JP6157735B2 - レーザレーダ装置 - Google Patents
レーザレーダ装置 Download PDFInfo
- Publication number
- JP6157735B2 JP6157735B2 JP2016527530A JP2016527530A JP6157735B2 JP 6157735 B2 JP6157735 B2 JP 6157735B2 JP 2016527530 A JP2016527530 A JP 2016527530A JP 2016527530 A JP2016527530 A JP 2016527530A JP 6157735 B2 JP6157735 B2 JP 6157735B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- pulse
- frequency
- optical
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 claims description 196
- 230000005540 biological transmission Effects 0.000 claims description 81
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 20
- 238000001228 spectrum Methods 0.000 description 32
- 238000012545 processing Methods 0.000 description 26
- 238000005259 measurement Methods 0.000 description 25
- 230000010355 oscillation Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 230000008033 biological extinction Effects 0.000 description 10
- 238000005070 sampling Methods 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000443 aerosol Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/50—Systems of measurement based on relative movement of target
- G01S17/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/95—Lidar systems specially adapted for specific applications for meteorological use
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/484—Transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Environmental & Geological Engineering (AREA)
- Atmospheric Sciences (AREA)
- Environmental Sciences (AREA)
- Ecology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Description
特に、レーザレーダ装置を航空機に搭載することで、航空機の前方に存在する晴天乱気流を検出することができるため、乱気流への突入を回避することが可能になり、航空機の交通安全に寄与する。
CDLにおいて、十分な速度計測範囲を確保するには、広い帯域幅の受信信号を周波数分析する必要がある。例えば、波長1.5um帯で風速±30m/sの範囲を計測するために必要な周波数分析範囲は100MHzである。
よく知られているサンプリング定理によると、信号を所望の帯域まで再生するには、必要な帯域の2倍以上のサンプリング周波数で、信号をA/D(アナログ/デジタル)変換する必要があるとされており、従来のCDLでは、200MSamples/s程度のサンプリング周波数で動作するA/D変換器が用いられている。
このため、更に高速なサンプリング周波数で動作するA/D変換器を用いる必要があるため、レーザレーダ装置がコスト高になる。
これにより、高速なサンプリング周波数で動作するA/D変換器を用いることなく、観測対象の移動速度を検出することができる。
また、VCOの高調波信号の成分と光ヘテロダイン受信機の受信信号との差周波数の成分が周波数スペクトル上に偽ピークとして現れる場合があり、このような偽ピークが現れると、更に観測対象の移動速度の測定精度が劣化してしまう課題があった。
実施の形態1.
図1はこの発明の実施の形態1によるレーザレーダ装置を示す構成図である。
この実施の形態1では、図1のレーザレーダ装置が例えば航空機などの移動体に搭載されているものとする。
図1において、光送信ユニット1は基準光源2、光路分岐カプラ3及び変調ユニット4から構成されており、パルス光及び局部発振光を出力するユニットである。
基準光源2は単一周波数ν(単一波長)の送信種光を連続発振し、その送信種光を定偏光で光路OF(1)に出力する。
変調ユニット4は光路分岐カプラ3から出力された送信種光の周波数νに対して、予め設定された周波数であるオフセット周波数fofsから移動体(レーザレーダ装置を搭載している移動体)の速度に対応するドップラシフト周波数fmoveを差し引いた周波数(fofs−fmove)を付与し、周波数(ν+fofs−fmove)の送信種光をパルス変調してパルス光を光路OF(4)に出力する。なお、変調ユニット4はパルス光出力手段を構成している。
光サーキュレータ6は光増幅器5により増幅されたパルス光を光路OF(6)を介して光アンテナ7に出力する一方、光アンテナ7により受信された後方散乱光を光路OF(7)に出力する。
光アンテナ7は光サーキュレータ6から出力されたパルス光を空間に放射する一方、空間に存在している観測対象(例えば、図1のレーザレーダ装置が風計測ライダとして用いられる場合、風速と同じ速度で移動するエアロゾルが観測対象となる)に後方散乱された前記パルス光の後方散乱光を受信する。
なお、後方散乱光の周波数は、光アンテナ7から放射されたパルス光の周波数(ν+f ofs−fmove)に対して、観測対象の移動速度(例えば、風速)に対応するドップラシフト周波数fdopと、移動体の速度に対応するドップラシフト周波数fmoveとが加わっている周波数となる。
信号処理ユニット9は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、光ヘテロダイン受信機8から出力されたビート信号の周波数を分析することで、観測対象の移動速度を算出する処理を実施する。信号処理ユニット9は移動速度算出手段構成している。
また、信号処理ユニット9は受信ゲート幅毎のビート信号のパワースペクトルにおけるピーク値、スペクトル幅、SNR(Signal Noise Ratio)などを算出するとともに、そのパワースペクトルのピーク値から観測対象の移動速度を算出する処理を実施する。
なお、信号処理ユニット9は視線方向(パルス光の放射方向)に対する指令値を光アンテナ7に出力する機能を有している。この指令値に従って得られた各視線方向に対する観測対象までの距離や風速の計測値を格納しておくことで、ベクトル演算によって風速の3次元分布の推定や、観測距離毎の風向風速分布の算出が可能になる。
計測結果表示部10は例えばGPU(Graphics Processing Unit)や液晶ディスプレイなどから構成されており、例えば、信号処理ユニット9により推定された観測対象の移動速度や、風速の3次元分布などを表示する。
鋸波発生ユニット21は自機速度情報出力部22及び直線位相変調信号発生部23から構成されており、自装置を搭載している移動体の速度に対応する周期の鋸波を発生する装置である。
自機速度情報出力部22は自装置を搭載している移動体の速度に対応する鋸波の周期Tを出力する処理を実施する。
直線位相変調信号発生部23はファンクションジェネレータあるいは任意波形発生装置などで構成されており、自機速度情報出力部22から出力された周期Tの鋸波WF02を発生する処理を実施する。即ち、直線位相変調信号発生部23は光位相変調部24で変調位相2π(360度)を実現するために、周期Tの鋸波WF02で光位相変調部24を駆動する処理を実施する。
ここで、周期Tの鋸波WF02は、光位相変調部24で変調位相2π(360度)を実現するために必要な駆動電圧2Vπの整数倍(m倍)に相当する2mVπの振幅を有している。
なお、直線位相変調信号発生部23は鋸波発生手段を構成している。
パルス信号発生部25はパルス型のレーザレーダ装置の送信光に必要となるパルス位相変調駆動信号WF01を発生(パルス信号を繰り返し発生)する処理を実施する。なお、パルス信号発生部25はパルス信号発生手段を構成している。
ここでは、光強度変調部26がMach−Zehnder型LN変調器などから構成されている例を示しているが、レーザレーダ装置に必要となるパルス幅数として100nsec〜1usec、繰り返し周波数として数kHz〜数10kHz程度で応答することができる手段であれば何でもよい。
図3において、自機速度計測部22aは自装置を搭載している移動体の速度を計測する処理を実施する。自機速度計測部22aは移動体の速度(3000km/h程度)を数値的に十分に計測可能な計器であればよく、例えば、航空機に搭載される対気速度計などが考えられる。なお、自機速度計測部22aは速度計測手段を構成している。
速度−鋸波周期情報変換部22bは自機速度計測部22aにより計測された移動体の速度に対応する鋸波の周期Tを出力する処理を実施する。
基準光源2は、単一周波数νの送信種光を連続発振し、その送信種光を定偏光で光路OF(1)に出力する。
光路分岐カプラ3は、基準光源2から周波数νの送信種光を受けると、その送信種光の偏光状態を維持したまま、その送信種光を2分岐して、一方の送信種光を光路OF(2)に出力し、他方の送信種光を周波数νの局部発振光として光路OF(3)に出力する。
レーザレーダ装置が風計測ライダ装置として用いられる場合、例えば、送信種光の周波数νは195THz、オフセット周波数fofsは10MHz〜数100MHz、パルス光のパルス幅は数100nsec〜1μsec程度に設定される。
鋸波発生ユニット21の自機速度計測部22aは、自装置を搭載している移動体の速度を計測し、その移動体の速度を速度−鋸波周期情報変換部22bに出力する。
速度−鋸波周期情報変換部22bは、予め移動体の速度と鋸波の周期Tとの対応関係を示すテーブルを保持しており、自機速度計測部22aから移動体の速度を受けると、そのテーブルを参照して、その移動体の速度に対応する鋸波の周期Tを把握し、その鋸波の周期Tを直線位相変調信号発生部23に出力する。
ここでは、速度−鋸波周期情報変換部22bが、予め移動体の速度と鋸波の周期Tとの対応関係を示すテーブルを保持している例を示しているが、これに限るものではなく、例えば、移動体の速度と鋸波の周期Tとの対応関係を示す関数を用いて、移動体の速度から鋸波の周期Tを算出するようにしてもよい。
光位相変調部24は、直線位相変調信号発生部23が鋸波WF02を発生すると、その鋸波WF02にしたがって光路分岐カプラ3から出力された周波数νの送信種光を位相変調して、その送信種光の周波数をシフトし、周波数(ν+fofs−fmove)の送信種光を光強度変調部26に出力する。
式(1)において、mod(t,T)は時間tを鋸波の周期Tで除算した際の剰余を表している。
位相φ(t)の時間変化率は、2mπ/T[rad/s]であるため、光位相変調部24によって、鋸波の周期Tの逆数に比例する周波数シフト(fofs−fmove)を実現することができる。
図4の例では、1kHzの周波数シフト(fofs−fmove)を実現するための駆動信号を示しており、その駆動信号は、振幅が7V(2Vπ電圧(360度))で、周期Tが1msecの鋸波である。
この場合、光ヘテロダイン受信機8により得られるビート信号は、図4に示すように、一定周期1msecの正弦波となり、1kHzの周波数シフトが得られていることが分かる。
したがって、光位相変調部24によって、例えば、50MHz(=1kHzの50000倍)の周波数シフト(fofs−fmove)を実現するには、鋸波発生ユニット21が、振幅が7Vで周期Tが20nsec(=1msec/50000)の鋸波を発生すればよいことが分かる。
光強度変調部26は、パルス信号発生部25により発生されたパルス位相変調駆動信号WF01にしたがって光位相変調部24から出力された周波数(ν+fofs−fmov e)の送信種光をパルス変調してパルス光を光路OF(4)に出力する。
このパルス光は、パルス幅が数100nsec〜1usecで、繰り返し周波数が数kHz〜数10kHz程度である。
即ち、光増幅器5は、増幅媒体の蓄積作用を利用して、光強度変調部26から出力されたパルス光のOFF期間(パルス光の信号レベルがLレベルの期間)に蓄積されるエネルギーをパルス光のON期間(パルス光の信号レベルがHレベルの期間)に解放することで、パルス光を光増幅する。
光サーキュレータ6は、光増幅器5から増幅後のパルス光を受けると、そのパルス光を光路OF(6)を介して光アンテナ7に出力する。
光アンテナ7から放射されたパルス光は、空間に存在している観測対象(レーザレーダ装置が風計測ライダとして用いられる場合、風速と同じ速度で移動するエアロゾルが観測対象となる)に後方散乱される。観測対象に後方散乱されたパルス光の後方散乱光は光アンテナ7により受信されるが、この後方散乱光は、観測対象の移動速度に応じたドップラ周波数シフトを受けている。
したがって、後方散乱光の周波数は、下記の式(3)に示すように、光アンテナ7から放射されたパルス光の周波数(ν+fofs−fmove)に対して、観測対象の移動速度に対応するドップラシフト周波数fdopと、移動体の速度に対応するドップラシフト周波数fmoveとが加わっている周波数となる。
(ν+fofs−fmove)+(fdop+fmove)
=ν+fofs+fdop (3)
光ヘテロダイン受信機8は、光サーキュレータ6から光アンテナ7により受信された周波数(ν+fofs+fdop)の後方散乱光を受けると、その後方散乱光と光路分岐カプラ3から出力された周波数νの局部発振光とを光学的に合波して、その後方散乱光と局部発振光の差周波数(fofs+fdop)のビート信号を求め、そのビート信号を光電変換して、電気信号であるビート信号を信号処理ユニット9に出力する。
光ヘテロダイン受信機8で得られるビート信号の周波数fは、下記の式(4)のように表される。
f=fofs+fdop (4)
したがって、ビート信号の周波数fは、例えば、オフセット周波数fofsが50MHzで、観測対象の移動速度(例えば、風速)に対応するドップラシフト周波数fdopが−50〜+50MHzの範囲である仮定すると、100MHz以下の中間周波数になる。
光アンテナ7から放射されるパルス光である送信光101の周波数は(ν+fofs−fmove)であり、所定のパルス幅で繰り返し放射されている。なお、変調ユニット4により付与された周波数シフトは(fofs−fmove)である。
光アンテナ7の受信光102は、観測対象に後方散乱された送信光101の後方散乱光であり、送信光101のパルスOFF期間に連続的に収集される。
図5では、説明の簡単化のために、特定の距離レンジに対応している受信光102だけを記載しているが、実際には送信光101のパルスOFF期間に連続的に収集される。
受信光102の周波数は、観測対象の移動速度(例えば、風速)に対応するドップラシフト周波数fdopと、移動体の移動速度に対応するドップラシフト周波数fmoveとが加わるため、(ν+fofs+fdop)で表される。
光ヘテロダイン受信機8は、上述したように、受信光102と局部発振光103を光学的に合波して、受信光102と局部発振光103の差周波数のビート信号(周波数(fo fs+fdop)のビート信号)を得るものである。
したがって、ビート信号のスペクトルである光ヘテロダイン信号スペクトルの時系列データは、中心周波数であるオフセット周波数fofsから観測対象の移動速度に対応するドップラシフト周波数fdopだけ離調したスペクトルとして得られる。
図5において、104は特定の距離レンジにおける風速ドップラの存在帯域(風速ドップラが存在している周波数の範囲)を示し、105は観測対象の移動速度(風速)に対応するドップラシフト周波数fdopがゼロ以外(風速≠0)のときに観測されるピーク周波数を示し、106は観測対象の移動速度に対応するドップラシフト周波数fdopがゼロ(風速=0)のときに観測されるピーク周波数を示している。
図5の例では、送信光101が理想的にON/OFFされ、パルスOFF時に漏洩光がない場合を想定しているため、光ヘテロダイン受信機8により得られるビート信号には、漏洩光に伴う不要ビート成分が存在していない。
したがって、後段の信号処理ユニット9では、風速ドップラの存在帯域104だけをフィルタで切り出して信号処理を行うようにすればよい。
式(5)において、cは光速である。
信号処理ユニット9は、受信ゲート幅毎に、ビート信号のパワースペクトルを算出すると、そのパワースペクトルのピーク値、スペクトル幅、SNR(Signal Noise Ratio)などを算出するとともに、そのパワースペクトルのピーク値から観測対象の移動速度を算出する。
なお、各々の受信ゲート幅(時間ゲート)は、光アンテナ7からパルス光が放射されてから、後方散乱光が受信されるまでの時間に対応し、観測対象までの距離Lに対応している。このため、観測対象までの距離L毎に、視線方向(パルス光の放射方向)の風速によるドップラシフト周波数fdopの分布を得ることができる。
信号処理ユニット9は、この指令値に従って得られた各視線方向に対する観測対象までの距離Lや風速(風速はパワースペクトルのピーク値から得られる)の計測値を格納しておくことで、ベクトル演算によって風速の3次元分布の推定や、観測距離毎の風向風速分布の算出を行うことができる。
信号処理ユニット9は、各種の算出結果を内部のデータ蓄積部であるメモリに格納するほか、必要な情報(例えば、観測対象の移動速度(風速)や、風速の3次元分布など)を計測結果表示部10に表示する。
また、VCOの高調波信号の成分と光ヘテロダイン受信機8から得られるビート信号との差周波数の成分が周波数スペクトル上に偽ピークとして現れることもないため、偽ピークが現れることに伴う観測対象の移動速度の測定精度の劣化を防止することができる。
なお、鋸波発生ユニット21から発生される鋸波の傾きを反転させることで、移動体の進行方向が負方向であっても、移動体の移動速度に対応するドップラシフト周波数fmo veを相殺することができる。
上記実施の形態1では、光強度変調部26で理想的なパルス変調が行われることで(光強度変調部26によるパルスOFF期間の消光特性が理想的である)、パルスOFF期間の漏洩光が存在していないものを示しているが、この実施の形態2では、光強度変調部26でのパルス変調が必ずしも理想的でないために(光強度変調部26によるパルスOFF期間の消光特性が理想的でない)、パルスOFF期間の漏洩光が存在していても、観測対象の移動速度の測定精度を高めることができるレーザレーダ装置について説明する。
この実施の形態2では、2つの光強度変調部26,27を縦続に接続し、2つの光強度変調部26,27がパルス信号発生部25により発生されたパルス位相変調駆動信号WF01によって同期駆動されるように構成されている。
ただし、2つの光強度変調部26と光強度変調部27が縦続に接続されている点以外は上記実施の形態1と同様であるため、上記実施の形態1と相違している部分を説明する。
図7は光強度変調部26によるパルスOFF期間の消光特性が理想的でない場合の送信光と受信光と光ヘテロダイン信号スペクトルとの関係を示す説明図である。
この送信光101は、パルス信号発生部25により発生されたパルス位相変調駆動信号WF01のON期間(パルス信号発生部25からパルス信号が出力されている期間であり、以下、「パルスON期間」と称する)中に放射されるが、パルス位相変調駆動信号WF01のOFF期間(パルス信号発生部25からパルス信号が出力されていない期間であり、以下、「パルスOFF期間」と称する)中には、光強度変調部26によるパルスOFF期間の消光特性が理想的でないために、光強度変調部26から漏洩光の成分111が出力される。
漏洩光の成分111は、後段の光増幅器5によって増幅されたのち、光サーキュレータ6に出力される。
その結果、光サーキュレータ6における光路OF(5)から光路OF(7)へのクロストーク成分が光ヘテロダイン受信機8に入射されるとともに、パルスON期間においては、光アンテナ7の内部部品の反射による送信光101の受信光路へのクロストーク成分112が光ヘテロダイン受信機8に入射され、パルスOFF期間においては、漏洩光の成分111による受信光路への漏洩光として漏洩光113が光ヘテロダイン受信機8に入射される。
このため、光ヘテロダイン受信機8の内で、受信光路への漏洩光113と局部発振光103が干渉して、不要なビート信号114が発生する。
この不要なビート信号114の周波数は、受信光路への漏洩光113と局部発振光103との差周波数(fofs−fmove)であり、不要なビート信号114が時間的に常に存在する。
不要なビート信号114の周波数(fofs−fmove)は、中間周波数であるため、レーザレーダ装置を搭載している移動体と同等の速度計測は困難である。
光強度変調部26,27が同期駆動されることで、光強度変調部26によるパルスOFF期間と光強度変調部27によるパルスOFF期間が一致するため、光強度変調部26が1つだけ搭載されている場合よりも、パルスOFF期間の消光特性を高めることができる。
光強度変調部27が光強度変調部26によるパルスOFF期間での漏洩光113を抑圧するため(図8では、パルスOFF期間での漏洩光113が抑圧されている)、受信光として、パルスON期間における送信光101の受信光路へのクロストーク成分112と、観測対象の移動速度によるドップラシフトを受けた受信光成分(受信光102)とが得られる。
パルスON期間における送信光101のクロストーク成分112と局部発振光103とのビート成分(不要なビート信号115)は、レーザレーダ装置での観測において不要な距離0mでの信号に対応するため、時間的に棄却すればよい。
観測対象を観測したいパルスOFF期間において、光ヘテロダイン信号スペクトル内から、不要なビート信号115を抑圧することができるため、正確に観測対象の移動速度に対応するドップラシフト周波数fdopを検出することが可能になる。
上記のうち、半導体光増幅器や光ファイバ増幅器を用いる場合には、多段接続によって増加したパルスON期間の挿入損失を、光増幅による利得で補填することも可能になる。
図9はこの発明の実施の形態3によるレーザレーダ装置の光送信ユニット1を示す構成図であり、図9において、図2と同一符号は同一または相当部分を示すので説明を省略する。
信号乗算部28は鋸波発生ユニット21により発生された鋸波に対して、パルス信号発生部25により発生されたパルス位相変調駆動信号WF01を乗算することで、パルス位相変調駆動信号WF01がON期間(パルス信号が出力されている期間)であるときだけ、鋸波発生ユニット21により発生された鋸波を光位相変調部24に与える処理を実施する。なお、信号乗算部28は鋸波切出し手段を構成している。
これにより、光位相変調部24は、バースト鋸波WF03によって駆動されて、光路分岐カプラ3から出力された周波数νの送信種光を位相変調することになるため、パルス信号発生部25により発生されたパルス位相変調駆動信号WF01がON期間であるときだけ、送信種光の周波数をシフトして、周波数(ν+fofs−fmove)の送信種光を光強度変調部26に出力することなる。
したがって、パルス信号発生部25により発生されたパルス位相変調駆動信号WF01がOFF期間では、送信種光の周波数をシフトしないため、周波数νの送信種光を光強度変調部26に出力することなる。
図10はこの発明の実施の形態3における送信光と受信光と光ヘテロダイン信号スペクトルとの関係を示す説明図である。
漏洩光の成分200は、後段の光増幅器5によって増幅されたのち、光サーキュレータ6に出力される。
その結果、光サーキュレータ6における光路OF(5)から光路OF(7)へのクロストーク成分が光ヘテロダイン受信機8に入射されるとともに、パルスON期間においては、光アンテナ7の内部部品の反射による送信光101の受信光路へのクロストーク成分201が光ヘテロダイン受信機8に入射され、パルスOFF期間においては、漏洩光の成分200による受信光路への漏洩光として漏洩光202が光ヘテロダイン受信機8に入射される。
このため、光ヘテロダイン受信機8内で、パルスON期間の受信光路へのクロストーク成分201と局部発振光103が干渉して、不要なビート信号211が発生する。
この不要なビート信号211は、パルスON期間のときだけ中間周波数である(fof s−fmove)に現れる。
また、光強度変調部26によるパルスOFF期間の消光特性に対する性能要求を緩和することができるため、低コスト化を図ることができる効果を奏する。
鋸波発生ユニット、22 自機速度情報出力部、22a 自機速度計測部(速度計測手段)、22b 速度−鋸波周期情報変換部、23 直線位相変調信号発生部(鋸波発生手段)、24 光位相変調部(位相変調手段)、25 パルス信号発生部(パルス信号発生手段)、26,27 光強度変調部(パルス変調手段)、28 信号乗算部(鋸波切出し手段)、101 送信光(パルス光)、102 受信光(後方散乱光)、103 局部発振光、104 風速ドップラの存在帯域、105 風速≠0のときに観測されるピーク周波数、106 風速=0のときに観測されるピーク周波数、111 漏洩光の成分、112 受信光路へのクロストーク成分、113 受信光路への漏洩光、114,115 不要なビート信号、201 受信光路へのクロストーク成分、202 受信光路への漏洩光、211,212 不要なビート信号。
Claims (3)
- 送信種光を発振する光源と、
自装置を搭載している移動体の速度を計測する速度計測手段と、
前記速度計測手段により計測された速度に対応する周期の鋸波を発生する鋸波発生手段と、
パルス信号を繰り返し発生するパルス信号発生手段と、
前記パルス信号発生手段からパルス信号が発生されている期間中だけ、前記鋸波発生手段により発生された鋸波を出力する鋸波切出し手段と、
前記鋸波切出し手段により与えられた鋸波にしたがって前記送信種光を位相変調して、前記送信種光の周波数をシフトする位相変調手段と、
前記パルス信号発生手段により発生されたパルス信号にしたがって前記送信種光をパルス変調してパルス光を出力するパルス変調手段と、
前記位相変調手段により周波数をシフトされ、かつ、前記パルス変調手段によりパルス変調された前記送信種光であるパルス光を空間に放射したのち、前記空間に存在している観測対象に後方散乱された前記パルス光の後方散乱光を受信する光アンテナと、
前記光アンテナにより受信された後方散乱光と前記光源により発振された送信種光とを合波して、前記後方散乱光と前記送信種光の差周波数のビート信号を出力する光ヘテロダイン受信機と、
前記光ヘテロダイン受信機から出力されたビート信号から前記観測対象の移動速度を算出する移動速度算出手段と
を備えたレーザレーダ装置。 - 前記パルス変調手段が複数個縦続に接続され、前記複数のパルス変調手段が前記パルス信号発生手段により発生されたパルス信号によって同期駆動されることを特徴とする請求項1記載のレーザレーダ装置。
- 前記位相変調手段により周波数をシフトされ、かつ、前記パルス変調手段によりパルス変調されたパルス光を増幅し、増幅後のパルス光を前記光アンテナに出力する光増幅器を備えたことを特徴とする請求項1記載のレーザレーダ装置。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/065351 WO2015189915A1 (ja) | 2014-06-10 | 2014-06-10 | レーザレーダ装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015189915A1 JPWO2015189915A1 (ja) | 2017-04-20 |
JP6157735B2 true JP6157735B2 (ja) | 2017-07-05 |
Family
ID=54833046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016527530A Active JP6157735B2 (ja) | 2014-06-10 | 2014-06-10 | レーザレーダ装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170153327A1 (ja) |
EP (1) | EP3156823B1 (ja) |
JP (1) | JP6157735B2 (ja) |
WO (1) | WO2015189915A1 (ja) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9990824B2 (en) | 2013-12-17 | 2018-06-05 | Tyco Fire & Security Gmbh | System and method for detecting fire location |
JP6901713B2 (ja) * | 2016-04-27 | 2021-07-14 | 国立研究開発法人宇宙航空研究開発機構 | ライダ及びライダにおける信号処理方法 |
CN106154288A (zh) * | 2016-08-17 | 2016-11-23 | 中国气象局气象探测中心 | 一种全光纤连续相干多普勒激光测风方法及雷达系统 |
CN106371108B (zh) * | 2016-08-17 | 2019-11-19 | 中国气象局气象探测中心 | 一种全光纤脉冲相干多普勒激光测风方法及雷达系统 |
WO2018070442A1 (ja) * | 2016-10-12 | 2018-04-19 | 国立研究開発法人産業技術総合研究所 | 光角度変調測定装置及び測定方法 |
CN106680831B (zh) * | 2017-01-20 | 2019-02-26 | 中国科学院上海光学精密机械研究所 | 激光主动相干平衡探测偏振分析仪 |
DE102017221257A1 (de) * | 2017-11-28 | 2019-05-29 | Audi Ag | Radarsystem und Verfahren zum Betreiben eines Radarsystems |
JP6797327B2 (ja) * | 2018-03-29 | 2020-12-09 | 三菱電機株式会社 | レーザレーダ装置 |
CN108594256B (zh) * | 2018-04-16 | 2021-10-12 | 夏和娣 | 一种基于脉冲编码技术的相干激光雷达 |
CN108983313B (zh) * | 2018-05-02 | 2020-10-23 | 中国科学院国家空间科学中心 | 一种定量探测海面风场的方法 |
DE112018007502B4 (de) * | 2018-05-24 | 2024-06-06 | Mitsubishi Electric Corporation | Optische entfernungsmessvorrichtung und verarbeitungsvorrichtung |
US20200003900A1 (en) * | 2018-06-29 | 2020-01-02 | Perceptive Inc. | Systems and methods for measuring characteristics of an object at distance |
CN110907922B (zh) * | 2019-11-29 | 2022-09-02 | 中国科学院上海光学精密机械研究所 | 直接探测测风激光雷达的标定装置 |
JP7472965B2 (ja) * | 2020-03-05 | 2024-04-23 | 日本電気株式会社 | 光測定装置及び光測定方法 |
CN111722212B (zh) * | 2020-06-29 | 2022-03-29 | 江苏集萃深度感知技术研究所有限公司 | 基于锯齿波及单频率信号的雷达测速方法 |
FR3139391A1 (fr) * | 2022-09-02 | 2024-03-08 | Office National D'etudes Et De Recherches Aérospatiales | Systeme lidar pour mesures velocimetriques |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2543690B1 (fr) * | 1983-03-29 | 1986-01-17 | Thomson Csf | Systeme de telemetrie laser et de mesure doppler, a compression d'impulsions |
JPH0734035B2 (ja) * | 1985-11-22 | 1995-04-12 | 本田技研工業株式会社 | 車載用ドプラレーダ |
JP2689503B2 (ja) * | 1988-07-28 | 1997-12-10 | ソニー株式会社 | レーザードップラー速度計 |
JPH04315080A (ja) * | 1991-04-11 | 1992-11-06 | Fujitsu Ten Ltd | 車間距離測定装置 |
JP3221422B2 (ja) * | 1998-12-28 | 2001-10-22 | 日本電気株式会社 | 波長分散測定装置 |
JP2000275342A (ja) * | 1999-03-23 | 2000-10-06 | Toshiba Corp | 障害物検出装置 |
GB0209053D0 (en) * | 2002-04-22 | 2002-12-18 | Bae Systems Plc | Method and apparatus for laser vibrometry |
JP2007003305A (ja) * | 2005-06-22 | 2007-01-11 | Matsushita Electric Ind Co Ltd | スペクトル拡散型レーダ装置 |
JP4838775B2 (ja) * | 2007-07-20 | 2011-12-14 | Nttエレクトロニクス株式会社 | 光送信回路 |
JP5542419B2 (ja) * | 2008-11-28 | 2014-07-09 | 三菱電機株式会社 | ドップラーレーダ用受信回路及びドップラーレーダ装置 |
JP5376459B2 (ja) * | 2010-03-09 | 2013-12-25 | 独立行政法人 宇宙航空研究開発機構 | 光学式エアデータセンサ |
US20130083389A1 (en) * | 2011-09-30 | 2013-04-04 | Optical Air Data Systems, L.L.C. | Laser Doppler Velocimeter Optical Electrical Integrated Circuits |
CN103946716B (zh) * | 2011-12-21 | 2016-05-11 | 三菱电机株式会社 | 激光雷达装置 |
-
2014
- 2014-06-10 US US15/316,253 patent/US20170153327A1/en not_active Abandoned
- 2014-06-10 EP EP14894615.5A patent/EP3156823B1/en active Active
- 2014-06-10 WO PCT/JP2014/065351 patent/WO2015189915A1/ja active Application Filing
- 2014-06-10 JP JP2016527530A patent/JP6157735B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
US20170153327A1 (en) | 2017-06-01 |
EP3156823A4 (en) | 2018-02-28 |
JPWO2015189915A1 (ja) | 2017-04-20 |
EP3156823B1 (en) | 2020-03-04 |
EP3156823A1 (en) | 2017-04-19 |
WO2015189915A1 (ja) | 2015-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6157735B2 (ja) | レーザレーダ装置 | |
US11579292B2 (en) | Method and system for using square wave digital chirp signal for optical chirped range detection | |
US9778362B2 (en) | Relative speed measuring doppler LiDAR | |
US11709229B2 (en) | Laser radar device | |
US20180224548A1 (en) | Distance Measuring Apparatus, Distance Measuring Method, and Shape Measuring Apparatus | |
US20170350964A1 (en) | Coherent lidar system using tunable carrier-suppressed single-sideband modulation | |
WO2015087380A1 (ja) | レーザレーダ装置 | |
US20210382164A1 (en) | Multi-tone continuous wave detection and ranging | |
JP2013238474A (ja) | レーザーレーダー装置 | |
CA3034765A1 (en) | Method for processing a signal arising from coherent lidar and associated lidar system | |
JP2016191659A (ja) | 光ファイバ歪み測定装置及び光ファイバ歪み測定方法 | |
US11630189B2 (en) | Multi-tone continuous wave detection and ranging | |
Torun et al. | Realization of multitone continuous wave LiDAR | |
JP4932378B2 (ja) | コヒーレントライダ装置 | |
JP2010127839A (ja) | レーザレーダ装置 | |
JP6308183B2 (ja) | 光ファイバ歪み測定装置及び光ファイバ歪み測定方法 | |
CN116413676A (zh) | 一种激光雷达的发送装置、探测系统以及探测方法 | |
CN110914706A (zh) | Lidar测量装置 | |
EP1596222B1 (en) | Laser radar | |
WO2019186914A1 (ja) | レーザレーダ装置 | |
CN115236697A (zh) | 分时多频脉冲测风激光雷达系统和风速测量方法 | |
US20230131584A1 (en) | Multi-tone continuous wave detection and ranging | |
JP6342857B2 (ja) | 光反射測定装置および光反射測定方法 | |
JP6259753B2 (ja) | 光反射計測装置及び光反射計測方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170509 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170606 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6157735 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |