JP6035405B2 - Manufacturing method of soundproofing material for vehicle - Google Patents
Manufacturing method of soundproofing material for vehicle Download PDFInfo
- Publication number
- JP6035405B2 JP6035405B2 JP2015225530A JP2015225530A JP6035405B2 JP 6035405 B2 JP6035405 B2 JP 6035405B2 JP 2015225530 A JP2015225530 A JP 2015225530A JP 2015225530 A JP2015225530 A JP 2015225530A JP 6035405 B2 JP6035405 B2 JP 6035405B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- film
- fibers
- weight
- ventilation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 103
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000000835 fiber Substances 0.000 claims description 76
- 238000009423 ventilation Methods 0.000 claims description 59
- 229920001410 Microfiber Polymers 0.000 claims description 39
- 238000010438 heat treatment Methods 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 35
- 238000004378 air conditioning Methods 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 6
- 239000012774 insulation material Substances 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 description 35
- 239000004745 nonwoven fabric Substances 0.000 description 26
- 238000009413 insulation Methods 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 18
- 239000012528 membrane Substances 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 238000010030 laminating Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000013585 weight reducing agent Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000004750 melt-blown nonwoven Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Landscapes
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
- Nonwoven Fabrics (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Description
本発明は、軽量で吸音性能・遮音性能に優れた車両用防音材の製造方法に関し、特にダッシュインシュレータに好適な防音材の製造方法に関する。 The present invention relates to a method of manufacturing a soundproof material for a vehicle that is lightweight and excellent in sound absorption performance and sound insulation performance, and particularly relates to a method of manufacturing a soundproof material suitable for a dash insulator.
一般に、車室内騒音レベルは、エンジン音、吸・排気音、ロードノイズ、風切音及びエンジンの振動やトルク変動に起因するこもり音等の影響が大きい。騒音の伝達経路はエンジン及び車室内の隔壁(ダッシュパネル)からの透過音の影響が最も大きく、全体の50%以上に及ぶと言われている。 In general, the vehicle interior noise level is greatly affected by engine noise, intake / exhaust noise, road noise, wind noise, and noise caused by engine vibration and torque fluctuation. The noise transmission path is said to have the greatest influence of sound transmitted from the engine and the bulkhead (dash panel) in the passenger compartment, and is said to cover more than 50% of the total.
従って、従来からこの部位は車室内騒音レベル低減の最も大切な部位として、各社がその防音性能(吸音・遮音)向上に傾注してきた。本発明では、吸音性能及び遮音性能の両方を有する性能を防音性能とし、その部材を防音材として述べる。 Therefore, this company has traditionally focused on improving the soundproof performance (sound absorption / sound insulation) as the most important part for reducing the vehicle interior noise level. In the present invention, the performance having both the sound absorption performance and the sound insulation performance is defined as the sound insulation performance, and the member is described as the sound insulation material.
また、車両用の防音材として用いる場合には、吸音性能と遮音性能のほかに、環境問題への対応と燃費向上の観点から、車体の軽量化を図るために軽量な素材が要望されている。そのために、近年では、吸音材として短繊維不織布が広く用いられている。また、吸音性能を高くするために、繊維径を細くして空気の通過抵抗を大きくしたり、目付を大きくするなどの方法が採られてきた。その結果、高い吸音性能を求められる場合には、繊維径が15μm程度と比較的細い繊維を用い、目付(面密度)が1000〜5000g/m2の厚くて重い短繊維不織布が用いられてきた。特に、特許文献1に示すように、極細繊維を含む不織布は優れた吸音特性やフィルター性等のすぐれた特性があり多くの用途に利用されてきた。しかし、極細繊維を含む不織布だけでは強度が弱かったり、形態安定性が悪い等の問題がある。また、不織布を厚くすれば遮音性能が良くなるが、レイアウト上の問題で限界があり、軽量化の観点からはあまり厚くすることは避けられてきた。
Moreover, when used as a soundproof material for vehicles, in addition to sound absorbing performance and sound insulation performance, lightweight materials are required to reduce the weight of the vehicle body from the viewpoint of responding to environmental problems and improving fuel efficiency. . Therefore, in recent years, short fiber nonwoven fabrics are widely used as sound absorbing materials. In order to increase the sound absorption performance, methods such as reducing the fiber diameter to increase the air passage resistance and increasing the basis weight have been adopted. As a result, when high sound absorption performance is required, a thick and heavy short fiber nonwoven fabric having a fiber diameter of about 15 μm and a relatively thin fiber and a basis weight (surface density) of 1000 to 5000 g / m 2 has been used. . In particular, as shown in
これらの改善のために、極細繊維を含む不織布に別の素材を、例えば合成樹脂フィルムや別の不織布を膜材として積層複合化することが知られている(特許文献2、3)。この際に積層一体化する方法としては、スプレーや転写などでバインダーとなる樹脂を付与する方法や熱融着性繊維などを使用する方法がある。
In order to improve these, it is known to laminate and composite another material, for example, a synthetic resin film or another nonwoven fabric as a membrane material to the nonwoven fabric containing ultrafine fibers (
しかしながら、これらの方法では、乾燥あるいは樹脂の融解接着の目的で熱処理を行うことが必要であり、環境汚染の問題や省エネルギーの観点からあまり好ましいことではない。また、バインダー樹脂が不織布間の界面で皮膜を形成し、吸音性が低下するなどの問題もあった。 However, these methods require heat treatment for the purpose of drying or melting and bonding the resin, and are not so preferable from the viewpoint of environmental pollution and energy saving. In addition, there is a problem that the binder resin forms a film at the interface between the nonwoven fabrics, resulting in a decrease in sound absorption.
一方、極細繊維不織布と長繊維不織布を積層一体化する方法は通称S(スパンボンド)/M(メルトブロー)/S(スパンボンド)などの名前で知られる、スパンボンド不織布の間に極細繊維であるメルトブローン不織布を積層して熱エンボス法で接合する方法が知られている。 On the other hand, the method of laminating and integrating the ultrafine fiber nonwoven fabric and the long fiber nonwoven fabric is an ultrafine fiber between the spunbond nonwoven fabrics, commonly known as S (spunbond) / M (melt blow) / S (spunbond). A method of laminating melt blown nonwoven fabrics and joining them by a hot embossing method is known.
しかしながら、これらの不織布は、ボリューム感に欠け、硬い風合いとなっており用途が制限されてしまうという問題点があった。 However, these nonwoven fabrics have a problem in that they lack volume and have a hard texture, which limits their application.
上記従来技術では、吸音性と遮音性とを両立させるために、極細繊維を用いた不織布と別の膜材(本発明では、樹脂製フィルムや別の不織布等を含めて、極細繊維を用いた不織布に積層される部材で高密度なものを全て膜材と称する)とを接合して使用することとなっているために、接合するために接着剤を使用する、接着工程を必要とする等の不具合を有する。また、接着する別の膜材と極細繊維との接着性や成形性等を考慮し且つ軽量化も検討すると、別の膜材として使用できるものに制限があり、必ずしも吸音性と遮音性とを両立させたものが得られなかった。 In the above prior art, in order to achieve both sound absorption and sound insulation, a non-woven fabric using ultra-fine fibers and another film material (in the present invention, ultra-fine fibers including resin films and other non-woven fabrics were used. All of the high-density members laminated on the nonwoven fabric are referred to as film materials), so that an adhesive is used for bonding, an adhesive process is required, etc. Have the defects. Also, considering the adhesiveness and moldability between another membrane material to be bonded and ultrafine fibers and considering weight reduction, there are restrictions on what can be used as another membrane material, and it is not always necessary to have sound absorption and sound insulation properties. What was made compatible was not obtained.
本発明の目的は、上記問題点に鑑み、軽量で且つ吸音特性及び遮音性能に優れた防音材の製造方法を提供することにある。 In view of the above problems, an object of the present invention is to provide a method for producing a soundproof material that is lightweight and has excellent sound absorption characteristics and sound insulation performance.
即ち、本発明は、極細繊維を含む不織布に別の膜材を積層するのではなく、極細繊維を含む不織布自体で膜材を含む2層構造を実現させるものであって、吸音性能と遮音性能とを両立させるとともに軽量化を実現させるようにしたものである。 That is, the present invention realizes a two-layer structure including a membrane material by the nonwoven fabric itself containing ultrafine fibers, rather than laminating another membrane material on the nonwoven fabric containing ultrafine fibers, and has sound absorption performance and sound insulation performance. And a weight reduction.
請求項1の発明は、繊度が0.1〜1.0dtexの極細繊維を主成分とする繊維A:40〜75重量%と、繊度が1.2〜5.0dtexの熱融着性繊維を主成分とする繊維B:15〜60重量%と、繊度が1.2〜5.0dtexの短繊維を主成分とする繊維C:0〜20重量%とを開繊機によりフリースマシン又はカード機のいずれかにより交絡させて繊維体からなるシート状の基材を形成し、該基材の一方の表面を100〜240℃で加熱して、0.5〜10秒間の間、所定厚さに加圧保持して、該基材の一方の面に、目付が50〜200g/m 2 である高密度な通気調整膜を有し、該通気調整膜を入れて目付が800〜2400g/m 2 である板状の防音材を形成し、該通気調整膜を形成した板状の防音材を加熱炉で、150〜180℃、15〜60秒間、加熱することにより、通気調整膜を形成した状態で板状の防音材を成形し易くし、加熱された板状の防音材を車両用内装材の形状のプレス金型で冷却しつつ圧縮成形して、該通気調整膜が車室側に配置された車両用内装材を成形することを特徴とする。
The invention of
請求項2の発明は、請求項1に記載の車両用防音材の製造方法において、上記基材の一方の面に高密度な通気調整膜を形成する工程では、一方のみを加熱したローラー間に該基材を通して、該通気調整膜を形成することを特徴とする。 According to a second aspect of the present invention, in the method of manufacturing a soundproof material for a vehicle according to the first aspect, in the step of forming a high-density air conditioning film on one surface of the base material, between the rollers heated only on one side. The ventilation adjustment film is formed through the substrate.
請求項3の発明は、請求項1または2に記載の車両用防音材の製造方法において、上記プレス金型の表面から冷却風を出して、上記加熱された板状の防音材を冷却しつつ圧縮成形することを特徴とする。 According to a third aspect of the present invention, in the vehicle soundproofing material manufacturing method according to the first or second aspect, cooling air is emitted from the surface of the press mold to cool the heated plate-shaped soundproofing material. It is characterized by compression molding.
本発明によれば、吸音性能と遮音性能とを満足し、且つ軽量化した防音材を得ることが出来る。特に通気調整膜が基材の表面を加熱・加圧することで得られるので、基材と同じ素材で製造でき、且つ接合の問題もなく簡単に得られる。更に、通気調整膜の厚さや目付の調整も容易であり、設計自由度の高い通気調整膜を得ることができる。 According to the present invention, it is possible to obtain a soundproof material that satisfies the sound absorption performance and the sound insulation performance and is reduced in weight. In particular, since the air conditioning film is obtained by heating and pressurizing the surface of the base material, it can be manufactured from the same material as the base material and can be easily obtained without any problem of joining. Furthermore, it is easy to adjust the thickness and basis weight of the ventilation control film, and a ventilation adjustment film having a high degree of design freedom can be obtained.
また、基材の一方の表面のみを加熱・加圧して通気調整膜を有する防音材を形成した後、防音材の全体を加熱して成形し易くし、その後、冷却しながら成形するため、一方の表面に通気調整膜を備えた所定形状の防音材を得ることが可能になる。 In addition, after heating and pressurizing only one surface of the base material to form a soundproofing material having a ventilation control film, the entire soundproofing material is heated to facilitate molding, and then molded while cooling. It is possible to obtain a soundproof material having a predetermined shape provided with a ventilation adjustment film on the surface thereof.
以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.
図1は、本発明の実施例に係る防音材の断面図を模式的に示すものであって、図1(A)は防音材10の一方の表面に通気調整膜12を形成し、他方の表面には基材11が露出するタイプを、また図1(B)は防音材10の両方の表面に通気調整膜12を形成するタイプをそれぞれ示している。
FIG. 1 schematically shows a cross-sectional view of a soundproofing material according to an embodiment of the present invention. FIG. 1 (A) shows an
先ず、本発明の実施形態に係る各繊維について説明する。 First, each fiber according to an embodiment of the present invention will be described.
(極細繊維)
極細繊維としては、防音材としての実用的にはポリエステル繊維が有用である。防音材に極細繊維を主成分とする不織布(繊維集合体)を採用することで、内部のインピーダンス(通気抵抗)が上がり、内部のエネルギー減衰効果が飛躍的に向上することとなり、吸音性を阻害せずに遮音性を付加できる。
(Extra fine fiber)
As the ultrafine fiber, a polyester fiber is practically useful as a soundproofing material. Adopting non-woven fabric (fiber aggregate) mainly composed of ultrafine fibers as the soundproofing material increases the internal impedance (venting resistance) and dramatically improves the internal energy attenuation effect, impairing sound absorption. Sound insulation can be added without.
極細繊維が少なすぎると吸音性能が劣り、多すぎると相対的に熱融着性繊維が少なくなり成形性が悪くなるので、40〜75重量%とすることが好ましい。 If the amount of extra fine fibers is too small, the sound absorbing performance is inferior. If the amount is too large, relatively few heat-fusible fibers are used and the moldability is deteriorated. Therefore, the amount is preferably 40 to 75% by weight.
繊度は低いと繊維自体が細くなるので通気抵抗が高くなり吸音性能は良くなる方向にあるが、取り扱い難くなり生産性が劣るようになる。逆に繊度が高いと繊維自体が太くなるために通気抵抗が低下して吸音性が悪くなる。従って、繊度は0.1〜1.0dtexとすることが好ましい。 If the fineness is low, the fiber itself becomes thin, so that the ventilation resistance is high and the sound absorption performance is improved. However, it is difficult to handle and the productivity is inferior. On the other hand, if the fineness is high, the fiber itself becomes thick, so that the ventilation resistance is lowered and the sound absorption is deteriorated. Accordingly, the fineness is preferably 0.1 to 1.0 dtex.
(熱融着性繊維)
熱融着性繊維としては、加熱時に熱融着性繊維が溶融して極細繊維を接合する樹脂であれば特に限定されないが、この熱融着性繊維は全て溶融するのではなく、内部などの一部が溶融しないで残り、熱収縮を軽減する樹脂が好ましい。例えば、ポリエステル繊維を芯材とし、PE、PP及びPETを鞘材とした芯鞘構造が好ましい。特に、極細繊維と同じ素材であれば接合性も良く、リサイクル性の観点から好ましい。熱融着性繊維が、少なすぎるとバインダー機能を発揮できず且つ成形性が悪くなり、多すぎると極細繊維が相対的に少なくなるので、15〜60重量%、特に25〜55重量%とすることが好ましい。
(Heat-bonding fiber)
The heat-fusible fiber is not particularly limited as long as it is a resin that melts the heat-fusible fiber at the time of heating and joins the ultrafine fibers. Resins that remain partially unmelted and reduce thermal shrinkage are preferred. For example, a core-sheath structure in which a polyester fiber is used as a core and PE, PP, and PET are used as a sheath is preferable. In particular, if it is the same material as an ultrafine fiber, bondability is good and it is preferable from a viewpoint of recyclability. If the amount of the heat-fusible fiber is too small, the binder function cannot be exhibited and the moldability is deteriorated. If the amount is too large, the number of ultrafine fibers is relatively small, so 15-60% by weight, especially 25-55% by weight. It is preferable.
熱融着性繊維の繊度が低いと、製品剛性が低くなり製品の取扱いがしにくくなり、逆に高いと繊維間の隙間が大きくなり吸音性が悪くなるので、繊度は1.2〜5.0dtexとすることが好ましい。 If the fineness of the heat-fusible fiber is low, the product rigidity is low and the product is difficult to handle. Conversely, if the fineness is high, the gap between the fibers becomes large and the sound absorption is poor, so the fineness is 1.2-5. It is preferably 0 dtex.
(混合する短繊維)
上記極細繊維と熱融着性繊維との組み合わせだけでなく、極細繊維や熱融着性繊維の機能を阻害しない範囲で、これらにさらに熱融着性繊維と同様な短繊維を混ぜ合わせてもよい。リサイクル性やコストダウンの観点から上記短繊維を混ぜることが好ましい。この場合でも、極細繊維または熱融着性繊維と同じ素材であれば接合性も良く、リサイクル性の観点から好ましい。多すぎると防音材の本来機能を低下させるので、まったく混合させないか、混合するとしても20重量%までである。
(Short fiber to mix)
In addition to the combination of the above-mentioned ultrafine fibers and heat-fusible fibers, as long as the functions of the ultrafine fibers and heat-fusible fibers are not impaired, they may be mixed with short fibers similar to heat-fusible fibers. Good. It is preferable to mix the above short fibers from the viewpoint of recyclability and cost reduction. Even in this case, if it is the same material as an ultrafine fiber or a heat-fusible fiber, bondability is good and it is preferable from a viewpoint of recyclability. If the amount is too large, the original function of the soundproofing material is deteriorated. Therefore, it is not mixed at all, or even if it is mixed, it is up to 20% by weight.
この短繊維の繊度は、熱融着性繊維と同様に、1.2〜5.0dtexとすることが好ましい。 The fineness of the short fibers is preferably 1.2 to 5.0 dtex, like the heat-fusible fibers.
(通気調整膜)
本発明の特徴である通気調整膜は上記極細繊維と熱融着性繊維(または更に混ぜ合わせる短繊維)を混合して製造した不織布を用いて、この不織布の表面を加熱・加圧して高密度な通気調整膜を形成するものである。従って本発明の通気調整膜は、別の膜材を接合するのではないので、ベースの不織布との密着性を気にする必要性がなく、容易に通気調整膜を基材の不織布に一体に製造することができる。特に、加熱温度や加熱時間、加圧圧力や加圧隙間等を制御することで、この通気調整膜の厚さや通気度を調整することができるので、使用する用途等に応じた特性を調整することが容易にできる。
(Ventilation control membrane)
The air-conditioning membrane, which is a feature of the present invention, has a high density by heating and pressurizing the surface of the nonwoven fabric using a nonwoven fabric produced by mixing the ultrafine fibers and the heat-fusible fibers (or short fibers to be further mixed). It forms a simple ventilation control film. Therefore, since the air-conditioning membrane of the present invention does not join another membrane material, there is no need to worry about adhesion to the base nonwoven fabric, and the air-conditioning membrane is easily integrated with the base nonwoven fabric. Can be manufactured. In particular, by controlling the heating temperature, heating time, pressurization pressure, pressurization gap, etc., the thickness and air permeability of this air conditioning membrane can be adjusted, so the characteristics according to the application to be used are adjusted. Can be easily done.
この通気調整膜の厚さは厚すぎると、伸びが悪く成形性に劣り、薄すぎると遮音性が発揮できないので、厚さを0.05〜0.5mm、特に0.1〜0.35mmとすることが好ましい。 If the thickness of this air-permeable adjustment film is too thick, the elongation is poor and the moldability is poor, and if it is too thin, the sound insulating property cannot be exhibited, so the thickness is 0.05 to 0.5 mm, particularly 0.1 to 0.35 mm. It is preferable to do.
この通気調整膜の目付は低すぎると遮音性に劣り、高すぎると伸びが悪くなり成形性が悪くなるので、50〜200g/m2とすることが好ましい。 If the basis weight of this air-adjusting film is too low, the sound insulation properties are poor, and if it is too high, the elongation is poor and the moldability is poor, so it is preferably 50 to 200 g / m 2 .
なお、本発明の通気調整膜は、基材を加熱・圧縮して得られるもので有り、基材と同じ素材から成るものであり、防音材全体の通気抵抗を調整する役目を備え、防音材の有する吸音性と遮音性を高めると共に両者のバランスを取るために形成されるものである。従って、基材と同じ素材でありながら基材との違いを明確にするために、本発明では通気調整膜と称した。 In addition, the ventilation control film of the present invention is obtained by heating and compressing a base material, and is made of the same material as the base material, and has a function of adjusting the ventilation resistance of the entire soundproofing material. It is formed in order to improve the sound absorption and sound insulation properties, and to balance the two. Therefore, in order to clarify the difference from the base material while being the same material as the base material, in the present invention, it is referred to as a ventilation adjusting film.
(基材)
基材は、上記極細繊維と熱融着性繊維(或いは更に短繊維を混ぜたもの)を混合して製造した不織布からなるものであり、この基材の目付は、低すぎると極細繊維の持つ吸音性、遮蔽性、フィルター性能等の効果が期待できず、逆に高すぎるとバインダー繊維との接合性が低下するので、通気調整膜を入れて800〜2400g/m2とすることが好ましい。なお、通気調整膜が基材を加熱・圧縮して形成されるものであるから、基材と通気調整膜との境界は明確でない部分も有るが、通気調整膜を除いた元の基材のままの部分を基材と称する。
(Base material)
A base material consists of the nonwoven fabric manufactured by mixing the said ultra-fine fiber and heat-fusible fiber (or what mixed further short fiber), and when the fabric weight of this base material is too low, it has an ultra-fine fiber Effects such as sound absorption, shielding properties, filter performance, etc. cannot be expected. On the other hand, if it is too high, the bonding property with the binder fiber is lowered. Therefore, it is preferable to set the air conditioning film to 800 to 2400 g / m 2 . In addition, since the air conditioning film is formed by heating and compressing the base material, the boundary between the base material and the air conditioning film is not clear, but the original base material other than the air conditioning film is excluded. The remaining part is referred to as the substrate.
この基材及び通気調整膜からなる防音材全体の厚さは、薄すぎると吸音性、遮音性とも劣り、厚すぎると吸音性、遮音性は優れるが、重量アップとなり軽量化できなくなるので、5〜60mm、特に10〜40mmとすることが好ましい。 If the thickness of the entire soundproofing material composed of the base material and the ventilation control film is too thin, the sound absorbing property and sound insulating property are inferior. If it is too thick, the sound absorbing property and sound insulating property are excellent, but the weight increases and the weight cannot be reduced. It is preferable to set it to -60 mm, especially 10-40 mm.
防音材の通気抵抗は、高すぎると吸音性が悪く、低すぎると遮音性が悪いので、400〜3500Ns/m3の範囲とすることが良い。なお、目付は、800〜2400g/m2の範囲が好ましいと前に説明したが、目付量が多くなるに従って通気抵抗の許容範囲の値が大きい値に移動するような範囲にすることが好ましい。即ち、目付が少ない場合には、通気抵抗も小さくしないと直ぐに吸音性が悪くなり、吸音性を満足出来なくなるので、目付が少ない場合には、通気抵抗の許容範囲は小さい値の範囲となり、目付が多い場合には、通気抵抗も大きくしないと遮音性が悪くなり、遮音性を満足出来なくなるので、目付が多い場合には、通気抵抗の許容範囲は大きな値の範囲となる。特に、本発明では、通気調整膜を基材と同じ素材(即ち極細繊維を含む素材)としているから、上記傾向(通気抵抗と目付の相関関係)が顕著になると思われる。 If the sound resistance is too high, the sound absorption is poor, and if it is too low, the sound insulation is poor. Therefore, the sound resistance is preferably in the range of 400 to 3500 Ns / m 3 . In addition, although it was previously demonstrated that the basis weight is preferably in the range of 800 to 2400 g / m 2 , it is preferable that the permissible range of the ventilation resistance shifts to a larger value as the basis weight increases. In other words, if the basis weight is low, the sound absorption properties will deteriorate immediately if the ventilation resistance is not reduced, and the sound absorption will not be satisfied.If the basis weight is low, the allowable range of the ventilation resistance will be a small value range. If there is a large amount of airflow, the sound insulation performance will deteriorate if the airflow resistance is not increased, and the sound insulation performance will not be satisfied. If the basis weight is large, the allowable range of the airflow resistance will be a large value range. In particular, in the present invention, since the ventilation adjustment film is made of the same material as the base material (that is, a material containing ultrafine fibers), the above tendency (correlation between ventilation resistance and basis weight) seems to be remarkable.
上記説明では、防音材の一方の面に通気調整膜を設けるとして説明したが、他方の面にも上記通気調整膜を設けるようにしても良い。また、一方の表面或いは両表面に通気調整膜を設けた防音材を、同じ向きで重ねる或いは逆向きにして重ねるようにして防音材を形成しても良い。 In the above description, the ventilation adjustment film is provided on one surface of the soundproofing material. However, the ventilation adjustment film may be provided on the other surface. Further, the soundproofing material may be formed by stacking the soundproofing material provided with the ventilation adjustment film on one surface or both surfaces in the same direction or in the opposite direction.
両表面に通気調整膜を設けると、特定の周波数領域に対して、吸音や遮音特性を向上させたい場合、防音特性のバラツキの少ない基材を得易い、塵や埃が付着し難い等のメリットが出る。また、防音材の表面は、熱融着性繊維で溶着された極細繊維の層が露出するよりも、膜状に形成されている方が、表面の取り扱い易さからすると有利であり、他方の面にも上記通気調整膜を設けるようにしても良い。他方の表面に設ける通気調整膜としては、用途や狙いに応じて、一方の表面に設けるような通気調整膜でなくて、極めて薄い保護膜のようなものであっても良い。 Providing a ventilation control film on both surfaces makes it easier to obtain a base material with less variation in soundproofing characteristics and prevents dust and dirt from adhering to specific frequency ranges. coming out. In addition, the surface of the soundproof material is more advantageous in terms of ease of handling of the surface than the layer of the ultrafine fibers welded with the heat-fusible fiber is exposed. The ventilation adjustment film may be provided on the surface. The ventilation adjustment film provided on the other surface may be an extremely thin protective film instead of the ventilation adjustment film provided on one surface according to the purpose and purpose.
本発明の防音材の製造方法を説明する。 The manufacturing method of the soundproof material of this invention is demonstrated.
極細繊維、熱融着性樹脂(或いは更に短繊維を混ぜたもの)を積層・攪拌してフリースマシンにかけて板状の基材を形成し、加熱炉で加熱してから、製品形状のプレス金型で冷却しつつ圧縮成形する。 After laminating and stirring ultrafine fibers and heat-fusible resin (or a mixture of further short fibers), forming a plate-shaped substrate by fleece machine, heating in a heating furnace, and then pressing the product shape Compression molding while cooling.
通気調整膜は、基材の形成前後で、加熱・加圧して形成する。具体的には、通気調整膜は、(1)通気調整膜のない板状の基材に形成した後で成形用の加熱炉で加熱する前に、一方の表面のみを加熱してプレス金型で通気調整膜を有する板状の基材を成形すること、(2)通気調整膜のない板状の基材に形成した後で成形用の加熱炉で加熱する前に、一方のみを加熱したローラー間を通して板状に成形すること、(3)通気調整膜のない板状の基材に形成した後で成形用の加熱炉で加熱する前に、一方の表面のみを加熱してからローラー間を通して板状に成形することで製造される。 The ventilation adjustment film is formed by heating and pressing before and after the formation of the base material. Specifically, the air-conditioning film is (1) formed on a plate-like base material without a gas-adjusting film and then heated only in one surface before being heated in a molding furnace. (2) After forming on a plate-like base material without a ventilation control film, only one side was heated before being heated in a heating furnace for molding. Forming into a plate shape between rollers, (3) After forming on a plate-like base material without a ventilation control film, before heating in the forming furnace, only one surface is heated and then between the rollers It is manufactured by molding into a plate shape.
また、極細繊維、熱融着性樹脂(或いは更に短繊維を混ぜたもの)を一度に一緒に積層・攪拌するのではなく、熱融着性樹脂(或いは更に短繊維を混ぜたもの)を積層・攪拌してフリースマシンにかけて板状に形成し、その後メルトブロー法で作成した極細繊維を重ねることでもよい。この方法の場合では、通気調整膜は、極細繊維を重ねた後の基材で製造する方法やメルトブロー法で作成した極細繊維を重ねる前の基材で製造する方法が可能である。製造方法は、上記と同様な方法が使用でき、即ちプレス金型やローラーを使って圧縮するとともに、これらを使って加熱するかこれらの前工程として加熱する方法でも良い。 Also, instead of laminating and stirring together ultrafine fibers and heat-sealable resin (or a mixture of short fibers) at once, a heat-sealable resin (or a mixture of further short fibers) is laminated. -It stirs and forms in a plate shape with a fleece machine, Then superfine fiber created by the melt blow method may be piled up. In the case of this method, the ventilation adjustment membrane can be produced by a method of producing a substrate after superimposing ultrafine fibers or a method of producing a substrate before superimposing ultrafine fibers prepared by a melt blow method. As the production method, the same method as described above can be used, that is, a method of compressing using a press die or roller and heating using these or heating as a pre-process thereof may be used.
なお、一方の表面のみに通気調整膜を設けることで説明したが、両面に設ける場合には、詳細な説明は省略するが、他方の面も上記の方法で加熱・加圧するようにすれば良いものである。 In addition, although it demonstrated by providing a ventilation adjustment film only in one surface, when providing in both surfaces, detailed description is abbreviate | omitted, However, The other surface should just be heated and pressurized by said method. Is.
(防音材の製造条件)
(基材の製造条件)
基材を製造する方法及び製造条件は、一般的な基材の製造方法及び製造条件と同様なものであり、ここでは詳細な説明は省略する。また、極細繊維、熱融着性樹脂(或いは更に短繊維を混ぜたもの)を一度に一緒に積層・攪拌する場合の条件も、一般的な基材の製造方法及び製造条件と同様なものであり、ここでは詳細な説明は省略する。
(Production conditions for soundproofing materials)
(Substrate manufacturing conditions)
The method and manufacturing conditions for manufacturing the base material are the same as the general manufacturing method and manufacturing conditions for the base material, and detailed description thereof is omitted here. In addition, the conditions for laminating and stirring ultrafine fibers and heat-fusible resin (or a mixture of short fibers) at the same time are the same as the general substrate manufacturing method and manufacturing conditions. There is no detailed description here.
(通気調整膜を形成する条件)
通気調整膜を形成するための加熱温度は、低すぎると必要とする通気調整膜ができなくなり、逆に高すぎると膜厚が厚くなり、伸びが悪く成形性に劣ることとなるので、加熱プレス機の加熱温度は、100〜240℃とすることが好ましい。なお、プレス機でなく、一方を加熱したローラー間を通す場合には、時間が短いので、温度を高めにすることも可能である。加熱時間は、短いと必要な通気調整膜が得られず、長いと膜厚が厚くなって伸びが悪くなり成形性に劣ることとなるので、加熱時間は0.5〜10秒とすることが好ましい。
(Conditions for forming a ventilation adjustment film)
If the heating temperature for forming the ventilation adjustment film is too low, the required ventilation adjustment film cannot be formed. Conversely, if the heating temperature is too high, the film thickness becomes thick, the elongation is poor, and the moldability is poor. The heating temperature of the machine is preferably 100 to 240 ° C. In addition, when it passes between the rollers which heated one side instead of a press machine, since time is short, it is also possible to make temperature high. If the heating time is short, the necessary ventilation control film cannot be obtained. If the heating time is long, the film thickness becomes thick, the elongation becomes poor and the formability is poor, so the heating time may be 0.5 to 10 seconds. preferable.
(防音材の成形条件)
板状の防音材を所定形状に成形するためには、この防音材を加熱炉等で加熱して成形(変形)し易くし、加熱された防音材を所定形状のプレス金型に投入して成形する。この場合に、プレス金型で所定形状に成形されると出来るだけ早く冷却して形状を維持できるようにすることが好ましいので、プレス金型の表面から冷却風を出して加熱された防音材を冷却しつつ成形するようにしても良い。上記加熱温度は、板状の防音材が成形しやすい状態になれば良いものであり、熱融着性繊維の融点よりも高い温度であれば良く、それほど高温にする必要はない。例えば150〜180℃で良い。加熱時間も成形しやすい状態にするために必要な時間であれば良いので、15〜60秒が好ましい。
(Soundproofing material molding conditions)
In order to form a plate-like soundproofing material into a predetermined shape, this soundproofing material is heated in a heating furnace or the like to facilitate molding (deformation), and the heated soundproofing material is put into a press mold of a predetermined shape. Mold. In this case, it is preferable that the molded product is cooled as quickly as possible when it is molded into a predetermined shape with a press die, so that the soundproofing material heated by cooling air from the surface of the press die is heated. You may make it shape | mold, cooling. The heating temperature only needs to be such that the plate-like soundproofing material is easily molded, and may be a temperature higher than the melting point of the heat-fusible fiber, and does not need to be so high. For example, 150-180 degreeC may be sufficient. Since the heating time may be a time required to make it easy to mold, 15 to 60 seconds is preferable.
金型クリアランスは、基材の厚さや不織布の繊維、或いは用途等で適切に選択して設定すればよいものであるが、0.5〜5mm程度が実用的な範囲と言える。 The mold clearance may be appropriately selected and set depending on the thickness of the base material, the fibers of the nonwoven fabric, the application, or the like, but about 0.5 to 5 mm can be said to be a practical range.
次に、具体的に実施した実施例について説明する。 Next, specific examples will be described.
(実施例1)
繊度が0.6dtexのPET繊維からなる極細繊維Aを75重量%と、繊度が2.2dtexのPET繊維からなる熱融着性繊維Bを25重量%で混合撹拌してフリースマシンにかけて、厚さ:30mm、目付:1400g/m2のシート状に成形した。このシートの一方の表面をプレス金型(加熱温度:約150℃、加熱時間:5sec)で加圧して通気調整膜を形成した。その後、加熱炉(加熱温度:約165℃、加熱時間:40sec)で加熱した後、プレス金型に投入して、所定形状に成形した。上記の製造方法で得られた防音材は、以下のものであった。
防音材の厚さ:25mm
通気調整膜の厚さ:0.2mm
通気調整膜の目付:100g/m2
Example 1
Mix and stir 75% by weight of ultrafine fiber A made of PET fiber with a fineness of 0.6 dtex and 25% by weight of heat-fusible fiber B made of PET fiber with a fineness of 2.2 dtex, and apply it to a fleece machine. : 30 mm, basis weight: 1400 g / m 2 was formed into a sheet shape. One surface of this sheet was pressurized with a press die (heating temperature: about 150 ° C., heating time: 5 sec) to form a ventilation adjusting film. Then, after heating in a heating furnace (heating temperature: about 165 ° C., heating time: 40 sec), it was put into a press die and molded into a predetermined shape. The soundproofing material obtained by the above production method was as follows.
Soundproof material thickness: 25mm
Thickness of ventilation adjustment membrane: 0.2mm
The basis weight of the ventilation control film: 100 g / m 2
(実施例2)
実施例1と異なるのは、極細繊維A:65重量%、熱融着性繊維B:35重量%とした点が異なるだけで、後は実施例1と同じである。
(Example 2)
The difference from Example 1 is that the ultrafine fiber A is 65% by weight and the heat-fusible fiber B is 35% by weight.
(実施例3)
実施例1と異なるのは、極細繊維A:55重量%、熱融着性繊維B:45重量%とした点が異なるだけで、後は実施例1と同じである。
Example 3
The difference from Example 1 is that the ultrafine fiber A is 55% by weight and the heat-fusible fiber B is 45% by weight, and the rest is the same as Example 1.
(実施例4)
実施例1と異なるのは、極細繊維A:40重量%、熱融着性繊維B:60重量%とした点が異なるだけで、後は実施例1と同じである。
Example 4
The difference from Example 1 is that the ultrafine fiber A is 40% by weight and the heat-fusible fiber B is 60% by weight. The rest is the same as Example 1.
(実施例5)
実施例2と異なるのは、極細繊維A:65重量%、熱融着性繊維B:15重量%とし、更に混合する短繊維Cとして、繊度が2.2dtexのPET繊維を加えた点が異なるだけで、後は実施例2と同じである。
(Example 5)
The difference from Example 2 is that ultrafine fiber A: 65% by weight, heat-fusible fiber B: 15% by weight, and PET fiber having a fineness of 2.2 dtex is added as short fiber C to be mixed. The rest is the same as the second embodiment.
(実施例6)
実施例2と異なるのは、極細繊維A:65重量%、熱融着性繊維B:15重量%とし、更に混合する短繊維Cとして、繊度が4.4dtexのPET繊維を加えた点が異なるだけで、後は実施例2と同じである。
(Example 6)
The difference from Example 2 is that ultrafine fiber A: 65% by weight, heat-fusible fiber B: 15% by weight, and further, PET fiber having a fineness of 4.4 dtex is added as short fiber C to be mixed. The rest is the same as the second embodiment.
(実施例7)
実施例2と異なるのは、極細繊維Aとして、繊度が0.9dtexのPET繊維、熱融着性繊維Bとして繊度が2.2dtexのPET繊維を加えた点が異なるだけで、後は実施例2と同じである。
(Example 7)
The difference from Example 2 is that PET fiber with a fineness of 0.9 dtex is added as the ultrafine fiber A, and PET fiber with a fineness of 2.2 dtex is added as the heat-fusible fiber B. Same as 2.
(比較例1)
本発明の実施例2と配合割合が異なるものを比較例1とした。極細繊維A:35重量%、熱融着性繊維B:45重量%とし、更に混合する短繊維Cとして、繊度が2.2dtexのPET繊維:20重量%を加えた点である。
(Comparative Example 1)
A compound having a blending ratio different from that of Example 2 of the present invention was designated as Comparative Example 1. The ultrafine fiber A is 35% by weight, the heat-fusible fiber B is 45% by weight, and the short fiber C to be further mixed is a PET fiber having a fineness of 2.2 dtex: 20% by weight.
(比較例2)
比較例1と配合割合を変更したものであって、極細繊維A:15重量%、熱融着性繊維B例えば、:65重量%とし、更に混合する短繊維Cとして、繊度が2.2dtexのPET繊維:20重量%を加えた点である。
(Comparative Example 2)
The blending ratio was changed from that of Comparative Example 1, and the ultrafine fiber A: 15% by weight, the heat-fusible fiber B, for example: 65% by weight, and the short fiber C to be further mixed had a fineness of 2.2 dtex. PET fiber: 20% by weight added.
(比較例3)
従来技術の例として、粗毛フェルト(例えば、廃材になった衣類等を細かくほぐしてフェルト状にしたもので、綿や化繊、ウール等のものが原料になっている)からなる不織布に軟質PVCを接着したものである。
(Comparative Example 3)
As an example of the prior art, soft PVC is applied to a non-woven fabric made of coarse wool felt (for example, loose clothing made of felt, etc., made of felt, made of cotton, synthetic fiber, wool, etc.). It is glued.
不織布
繊度:2〜7dtex、厚さ:25mm、目付:1250g/m2
軟質PVC
厚さ:2mm、目付:3400g/m2
実施例1〜7及び比較例1〜3について、管内法吸音率、管内法透過損失、通気抵抗について評価した。
Nonwoven fabric Fineness: 2 to 7 dtex, thickness: 25 mm, basis weight: 1250 g / m 2
Soft PVC
Thickness: 2 mm, basis weight: 3400 g / m 2
In Examples 1 to 7 and Comparative Examples 1 to 3, the in-tube method sound absorption coefficient, the in-tube method transmission loss, and the ventilation resistance were evaluated.
管内法吸音率は、ISO10534−2、JIS A1405−2及びASTM E1050に基づいた垂直入射吸音率評価、管内法透過損失は、ASTM E2611に基づいた垂直入射透過損失評価を行った。通気抵抗は、図5に示す測定治具で行った。 The in-tube method sound absorption coefficient was evaluated by normal incident sound absorption coefficient based on ISO10534-2, JIS A1405-2 and ASTM E1050, and the in-tube method transmission loss was evaluated by normal incident transmission loss based on ASTM E2611. Ventilation resistance was measured with the measuring jig shown in FIG.
(通気抵抗の測定方法)
各実施例のサンプルを300mm×300mmの大きさで求める。このサンプルの目付量を通常の方法で測定する。そして、図5に示す測定治具1にこのサンプルSをセットして、厚さを15mmまでに押さえた状態で、通気度を測定する。具体的には、φ180mmの吸引部2で25リットル/minの吸引速度で吸引して、
元の圧力−吸引時の圧力=Δpとし、
AFR=Δp/吸引速度として、
AFR(エアーフロー割合)を通気抵抗として求める。
(Measurement method of ventilation resistance)
The sample of each Example is calculated | required by the magnitude | size of 300 mm x 300 mm. The basis weight of this sample is measured by a normal method. And this sample S is set to the measurement jig |
Original pressure-pressure during suction = Δp,
As AFR = Δp / aspiration speed,
Obtain AFR (air flow ratio) as the ventilation resistance.
実施例及び比較例について、管内法吸音率、管内法透過損失の測定結果を表1に示す。 Table 1 shows the measurement results of the in-tube method sound absorption coefficient and the in-tube method transmission loss for the examples and comparative examples.
車両用の内装材では、吸音性能や遮音性能として、管内法吸音率は0.8以上であり、且つ管内法透過損失は11dB以上が要求されている。本発明の各実施例では、表1から判るように、管内法吸音率が0.8以上であり、管内法透過損失が11dB以上であり、いずれにも良い数値を示している。これに対して、比較例1や2では、それぞれ管内法吸音率が0.72,0.68であり、ある程度の数値を示すが、吸音率として満足できる値になっていない。また、管内法透過損失では、比較例1が8.9、比較例2が7.2で有り、遮音性能が不足する結果となった。 An interior material for a vehicle is required to have an in-tube method sound absorption coefficient of 0.8 or more and an in-tube method transmission loss of 11 dB or more as sound absorption performance and sound insulation performance. In each embodiment of the present invention, as can be seen from Table 1, the in-tube method sound absorption coefficient is 0.8 or more, and the in-tube method transmission loss is 11 dB or more, which are good values. On the other hand, in Comparative Examples 1 and 2, the in-tube method sound absorption coefficient is 0.72 and 0.68, respectively, and some numerical values are shown, but the sound absorption coefficient is not satisfactory. Further, in the in-tube method transmission loss, Comparative Example 1 was 8.9 and Comparative Example 2 was 7.2, which resulted in insufficient sound insulation performance.
また、図2及び図3は、それぞれ管内法吸音率及び管内法透過損失を周波数の変化状態を示す。図2に示すように、比較例3では、500〜6300Hzのどの範囲でも吸音率が悪い結果となっており、比較例1や2では、一部の周波数帯では本発明の実施例と同レベルにある場合があるが、悪い数値の周波数帯も有り安定した吸音率を示していない。 FIGS. 2 and 3 show the change in frequency of the in-tube method sound absorption coefficient and the in-tube method transmission loss, respectively. As shown in FIG. 2, in Comparative Example 3, the sound absorption coefficient is poor in any range of 500 to 6300 Hz. In Comparative Examples 1 and 2, the same level as in the example of the present invention is achieved in some frequency bands. However, there is a bad frequency band and does not show a stable sound absorption rate.
また、図3に示すように、比較例3は、遮音性能では格段に優れた数値を示すが、比較例1や2は、悪い数値となっており、遮音性能で劣っている。 Moreover, as shown in FIG. 3, Comparative Example 3 shows significantly superior numerical values in terms of sound insulation performance, but Comparative Examples 1 and 2 are bad numbers and are inferior in sound insulation performance.
更に、図4の通気抵抗と目付の関連図で比較してみると、実施例1〜7は吸音性と遮音性の両方を満足する通気抵抗の範囲に入っているが、比較例1及び2は、所定の目付に対して通気抵抗が低くて、遮音性に劣る結果となった。なお、比較例3では、通気抵抗がかなり大きな値になるので、この図には描ききれなかったが、遮音性は優れているといえる。 Furthermore, when comparing the ventilation resistance with the basis weight in FIG. 4, Examples 1 to 7 are in the range of the ventilation resistance satisfying both the sound absorbing property and the sound insulating property. Has a low ventilation resistance with respect to a predetermined basis weight, resulting in poor sound insulation. In Comparative Example 3, the ventilation resistance is a considerably large value, so it could not be drawn in this figure, but it can be said that the sound insulation is excellent.
なお、図4において、目付が800g/m2の時の通気抵抗の上限値(a)、目付が2000g/m2の時の通気抵抗の下限値(b)は、極細繊維や熱融着繊維の材質、繊度、厚さ等で変動するので、定量的な数値として示さなかった。但し、上限値(a)−400<3500−下限値(b)の関係となり、目付が多いほど通気抵抗の許容範囲は広くなると言える。特に、本発明では、通気調整膜を基材と同じ素材(即ち極細繊維を含む素材)として、単に加熱・加圧しただけであるから、通気抵抗が図4に示すような許容範囲になると思われる。 In FIG. 4, the upper limit value (a) of the ventilation resistance when the basis weight is 800 g / m 2 and the lower limit value (b) of the ventilation resistance when the basis weight is 2000 g / m 2 Since it varies depending on the material, fineness, thickness, etc., it is not shown as a quantitative value. However, the relationship of the upper limit value (a) −400 <3500−the lower limit value (b) is satisfied, and it can be said that the greater the basis weight, the wider the allowable range of the ventilation resistance. In particular, in the present invention, since the ventilation adjustment membrane is the same material as the base material (that is, a material containing ultrafine fibers) and is simply heated and pressurized, the ventilation resistance is considered to be within an allowable range as shown in FIG. It is.
本発明は、軽量化が望まれる車両用内装部材であって、吸音性能及び遮音性能の両性能を要求され、且つ軽量化を要求される内装材、例えばダッシュインシュレータ、フロアマット及びドアトリムの吸音材などに有利に適用できるので、極めて有用であり、産業上の利用可能性が高い。 The present invention is an interior member for a vehicle that is desired to be reduced in weight, and is required to have both sound absorption performance and sound insulation performance, and is required to reduce weight, such as a dash insulator, a floor mat, and a door trim. Therefore, it is very useful and has high industrial applicability.
1 測定治具
2 吸引部
S サンプル
10 防音材
11 基材
12 通気調整膜
DESCRIPTION OF
Claims (3)
該基材の一方の表面を100〜240℃で加熱して、0.5〜10秒間の間、所定厚さに加圧保持して、該基材の一方の面に、目付が50〜200g/m 2 である高密度な通気調整膜を有し、該通気調整膜を入れて目付が800〜2400g/m 2 である板状の防音材を形成し、
該通気調整膜を形成した板状の防音材を加熱炉で、150〜180℃、15〜60秒間、加熱することにより、上記通気調整膜を形成した状態で、板状の防音材を成形し易くし、
加熱された板状の防音材を車両用内装材の形状のプレス金型で冷却しつつ圧縮成形して、該通気調整膜が車室側に配置された車両用内装材を成形することを特徴とする車両用防音材の製造方法。 Fiber A mainly composed of ultrafine fibers having a fineness of 0.1 to 1.0 dtex: Fiber B mainly composed of heat-fusible fibers having a fineness of 1.2 to 5.0 dtex and fibers B: Fibers obtained by interlacing 15-60% by weight and fibers C: 0-20% by weight, which are mainly composed of short fibers having a fineness of 1.2-5.0 dtex, by either a fleece machine or a card machine. Form a sheet-like base material consisting of body,
One surface of the substrate is heated at 100 to 240 ° C. and held at a predetermined thickness for 0.5 to 10 seconds, and the basis weight is 50 to 200 g on one surface of the substrate. / m is 2 have a high density ventilation adjustment film, basis weight to form a plate-shaped noise insulation material is a 800~2400G / m 2 put vent adjusting film,
By heating the plate-like soundproofing material on which the ventilation control film is formed in a heating furnace at 150 to 180 ° C. for 15 to 60 seconds, the plate-like soundproofing material is formed in the state in which the ventilation control film is formed. Make it easier,
The heated plate-like soundproofing material is compression-molded while being cooled with a press mold in the shape of a vehicle interior material, and the vehicle interior material in which the air-permeable adjustment film is arranged on the vehicle interior side is formed. A method for producing a soundproof material for a vehicle.
上記基材の一方の面に高密度な通気調整膜を形成する工程では、一方のみを加熱したローラー間に該基材を通して、該通気調整膜を形成することを特徴とする車両用防音材の製造方法。 In the manufacturing method of the soundproof material for vehicles according to claim 1,
In the step of forming a high-density air conditioning film on one surface of the base material, the air conditioning film is formed by passing the base material between rollers heated only on one side. Production method.
上記プレス金型の表面から冷却風を出して、上記加熱された板状の防音材を冷却しつつ圧縮成形することを特徴とする車両用防音材の製造方法。 In the manufacturing method of the soundproof material for vehicles according to claim 1 or claim 2,
A method for manufacturing a soundproofing material for a vehicle, characterized in that cooling air is emitted from the surface of the press mold and the heated plate-like soundproofing material is compression-molded while being cooled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015225530A JP6035405B2 (en) | 2015-11-18 | 2015-11-18 | Manufacturing method of soundproofing material for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015225530A JP6035405B2 (en) | 2015-11-18 | 2015-11-18 | Manufacturing method of soundproofing material for vehicle |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013243008A Division JP5844339B2 (en) | 2013-11-25 | 2013-11-25 | Manufacturing method of soundproofing material for vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016034828A JP2016034828A (en) | 2016-03-17 |
JP6035405B2 true JP6035405B2 (en) | 2016-11-30 |
Family
ID=55522997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015225530A Active JP6035405B2 (en) | 2015-11-18 | 2015-11-18 | Manufacturing method of soundproofing material for vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6035405B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018021319A1 (en) * | 2016-07-27 | 2018-02-01 | 三菱ケミカル株式会社 | Fibers for sound absorbing/insulating material, use of said fibers, manufacturing method for fibers for sound absorbing/insulating material, and fiber-molded product for sound absorbing/insulating material |
KR20210134627A (en) | 2019-03-07 | 2021-11-10 | 도레이 카부시키가이샤 | Non-woven fabric for sound-absorbing material, sound-absorbing material, and method for manufacturing non-woven fabric for sound-absorbing material |
CN115135826A (en) * | 2020-03-02 | 2022-09-30 | 三菱化学株式会社 | Fiber molded body for sound absorbing/insulating material |
JP7468255B2 (en) | 2020-08-31 | 2024-04-16 | 東レ株式会社 | Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3284729B2 (en) * | 1994-02-09 | 2002-05-20 | 日産自動車株式会社 | Automotive sound insulating material and method of manufacturing the same |
JP2000199161A (en) * | 1999-01-11 | 2000-07-18 | Kanebo Ltd | Sound-absorbing nonwoven fabric and its production |
JP5319091B2 (en) * | 2007-08-31 | 2013-10-16 | スリーエム イノベイティブ プロパティズ カンパニー | Ventilation resistance film, manufacturing method thereof, and sound-absorbing laminated member using ventilation resistance film |
JP5844339B2 (en) * | 2013-11-25 | 2016-01-13 | 株式会社ヒロタニ | Manufacturing method of soundproofing material for vehicle |
-
2015
- 2015-11-18 JP JP2015225530A patent/JP6035405B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016034828A (en) | 2016-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5844339B2 (en) | Manufacturing method of soundproofing material for vehicle | |
JP2012162112A (en) | Vehicular sound insulating material and method for manufacturing the same | |
KR101974469B1 (en) | Deep draw composites and methods of using them | |
JP4387367B2 (en) | SOUND ABSORBING MATERIAL FOR VEHICLE OUTDOOR AND METHOD FOR PRODUCING THE SOUND ABSORBING MATERIAL FOR VEHICLE | |
US7928025B2 (en) | Nonwoven multilayered fibrous batts and multi-density molded articles made with same and processes of making thereof | |
KR100416100B1 (en) | a sound absorbing and insulation material for automobile | |
JP6082145B1 (en) | Soundproof material for vehicle and method for manufacturing the same | |
JP6035405B2 (en) | Manufacturing method of soundproofing material for vehicle | |
WO2012164977A1 (en) | Automobile body undercover | |
JP2005523196A (en) | Density gradient pad material and manufacturing method thereof | |
KR20170077985A (en) | Sound absorbing-excluding sheet for auto wheel guard and method of manufacturing thereof | |
JP2009096401A (en) | Vehicle body undercover | |
JP2003049351A (en) | High-performance acoustic material | |
JP7392649B2 (en) | Nonwoven fabric structure and its manufacturing method | |
JP2018141914A (en) | Vehicular inner packaging material and its manufacturing method | |
JP3379565B2 (en) | Manufacturing method of sound insulation structure | |
KR101582647B1 (en) | Multi-layer sound-absorbing material for vehicle using micro-fiber and manufacturing method thereof | |
KR101582648B1 (en) | Sound-absorbing material for vehicle using micro-fiber and manufacturing method thereof | |
JP2019191345A (en) | Heat-resistant soundproof material for vehicle | |
KR101808624B1 (en) | High loft nonwoven sheet material and method of construction thereof | |
JP4630155B2 (en) | Interior material for automobile having uneven shape and manufacturing method thereof | |
JP2017173797A (en) | Sound proof material for vehicle and manufacturing method thereof | |
KR101047163B1 (en) | Sound absorbing material for automobile interior | |
KR102280425B1 (en) | Porous fiber reinforced composite material and method of preparing the same | |
JPH08188948A (en) | Thermoformable core material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20160802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161018 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161031 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6035405 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |