JP2012149541A (ja) 排熱回収発電装置および船舶
CN102713167A (zh) 废热回收发电装置及具备该装置的船舶
KR20150138661A (ko) 석탄화력 발전소에서 온배수 폐열 회수 시스템 및 제어 방법
KR101135685B1 (ko) Orc시스템 펌프 제어방법
JP6161357B2 (ja) 発電システム
JP6027022B2 (ja) 蒸気圧を利用した発電所用給水ポンピング装置
JP2015232424A (ja) 船舶用廃熱回収装置
EP2952723A1 (en) Waste heat recovery device for a marine vessel
KR101359640B1 (ko) 선박의 발전 시스템
KR101247772B1 (ko) 유기 랭킨 사이클을 이용한 선박의 발전장치
JP5123148B2 (ja) 排熱回収タービン装置
JP6124003B2 (ja) 温泉熱発電システム
JP5713824B2 (ja) 発電システム
JP2013170553A (ja) 地熱発電装置
JP4452328B2 (ja) コンバインド発電プラント
KR20160081758A (ko) 증발장치에 의한 고효율 저온 발전시스템
JP2017166331A (ja) 発電方法および発電システム
EP2876268B1 (en) Combined power device and method for operating combined power device
KR101695029B1 (ko) 발전소 건식 재생용 이산화탄소 분리회수장치로부터의 열 회수장치
JP2013181457A (ja) バイナリ発電装置およびその制御方法
JP4811810B2 (ja) 外燃機関
JP2014181997A (ja) 熱媒体漏洩検知方法及び熱媒体漏洩検知装置
KR20150098163A (ko) Orc 분산발전시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170613

R150 Certificate of patent or registration of utility model

Ref document number: 6161357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150