[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4630155B2 - Interior material for automobile having uneven shape and manufacturing method thereof - Google Patents

Interior material for automobile having uneven shape and manufacturing method thereof Download PDF

Info

Publication number
JP4630155B2
JP4630155B2 JP2005225455A JP2005225455A JP4630155B2 JP 4630155 B2 JP4630155 B2 JP 4630155B2 JP 2005225455 A JP2005225455 A JP 2005225455A JP 2005225455 A JP2005225455 A JP 2005225455A JP 4630155 B2 JP4630155 B2 JP 4630155B2
Authority
JP
Japan
Prior art keywords
layer
sound
fiber
fibers
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005225455A
Other languages
Japanese (ja)
Other versions
JP2007038854A (en
Inventor
英幸 出口
信介 小林
新 田島
英夫 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Engineering Inc
Original Assignee
Hayashi Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Engineering Inc filed Critical Hayashi Engineering Inc
Priority to JP2005225455A priority Critical patent/JP4630155B2/en
Publication of JP2007038854A publication Critical patent/JP2007038854A/en
Application granted granted Critical
Publication of JP4630155B2 publication Critical patent/JP4630155B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、自動車の車室に敷設される、凸凹形状を有する自動車用内装材およびその製造方法に関する。 The present invention relates to an interior material for automobiles having a concavo-convex shape that is laid in a vehicle compartment of an automobile and a method for manufacturing the same.

自動車の乗員室や荷室を構成するパネル上には、樹脂や繊維で形成した成形品が内装材として敷設されている。このような内装材は、内装材としてふさわしい意匠性やクッション性や触感を付与したり、床面の平坦性を確保するといった嵩上げ材としての役割を担ったりする他、音波や熱の伝達を軽減するといった機能を有していたりしている。   A molded product made of resin or fiber is laid as an interior material on a panel constituting a passenger compartment or a cargo compartment of an automobile. Such interior materials provide design and cushioning and feel suitable for interior materials, play a role as raising materials such as ensuring flatness of the floor, and reduce transmission of sound waves and heat. It has a function to do.

図6に示すように、特許文献1には、繊維質材料からなる表皮層1の下面に、樹脂層または樹脂を含浸させた繊維層からなる遮音層2と、フェルトからなる制振・吸音層3とを順次積層した積層体が記載されている。遮音層2は、樹脂層または樹脂を含浸させた繊維層からなるため、非通気性とされている。
特許第2622086号公報
As shown in FIG. 6, Patent Document 1 discloses that a sound insulating layer 2 made of a resin layer or a fiber layer impregnated with a resin on the lower surface of a skin layer 1 made of a fibrous material, and a vibration damping / sound absorbing layer made of felt. 3 is sequentially stacked. Since the sound insulating layer 2 is made of a resin layer or a fiber layer impregnated with a resin, the sound insulating layer 2 is non-breathable.
Japanese Patent No. 2622086

自動車が路上を走行することに伴って生じるロードノイズやエンジンノイズや風切り音等の各種の騒音は、車室内へ侵入しようとする。特許文献1記載の技術では、車外から車室内へ侵入しようとする騒音はある程度低減される。しかし、上記遮音層2が非通気性とされているため、車室内に侵入した騒音については、図6の矢印に示すように遮音層2によって反射されるため、制振・吸音層3を機能させることができておらず、吸音されていなかった。車室内の静粛性をさらに高めるため、車室内に侵入した騒音に対しても吸音機能を持たせた自動車用内装材を開発することが求められていた。
また、乗員室や荷室を構成するパネルは、平坦ではなく凸凹形状を有しているため、これらのパネル上に敷設される内装材もパネルの凸凹形状に追随した形状に成形される。このため、特に深い絞り変形が必要となる屈曲部などでは良好な成形性と同時に成形後に所望形状の状態を保つだけの保形性が必要とされる。しかし、引用文献2記載の技術では、積層体に強度および保形性を付与するのが遮音層2しかないため、剛性が不十分であるとともに成形後に所要の形状が十分に保たれないという問題があった。
Various noises such as road noise, engine noise, wind noise, and the like that are generated when the automobile travels on the road try to enter the passenger compartment. With the technique described in Patent Document 1, noise that attempts to enter the vehicle interior from outside the vehicle is reduced to some extent. However, since the sound insulation layer 2 is air-impermeable, noise that has entered the vehicle interior is reflected by the sound insulation layer 2 as shown by the arrows in FIG. It was not able to be made and sound was not absorbed. In order to further improve the quietness of the passenger compartment, it has been required to develop an interior material for automobiles that has a sound absorbing function against noise that has entered the passenger compartment.
In addition, since the panels constituting the passenger compartment and the luggage compartment are not flat but have an uneven shape, the interior material laid on these panels is also shaped to follow the uneven shape of the panel. For this reason, in particular at a bent portion where deep drawing deformation is required, it is necessary to have good shapeability as well as to maintain a desired shape after forming. However, in the technique described in the cited document 2, since only the sound insulating layer 2 provides strength and shape retention to the laminate, the rigidity is insufficient and the required shape cannot be sufficiently maintained after molding. was there.

本発明は、上記課題に鑑みてなされたもので、凸凹形状を有する自動車用内装材において、車外からの音の侵入を十分に防止するとともに車室内に侵入した音を十分に吸音することができ、軽量でありながら剛性を向上させることができ、成形後も所要の形状を保つだけの保形性に優れた自動車用内装材を提供することを目的とする。 The present invention has been made in view of the above problems, and in an interior material for an automobile having an uneven shape, it is possible to sufficiently prevent sound from entering from the outside of the vehicle and sufficiently absorb sound that has entered the vehicle interior. An object of the present invention is to provide an automobile interior material that can improve rigidity while being lightweight, and has excellent shape retention properties that can maintain a required shape even after molding.

上記目的を達成するため、本発明は、自動車の車室に敷設される、凸凹形状を有する自動車用内装材であって、単位面積当たりの重量500〜1500g/m 2 繊維を集合させた通気性の吸音層と、単位面積あたりの重量を30〜1000g/m 2 とした非通気性の熱可塑性シートからなり前記吸音層に対して車室側とは反対側の車外側の面に設けられた遮音層と、前記吸音層における車室側の面で、20〜95重量%の母材繊維と、熱可塑性繊維である5〜80重量%の架橋用繊維と、を集合させて熱成形して形成される通気性の補強層と、を少なくとも積層した状態で凸凹形状の車体パネルの形状に合わせて熱成形して得られ、前記吸音層と前記遮音層とが接し、前記吸音層の厚みが2.0〜10.0mm、前記遮音層の厚みが0.03〜1.0mm、前記補強層の通気度が5cc/cm 2 /sec以上である、凸凹形状を有することを特徴とする。
凸凹形状を有する自動車用内装材は、車外側から車室側へ順に、非通気性の遮音層、通気性の吸音層、通気性の補強層が形成され、前記吸音層と前記遮音層とが接している。車外から侵入しようとする音は、非通気性の遮音層で反射され、車室内への通過が遮られる。一方、車室側に形成された補強層は通気性を有するため、車室内に侵入した音は、補強層を通過して通気性の吸音層に進入して、吸音される。これにより、車外からの音の侵入を十分に防止するとともに車室内に侵入した音を十分に吸音することができ、乗員の耳に入る騒音を効果的に少なくさせ、自動車走行時の静粛性を向上させることができる。
また、繊維を集合させた軽量の吸音層が熱可塑性シートからなる遮音層と繊維から形成された補強層とで挟まれて熱成形されているので、軽量でありながら良好な剛性とされ、さらに、成形後も所要の形状を保つだけの良好な保形性が得られる。
In order to achieve the above object, the present invention is an automotive interior material having an uneven shape, which is laid in a passenger compartment of an automobile, and is a ventilation system in which fibers are gathered at a weight of 500 to 1500 g / m 2 per unit area. A sound-absorbing layer and a non-breathable thermoplastic sheet having a weight per unit area of 30 to 1000 g / m 2, and provided on the outer surface of the vehicle on the opposite side to the vehicle compartment side with respect to the sound-absorbing layer. And 20 to 95% by weight of the base fiber and 5 to 80% by weight of the crosslinking fiber, which are thermoplastic fibers, are aggregated and thermoformed on the sound insulation layer and the surface of the sound absorbing layer on the passenger compartment side. A breathable reinforcing layer formed by thermoforming in accordance with the shape of the uneven vehicle body panel in a laminated state, the sound absorbing layer and the sound insulating layer are in contact, and the thickness of the sound absorbing layer Is 2.0 to 10.0 mm, and the thickness of the sound insulation layer is 0.03 to 0.03 mm. .0Mm, air permeability of the reinforcing layer is 5cc / cm 2 / sec or more, and having an irregular shape.
The automotive interior material having an uneven shape has a non-breathable sound insulation layer, a breathable sound absorption layer, and a breathable reinforcement layer formed in order from the vehicle exterior side to the vehicle compartment side, and the sound absorption layer and the sound insulation layer are It touches . Sound that tries to enter from the outside of the vehicle is reflected by the non-breathable sound insulation layer and blocked from passing into the passenger compartment. On the other hand, since the reinforcing layer formed on the vehicle interior side has air permeability, sound that has entered the vehicle interior passes through the reinforcing layer and enters the air-permeable sound absorbing layer to be absorbed. As a result, the intrusion of sound from outside the vehicle can be sufficiently prevented, the sound that has entered the vehicle interior can be sufficiently absorbed, the noise that enters the passenger's ears can be effectively reduced, and the quietness of the vehicle can be reduced. Can be improved.
In addition, a lightweight sound absorbing layer in which fibers are assembled is sandwiched between a sound insulating layer made of a thermoplastic sheet and a reinforcing layer formed from fibers, and is thermoformed. As a result, good shape-retaining properties that keep the required shape after molding can be obtained.

前記補強層の繊維は、母材繊維と、熱可塑性の芯繊維と該芯繊維の外周に形成された熱可塑性の鞘繊維であって該芯繊維よりも融点が低くされた鞘繊維とから構成される芯鞘構造の架橋用繊維と、を配合した繊維とされてもよい。鞘繊維が加熱溶融されても、該鞘繊維よりも融点が高い芯繊維が加熱溶融されにくいので、芯鞘構造の架橋用繊維が母材繊維どうしを架橋して剛性を付与する。   The fibers of the reinforcing layer are composed of a base material fiber, a thermoplastic core fiber, and a sheath fiber formed on the outer periphery of the core fiber and having a melting point lower than that of the core fiber. It is also possible to use a fiber blended with a core-sheath structure crosslinking fiber. Even if the sheath fiber is heated and melted, the core fiber having a melting point higher than that of the sheath fiber is not easily melted by heating. Therefore, the core-sheath-structured crosslinking fiber bridges the base material fibers to impart rigidity.

本自動車用内装材は、遮音層と吸音層と補強層のみを積層して熱成形された内装材でもよいし、さらに表皮層や裏打ち層等を積層して熱成形された内装材でもよい。
繊維を集合させた通気性の表皮層を補強層の車室側の面に設けると、表皮層が通気性を有するので、車室内に侵入した音が表皮材を通過して吸音層に進入することにより吸音され、車室内の音を吸収する吸音性能を維持することができる。また、車室側の面が繊維を集合させた表皮層とされているので、内装材としてふさわしい意匠が付与される。
The interior material for automobiles may be an interior material that is thermoformed by laminating only a sound insulation layer, a sound absorbing layer, and a reinforcing layer, or may be an interior material that is thermoformed by laminating a skin layer or a backing layer.
When a breathable skin layer in which fibers are gathered is provided on the surface of the reinforcing layer on the passenger compartment side, the skin layer has air permeability, so that sound entering the passenger compartment passes through the skin material and enters the sound absorbing layer. Therefore, the sound absorbing performance for absorbing sound and absorbing the sound in the passenger compartment can be maintained. Moreover, since the surface on the passenger compartment side is a skin layer in which fibers are gathered, a design suitable as an interior material is given.

また、本発明は、自動車の車室に敷設される、凸凹形状を有する自動車用内装材を製造するための自動車用内装材の製造方法であって、単位面積当たりの重量500〜1500g/m 2 繊維を集合させた通気性の吸音層と、前記吸音層における車室側の面で、20〜95重量%の母材繊維と、熱可塑性繊維である5〜80重量%の架橋用繊維と、を集合させて熱成形して形成される通気性の補強層と、を少なくとも重ねてニードリングして熱風を供給することにより前記補強層を構成する熱可塑性繊維を加熱溶融させて積層体を形成し、単位面積あたりの重量を30〜1000g/m 2 とした非通気性の熱可塑性シートからなり前記吸音層に対して車室側とは反対側の車外側の面に設けられる遮音層と、単位面積当たりの重量15〜100g/m 2 不織布からなる裏打ち層と、を重ねて輻射加熱することにより前記遮音層を構成する熱可塑性シートを溶融させて前記裏打ち層と前記遮音層とを結着させた結着体を形成し、凸凹形状の車体パネルの形状に合わせた形状とされた成形型の中で前記結着体における前記遮音層側と前記積層体における前記吸音層側とを前記吸音層と前記遮音層とが接する状態で重ねて型締めして熱成形することにより、前記吸音層の厚みが2.0〜10.0mm、前記遮音層の厚みが0.03〜1.0mm、前記補強層の通気度が5cc/cm 2 /sec以上である、凸凹形状を有する自動車用内装材を製造することを特徴とする。 Moreover, this invention is a manufacturing method of the interior material for motor vehicles for manufacturing the interior material for motor vehicles which has the uneven shape laid in the compartment of a motor vehicle, Comprising: The weight per unit area 500-1500 g / m < 2 >. A breathable sound-absorbing layer in which fibers are gathered together , 20 to 95% by weight of base material fiber and 5 to 80% by weight of cross-linking fiber which is a thermoplastic fiber on the surface of the sound absorbing layer on the passenger compartment side And a breathable reinforcing layer formed by thermoforming and forming a laminate by heating and melting the thermoplastic fibers constituting the reinforcing layer by supplying hot air by needling at least overlapping A sound insulating layer formed of a non-breathable thermoplastic sheet having a weight per unit area of 30 to 1000 g / m 2 and provided on the outer surface of the vehicle opposite to the vehicle compartment side with respect to the sound absorbing layer; , Weight per unit area 15-100g A laminated body in which the backing layer and the sound insulation layer are bound to each other by melting the thermoplastic sheet constituting the sound insulation layer by radiating and heating the backing layer made of a nonwoven fabric of / m 2 The sound absorbing layer and the sound insulating layer connect the sound insulating layer side of the binder and the sound absorbing layer side of the laminated body in a mold that is shaped to match the shape of the uneven body panel. By overlapping and clamping in a contact state and thermoforming , the thickness of the sound absorbing layer is 2.0 to 10.0 mm, the thickness of the sound insulating layer is 0.03 to 1.0 mm, and the air permeability of the reinforcing layer is It is characterized by producing an interior material for an automobile having an uneven shape that is 5 cc / cm 2 / sec or more .

以上の構成により、吸音層と補強層とがニードリングにより互いに固定されるので熱風を供給することにより積層体を容易に形成することができ、熱可塑性シートからなる遮音層が輻射加熱により溶融されても裏打ち層によってだれたり変形したりすることがなくなるので結着体を容易に形成することができ、また、加熱溶融された熱可塑性シートの取り扱いが容易になるので裏打ち層と遮音層と吸音層と補強層とを積層した、凸凹形状を有する自動車用内装材の製造を容易にさせることができる。 With the above configuration, since the sound absorbing layer and the reinforcing layer are fixed to each other by needling, a laminate can be easily formed by supplying hot air, and the sound insulating layer made of a thermoplastic sheet is melted by radiation heating. Even if the backing layer does not sag or deform, the binder can be easily formed, and the heat-melted thermoplastic sheet can be handled easily, so that the backing layer, the sound insulation layer and the sound absorbing layer It is possible to easily manufacture an automobile interior material having an uneven shape in which a layer and a reinforcing layer are laminated.

請求項1にかかる発明によれば、凸凹形状を有する自動車用内装材において、車外からの音の侵入を十分に防止するとともに車室内に侵入した音を十分に吸音することができ、軽量でありながら剛性を向上させることができ、成形後も所要の形状を保つだけの保形性に優れた自動車用内装材を提供することができる According to the invention according to claim 1, in the interior material for an automobile having an uneven shape , it is possible to sufficiently prevent sound from entering from the outside of the vehicle and to sufficiently absorb the sound that has entered the vehicle interior, and is lightweight. However, it is possible to provide an interior material for automobiles that can improve the rigidity and has excellent shape retention property that can maintain a required shape even after molding .

請求項2にかかる発明では、熱可塑性シートからなる遮音層を加熱溶融させた状態で成形型内に持ち込む際に裏打ち層によって熱可塑性シートがだれたり変形したりすることがなくなるため、熱可塑性シートのハンドリング性を格段に向上させることが可能になる In the invention according to claim 2 , the thermoplastic sheet is prevented from being drooped or deformed by the backing layer when the sound insulation layer made of the thermoplastic sheet is brought into the mold in the state of being heated and melted. It is possible to significantly improve the handling performance .

請求項3にかかる発明では、凸凹形状を有する自動車用内装材の製造方法において、補強層、吸音層は熱風加熱によって、積層体の内部までほぼ均一に加熱することができ、また、非通気性の樹脂シートと不織布層とからなる層は輻射加熱によって均一に加熱することができるため、各層において加熱温度の偏りがなく、成形性に優れた良質の自動車用内装材の製造方法を提供することができる。 In the invention according to claim 3 , in the method for manufacturing an interior material for an automobile having an uneven shape, the reinforcing layer and the sound absorbing layer can be heated almost uniformly up to the inside of the laminate by hot air heating, and also non-breathable. Since the layer composed of the resin sheet and the nonwoven fabric layer can be heated uniformly by radiation heating, there is no bias in the heating temperature in each layer, and a method for producing a high-quality automotive interior material excellent in moldability is provided. Can do.

以下、下記の順序に従って本発明の実施の形態について説明する。
(1)自動車用内装材の構成:
(2)自動車用内装材の製造方法:
(3)自動車用内装材の作用、効果:
(4)変形例:
(5)実施例:
Hereinafter, embodiments of the present invention will be described in the following order.
(1) Composition of automotive interior materials:
(2) Manufacturing method of automotive interior materials:
(3) Functions and effects of automotive interior materials:
(4) Modification:
(5) Example:

(1)自動車用内装材の構成:
図1は本発明の自動車用内装材108,109を敷設した路上走行自動車200の内装の要部を一部断面視して示す正面図、図2は本自動車用内装材100の要部を垂直断面にて示す図である。
本路上走行自動車200は、車体を形成するドア110,110やフロアパネル120や図示しない天井パネルが設けられているとともに、車室SP1内にシート130,130が設けられている。ドア110,110は、金属製のドアアウターパネル(車体パネルの一種)112,112や、当該ドアアウターパネルよりも車室側に配置された金属製のドアインナーパネル(車体パネルの一種)114,114や、窓ガラス116,116を備えるとともに、ドアインナーパネル114,114に対して車室側に敷設された自動車用内装材108,108を備えている。フロアパネル120上には、床面用の自動車用内装材109が敷設されている。
(1) Composition of automotive interior materials:
FIG. 1 is a front view showing a partial cross-sectional view of the main part of the interior of a road traveling vehicle 200 laid with the automobile interior materials 108 and 109 of the present invention, and FIG. 2 is a vertical view of the main part of the vehicle interior material 100. It is a figure shown in a cross section.
The main road traveling vehicle 200 is provided with doors 110, 110, a floor panel 120, and a ceiling panel (not shown) that form a vehicle body, and seats 130, 130 are provided in the passenger compartment SP1. The doors 110 and 110 are made of a metal door outer panel (a kind of vehicle body panel) 112 and 112, or a metal door inner panel (a kind of vehicle body panel) 114 disposed closer to the passenger compartment than the door outer panel. 114 and window glass 116, 116, and automobile interior materials 108, 108 laid on the vehicle interior side with respect to the door inner panels 114, 114. On the floor panel 120, an automobile interior material 109 for a floor surface is laid.

これらの内装材108,109は、図2に示す自動車用内装材100のように、非通気性の遮音層40と通気性の吸音層30と通気性の補強層20とを少なくとも積層した状態で車室SP1の形状に合わせて熱成形して得られる。本実施形態の内装材100は、さらに、遮音層40の車外側(車室側とは反対側)の面に裏打ち層50が設けられ、補強層20の車室側の面に通気性の表皮層10が設けられて、各層10〜50を積層した状態で熱成形して形成されている。ここで、内装材100は、平坦ではなく、凸凹形状に形成される。また、凸凹形状の車体パネル上に内装材を敷設する場合、内装材はパネルの凸凹形状に追随した形状に形成される。 These interior materials 108 and 109 are in a state in which at least a non-breathable sound insulation layer 40, a breathable sound absorbing layer 30, and a breathable reinforcement layer 20 are laminated, as in the case of an automotive interior material 100 shown in FIG. It is obtained by thermoforming according to the shape of the passenger compartment SP1. In the interior material 100 of the present embodiment, a backing layer 50 is further provided on the surface of the sound insulation layer 40 on the vehicle outer side (opposite to the vehicle compartment side), and a breathable skin is provided on the vehicle interior side surface of the reinforcing layer 20. The layer 10 is provided and is formed by thermoforming in a state where the layers 10 to 50 are laminated. Here, the interior material 100 is not flat but is formed in an uneven shape. Further, when the interior material is laid on the uneven body panel, the interior material is formed in a shape following the uneven shape of the panel.

表皮層10は、内装材としての意匠性を付与する目的で車室側の面に設けられる薄い表層であり、繊維を多数集合させて通気性を有するように形成される。これにより、良好な吸音性を維持しながら車室の意匠性を向上させることができる。表皮層に用いる繊維には、熱可塑性樹脂の繊維、熱可塑性樹脂に充てん材等の添加材を添加した繊維等があり、ポリエステル、ポリアミド、アクリル、ポリプロピレン(PP)、ポリエチレン(PE)、ポリ塩化ビニル、ポリ塩化ビニリデン、アセテート、ポリエチレンテレフタレート(PET)、等の樹脂の繊維、これらの樹脂に充てん材等の添加材(例えば樹脂よりも少ない配合比)を添加した材質の繊維、等を用いることができる。また、これらの樹脂を比較的高い融点を有するように組成して形成した繊維を用いるとより好適である。表皮層は自動車の室内側に配置されるため、その構成繊維としては、染色された繊維や、捲縮加工を施した繊維等の高い意匠性を有する繊維を用いるとより好ましい。これらの意匠性繊維を用いて表皮層を形成すると、自動車用内装材100の見栄えを向上させることができる。   The skin layer 10 is a thin surface layer provided on the surface on the passenger compartment side for the purpose of imparting design as an interior material, and is formed so as to have a breathability by collecting a large number of fibers. As a result, the design of the passenger compartment can be improved while maintaining good sound absorption. Fibers used for the skin layer include thermoplastic resin fibers, fibers obtained by adding additives such as fillers to thermoplastic resins, polyester, polyamide, acrylic, polypropylene (PP), polyethylene (PE), polychlorinated Use fibers made of resin such as vinyl, polyvinylidene chloride, acetate, polyethylene terephthalate (PET), or fibers made by adding additives such as fillers to these resins (for example, less blending ratio than resin). Can do. Further, it is more preferable to use fibers formed by composing these resins so as to have a relatively high melting point. Since the skin layer is disposed on the indoor side of the automobile, it is more preferable to use a fiber having high design properties such as a dyed fiber or a crimped fiber as the constituent fiber. When a skin layer is formed using these designable fibers, the appearance of the automotive interior material 100 can be improved.

また、表皮層にニードルパンチ不織布を用いると、良好な外観の内装材が得られるとともに良好な吸音性が得られるので好適である。表皮層として用いる不織布の単位面積当たりの重量は100〜500g/m2にするのが好ましく、150〜400g/m2にするのがさらに好ましい。単位面積当たりの重量を前記下限以上にすると表皮層として良好な強度が得られるとともに良好な外観が得られるからであり、単位面積当たりの重量を前記上限以下にすると良好な通気性が得られるからである。また、表皮層として用いるニードルパンチ不織布の厚さは0.5〜8mmが好ましく、1〜5mmがさらに好ましい。厚みを前記下限以上にすると良好な強度が得られるとともに良好な外観が得られるからであり、厚みを前記上限以下にすると良好な通気性が得られるからである。一般的には、表皮層の厚さは0.5〜15mm(より好ましくは1〜10mm)の範囲を目処に決定することができる。
表皮層に用いる不織布の通気度(JIS L1096に規定されたフラジール形法による。以下、同じ)を5cc/cm2/sec以上の高通気性とすると、吸音性が飛躍的に良好になる。これは、車室内から吸音層30へと向かう音波が高通気性の表皮層10でほとんど反射せず、吸音層で十分に音のエネルギーが吸収され、表皮層を形成しても吸音層30による吸音性が低下しないためと推察される。なお、表皮層の通気度を調節するためには単位面積当たりの重量や厚さを調整すればよく、表皮層の単位面積当たりの重量を小さくしたり厚さを薄くしたりすると通気度を大きくさせることができる。
また、上述した材質の繊維を表皮層用母材繊維とし、該母材繊維と異なる表皮層用熱可塑性繊維を添加して、表皮層を形成してもよい。該表皮層用熱可塑性繊維には、後述する補強層の架橋用繊維と同様、熱可塑性樹脂の繊維、熱可塑性樹脂に充てん材等の添加材を添加した繊維等を用いることができ、PEやPP等のポリオレフィン、ポリエステル、ポリアミド等の熱可塑性樹脂からなる繊維、これらの熱可塑性樹脂を変性させて融点を調整した熱可塑性樹脂からなる繊維、これらの熱可塑性樹脂に充てん材等の添加材(例えば樹脂よりも少ない配合比)を添加した材質の繊維、これらの材質で芯繊維と鞘繊維とからなる芯鞘構造とされた繊維、等を用いることができる。表皮層用母材繊維と表皮層用熱可塑性繊維との配合比は、表皮層用母材繊維を80〜99重量%、表皮層用熱可塑性繊維を1〜20重量%と、表皮層用熱可塑性繊維の配合比を補強層の架橋用繊維の配合比よりも少なくするのが好ましい。
In addition, it is preferable to use a needle punched nonwoven fabric for the skin layer because an interior material with a good appearance can be obtained and a good sound absorption can be obtained. Is preferably a weight per unit area of the nonwoven fabric to 100 to 500 g / m 2 is used as a skin layer, more preferably to the 150 and 400 / m 2. If the weight per unit area is not less than the above lower limit, good strength can be obtained as a skin layer and good appearance can be obtained, and if the weight per unit area is not more than the above upper limit, good air permeability can be obtained. It is. The thickness of the needle punched nonwoven fabric used as the skin layer is preferably 0.5 to 8 mm, and more preferably 1 to 5 mm. This is because when the thickness is set to the lower limit or more, good strength is obtained and a good appearance is obtained, and when the thickness is set to the upper limit or less, good air permeability is obtained. Generally, the thickness of the skin layer can be determined in the range of 0.5 to 15 mm (more preferably 1 to 10 mm).
If the air permeability of the nonwoven fabric used for the skin layer (according to the fragile method defined in JIS L1096, hereinafter the same) is set to a high air permeability of 5 cc / cm 2 / sec or more, the sound absorption is remarkably improved. This is because the sound wave traveling from the vehicle interior to the sound absorbing layer 30 is hardly reflected by the highly breathable skin layer 10, and sound energy is sufficiently absorbed by the sound absorbing layer. It is presumed that the sound absorption is not lowered. In order to adjust the air permeability of the skin layer, the weight and thickness per unit area may be adjusted. If the weight per unit area of the skin layer is reduced or the thickness is reduced, the air permeability is increased. Can be made.
Alternatively, the skin layer may be formed by using the fiber of the above-mentioned material as the base material fiber for the skin layer and adding a thermoplastic fiber for the skin layer different from the base material fiber. As the thermoplastic fiber for the skin layer, a fiber of a thermoplastic resin, a fiber in which an additive such as a filler is added to the thermoplastic resin, etc. can be used, as in the case of the crosslinking fiber of the reinforcing layer described later. Fibers made of thermoplastic resins such as polyolefins such as PP, polyesters, polyamides, fibers made of thermoplastic resins whose melting points are adjusted by modifying these thermoplastic resins, and additives such as fillers for these thermoplastic resins ( For example, fibers of a material to which a blending ratio less than that of a resin is added, fibers having a core-sheath structure composed of a core fiber and a sheath fiber with these materials, and the like can be used. The blending ratio of the skin layer base fiber and the skin layer thermoplastic fiber is 80 to 99% by weight of the skin layer base fiber, 1 to 20% by weight of the skin layer thermoplastic fiber, and the skin layer heat. It is preferable to make the blending ratio of the plastic fibers smaller than the blending ratio of the crosslinking fibers in the reinforcing layer.

補強層20は、成形後の形状を保持する剛性を付与する目的で設けられる薄い中間層であり、吸音層30における車室側の面で少なくとも熱可塑性繊維を有する繊維を多数集合させて熱成形して通気性を有するように形成される。補強層に用いる繊維は、全て熱可塑性繊維でもよいし、ガラス繊維、カーボン繊維、レーヨン繊維など熱可塑性を示さない繊維と熱可塑性繊維とを混合した繊維でもよい。補強層に用いる熱可塑性繊維には、熱可塑性樹脂の繊維、熱可塑性樹脂に充てん材等の添加材を添加した繊維等があり、PEやPP等のポリオレフィン、ポリエステル、ポリアミド、PET等の熱可塑性樹脂からなる繊維、これらの熱可塑性樹脂を変性させて融点を調整した熱可塑性樹脂からなる繊維、これらの熱可塑性樹脂に充てん材等の添加材(例えば樹脂よりも少ない配合比)を添加した材質の繊維、等を用いることができる。
本実施形態の補強層の繊維は、母材繊維と、熱可塑性繊維である架橋用繊維と、を配合した繊維としている。また、本実施形態の架橋用繊維は、熱可塑性の芯繊維と該芯繊維の外周に形成された熱可塑性の鞘繊維であって該芯繊維よりも融点が低くされた鞘繊維とから構成される芯鞘構造の熱可塑性繊維としている。
The reinforcing layer 20 is a thin intermediate layer provided for the purpose of imparting rigidity to maintain the shape after molding, and thermoforming by collecting a large number of fibers having at least thermoplastic fibers on the surface of the sound absorbing layer 30 on the passenger compartment side. Thus, it is formed to have air permeability. The fibers used in the reinforcing layer may all be thermoplastic fibers, or may be fibers obtained by mixing thermoplastic fibers such as glass fibers, carbon fibers, rayon fibers and the like that do not exhibit thermoplasticity. The thermoplastic fibers used for the reinforcing layer include thermoplastic fibers, fibers obtained by adding additives such as fillers to thermoplastic resins, and thermoplastics such as polyolefins such as PE and PP, polyesters, polyamides, and PET. Fibers made of resin, fibers made of thermoplastic resins whose melting points are adjusted by modifying these thermoplastic resins, and materials in which additives such as fillers (for example, less blending ratio than resin) are added to these thermoplastic resins Fiber, etc. can be used.
The fibers of the reinforcing layer of the present embodiment are fibers in which base material fibers and crosslinking fibers that are thermoplastic fibers are blended. The crosslinking fiber of this embodiment is composed of a thermoplastic core fiber and a sheath fiber formed on the outer periphery of the core fiber and having a melting point lower than that of the core fiber. The core-sheath structure is a thermoplastic fiber.

母材繊維は、補強層に十分な剛性を付与するために用いられる。母材繊維には、熱可塑性樹脂の繊維、熱可塑性樹脂に充てん材等の添加材を添加した繊維等を用いることができ、ポリエステル繊維、PP繊維、ポリアミド繊維、レーヨン繊維、PET繊維、さらに充てん材等の添加材(例えば樹脂よりも少ない配合比)を添加した材質の繊維、等を用いることができる。母材繊維には、架橋用繊維との接着が良好な性質の繊維を用いるのが好ましく、例えば架橋用繊維(芯鞘構造の繊維の場合は鞘繊維)と相溶性のある繊維を用いると架橋用繊維との接着性が良好になり、補強層に十分な剛性を付与することができる。架橋用繊維と相溶性のある繊維として、同じ材質の繊維を用いてもよい。
母材繊維の繊維径は、5〜60μmが好ましく、5〜35μmがさらに好ましい。また、母材繊維の繊維長は、10〜100mmが好ましく、24〜64mmがさらに好ましい。繊維径および繊維長がこれらの範囲内になると、内装材を作製するときに繊維塊ができにくくなり、カーディング工程において分散性が良好になるなど、加工性が向上する。
The base fiber is used for imparting sufficient rigidity to the reinforcing layer. The base fiber can be a fiber of thermoplastic resin, a fiber in which an additive such as a filler is added to a thermoplastic resin, polyester fiber, PP fiber, polyamide fiber, rayon fiber, PET fiber, and further filler A fiber made of a material to which an additive such as a material (for example, a blending ratio less than that of the resin) is added can be used. As the base fiber, it is preferable to use a fiber having a good adhesion property to the crosslinking fiber. For example, a fiber compatible with the crosslinking fiber (a sheath fiber in the case of a fiber having a core-sheath structure) is used for crosslinking. Adhesiveness with the fibers for use becomes good, and sufficient rigidity can be imparted to the reinforcing layer. Fibers of the same material may be used as the fibers compatible with the crosslinking fibers.
The fiber diameter of the base fiber is preferably 5 to 60 μm, and more preferably 5 to 35 μm. Further, the fiber length of the base fiber is preferably 10 to 100 mm, and more preferably 24 to 64 mm. When the fiber diameter and fiber length are within these ranges, it becomes difficult to form a fiber lump when producing the interior material, and processability is improved, such as good dispersibility in the carding process.

架橋用繊維は、母材繊維どうしを架橋することにより補強層に十分な剛性を付与するために用いられる。架橋用繊維には、熱可塑性樹脂の繊維、熱可塑性樹脂に充てん材等の添加材を添加した繊維等を用いることができ、PEやPP等のポリオレフィン、ポリエステル、ポリアミド等の熱可塑性樹脂からなる繊維、これらの熱可塑性樹脂を変性させて融点を調整した熱可塑性樹脂からなる繊維、これらの熱可塑性樹脂に充てん材等の添加材(例えば樹脂よりも少ない配合比)を添加した材質の繊維、等を用いることができる。架橋用繊維には、母材繊維との接着が良好な性質の繊維であって、母材繊維が熱可塑性繊維である場合には母材繊維よりも低い融点を持つ熱可塑性の繊維を用いるのが好ましく、例えば母材繊維と相溶性のある繊維を用いると母材繊維との接着性が良好になり、補強層に十分な剛性を付与することができる。
架橋用繊維の融点は、100〜220℃が好ましい。融点が前記下限以上になると実用上の耐熱性に問題なく補強層に良好な剛性を付与することができるためであり、融点が前記上限以下になると熱成形時に母材繊維との接着性が十分に得られて補強層に良好な剛性を付与することができるためである。
The crosslinking fiber is used for imparting sufficient rigidity to the reinforcing layer by crosslinking the base material fibers. For the fiber for crosslinking, a fiber of a thermoplastic resin, a fiber obtained by adding an additive such as a filler to the thermoplastic resin, and the like can be used. The fiber includes a thermoplastic resin such as a polyolefin such as PE or PP, a polyester, or a polyamide. Fibers, fibers made of a thermoplastic resin whose melting point is adjusted by modifying these thermoplastic resins, fibers made of a material obtained by adding an additive such as a filler (for example, a blending ratio less than the resin) to these thermoplastic resins, Etc. can be used. For the cross-linking fiber, use a thermoplastic fiber having a property of good adhesion to the base fiber and a lower melting point than that of the base fiber when the base fiber is a thermoplastic fiber. Preferably, for example, when a fiber compatible with the base material fiber is used, the adhesion to the base material fiber is improved and sufficient rigidity can be imparted to the reinforcing layer.
The melting point of the crosslinking fiber is preferably 100 to 220 ° C. This is because when the melting point is equal to or higher than the lower limit, it is possible to impart good rigidity to the reinforcing layer without any problem in practical heat resistance, and when the melting point is equal to or lower than the upper limit, sufficient adhesion to the base fiber during thermoforming is sufficient. It is because it can be obtained and good rigidity can be imparted to the reinforcing layer.

芯繊維の周囲を低融点成分または中融点成分で鞘状に囲んで形成した芯鞘構造の繊維、すなわち、芯繊維と該芯繊維と比べて融点の低い低融点繊維を鞘繊維とした熱融着性の芯鞘構造を有する繊維を架橋用繊維として用いる場合、鞘繊維に上述した素材、すなわち、ポリオレフィン、ポリエステル、ポリアミド等の熱可塑性樹脂の繊維、これらの熱可塑性樹脂を変性させて融点を調整した熱可塑性樹脂からなる繊維、これらの熱可塑性樹脂に充てん材等の添加材(例えば樹脂よりも少ない配合比)を添加した材質の繊維、等を用いることができる。また、鞘繊維には、母材繊維との接着が良好な性質の繊維であって母材繊維よりも低い融点を持つ熱可塑性の低融点繊維または中融点繊維を用いるのが好ましく、例えば母材繊維と相溶性のある低融点繊維または中融点繊維を用いると母材繊維との接着性が良好になり、補強層に十分な剛性を付与することができる。
鞘繊維の融点は、100〜220℃が好ましい。融点が前記下限以上になると実用上の耐熱性に問題なく補強層に良好な剛性を付与することができるためであり、融点が前記上限以下になると熱成形時に母材繊維との接着性が十分に得られて補強層に良好な剛性を付与することができるためである。
A core-sheathed fiber formed by surrounding the core fiber with a low-melting component or medium-melting component in a sheath shape, that is, heat melting with a sheath fiber consisting of a core fiber and a low-melting fiber having a lower melting point than the core fiber. When a fiber having an adhesive core / sheath structure is used as a fiber for cross-linking, the above-mentioned materials for the sheath fiber, that is, fibers of thermoplastic resin such as polyolefin, polyester, polyamide, etc., and these thermoplastic resins are modified to have a melting point. Fibers made of the adjusted thermoplastic resin, fibers made of a material obtained by adding an additive such as a filler (for example, a blending ratio less than the resin) to these thermoplastic resins, and the like can be used. For the sheath fiber, it is preferable to use a thermoplastic low-melting-point fiber or medium-melting-point fiber having a good property of bonding with the base material fiber and having a melting point lower than that of the base material fiber. When a low-melting fiber or a medium-melting fiber having compatibility with the fiber is used, the adhesion with the base material fiber is improved, and sufficient rigidity can be imparted to the reinforcing layer.
The melting point of the sheath fiber is preferably 100 to 220 ° C. This is because when the melting point is equal to or higher than the lower limit, it is possible to impart good rigidity to the reinforcing layer without any problem in practical heat resistance, and when the melting point is equal to or lower than the upper limit, sufficient adhesion to the base fiber during thermoforming is sufficient. It is because it can be obtained and good rigidity can be imparted to the reinforcing layer.

芯繊維には、鞘繊維よりも融点の高い熱可塑性樹脂を用いているが、鞘繊維と同様、ポリオレフィン、ポリエステル、ポリアミド等の熱可塑性樹脂の繊維、これらの熱可塑性樹脂を変性させて融点を調整した熱可塑性樹脂からなる繊維、これらの熱可塑性樹脂に充てん材等の添加材(例えば樹脂よりも少ない配合比)を添加した材質の繊維、等を用いることができる。
芯繊維の融点は、160〜260℃が好ましい。前記下限以上になると熱成形時に溶融による切断が生じにくくなって補強層に良好な剛性を付与することができるためである。
For the core fiber, a thermoplastic resin having a melting point higher than that of the sheath fiber is used, but like the sheath fiber, fibers of thermoplastic resins such as polyolefin, polyester, polyamide, etc., and these thermoplastic resins are modified to lower the melting point. Fibers made of the adjusted thermoplastic resin, fibers made of a material obtained by adding an additive such as a filler (for example, a blending ratio less than the resin) to these thermoplastic resins, and the like can be used.
The melting point of the core fiber is preferably 160 to 260 ° C. This is because when the amount is equal to or more than the lower limit, cutting due to melting is less likely to occur during thermoforming, and good rigidity can be imparted to the reinforcing layer.

架橋用繊維の繊維径は、8〜45μmが好ましい。繊維径を前記下限以上にするとカーディング工程での分散性に問題なく補強層に良好な剛性を付与することができるためであり、繊維径を前記上限以下にすると単位重量当たりの架橋用繊維の本数が多くなって母材繊維どうしを十分に架橋して補強層に良好な剛性を付与することができるためである。架橋用繊維の繊維長は、10〜100mmが好ましい。繊維長を前記下限以上にするとカーディング工程で繊維の脱落がなく母材繊維どうしを十分に架橋して補強層に良好な剛性を付与することができるためであり、繊維長を前記上限以下にすると内装材を作製するときに繊維塊ができにくくなり、カーディング工程において分散性が良好になるなど、加工性が向上するためである。   The fiber diameter of the crosslinking fiber is preferably 8 to 45 μm. This is because when the fiber diameter is set to the above lower limit or more, the reinforcing layer can be given good rigidity without any problem in dispersibility in the carding step. When the fiber diameter is set to the upper limit or less, the cross-linking fiber per unit weight This is because the number of the fibers increases so that the base fibers can be sufficiently cross-linked to give the reinforcing layer good rigidity. The fiber length of the crosslinking fiber is preferably 10 to 100 mm. This is because when the fiber length is equal to or greater than the above lower limit, there is no dropout of fibers in the carding step, and the base fiber can be sufficiently cross-linked to impart good rigidity to the reinforcing layer. Then, it is difficult to form a fiber lump when producing the interior material, and processability is improved, such as good dispersibility in the carding process.

母材繊維と架橋用繊維との配合比は、母材繊維を20〜95重量%(より好ましくは30〜95重量%、さらに好ましくは50〜95重量%)、架橋用繊維を5〜80重量%(より好ましくは5〜70重量%、さらに好ましくは5〜50重量%)とするのが好ましい。架橋用繊維の配合比を前記下限以上にすると母材繊維どうしを十分に架橋して補強層に良好な剛性を付与することができるためであり、架橋用繊維の配合比を前記上限以下にすると熱成形後に収縮がほとんど生じず製品に変形が生じないためである。
補強層の通気度を5cc/cm2/sec以上の高通気性とすると、吸音性が飛躍的に良好になる。これは、車室内から吸音層30へと向かう音波が高通気性の補強層20でほとんど反射せず、吸音層で十分に音のエネルギーが吸収され、補強層を形成しても吸音層30による吸音性が低下しないためと推察される。なお、補強層の通気度を調節するためには単位面積当たりの重量や厚さを調整すればよく、単位面積当たりの重量を小さくしたり厚さを薄くしたりすると補強層の通気度を大きくさせることができる。
The mixing ratio of the base fiber and the crosslinking fiber is 20 to 95% by weight of the base fiber (more preferably 30 to 95% by weight, more preferably 50 to 95% by weight), and 5 to 80% by weight of the crosslinking fiber. % (More preferably 5 to 70% by weight, still more preferably 5 to 50% by weight). This is because if the blending ratio of the cross-linking fibers is equal to or higher than the lower limit, the base fiber can be sufficiently cross-linked to give the reinforcing layer good rigidity, and if the blending ratio of the cross-linking fibers is equal to or lower than the upper limit. This is because there is almost no shrinkage after thermoforming and the product is not deformed.
When the air permeability of the reinforcing layer is set to a high air permeability of 5 cc / cm 2 / sec or more, the sound absorption is remarkably improved. This is because the sound wave traveling from the passenger compartment to the sound absorbing layer 30 is hardly reflected by the highly breathable reinforcing layer 20, and the sound absorbing layer 30 absorbs sound energy sufficiently. It is presumed that the sound absorption is not lowered. In order to adjust the air permeability of the reinforcing layer, the weight and thickness per unit area may be adjusted. When the weight per unit area is reduced or the thickness is reduced, the air permeability of the reinforcing layer is increased. Can be made.

吸音層30は、繊維を多数集合させて通気性を有するように形成され、嵩高性を有するように加工された繊維を母材として構成される。吸音層に用いる繊維には、熱可塑性樹脂の繊維、熱可塑性樹脂に充てん材等の添加材を添加した繊維、その他の樹脂繊維等を用いることができ、ポリエステル繊維、ポリアミド繊維、アクリル繊維、PP繊維、PE繊維、ガラス繊維、カーボン繊維、レーヨン繊維、PET繊維、さらに充てん材等の添加材(例えば樹脂よりも少ない配合比)を添加した材質の繊維、等を用いることができる。吸音層に用いる繊維に高捲縮加工やニードリングを施すことによって嵩高性を高めた繊維を用いると、吸音層が厚くなるので良好な吸音性が得られる。   The sound absorbing layer 30 is formed so as to have a breathability by collecting a large number of fibers, and is configured by using fibers processed to have bulkiness as a base material. The fiber used for the sound absorbing layer can be a thermoplastic resin fiber, a fiber in which an additive material such as a filler is added to the thermoplastic resin, other resin fibers, and the like. Polyester fiber, polyamide fiber, acrylic fiber, PP Fibers, PE fibers, glass fibers, carbon fibers, rayon fibers, PET fibers, fibers made of a material added with an additive such as a filler (for example, a blending ratio less than that of resin), and the like can be used. When a fiber having high bulkiness is obtained by applying a high crimping process or needling to the fiber used for the sound absorbing layer, the sound absorbing layer becomes thick, so that a good sound absorbing property can be obtained.

また、上述した材質の繊維を吸音層用母材繊維とし、該母材繊維と異なる吸音層用熱可塑性繊維を添加して、吸音層を形成してもよい。該吸音層用熱可塑性繊維には、補強層の架橋用繊維と同様、熱可塑性樹脂の繊維、熱可塑性樹脂に充てん材等の添加材を添加した繊維等を用いることができ、PEやPP等のポリオレフィン、ポリエステル、ポリアミド等の熱可塑性樹脂からなる繊維、これらの熱可塑性樹脂を変性させて融点を調整した熱可塑性樹脂からなる繊維、これらの熱可塑性樹脂に充てん材等の添加材(例えば樹脂よりも少ない配合比)を添加した材質の繊維、これらの材質で芯繊維と鞘繊維とからなる芯鞘構造とされた繊維、等を用いることができる。吸音層用熱可塑性繊維には、吸音層用母材繊維との接着が良好な性質の繊維であって、吸音層用母材繊維が熱可塑性繊維である場合には吸音層用母材繊維よりも低い融点を持つ熱可塑性の低融点繊維または中融点繊維を用いるのが好ましく、例えば吸音層用母材繊維と相溶性のある低融点繊維または中融点繊維を用いると吸音層用母材繊維との接着性が良好になり、吸音層について良好な保形性が得られる。吸音層用熱可塑性繊維に補強層20の架橋用繊維(芯鞘構造の架橋用繊維の場合は鞘繊維)と比べてほぼ同じ融点かより高い融点の低融点繊維または中融点繊維を用いると、吸音層用母材繊維との接着性が良好になり、吸音層について良好な保形性が得られる。該低融点繊維または中融点繊維には、PP、変性ポリエステル、アクリル、PE等を比較的低い融点を有するように組成して変性させて融点を調整した熱可塑性樹脂からなる繊維等を用いることができる。
吸音層用母材繊維と吸音層用熱可塑性繊維との配合比は、吸音層用母材繊維を40〜80重量%、吸音層用熱可塑性繊維を20〜60重量%と、吸音層用熱可塑性繊維の配合比を補強層の架橋用繊維の配合比よりも少なくするのが好ましい。吸音層用熱可塑性繊維の配合比を前記下限以上にすると吸音層用母材繊維どうしを十分に接着して吸音層に良好な保形性を付与することができるためであり、吸音層用熱可塑性繊維の配合比を前記上限以下にすると良好な通気性が得られ、良好な吸音性能が得られるためである。
架橋用繊維に芯繊維と該芯繊維よりも融点の低い鞘繊維とから構成される繊維を用いると、鞘繊維が加熱溶融されても、該鞘繊維よりも融点が高い芯繊維が加熱溶融されにくいので、芯鞘構造の架橋用繊維が母材繊維どうしを架橋して補強層の強度を向上させ、内装材の剛性をさらに向上させることが可能になる。
Alternatively, the sound absorbing layer may be formed by using the above-described material fiber as the base material fiber for the sound absorbing layer and adding a thermoplastic fiber for the sound absorbing layer different from the base material fiber. The thermoplastic fiber for the sound absorbing layer may be a fiber of a thermoplastic resin, a fiber in which an additive such as a filler is added to the thermoplastic resin, as in the case of the crosslinking fiber of the reinforcing layer, such as PE or PP. Fibers made of thermoplastic resins such as polyolefins, polyesters and polyamides, fibers made of thermoplastic resins whose melting points are adjusted by modifying these thermoplastic resins, and additives such as fillers (for example, resins) Fibers of a material to which a smaller blending ratio) is added, fibers having a core-sheath structure composed of a core fiber and a sheath fiber with these materials, and the like can be used. The sound-absorbing layer thermoplastic fiber is a fiber having good adhesion to the sound-absorbing layer base fiber, and the sound-absorbing layer base fiber is more It is preferable to use a thermoplastic low-melting-point fiber or medium-melting-point fiber having a low melting point. For example, when a low-melting-point fiber or medium-melting fiber compatible with the sound-absorbing layer base fiber is used, Therefore, the shape of the sound absorbing layer can be improved. When a low-melting fiber or a medium-melting fiber having a melting point substantially the same as or higher than that of the crosslinking fiber of the reinforcing layer 20 (sheath fiber in the case of a crosslinking fiber having a core-sheath structure) is used for the sound-absorbing layer thermoplastic fiber, Adhesiveness with the sound-absorbing layer base fiber is improved, and good shape retention is obtained for the sound-absorbing layer. For the low-melting fiber or medium-melting fiber, it is possible to use a fiber made of a thermoplastic resin whose composition is modified by adjusting PP and modified polyester, acrylic, PE, or the like so as to have a relatively low melting point. it can.
The mixing ratio of the sound-absorbing layer base fiber to the sound-absorbing layer thermoplastic fiber is 40 to 80% by weight of the sound-absorbing layer base fiber and 20 to 60% by weight of the sound-absorbing layer thermoplastic fiber. It is preferable to make the blending ratio of the plastic fibers smaller than the blending ratio of the crosslinking fibers in the reinforcing layer. This is because when the mixing ratio of the thermoplastic fiber for the sound absorbing layer is set to the above lower limit or more, the base fiber for the sound absorbing layer can be sufficiently bonded to each other to impart good shape retention to the sound absorbing layer. This is because when the blending ratio of the plastic fibers is less than or equal to the above upper limit, good air permeability is obtained and good sound absorption performance is obtained.
When a fiber composed of a core fiber and a sheath fiber having a melting point lower than that of the core fiber is used as the crosslinking fiber, the core fiber having a melting point higher than that of the sheath fiber is heated and melted even if the sheath fiber is heated and melted. Since it is difficult, the core-sheath structure cross-linking fibers cross-link the base material fibers to improve the strength of the reinforcing layer and further improve the rigidity of the interior material.

吸音層の単位面積当たりの重量は、500〜1500g/m2が好ましい。単位面積当たりの重量を前記下限以上にすると熱成形時に十分な圧縮強度が得られて良好な剛性が得られるからであり、単位面積当たりの重量を前記上限以下にすると良好な通気性が得られて良好な吸音性が得られるからである。吸音層の厚みは、2.0〜10.0mmが好ましく、4.0〜10.0mmがより好ましい。厚みを前記下限以上にすると良好な吸音性が得られ、厚みを前記上限以下にすると熱成形時に十分な圧縮強度が得られて良好な剛性が得られるからである。吸音層の密度は、0.05〜0.35g/cm3が好ましく、0.10〜0.30g/cm3がさらに好ましい。
なお、吸音層は、吸音機能を十分に発揮する一般部と屈曲部などの局所的な潰し部とを有する層とされてもよい。この場合、一般部よりも面積の少ない潰し部では、一般部よりも薄く潰されて0.5g/cm3程度とされてもよい。
吸音層の通気度を5cc/cm2/sec以上の高通気性とすると、吸音性が飛躍的に良好になる。これは、車室内から吸音層30へと向かう音波が吸音層30でほとんど反射せず、吸音層に進入して十分に音のエネルギーが吸収されるためと推察される。なお、吸音層の通気度を調節するためには密度や単位面積当たりの重量を調整すればよく、吸音層の密度を小さくしたり単位面積当たりの重量を小さくしたりすると通気度を大きくさせることができる。
The weight per unit area of the sound absorbing layer is preferably 500 to 1500 g / m 2 . This is because if the weight per unit area is not less than the above lower limit, sufficient compressive strength can be obtained during thermoforming and good rigidity can be obtained, and if the weight per unit area is not more than the above upper limit, good air permeability can be obtained. This is because good sound absorption is obtained. The thickness of the sound absorbing layer is preferably 2.0 to 10.0 mm, and more preferably 4.0 to 10.0 mm. This is because when the thickness is set to the lower limit or more, good sound absorption is obtained, and when the thickness is set to the upper limit or less, sufficient compressive strength is obtained during thermoforming, and good rigidity is obtained. The density of the sound absorbing layer is preferably 0.05~0.35g / cm 3, more preferably 0.10~0.30g / cm 3.
The sound absorbing layer may be a layer having a general part that sufficiently exhibits a sound absorbing function and a local crushing part such as a bent part. In this case, the crushed part having a smaller area than the general part may be crushed thinner than the general part to be about 0.5 g / cm 3 .
If the air-absorbing layer has a high air permeability of 5 cc / cm 2 / sec or more, the sound absorbing property is remarkably improved. This is presumably because sound waves traveling from the passenger compartment to the sound absorbing layer 30 are hardly reflected by the sound absorbing layer 30 and enter the sound absorbing layer to sufficiently absorb sound energy. In order to adjust the air permeability of the sound absorbing layer, it is only necessary to adjust the density and the weight per unit area. When the density of the sound absorbing layer is reduced or the weight per unit area is reduced, the air permeability is increased. Can do.

遮音層40は、車外から車室へ向かう音を遮断する目的で吸音層30に対して車室側とは反対側の車外側の面に設けられた薄い層であり、非通気性の熱可塑性シートで構成される。熱可塑性シートには、熱可塑性樹脂をシート状に成形した樹脂シート、熱可塑性樹脂に充てん材等の添加材を添加してシート状に成形した樹脂シート等があり、PE、PP、ポリエステル、ポリアミド等の熱可塑性樹脂からなるシート、これらの熱可塑性樹脂に充てん材等の添加材(例えば樹脂よりも少ない配合比)を添加した材質からなるシート、等を用いることができる。   The sound insulation layer 40 is a thin layer provided on the outer surface of the vehicle opposite to the vehicle interior side with respect to the sound absorption layer 30 for the purpose of blocking sound traveling from the outside of the vehicle to the vehicle interior, and is a non-breathable thermoplastic. Consists of sheets. The thermoplastic sheet includes a resin sheet obtained by molding a thermoplastic resin into a sheet shape, a resin sheet formed by adding an additive such as a filler to the thermoplastic resin, and PE, PP, polyester, polyamide. A sheet made of a thermoplastic resin such as, a sheet made of a material obtained by adding an additive material (for example, a blending ratio less than that of the resin) to the thermoplastic resin, or the like can be used.

遮音層の単位面積あたりの重量は、30〜1000g/m2が好ましい。単位面積あたりの重量を前記下限以上にすると成形品の絞り部において熱可塑性シートの破断が生じないからであり、単位面積あたりの重量を前記上限以下にすると良好な成形性が得られて容易に所望の形状に熱成形することができるからである。遮音層の厚みは、0.03〜1.0mmが好ましい。厚みを前記下限以上にすると成形品の絞り部において熱可塑性シートの破断が生じないからであり、厚みを前記上限以下にすると熱成形時に良好な成形性が得られて容易に所望の形状に熱成形することができるからである。
非通気性の熱可塑性シートを積層することによって、本自動車用内装材の遮音性能が向上する。このとき遮音層40のみの遮音性能だけでなく、表皮層10、補強層20、吸音層30とを含めた層が遮音層として機能することによって遮音性能が向上する効果も得られる。
The weight per unit area of the sound insulation layer is preferably 30 to 1000 g / m 2 . This is because if the weight per unit area is not less than the above lower limit, the thermoplastic sheet will not break at the drawn portion of the molded product, and if the weight per unit area is not more than the above upper limit, good moldability can be easily obtained. This is because it can be thermoformed into a desired shape. The thickness of the sound insulation layer is preferably 0.03 to 1.0 mm. This is because if the thickness is set to the above lower limit or less, the thermoplastic sheet does not break at the drawn portion of the molded product. If the thickness is set to the upper limit or less, good moldability is obtained during thermoforming, and the desired shape is easily heated. This is because it can be molded.
By stacking the non-breathable thermoplastic sheet, the sound insulation performance of the automobile interior material is improved. At this time, not only the sound insulation performance of only the sound insulation layer 40 but also the effect of improving the sound insulation performance is obtained by the layers including the skin layer 10, the reinforcing layer 20, and the sound absorption layer 30 functioning as the sound insulation layer.

裏打ち層50は、遮音層40を構成する熱可塑性シートを加熱して成形型内へ持ち込む際に熱可塑性シートが変形することによって成形性が悪くなることなどを防ぎ、ハンドリング性を高める目的で、遮音層の車外側の面に設けられる薄い層である。裏打ち層には、不織布を用いるのが好ましく、低目付不織布を用いるのがさらに好ましい。裏打ち層に用いる不織布には、熱可塑性樹脂の繊維からなる不織布、熱可塑性樹脂に充てん材等の添加材を添加した繊維からなる不織布等があり、ポリエステル、ポリアミド、アクリル、PP、PE、PET等の樹脂を比較的高い融点を有するように組成して形成した繊維からなる不織布、これらの樹脂に充てん材等の添加材(例えば樹脂よりも少ない配合比)を添加した材質の繊維からなる不織布、等を用いることができる。   The backing layer 50 prevents the deterioration of the moldability due to the deformation of the thermoplastic sheet when the thermoplastic sheet constituting the sound insulation layer 40 is heated and brought into the mold, for the purpose of improving the handling property. It is a thin layer provided on the outer surface of the sound insulation layer. The backing layer is preferably a non-woven fabric, and more preferably a low-weight non-woven fabric. Nonwoven fabrics used for the backing layer include nonwoven fabrics made of thermoplastic resin fibers, nonwoven fabrics made of fibers with additives such as fillers added to thermoplastic resins, polyester, polyamide, acrylic, PP, PE, PET, etc. Non-woven fabric made of fibers formed by composing a resin having a relatively high melting point, non-woven fabric made of fibers made of a material obtained by adding an additive such as a filler (for example, a blending ratio less than that of resin) to these resins, Etc. can be used.

裏打ち層の単位面積あたりの重量は、15〜100g/m2が好ましい。単位面積あたりの重量を前記下限以上にすると遮音層を構成する熱可塑性シートを加熱したときに該シートのドローダウンが十分に小さくなるからであり、単位面積あたりの重量を前記上限以下にすると熱成形時に良好な成形性が得られて容易に所望の形状に熱成形することができるからである。裏打ち層の厚みは、0.05〜1.0mmが好ましい。厚みを前記下限以上にすると遮音層を構成する熱可塑性シートを加熱したときに該シートのドローダウンが十分に小さくなるからであり、厚みを前記上限以下にすると熱成形時に良好な成形性が得られて容易に所望の形状に熱成形することができるからである。
裏打ち層を設けることによって、熱可塑性シートを加熱溶融させた状態で成形型内に持ち込む際に、熱可塑性シートがだれたり変形したりすることがなくなるため、熱可塑性シートのハンドリング性が格段に向上する。
Weight per unit area of the backing layer, 15 to 100 / m 2 is preferred. This is because when the weight per unit area is equal to or higher than the lower limit, the thermoplastic sheet constituting the sound insulation layer is sufficiently reduced in drawing down, and when the weight per unit area is equal to or lower than the upper limit, the heat is reduced. This is because good moldability is obtained at the time of molding, and it can be easily thermoformed into a desired shape. The thickness of the backing layer is preferably 0.05 to 1.0 mm. This is because when the thickness is equal to or higher than the lower limit, the thermoplastic sheet constituting the sound insulation layer is heated, and the drawdown of the sheet becomes sufficiently small. When the thickness is equal to or lower than the upper limit, good moldability is obtained during thermoforming. This is because it can be easily thermoformed into a desired shape.
By providing a backing layer, when the thermoplastic sheet is brought into the mold in a heated and melted state, the thermoplastic sheet will not sag or deform, greatly improving the handling of the thermoplastic sheet. To do.

(2)自動車用内装材の製造方法:
次に、図3を参照しながら本自動車用内装材の製造方法を説明する。
(2) Manufacturing method of automotive interior materials:
Next, a method for manufacturing the automobile interior material will be described with reference to FIG.

(2−1)積層体の形成:
まず、吸音層30と補強層20とを少なくとも重ねてニードリングして加熱することにより補強層を構成する熱可塑性繊維を加熱溶融させて積層体60を形成する。本実施形態では、表皮層10と補強層20と吸音層30とを重ねてニードリングして熱風を供給することにより表皮層10と補強層20と吸音層30とに存在する熱可塑性繊維を加熱溶融させて積層体を形成する。具体的な一例を挙げると、まず、表皮層10を構成する繊維と補強層20を構成する繊維と吸音層30を構成する繊維とをこの順に重ねて僅かにニードリングを施し、各層10,20,30を交絡させて一体化する。続いて、サクションヒータ(熱風循環ヒータ)により熱風加熱を行って、補強層の架橋用繊維(芯鞘構造の繊維の場合は鞘繊維)の融点以上、かつ、補強層の母材繊維の融点未満の温度であって母材繊維の融点に近い温度まで予備加熱を行い、架橋用繊維(芯鞘構造の繊維の場合は鞘繊維)をほぼ溶融させた状態でプレス成形型の中へ持ち込む。吸音層30に吸音層用熱可塑性繊維が含まれている場合には、熱風による加熱温度を吸音層用熱可塑性繊維の融点以上、かつ、吸音層用母材繊維の融点未満であって吸音層用母材繊維の融点に近い温度とする。表皮層10に表皮層用熱可塑性繊維が含まれている場合には、熱風による加熱温度を表皮層用熱可塑性繊維の融点以上、かつ、表皮層用母材繊維の融点未満であって表皮層用母材繊維の融点に近い温度とする。すると、吸音層用熱可塑性繊維や表皮層用熱可塑性繊維がほぼ溶融された状態でプレス成形型の中へ持ち込まれる。
各層10,20,30は、熱風加熱によって内部までほぼ均一に加熱されるため、各層10,20,30において成形温度の偏りが生じず、熱成形時に成形性の良好な積層体60を形成することができる。
(2-1) Formation of laminate:
First, the laminated body 60 is formed by heating and melting the thermoplastic fibers constituting the reinforcing layer by at least superposing the sound absorbing layer 30 and the reinforcing layer 20 and heating them by needling. In this embodiment, the thermoplastic fiber existing in the skin layer 10, the reinforcing layer 20, and the sound absorbing layer 30 is heated by supplying hot air by overlapping the skin layer 10, the reinforcing layer 20, and the sound absorbing layer 30, and supplying the hot air. Melt to form a laminate. As a specific example, first, the fibers constituting the skin layer 10, the fibers constituting the reinforcing layer 20, and the fibers constituting the sound absorbing layer 30 are overlapped in this order and subjected to slight needling. , 30 are entangled and integrated. Subsequently, hot air is heated by a suction heater (hot air circulation heater), and the melting point is higher than the melting point of the reinforcing layer cross-linking fiber (or the sheath fiber in the case of a core-sheath structure fiber) and lower than the melting point of the reinforcing layer base fiber. Is preheated to a temperature close to the melting point of the base fiber, and brought into the press mold in a state where the crosslinking fiber (sheath fiber in the case of a fiber having a core-sheath structure) is almost melted. When the sound absorbing layer 30 includes the thermoplastic fiber for the sound absorbing layer, the heating temperature by the hot air is equal to or higher than the melting point of the thermoplastic fiber for the sound absorbing layer and less than the melting point of the base fiber for the sound absorbing layer. The temperature is close to the melting point of the base fiber. When the skin layer 10 contains the thermoplastic fiber for the skin layer, the heating temperature by the hot air is equal to or higher than the melting point of the thermoplastic fiber for the skin layer and less than the melting point of the matrix fiber for the skin layer. The temperature is close to the melting point of the base fiber. Then, the thermoplastic fiber for the sound absorbing layer and the thermoplastic fiber for the skin layer are brought into the press mold in a substantially melted state.
Since each layer 10, 20, and 30 is heated almost uniformly to the inside by hot air heating, there is no uneven forming temperature in each layer 10, 20, and 30, and a laminate 60 with good moldability is formed during thermoforming. be able to.

(2−2)結着体の形成:
また、遮音層40と裏打ち層50とを重ねて加熱することにより遮音層を構成する熱可塑性シートを溶融させて裏打ち層と遮音層とを結着させた結着体70を形成する。本実施形態では、遮音層40と裏打ち層50とを重ねて輻射加熱することにより結着体70を形成する。具体的な一例を挙げると、遮音層40を構成する熱可塑性シートと裏打ち層50を構成する不織布とを重ねてインフラヒータ(赤外線ヒータ)により輻射加熱を行って、遮音層40を構成する熱可塑性シートの融点以上に加熱を行い、熱可塑性シートを加熱軟化状態にして裏打ち層50と一体化させ、プレス成形型の中へ持ち込む。
各層40,50は、輻射加熱によってほぼ均一に加熱することができるので、各層40,50において成形温度の偏りが生じず、熱成形時に成形性の良好な結着体70を形成することができる。
(2-2) Formation of binder:
Further, the sound insulation layer 40 and the backing layer 50 are overlapped and heated to melt the thermoplastic sheet constituting the sound insulation layer, thereby forming the binder 70 in which the backing layer and the sound insulation layer are bound. In this embodiment, the binder 70 is formed by radiating and heating the sound insulating layer 40 and the backing layer 50. As a specific example, the thermoplastic sheet constituting the sound insulation layer 40 is formed by superposing the thermoplastic sheet constituting the sound insulation layer 40 and the nonwoven fabric constituting the backing layer 50 and performing radiation heating with an infrastructure heater (infrared heater). The sheet is heated to a temperature higher than the melting point of the sheet, the thermoplastic sheet is heated and softened, integrated with the backing layer 50, and brought into a press mold.
Since the layers 40 and 50 can be heated substantially uniformly by radiant heating, the molding temperature is not biased in the layers 40 and 50, and the binder 70 having good moldability can be formed during thermoforming. .

(2−3)熱成形:
プレス成形型は互いに近接離反可能な一対の成形型からなり、型面が車室SP1の形状(例えば自動車の室内立壁)に合わせた所望の形状とされている。加熱された成形前の素材を一対の成形型の間に配置して両成形型を近接させる型締めを行うと、該素材はプレス成形(熱成形の一種)される。その後、両成形型を離反させて両成形型の間から素材を取り出すことにより、プレス成形された素材を製造することができる。
本実施形態では、車室の形状に合わせた形状とされたプレス成形型の中で結着体70における遮音層40側と積層体60における吸音層30側とを重ねて型締めしてプレス成形することにより、車室の形状に合わせて成形された自動車用内装材100を製造する。すなわち、表皮層10、補強層20、吸音層30、遮音層40、裏打ち層50、をこの順に重ねた状態にして一対の成形型の間に配置して、型締めしてプレス成形することにより、自動車の車体パネルなどに沿う形状に成形加工し、各層10〜50を積層した自動車用内装材100を形成する。
(2-3) Thermoforming:
The press mold is composed of a pair of molds that can move close to and away from each other, and the mold surface has a desired shape that matches the shape of the vehicle compartment SP1 (for example, an indoor standing wall of an automobile). When the heated unmolded material is placed between a pair of molds and the molds are clamped to bring both molds close to each other, the material is press-molded (a type of thermoforming). Thereafter, the press-molded material can be manufactured by separating the two molds and taking out the material from between the two molds.
In the present embodiment, the press-molding is performed by pressing the sound-insulating layer 40 side of the binder 70 and the sound-absorbing layer 30 side of the laminate 60 in a press-molding die having a shape that matches the shape of the passenger compartment. By doing so, the automobile interior material 100 molded according to the shape of the passenger compartment is manufactured. That is, by placing the skin layer 10, the reinforcing layer 20, the sound absorbing layer 30, the sound insulating layer 40, and the backing layer 50 in this order and placing them between a pair of molds, and clamping and press molding Then, the automobile interior material 100 is formed by forming into a shape along the vehicle body panel of the automobile and laminating the layers 10 to 50.

このとき、補強層20を構成する架橋用繊維(芯鞘構造の繊維では鞘繊維)は、熱風により加熱されて溶融状態とされており、型締めにより押し潰されながら、補強層中の溶融していない母材繊維どうしを橋渡しするように溶け拡がる。また、補強層の溶融状態の架橋用繊維は、吸音層30を構成する繊維(特に吸音層用母材繊維)と補強層中の母材繊維とを橋渡しして吸音層30と補強層20とを接着させたり、表皮層10を構成する繊維と補強層中の母材繊維とを橋渡しして表皮層10と補強層20とを接着させたりする。吸音層30に吸音層用熱可塑性繊維が含まれる場合、吸音層用熱可塑性繊維は、熱風により加熱されて溶融状態とされており、型締めにより押し潰されながら、吸音層中の溶融していない吸音層用母材繊維どうしを橋渡しするように溶け拡がる。表皮層10に表皮層用熱可塑性繊維が含まれる場合、表皮層用熱可塑性繊維は、熱風により加熱されて溶融状態とされており、型締めにより押し潰されながら、表皮層中の溶融していない表皮層用母材繊維どうしを橋渡しするように溶け拡がる。
遮音層40を構成する熱可塑性シートは、輻射加熱されて溶融状態とされており、裏打ち層50を構成する不織布と接着しているとともに、型締めにより吸音層中の母材繊維とも接着して、裏打ち層50と吸音層30とを接着させる。
At this time, the cross-linking fibers (sheath fibers in the case of the core-sheath structure fibers) constituting the reinforcing layer 20 are heated and melted by hot air, and are melted in the reinforcing layer while being crushed by mold clamping. It melts and spreads so as to bridge the base material fibers that are not. In addition, the cross-linking fibers in the molten state of the reinforcing layer bridge the fibers constituting the sound absorbing layer 30 (particularly the base material fibers for the sound absorbing layer) and the base material fibers in the reinforcing layer, and the sound absorbing layer 30 and the reinforcing layer 20 Or the fibers constituting the skin layer 10 and the base material fibers in the reinforcing layer are bridged to bond the skin layer 10 and the reinforcing layer 20 together. When the sound-absorbing layer 30 includes the sound-absorbing layer thermoplastic fiber, the sound-absorbing layer thermoplastic fiber is heated and melted by hot air and is melted in the sound-absorbing layer while being crushed by mold clamping. It melts and spreads so as not to bridge the base fiber for the sound absorbing layer. When the outer skin layer 10 includes the outer skin layer thermoplastic fiber, the outer skin layer thermoplastic fiber is heated and melted by hot air and is melted in the outer skin layer while being crushed by clamping. It melts and spreads so that no base material fiber for the skin layer bridges.
The thermoplastic sheet constituting the sound insulation layer 40 is in a molten state by being radiantly heated, and is adhered to the nonwoven fabric constituting the backing layer 50 and is also adhered to the base fiber in the sound absorbing layer by clamping. The backing layer 50 and the sound absorbing layer 30 are bonded together.

プレス成形後に温度が低下すると、補強層20で溶融状態であった架橋用繊維が再び固化して、補強層中の母材繊維どうしを接合させたり、吸音層の繊維と補強層の母材繊維とを架橋させたり、表皮層の繊維と補強層の母材繊維とを架橋させたりして、プレス成形された形状を保持させる。このとき、補強層20は、母材繊維と架橋用繊維とを配合した繊維を車室の形状に合わせて熱成形して形成されており、固化した架橋用繊維の間に通気性を保持した母材繊維が残されており、通気性の補強層とされる。表皮層10は、繊維を車室の形状に合わせて熱成形して形成されており、固化した表皮層用熱可塑性繊維や補強層の架橋用繊維の間に通気性を保持した繊維が残されており、通気性を有するように形成される。吸音層30は、繊維を車室の形状に合わせて熱成形して形成されており、固化した吸音層用熱可塑性繊維の間に通気性を保持した吸音層用母材繊維が残されており、通気性を有するように形成される。また、吸音層30は、成形型間のクリアランスに応じて、所望の嵩高性が維持されている。
遮音層40で溶融状態であった熱可塑性シートは、裏打ち層50の不織布とともに車室の形状に合わせて熱成形されて形成されており、再び固化して、プレス成形された形状を保持させる。
本内装材100は、積層体が内部までほぼ均一に熱風加熱され、結着体がほぼ均一に輻射加熱されるので、各層10〜50において加熱温度の偏りがほとんどなく、成形性に優れて良質の内装材に形成される。
また、補強層は架橋用繊維を多量に含むため、成形後は一定の剛性を有しており、本内装材において保形性を付与する役割も担っており、さらに熱可塑性シートが吸音層を介して積層されているため、補強層および熱可塑性シートの相互作用によってさらに剛性が高められ、成形保持性の極めて優れた成形品を製造することが可能となる。
以上説明したようにして、良質の自動車用内装材を容易に製造することができる。
When the temperature decreases after press molding, the cross-linking fibers that were in the molten state in the reinforcing layer 20 are solidified again, and the base material fibers in the reinforcing layer are joined together, or the fibers of the sound absorbing layer and the base material fibers of the reinforcing layer Are cross-linked, or the fibers of the skin layer and the base fiber of the reinforcing layer are cross-linked to maintain the press-formed shape. At this time, the reinforcing layer 20 is formed by thermoforming a fiber in which the base material fiber and the crosslinking fiber are blended in accordance with the shape of the passenger compartment, and maintains air permeability between the solidified crosslinking fibers. The base fiber is left and it is a breathable reinforcing layer. The skin layer 10 is formed by thermoforming fibers according to the shape of the passenger compartment, and the fibers that retain air permeability remain between the solidified thermoplastic fibers for the skin layer and the crosslinking fibers of the reinforcing layer. It is formed to have air permeability. The sound-absorbing layer 30 is formed by thermoforming fibers according to the shape of the passenger compartment, and the sound-absorbing layer base material fiber that retains air permeability remains between the solidified thermoplastic fibers for the sound-absorbing layer. , Formed to have air permeability. The sound absorbing layer 30 maintains a desired bulkiness according to the clearance between the molds.
The thermoplastic sheet in a molten state in the sound insulating layer 40 is formed by thermoforming according to the shape of the passenger compartment together with the nonwoven fabric of the backing layer 50, and is solidified again to maintain the press-formed shape.
In the interior material 100, since the laminated body is heated almost uniformly to the inside and the binder is heated almost uniformly by radiation, there is almost no unevenness in the heating temperature in each layer 10 to 50, and the moldability is excellent and good quality. It is formed into interior material.
In addition, since the reinforcing layer contains a large amount of cross-linking fibers, it has a certain rigidity after molding, and also has a role of imparting shape retention in the interior material, and the thermoplastic sheet has a sound absorbing layer. Therefore, the rigidity is further increased by the interaction between the reinforcing layer and the thermoplastic sheet, and it becomes possible to produce a molded product having extremely excellent molding retention.
As described above, a high-quality automobile interior material can be easily manufactured.

(3)自動車用内装材の作用、効果:
本自動車用内装材100は、繊維を集合させた軽量の吸音層が熱可塑性シートからなる薄い遮音層と繊維から形成された薄い補強層とで挟まれて薄い裏打ち層で裏打ちされ薄い表皮層で覆われて熱成形されているので、軽量でありながら良好な剛性とされ、さらに、成形後も所要の形状を保つだけの良好な保形性が得られる。すなわち、補強層によって一定の剛性をもたせることができるとともに、繊維からなる吸音層を熱可塑性シートからなる遮音層と補強層とで挟むことによってさらなる剛性の向上という効果も得られる。また、熱可塑性シートからなる遮音層を加熱溶融させた状態で成形型内に持ち込む際に裏打ち層によって熱可塑性シートがだれたり変形したりしないため、熱可塑性シートのハンドリング性が格段に向上する。さらに、表皮層によって内装材としてふさわしい意匠性が付与され、外観の良好な内装材を提供することができる。
(3) Functions and effects of automotive interior materials:
The automobile interior material 100 is a thin skin layer in which a lightweight sound-absorbing layer in which fibers are aggregated is sandwiched between a thin sound insulating layer made of a thermoplastic sheet and a thin reinforcing layer formed of fibers, and is lined with a thin backing layer. Since it is covered and thermoformed, it is lightweight and has good rigidity, and furthermore, good shape retention sufficient to maintain a required shape after molding can be obtained. That is, a certain rigidity can be given by the reinforcing layer, and the effect of further improving the rigidity can be obtained by sandwiching the sound absorbing layer made of fibers between the sound insulating layer made of the thermoplastic sheet and the reinforcing layer. In addition, when the sound insulating layer made of a thermoplastic sheet is heated and melted and brought into the mold, the thermoplastic sheet is not sagted or deformed by the backing layer, so that the handling property of the thermoplastic sheet is remarkably improved. Furthermore, a design property suitable as an interior material is imparted by the skin layer, and an interior material having a good appearance can be provided.

路上を高速走行する路上走行自動車では、比較的低速走行する路上外走行自動車と比べて比較的大きなロードノイズや風切り音が発生する。これらの音は、車外から車室内へ侵入しようとするが、内装材100の車外側には裏打ち層で裏打ちされた遮音層40が設けられているので、該遮音層40で反射され、車室内への侵入を遮断することができる。さらに、遮音層の車室側に嵩高な吸音層30が設けられているので、さらに確実に車外からの騒音の侵入を遮ることができる。一方、吸音層の車室側に設けられた補強層20と表皮層10とは、通気性を有するように形成されている。従って、車室内に侵入した音は、表皮層や補強層で反射されず、図2の矢印に示すように、表皮層10や補強層20を通過して通気性の吸音層30に進入して、吸音される。これにより、車外からの音の侵入を十分に防ぎながら車室内に侵入した音も十分に吸音することができ、車室内の乗員の耳に入る騒音を効果的に少なくさせ、自動車走行時の静粛性を向上させることができる。   A road vehicle that travels at high speed on the road generates relatively large road noise and wind noise compared to a vehicle that travels at a relatively low speed. These sounds try to enter the vehicle interior from the outside of the vehicle, but since the sound insulation layer 40 backed by the backing layer is provided on the outside of the interior material 100, the sound insulation layer 40 reflects the sound, and the vehicle interior Intrusion into can be blocked. Furthermore, since the bulky sound absorbing layer 30 is provided on the vehicle interior side of the sound insulating layer, it is possible to more reliably block noise from entering the outside of the vehicle. On the other hand, the reinforcing layer 20 and the skin layer 10 provided on the vehicle interior side of the sound absorbing layer are formed to have air permeability. Therefore, the sound that has entered the passenger compartment is not reflected by the skin layer or the reinforcing layer, but passes through the skin layer 10 or the reinforcing layer 20 and enters the breathable sound absorbing layer 30 as shown by the arrows in FIG. Sound absorption. As a result, it is possible to sufficiently absorb the sound that has entered the vehicle interior while sufficiently preventing the intrusion of sound from outside the vehicle, effectively reducing the noise entering the passenger's ears in the vehicle interior, Can be improved.

(4)変形例:
なお、本発明は、種々の変形例が考えられる。
上述した各層を積層した状態で熱成形して自動車用内装材を得る際の熱成形は、プレス成形以外でもよく、真空成形や圧空成形や真空圧空成形といった差圧成形を併用したプレス成形等でもよい。
表皮層と補強層と吸音層を重ねて加熱して積層体を形成する際の加熱は、均一に加熱する点からは熱風加熱が好適であるものの、輻射加熱、熱した金属板を接触させる加熱、等でもよい。
遮音層と裏打ち層とを重ねて結着体を形成する際の加熱は、均一に加熱する点からは輻射加熱が好適であるものの、熱風加熱、熱した金属板を接触させる加熱、等でもよい。
(4) Modification:
The present invention can be modified in various ways.
The thermoforming for obtaining an automotive interior material by thermoforming in the state where the above-mentioned layers are laminated may be other than press molding, or in press molding combined with differential pressure molding such as vacuum molding, pressure molding, or vacuum / pressure molding. Good.
Heating when the skin layer, the reinforcing layer, and the sound absorbing layer are stacked and heated to form a laminated body is preferably hot air heating from the viewpoint of heating uniformly, but radiation heating, heating that contacts a heated metal plate , Etc.
Heating when the sound insulating layer and the backing layer are overlapped to form a binder may be radiant heating from the viewpoint of uniform heating, but may be hot air heating, heating to contact a heated metal plate, etc. .

図4に示すように、裏打ち層を設けずに各層10〜40を積層した状態で車室の形状に合わせて熱成形して自動車用内装材101を製造することも可能である。例えば、遮音層40を構成する熱可塑性シートを、だれたり変形したりするのがある程度抑えられる厚みにしたり、加熱温度をだれたり変形したりするのがある程度抑えられる温度にしたりすると、裏打ち層を省略することができる。そして、加熱された積層体と加熱された熱可塑性シートとを重ねてプレス成形することにより、内装材101が形成される。
本内装材101でも、車外から侵入しようとする音は非通気性の遮音層で反射されて車室内への通過が遮られる一方、車室内に侵入した音は通気性の表皮層および通気性の補強層を通過して吸音層に進入し、吸音される。また、繊維を集合させた軽量の吸音層が薄い熱可塑性シートからなる軽量の遮音層と繊維から形成された軽量の補強層とで挟まれて熱成形されているので、軽量でありながら良好な剛性とされ、さらに、成形後も所要の形状を保つだけの良好な保形性が得られる。
As shown in FIG. 4, it is also possible to manufacture the automobile interior material 101 by thermoforming according to the shape of the passenger compartment in a state where the layers 10 to 40 are laminated without providing the backing layer. For example, if the thermoplastic sheet constituting the sound insulation layer 40 is made to have a thickness that can be suppressed to a certain extent, and the heating temperature is set to a temperature that can be suppressed to a certain extent to prevent a deformation or deformation, the backing layer is changed. Can be omitted. Then, the interior material 101 is formed by press-molding the heated laminate and the heated thermoplastic sheet.
Even in the interior material 101, the sound entering from the outside of the vehicle is reflected by the non-breathable sound insulation layer to block the passage into the vehicle interior, while the sound entering the vehicle interior is blocked by the breathable skin layer and the breathable skin layer. The sound passes through the reinforcing layer and enters the sound absorbing layer to be absorbed. In addition, the lightweight sound-absorbing layer that aggregates the fibers is sandwiched between the lightweight sound-insulating layer made of a thin thermoplastic sheet and the lightweight reinforcing layer formed from the fibers, so it is lightweight but good Further, the shape is rigid, and good shape retention sufficient to maintain a required shape after molding can be obtained.

図5に示すように、表皮層を設けずに各層20〜40を積層した状態で車室の形状に合わせて熱成形して自動車用内装材102を製造することも可能である。この場合、補強層20と吸音層30とを重ねて加熱して積層体を形成し、該積層体と加熱された熱可塑性シートとを重ねてプレス成形することにより、内装材102が形成される。
本内装材102でも、車外から侵入しようとする音は非通気性の遮音層で反射されて車室内への通過が遮られる一方、車室内に侵入した音は通気性の補強層を通過して吸音層に進入し、吸音される。また、繊維を集合させた軽量の吸音層が薄い熱可塑性シートからなる軽量の遮音層と繊維から形成された軽量の補強層とで挟まれて熱成形されているので、軽量でありながら良好な剛性とされ、さらに、成形後も所要の形状を保つだけの良好な保形性が得られる。
むろん、補強層と吸音層と遮音層と裏打ち層とを積層した内装材も同様にして製造することができ、同様の作用、効果が得られる。
As shown in FIG. 5, it is also possible to manufacture the automobile interior material 102 by thermoforming according to the shape of the passenger compartment in a state where the layers 20 to 40 are laminated without providing a skin layer. In this case, the reinforcing material 20 and the sound absorbing layer 30 are overlapped and heated to form a laminate, and the laminate and the heated thermoplastic sheet are overlapped and press molded to form the interior material 102. .
Even in the interior material 102 , the sound entering from the outside of the vehicle is reflected by the non-breathable sound insulation layer and blocked from passing into the vehicle interior, while the sound entering the vehicle interior passes through the breathable reinforcement layer. The sound enters the sound absorbing layer and is absorbed. In addition, the lightweight sound-absorbing layer that aggregates the fibers is sandwiched between the lightweight sound-insulating layer made of a thin thermoplastic sheet and the lightweight reinforcing layer formed from the fibers, so it is lightweight but good Further, the shape is rigid, and good shape retention sufficient to maintain a required shape after molding can be obtained.
Of course, an interior material in which a reinforcing layer, a sound absorbing layer, a sound insulating layer, and a backing layer are laminated can be manufactured in the same manner, and the same operation and effect can be obtained.

(5)実施例:
以下、実施例を示して具体的に本発明を説明するが、本発明は実施例により限定されるものではない。
(5) Example:
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited by an Example.

[実施例1]
表皮層を形成する繊維には、母材繊維として繊度6.6デシテックス、繊維長51mm、融点260℃のPET繊維、表皮層用熱可塑性繊維(メルト繊維)として芯部分が融点260℃のPET繊維で鞘部分が融点110℃の低融点ポリエステル繊維の繊度4.4デシテックス、繊維長51mmの芯鞘構造繊維を用いた。母材繊維の配合比を92重量%、メルト繊維の配合比を8重量%として、両者を略均一に混合して表皮層を形成する繊維とした。
補強層を形成する繊維には、母材繊維として繊度6.6デシテックス、繊維長51mm、融点260℃のPET繊維、架橋用繊維(メルト繊維)として芯部分が融点260℃のPET繊維で鞘部分が融点110℃の低融点ポリエステル繊維の繊度4.4デシテックス、繊維長51mmの芯鞘構造繊維を用いた。母材繊維の配合比を30重量%、メルト繊維の配合比を70重量%として、両者を略均一に混合して補強層を形成する繊維とした。
吸音層を形成する繊維には、母材繊維として繊度6.6デシテックス、繊維長51mm、融点260℃のPET繊維、吸音層用熱可塑性繊維として繊度6.6デシテックス、繊維長51mm、融点160℃のPP繊維を用いた。母材繊維の配合比を68重量%、PP繊維の配合比を32重量%として、両者を略均一に混合して吸音層を形成する繊維とした。
遮音層を構成する熱可塑性シートには、単位面積当たりの重量が250g/m2、厚みが0.3mm、融点107℃のPEシートを用いた。
[Example 1]
The fibers forming the skin layer are PET fibers having a fineness of 6.6 dtex, a fiber length of 51 mm, and a melting point of 260 ° C. as a base fiber, and a PET fiber having a core portion of a melting point of 260 ° C. as a thermoplastic fiber (melt fiber) for the skin layer. And a core-sheath structure fiber having a fineness of 4.4 dtex and a fiber length of 51 mm of a low melting point polyester fiber having a melting point of 110 ° C. was used. The blending ratio of the base material fibers was 92% by weight and the blending ratio of the melt fibers was 8% by weight. Both were mixed almost uniformly to form a skin layer.
The fiber forming the reinforcing layer includes a PET fiber having a fineness of 6.6 dtex, a fiber length of 51 mm and a melting point of 260 ° C. as a base fiber, and a PET fiber having a melting point of 260 ° C. as a cross-linking fiber (melt fiber). A core-sheath structure fiber having a fineness of 4.4 dtex and a fiber length of 51 mm was used. The blending ratio of the base material fiber was 30% by weight, and the blending ratio of the melt fiber was 70% by weight. Both were mixed almost uniformly to form a reinforcing layer.
The fibers forming the sound-absorbing layer are PET fibers having a fineness of 6.6 dtex and a fiber length of 51 mm and a melting point of 260 ° C. as the base fiber, and a fineness of 6.6 dtex and a fiber length of 51 mm and a melting point of 160 ° C. as the thermoplastic fibers for the sound-absorbing layer. PP fiber was used. The blending ratio of the base material fibers was 68% by weight, and the blending ratio of the PP fibers was 32% by weight. The fibers were mixed almost uniformly to form a sound absorbing layer.
A PE sheet having a weight per unit area of 250 g / m 2 , a thickness of 0.3 mm, and a melting point of 107 ° C. was used as the thermoplastic sheet constituting the sound insulation layer.

表皮層を形成する繊維については、単位面積当たりの重量が150g/m2、成形後に厚み0.5mmとなるよう、層状に広げて配置した。補強層を形成する繊維については、表皮層の車外側の面に、単位面積当たりの重量が150g/m2、成形後に厚み0.5mmとなるよう、層状に広げて配置した。吸音層を形成する繊維については、補強層の車外側の面に、単位面積当たりの重量が850g/m2、成形後に厚み4.5mmとなるよう、層状に広げて配置した。そして、表皮層と補強層と吸音層とをこの順に重ねた状態で僅かにニードリングを施し、各層を交絡させて一体化した。続いて、熱風循環ヒータを用いて熱風により220℃まで予備加熱して積層体を形成し、平板状の型面を有するプレス成形型の中へ持ち込んだ。
また、遮音層を構成する熱可塑性シートについて、赤外線ヒータを用いて輻射加熱により170℃まで予備加熱し、上記プレス成形型の中へ持ち込んだ。その際、結着体における遮音層側と熱可塑性シートとを重ねてプレス成形型の中に配置した。
そして、プレス成形型を型締めし、80秒間プレスして、厚み4.0mm、0.6m×0.6mの内装材の試験サンプルをプレス成形により形成した。
The fibers forming the skin layer were spread and arranged in layers so that the weight per unit area was 150 g / m 2 and the thickness after molding was 0.5 mm. The fibers forming the reinforcing layer were arranged in layers on the outer surface of the skin layer so that the weight per unit area was 150 g / m 2 and the thickness after molding was 0.5 mm. The fibers forming the sound absorbing layer were arranged in layers so that the weight per unit area was 850 g / m 2 and the thickness after molding was 4.5 mm on the outer surface of the reinforcing layer. Then, the skin layer, the reinforcing layer, and the sound absorbing layer were slightly needled in the state of being stacked in this order, and the layers were entangled and integrated. Subsequently, a laminated body was formed by preheating to 220 ° C. with hot air using a hot air circulating heater, and brought into a press mold having a flat plate surface.
Further, the thermoplastic sheet constituting the sound insulation layer was preheated to 170 ° C. by radiant heating using an infrared heater and brought into the press mold. At that time, the sound insulating layer side of the binder and the thermoplastic sheet were overlapped and arranged in a press mold.
Then, the press mold was clamped and pressed for 80 seconds to form a test sample of an interior material having a thickness of 4.0 mm and 0.6 m × 0.6 m by press molding.

[実施例2]
表皮層を形成する繊維、補強層を形成する繊維、吸音層を形成する繊維、遮音層を構成する熱可塑性シートには、実施例1と同じものを用いた。
裏打ち層を構成する不織布には、単位面積当たりの重量が70g/m2、構成する繊維が繊度6.6デシテックス、繊維長51mm、融点260℃のPET繊維である不織布を用いた。
[Example 2]
The same fiber as in Example 1 was used as the fiber forming the skin layer, the fiber forming the reinforcing layer, the fiber forming the sound absorbing layer, and the thermoplastic sheet constituting the sound insulating layer.
As the non-woven fabric constituting the backing layer, a non-woven fabric in which the weight per unit area was 70 g / m 2 , and the constituting fibers were PET fibers having a fineness of 6.6 dtex, a fiber length of 51 mm, and a melting point of 260 ° C. was used.

積層体については、実施例1と同じ条件で形成し、実施例1と同じプレス成形型の中へ持ち込んだ。
また、遮音層を構成する熱可塑性シートに裏打ち層を構成する不織布を重ね、赤外線ヒータを用いて輻射加熱により170℃まで予備加熱して結着体を形成し、上記プレス成形型の中へ持ち込んだ。その際、結着体における遮音層側と積層体における吸音層側とを重ねてプレス成形型の中に配置した。
そして、プレス成形型を型締めし、80秒間プレスして、厚み6.0mm、0.6m×0.6mの内装材の試験サンプルをプレス成形により形成した。
The laminate was formed under the same conditions as in Example 1 and was brought into the same press mold as in Example 1.
In addition, the nonwoven fabric constituting the backing layer is superimposed on the thermoplastic sheet constituting the sound insulation layer, and the binder is preheated to 170 ° C. by radiant heating using an infrared heater, and is brought into the press mold. It is. At that time, the sound insulation layer side of the binder and the sound absorption layer side of the laminate were overlapped and placed in the press mold.
Then, the press mold was clamped and pressed for 80 seconds to form a test sample of an interior material having a thickness of 6.0 mm and 0.6 m × 0.6 m by press molding.

[比較例1]
本比較例は、図6に示したように、従来、主に自動車のデッキサイドトリムとして一般的に用いられている内装材を作製した例であり、概略、補強層が設けられていない内装材の例である。
表皮層1を形成する繊維には実施例1,2と同じ母材繊維およびメルト繊維を用い、母材繊維とメルト繊維の配合比も実施例1,2と同じにした。
バッキング層(遮音層2)を構成する熱可塑性シートには、実施例1,2と同じ単位面積当たりの重量、厚み、融点を有するPEシートを用いた。
剛性層(制振・吸音層3)を構成する繊維には、繊維径13μm、繊維長51mmのガラス繊維、および、繊度6.6デシテックス、繊維長51mm、融点160℃のPP繊維を用いた。ガラス繊維の配合比を40重量%、PP繊維の配合比を60重量%として、両者を略均一に混合して吸音層を形成する繊維とした。
[Comparative Example 1]
As shown in FIG. 6, this comparative example is an example of producing an interior material that has been conventionally used mainly as a deck side trim of an automobile, and is generally an interior material that is not provided with a reinforcing layer. It is an example.
The same base material fiber and melt fiber as in Examples 1 and 2 were used for the fibers forming the skin layer 1, and the mixing ratio of the base material fiber and the melt fiber was also the same as in Examples 1 and 2.
A PE sheet having the same weight, thickness, and melting point per unit area as in Examples 1 and 2 was used for the thermoplastic sheet constituting the backing layer (sound insulation layer 2).
As the fibers constituting the rigid layer (damping / sound absorbing layer 3), glass fibers having a fiber diameter of 13 μm and a fiber length of 51 mm, and PP fibers having a fineness of 6.6 dtex, a fiber length of 51 mm, and a melting point of 160 ° C. were used. The blending ratio of the glass fibers was 40% by weight and the blending ratio of the PP fibers was 60% by weight. Both were mixed almost uniformly to form a sound absorbing layer.

表皮層を形成する繊維については、単位面積当たりの重量が150g/m2、成形後に厚み0.5mmとなるよう、層状に広げて配置し、ニードリングを施し、繊維を交絡させて不織布を作製した。その後、表皮層の裏側にPEシートを重ねて赤外線ヒータを用いて輻射加熱により170℃まで予備加熱して一体化して結着体を形成し、実施例1と同じプレス成形型の中へ持ち込んだ。
上記とは別に、剛性層を構成するガラス繊維およびPP繊維のマットにニードリングを施し、繊維を交絡させて一体化させ、単位面積当たりの重量が800g/m2、成形後の厚みが10mmとなるようにガラス繊維/PP繊維基材を作製した。続いて、熱風循環ヒータを用いて熱風により220℃まで予備加熱し、上記プレス成形型の中へ持ち込んだ。その際、結着体におけるバッキング層側とガラス繊維/PP繊維基材とを重ねてプレス成形型の中に配置した。
そして、プレス成形型を型締めし、80秒間プレスして、厚み4.0mm、0.6m×0.6mの内装材の比較サンプルをプレス成形により形成した。
For the fibers that form the skin layer, the weight per unit area is 150 g / m 2 , and the layers are spread and arranged so that the thickness is 0.5 mm after molding. Needleing is performed, and the fibers are entangled to produce a nonwoven fabric. did. Thereafter, a PE sheet was overlaid on the back side of the skin layer and pre-heated to 170 ° C. by radiant heating using an infrared heater and integrated to form a binder, which was brought into the same press mold as in Example 1. .
Separately from the above, the needling is applied to the mat of glass fiber and PP fiber constituting the rigid layer, the fibers are entangled and integrated, the weight per unit area is 800 g / m 2 , and the thickness after molding is 10 mm. A glass fiber / PP fiber substrate was prepared as described above. Subsequently, it was preheated to 220 ° C. with hot air using a hot air circulating heater and brought into the press mold. At that time, the backing layer side of the binder and the glass fiber / PP fiber base material were stacked and placed in a press mold.
Then, the press mold was clamped and pressed for 80 seconds to form a comparative sample of the interior material having a thickness of 4.0 mm and 0.6 m × 0.6 m by press molding.

[比較例2]
本比較例は、実施例1の内装材から遮音層を除いて表皮層と補強層と吸音層のみを積層した内装材の例である。従って、表皮層を形成する繊維、補強層を形成する繊維、吸音層を形成する繊維には、実施例1と同じものを用いた。
表皮層と補強層と吸音層とを積層した積層体については、実施例1と同じ条件で形成し、実施例1と同じプレス成形型の中へ持ち込んだ。
そして、プレス成形型を型締めし、80秒間プレスして、厚み4.0mm、0.6m×0.6mの内装材の比較サンプルをプレス成形により形成した。
[Comparative Example 2]
This comparative example is an example of an interior material in which the sound insulation layer is removed from the interior material of Example 1 and only the skin layer, the reinforcing layer, and the sound absorption layer are laminated. Therefore, the same fiber as in Example 1 was used as the fiber forming the skin layer, the fiber forming the reinforcing layer, and the fiber forming the sound absorbing layer.
The laminated body in which the skin layer, the reinforcing layer, and the sound absorbing layer were laminated was formed under the same conditions as in Example 1 and brought into the same press mold as in Example 1.
Then, the press mold was clamped and pressed for 80 seconds to form a comparative sample of the interior material having a thickness of 4.0 mm and 0.6 m × 0.6 m by press molding.

[遮音性の評価方法]
実施例1の試験サンプルと比較例1の比較サンプルとを用い、それぞれ表皮層側からノイズを入射させたときの200Hz〜2.5kHzにおける透過損失を測定した。透過損失は、車両相当のパネル(鉄板0.8mm)上にフェルト(密度0.055g/cm3、厚み10mm)および各サンプルを表皮層側が無響室側となるように組み合わせ、パネル側からノイズを入射する音響インテンシティ法により測定した。
[Sound insulation evaluation method]
Using the test sample of Example 1 and the comparative sample of Comparative Example 1, the transmission loss at 200 Hz to 2.5 kHz when noise was incident from the skin layer side was measured. Transmission loss is determined by combining felt (density 0.055 g / cm 3 , thickness 10 mm) on a panel equivalent to a vehicle (0.8 mm iron plate) and each sample so that the skin layer side is the anechoic chamber side, and noise from the panel side. Was measured by the acoustic intensity method.

[吸音性の評価方法]
実施例1,2の試験サンプルと比較例1の比較サンプルとを用い、それぞれ表皮層側からノイズを入射させたときの200Hz〜5kHzにおける垂直入射吸音率を測定した。垂直入射吸音率はISO 10534-2「音響−インピーダンス管による吸音率およびインピーダンスの測定−」に準拠して1/3オクターブバンド中心周波数(Hz)の吸音率を測定した。
[Sound absorption evaluation method]
Using the test samples of Examples 1 and 2 and the comparative sample of Comparative Example 1, the normal incident sound absorption coefficient at 200 Hz to 5 kHz when noise was incident from the skin layer side was measured. The normal incident sound absorption coefficient was measured according to ISO 10534-2 “Acoustics—Measurement of sound absorption coefficient and impedance by impedance tube—” at a 1/3 octave band center frequency (Hz).

[評価結果]
結果を、図7と図8に示す。図7は、実施例1と比較例1とについて200Hz〜2.5kHzの1/3オクターブバンド毎の中心周波数(単位:Hz)に対する透過損失(単位:%)の測定結果をグラフにより示している。図8は、実施例1,2と比較例1とについて200Hz〜5kHzの1/3オクターブバンド毎の中心周波数(単位:Hz)に対する垂直入射吸音率(単位:%)の測定結果をグラフにより示している。
図7に示すように、実施例1の透過損失の値は比較例1の透過損失の値を上回り、特に中周波数域から高周波数域にかけて透過損失の差が大きくなった。透過損失が大きいほど車外からの音がより遮音されるということであるから、本発明の自動車用内装材は従来の内装材よりも優れた遮音性能を有することが確認された。
図8に示すように、裏打ち層を設けなかった実施例1の垂直入射吸音率の値は2.5kHz以上の高周波数域において比較例1の垂直入射吸音率の値を上回り、裏打ち層を設けた実施例2の垂直入射吸音率の値は800Hz程度以上の中周波数域から高周波数域にかけて比較例1の垂直入射吸音率の値を上回った。垂直入射吸音率が大きいほど車内に侵入した音がより吸音されるということであり、特に2kHz〜4kHz程度の高周波の音は人の近似的聴覚特性において感度の高い範囲であるため、本発明の自動車用内装材は従来の内装材よりも優れた吸音性能を有することが確認された。
[Evaluation results]
The results are shown in FIGS. FIG. 7 is a graph showing measurement results of transmission loss (unit:%) with respect to the center frequency (unit: Hz) for each 1/3 octave band of 200 Hz to 2.5 kHz for Example 1 and Comparative Example 1. . FIG. 8 is a graph showing the measurement results of the normal incident sound absorption coefficient (unit:%) with respect to the center frequency (unit: Hz) for each 1/3 octave band of 200 Hz to 5 kHz for Examples 1 and 2 and Comparative Example 1. ing.
As shown in FIG. 7, the transmission loss value of Example 1 exceeded the transmission loss value of Comparative Example 1, and the difference in transmission loss increased particularly from the middle frequency range to the high frequency range. Since the sound from the outside of the vehicle is further insulated as the transmission loss increases, it was confirmed that the automobile interior material of the present invention has a sound insulation performance superior to that of the conventional interior material.
As shown in FIG. 8, the value of the normal incidence sound absorption coefficient of Example 1 in which the backing layer was not provided exceeded the value of the normal incidence sound absorption coefficient of Comparative Example 1 in a high frequency range of 2.5 kHz or more, and the backing layer was provided. The value of the normal incident sound absorption coefficient of Example 2 exceeded the value of the normal incident sound absorption coefficient of Comparative Example 1 from the middle frequency region to the high frequency region of about 800 Hz or more. The higher the normal incident sound absorption coefficient, the more the sound that has entered the vehicle is absorbed. Particularly, high-frequency sound of about 2 kHz to 4 kHz has a high sensitivity in human approximate auditory characteristics. It was confirmed that automobile interior materials have better sound absorption performance than conventional interior materials.

[剛性の評価方法]
実施例1,2の試験サンプルと比較例2の比較サンプルとをそれぞれ150×50mmの大きさに切り出し、支点間距離を50mmとして2点で支持し、支点間の中心位置を速度50mm/minで押圧子により押圧し、発生する荷重を測定して、曲げ剛性の指標となる曲げ弾性勾配を得た。なお、曲げ試験はJIS K7171「プラスチック−曲げ特性の試験方法」において試験速度50mm/min、支点間距離50mmで試験を行った。曲げ弾性勾配は、曲げ弾性率より以下の式で計算を行い算出した。
(曲げ弾性勾配)=[弾性率×4×サンプル幅50mm×サンプル厚み(mm)3
/[支点間距離50mm3]×10
[Rigidity evaluation method]
The test samples of Examples 1 and 2 and the comparative sample of Comparative Example 2 are each cut into a size of 150 × 50 mm, supported at two points with a distance between the fulcrums of 50 mm, and the center position between the fulcrums at a speed of 50 mm / min. A bending elastic gradient serving as an index of bending rigidity was obtained by measuring the load generated by pressing with a pressing element. The bending test was conducted at a test speed of 50 mm / min and a distance between fulcrums of 50 mm according to JIS K7171 “Plastics—Bending property test method”. The bending elastic gradient was calculated from the bending elastic modulus using the following formula.
(Bending elastic gradient) = [elastic modulus × 4 × sample width 50 mm × sample thickness (mm) 3 ]
/ [Distance between fulcrums 50mm 3 ] × 10

[評価結果]
上記3点曲げ試験によって得られた曲げ弾性勾配の測定結果を、以下に示す。
サンプル厚み(mm) 曲げ弾性勾配(N/cm)
実施例1(裏打ち層無し) 4.0 75
実施例2(裏打ち層有り) 6.0 85
比較例2(遮音層無し) 4.0 41
遮音層を設けていない比較例2では曲げ弾性勾配が41N/cmと比較的小さいのに対し、実施例1では曲げ弾性勾配が75N/cm、実施例2では曲げ弾性勾配が85N/cmと比較的大きかった。曲げ弾性勾配が大きいということは成形後の形状保持性能が大きいということであるから、本発明の内装材は吸音層を通気性の補強層と非通気性の熱可塑性シートで挟み、積層することによって、成形後の形状保持性が格段に向上することが確認された。
[Evaluation results]
The measurement results of the bending elastic gradient obtained by the above three-point bending test are shown below.
Sample thickness (mm) Bending elastic gradient (N / cm)
Example 1 (no backing layer) 4.0 75
Example 2 (with backing layer) 6.0 85
Comparative Example 2 (no sound insulation layer) 4.0 41
In Comparative Example 2 where no sound insulation layer is provided, the bending elastic gradient is relatively small at 41 N / cm, whereas in Example 1, the bending elastic gradient is 75 N / cm, and in Example 2, the bending elastic gradient is 85 N / cm. It was big. Since the large bending elastic gradient means that the shape retention performance after molding is large, the interior material of the present invention is formed by sandwiching a sound absorbing layer between a breathable reinforcing layer and a non-breathable thermoplastic sheet and laminating. As a result, it was confirmed that the shape retention after molding was remarkably improved.

以上説明したように、本発明によると、種々の態様により、凸凹形状を有する自動車用内装材において、車外からの音の侵入を十分に防止するとともに車室内に侵入した音を十分に吸音することができ、軽量でありながら剛性を向上させることができ、成形後も所要の形状を保つだけの保形性に優れた自動車用内装材およびその製造方法を提供することができる。 As described above, according to the present invention, according to various aspects, in an interior material for an automobile having an uneven shape , sound from the outside of the vehicle can be sufficiently prevented and sound that has entered the vehicle interior can be sufficiently absorbed. Thus, it is possible to provide an automotive interior material excellent in shape retention property and capable of maintaining a required shape even after molding, and a manufacturing method thereof.

路上走行自動車の内装の要部を一部断面視して示す正面図。The front view which shows the principal part of the interior of a road traveling vehicle partially in cross section. 自動車用内装材の要部を垂直断面にて示す図。The figure which shows the principal part of the interior material for motor vehicles by a vertical cross section. 自動車用内装材の製造方法を示す図。The figure which shows the manufacturing method of the interior material for motor vehicles. 変形例の自動車用内装材の要部を垂直断面にて示す図。The figure which shows the principal part of the interior material for motor vehicles of a modification in a vertical cross section. 変形例の自動車用内装材の要部を垂直断面にて示す図。The figure which shows the principal part of the interior material for motor vehicles of a modification in a vertical cross section. 従来例の自動車用内装材の要部を垂直断面にて示す図。The figure which shows the principal part of the interior material for motor vehicles of a prior art example with a vertical cross section. 1/3オクターブバンド毎の中心周波数に対する透過損失の測定結果を示す図。The figure which shows the measurement result of the transmission loss with respect to the center frequency for every 1/3 octave band. 1/3オクターブバンド毎の中心周波数に対する垂直入射吸音率の測定結果を示す図。The figure which shows the measurement result of the normal incidence sound absorption coefficient with respect to the center frequency for every 1/3 octave band.

符号の説明Explanation of symbols

10…表皮層、
20…補強層、
30…吸音層、
40…遮音層、
50…裏打ち層、
60…積層体、
70…結着体、
100,101,102,108,109…自動車用内装材、
112…ドアアウターパネル(車体パネルの一種)、
114…ドアインナーパネル(車体パネルの一種)、
120…フロアパネル(車体パネルの一種)、
200…路上走行自動車、
SP1…車室
10 ... skin layer,
20 ... reinforcing layer,
30 ... Sound absorbing layer,
40 ... Sound insulation layer,
50 ... backing layer,
60 ... laminate,
70 ... Binder,
100, 101, 102, 108, 109 ... automotive interior materials,
112 ... Door outer panel (a kind of body panel),
114 ... Door inner panel (a kind of body panel),
120 ... floor panel (a kind of body panel),
200 ... a road running car,
SP1 ... Car cabin

Claims (3)

自動車の車室に敷設される、凸凹形状を有する自動車用内装材であって、
単位面積当たりの重量500〜1500g/m 2 繊維を集合させた通気性の吸音層と、
単位面積あたりの重量を30〜1000g/m 2 とした非通気性の熱可塑性シートからなり前記吸音層に対して車室側とは反対側の車外側の面に設けられた遮音層と、
前記吸音層における車室側の面で、20〜95重量%の母材繊維と、熱可塑性繊維である5〜80重量%の架橋用繊維と、を集合させて熱成形して形成される通気性の補強層と、
を少なくとも積層した状態で凸凹形状の車体パネルの形状に合わせて熱成形して得られ、前記吸音層と前記遮音層とが接し、前記吸音層の厚みが2.0〜10.0mm、前記遮音層の厚みが0.03〜1.0mm、前記補強層の通気度が5cc/cm 2 /sec以上である、凸凹形状を有する自動車用内装材。
An automotive interior material having an uneven shape laid in a vehicle compartment,
A breathable sound-absorbing layer in which fibers are assembled at a weight per unit area of 500-1500 g / m 2 ;
A sound insulating layer made of a non-breathable thermoplastic sheet having a weight per unit area of 30 to 1000 g / m 2 and provided on the outer surface of the vehicle opposite to the vehicle compartment side with respect to the sound absorbing layer;
Ventilation formed by assembling 20 to 95% by weight of base material fibers and 5 to 80% by weight of crosslinking fibers, which are thermoplastic fibers, on the surface of the sound absorbing layer on the passenger compartment side. Sex reinforcement layer,
Is obtained by thermoforming in accordance with the shape of an uneven car body panel in a state of being laminated , the sound absorbing layer and the sound insulating layer are in contact, the thickness of the sound absorbing layer is 2.0 to 10.0 mm, and the sound insulating An automotive interior material having an uneven shape , wherein the thickness of the layer is 0.03 to 1.0 mm, and the air permeability of the reinforcing layer is 5 cc / cm 2 / sec or more .
単位面積当たりの重量15〜100g/m 2 不織布からなる裏打ち層が前記遮音層の車外側の面に設けられ、車外側から車室側へ順に、前記裏打ち層、前記遮音層、前記吸音層、前記補強層を少なくとも積層した状態で車室の形状に合わせて熱成形して得られる、請求項1に記載の凸凹形状を有する自動車用内装材。 A backing layer made of a nonwoven fabric having a weight of 15 to 100 g / m 2 per unit area is provided on the outside surface of the sound insulation layer, and the backing layer, the sound insulation layer, and the sound absorption layer are sequentially arranged from the vehicle exterior side to the vehicle interior side. The interior material for automobiles having an uneven shape according to claim 1, which is obtained by thermoforming according to the shape of a passenger compartment with at least the reinforcing layer laminated. 自動車の車室に敷設される、凸凹形状を有する自動車用内装材を製造するための自動車用内装材の製造方法であって、
単位面積当たりの重量500〜1500g/m 2 繊維を集合させた通気性の吸音層と、前記吸音層における車室側の面で、20〜95重量%の母材繊維と、熱可塑性繊維である5〜80重量%の架橋用繊維と、を集合させて熱成形して形成される通気性の補強層と、を少なくとも重ねてニードリングして熱風を供給することにより前記補強層を構成する熱可塑性繊維を加熱溶融させて積層体を形成し、
単位面積あたりの重量を30〜1000g/m 2 とした非通気性の熱可塑性シートからなり前記吸音層に対して車室側とは反対側の車外側の面に設けられる遮音層と、単位面積当たりの重量15〜100g/m 2 不織布からなる裏打ち層と、を重ねて輻射加熱することにより前記遮音層を構成する熱可塑性シートを溶融させて前記裏打ち層と前記遮音層とを結着させた結着体を形成し、
凸凹形状の車体パネルの形状に合わせた形状とされた成形型の中で前記結着体における前記遮音層側と前記積層体における前記吸音層側とを前記吸音層と前記遮音層とが接する状態で重ねて型締めして熱成形することにより、前記吸音層の厚みが2.0〜10.0mm、前記遮音層の厚みが0.03〜1.0mm、前記補強層の通気度が5cc/cm 2 /sec以上である、凸凹形状を有する自動車用内装材を製造することを特徴とする、凸凹形状を有する自動車用内装材の製造方法。
A method for producing an interior material for an automobile for producing an interior material for an automobile having an uneven shape laid in an automobile compartment,
A breathable sound-absorbing layer in which fibers are aggregated at a weight of 500 to 1500 g / m 2 per unit area , 20 to 95% by weight of base fiber and thermoplastic fiber on the surface of the sound-absorbing layer on the passenger compartment side The reinforcing layer is configured by supplying hot air by needling at least a breathable reinforcing layer formed by assembling together 5 to 80% by weight of a crosslinking fiber and thermoforming. Thermoplastic fibers are heated and melted to form a laminate,
A sound insulation layer provided on the exterior of the surface opposite to the vehicle compartment side of the air-impermeable consists thermoplastic sheet the backing layer in which the weight per unit area 30~1000g / m 2, per unit area A backing layer made of a non-woven fabric having a weight of 15 to 100 g / m 2 per layer, and by heating by radiation, the thermoplastic sheet constituting the sound insulation layer is melted to bind the backing layer and the sound insulation layer. Forming a bonded body,
A state in which the sound absorbing layer and the sound insulating layer are in contact with the sound insulating layer side of the binder and the sound absorbing layer side of the laminated body in a mold that is shaped to match the shape of the uneven body panel. by in that by clamping thermoformed superimposed, the thickness of the backing layer is 2.0~10.0Mm, the thickness of the sound insulation layer is 0.03~1.0Mm, air permeability of the reinforcing layer is 5 cc / The manufacturing method of the interior material for motor vehicles which has an uneven shape characterized by manufacturing the interior material for motor vehicles which has an uneven shape which is cm < 2 > / sec or more .
JP2005225455A 2005-08-03 2005-08-03 Interior material for automobile having uneven shape and manufacturing method thereof Expired - Fee Related JP4630155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225455A JP4630155B2 (en) 2005-08-03 2005-08-03 Interior material for automobile having uneven shape and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225455A JP4630155B2 (en) 2005-08-03 2005-08-03 Interior material for automobile having uneven shape and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007038854A JP2007038854A (en) 2007-02-15
JP4630155B2 true JP4630155B2 (en) 2011-02-09

Family

ID=37797230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225455A Expired - Fee Related JP4630155B2 (en) 2005-08-03 2005-08-03 Interior material for automobile having uneven shape and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4630155B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012061940A (en) * 2010-09-15 2012-03-29 Marugo Rubber Ind Co Ltd Waterproof cover and method for manufacturing the same
JP6430284B2 (en) 2015-02-25 2018-11-28 林テレンプ株式会社 Silencer for automobile and manufacturing method thereof
JP6274159B2 (en) * 2015-06-23 2018-02-07 マツダ株式会社 Sound insulation structure of the passenger compartment floor
JP7378228B2 (en) * 2019-06-07 2023-11-13 株式会社Howa Soundproofing body and its manufacturing method, and automobile silencer
CN115551744A (en) * 2020-06-12 2022-12-30 林天连布株式会社 Cover member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322193A (en) * 2000-05-16 2001-11-20 Maeda Kasei Kk Constituent member for trimming vehicle interior and interior trimming material for vehicle using the constituent member
JP2002002408A (en) * 2000-06-21 2002-01-09 Sanwa Kogyo Kk Soundproof material for vehicle
JP2003166160A (en) * 2001-11-28 2003-06-13 Toyobo Co Ltd High-rigidity nonwoven fabric, curtain core and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7574694A (en) * 1993-10-15 1995-05-04 Hoover Universal Inc. Composite fiber material member utilizing reclaimed plastic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322193A (en) * 2000-05-16 2001-11-20 Maeda Kasei Kk Constituent member for trimming vehicle interior and interior trimming material for vehicle using the constituent member
JP2002002408A (en) * 2000-06-21 2002-01-09 Sanwa Kogyo Kk Soundproof material for vehicle
JP2003166160A (en) * 2001-11-28 2003-06-13 Toyobo Co Ltd High-rigidity nonwoven fabric, curtain core and method for producing the same

Also Published As

Publication number Publication date
JP2007038854A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
US6669265B2 (en) Multidensity liner/insulator
US20060289231A1 (en) Acoustic absorber/barrier composite
US20040180177A1 (en) Thermoformable acoustic material
JP4129427B2 (en) Multi-density insulator type liner
US20030124940A1 (en) Tunable or adjustable liner for selectively absorbing sound energy and related methods
JP7175690B2 (en) vehicle under cover
KR100920859B1 (en) Molded interior trim installation material for automobile
US20040180592A1 (en) Thermoformable acoustic sheet material
JP5844339B2 (en) Manufacturing method of soundproofing material for vehicle
JP6082145B1 (en) Soundproof material for vehicle and method for manufacturing the same
MX2011012799A (en) Sound insulation material for vehicle and method for forming the same.
US6900145B2 (en) Trim panel insulator for a vehicle
JP3897599B2 (en) Floor laying material
US20060289230A1 (en) Acoustical insulation for motor vehicles
KR101901235B1 (en) Lightweight and sound absorbing, interior materials for automobile containing waste fibers and their preparation
JP4630155B2 (en) Interior material for automobile having uneven shape and manufacturing method thereof
JP6035405B2 (en) Manufacturing method of soundproofing material for vehicle
JP3264230B2 (en) Vehicle interior materials
JP4167505B2 (en) Felt sound absorber with multi-density construction
JP2018141914A (en) Vehicular inner packaging material and its manufacturing method
JP2004027383A (en) Sound-absorbing mat for forming and vehicular sound-absorbing material
JP4022568B2 (en) Molded interior materials for automobiles
JP3669537B2 (en) Sound absorbing member
KR20190055983A (en) Headliner for vehicle with improved sound absorption performance and method for manufacturing the same
US12100378B1 (en) Composite nonwoven felt for high draw mold areas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4630155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees