[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6031856B2 - 非水系電解液二次電池 - Google Patents

非水系電解液二次電池 Download PDF

Info

Publication number
JP6031856B2
JP6031856B2 JP2012155492A JP2012155492A JP6031856B2 JP 6031856 B2 JP6031856 B2 JP 6031856B2 JP 2012155492 A JP2012155492 A JP 2012155492A JP 2012155492 A JP2012155492 A JP 2012155492A JP 6031856 B2 JP6031856 B2 JP 6031856B2
Authority
JP
Japan
Prior art keywords
carbonate
negative electrode
aqueous electrolyte
less
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012155492A
Other languages
English (en)
Other versions
JP2013038072A (ja
Inventor
重松 保行
保行 重松
大貫 正道
正道 大貫
島 邦久
邦久 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012155492A priority Critical patent/JP6031856B2/ja
Publication of JP2013038072A publication Critical patent/JP2013038072A/ja
Application granted granted Critical
Publication of JP6031856B2 publication Critical patent/JP6031856B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水系電解液二次電池に関し、詳しくは、電解質としてイソシアネート基を有する特定の化合物を含有する非水系電解液と負極にX線光電子分光法から求められる表面含酸素率(O/C)が特定の割合を有する炭素質物からなる負極活物質を含む非水系電解液二次電池に関する。
携帯電話、ノートパソコン等のいわゆる携帯電子機器用電源から自動車用等の駆動用車載電源や定置用大型電源等に至るまでの広範な電源としてリチウム二次電池等の非水系電解液二次電池が実用化されつつある。しかしながら、近年の電子機器の高性能化や駆動用車載電源や定置用大型電源への適用等に伴い、適用される二次電池への要求はますます高まり、二次電池の電池特性の高性能化、例えば高容量化、高温保存特性、サイクル特性、高速充放電特性等の向上を高い水準で達成することが求められている。
非水系電解液リチウム二次電池に用いる電解液は、通常、主として電解質と非水溶媒とから構成されている。非水溶媒の主成分としては、エチレンカーボネートやプロピレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート;γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステルなどが用いられている。
リチウム二次電池の長期耐久性を向上させるための取り組みの一つとして、上記電解液に特定の化合物を加えることにより、電池の使用初期に不動態皮膜を負極上に形成し、主要な劣化要因といえる溶媒の還元分解反応などの副反応を抑制させる取り組みがなされている。
このような化合物の例として、分子内にイソシアネート基を含有する化合物が挙げられる。特許文献1、特許文献2及び特許文献3には、それぞれ電解液にイソシアネート基を有する低分子化合物、鎖状のイソシアネート化合物やジイソシアネート化合物を加えることにより、サイクル安定性が改良されることが開示されている。
また、電解液以外にも負極活物質表面を改質して電池を高性能化する試みがある。例えば、黒鉛質粒子をメカノケミカル処理して、該黒鉛質粒子表面を親水化することで、水系結着材を用いたリチウムイオン二次電池でも高速充電することができることが特許文献4に開示されている。ただし、このように化学的に活性な表面は、例えば適切な電解液成分と組み合わせるなどの応用によって、更なる高性能化が期待できるが、そうした技術開発は未だ十分とは言えない状況である。
特開2005−259641号公報 特開2006−164759号公報 特開2007−242411号公報 特開2003−132889号公報
上記のように、分子内にイソシアネート基を含有する化合物(以下適宜、「イソシアネート化合物」という)を電解液に含めると、耐久性能の向上が期待できるが、組み合わせ
る負極の種類によってはその作用が十分に現れない場合がある。これは、イソシアネート化合物の作用機構に基づいた適切な電池設計がなされていないからで、更なる電池の長期安定性の改善の為には負極活物質の表面物性が適切に選択される必要がある。
発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、非水系電解液二次電池に使用する負極が、X線光電子分光法から求められる表面含酸素率(O/C)が0.8atom%以上である炭素質材料からなる負極活物質を含み、且つ、前記非水系電解液がイソシアネート基を有する化合物を少なくとも一種以上を含むことにより、著しく高温時サイクル特性が改善され、サイクル時の低温放電特性の劣化が小さい非水系電解液二次電池が実現できることを見出し、本発明を完成させるに至った。
即ち、本発明の要旨は以下の通りである。
リチウム塩とこれを溶解する非水系溶媒を含有してなる非水系電解液と、リチウムイオンを吸蔵放出可能な負極、並びに正極を備えた非水系電解液二次電池であって、X線光電子分光法から求められる表面含酸素率(O/C)が0.8atom%以上である炭素質材料からなる負極活物質を含み、且つ、前記非水系電解液がイソシアネート基を有する化合物を含有していることを特徴とする非水系電解液二次電池である。
また、本発明の別の要旨は、前記イソシアネート基を有する化合物の少なくとも一部は、一般式(1)で表される化合物であること、である。
Figure 0006031856
(式中、Aは、水素原子、ハロゲン原子、ビニル基、イソシアネート基、又はC
2 0 の脂肪族炭化水素基(ヘテロ原子を有していてもよい)又はC 〜C 2 0 の芳香族炭化水素基( ヘテロ原子を有していてもよい)を表す。B は、酸素原子 、S O 、OSO2、SO3、OCO、COO、又は、C 〜 C 2 0 の脂肪族炭化水
素基( ヘテロ原子を有していてもよい)、又はC 〜C 2 0の芳香族炭化水素基( ヘテロ原子を有していてもよい) を表す。)
また、本発明の別の要旨は、前記一般式(1)で表される化合物の少なくとも一部は、(2)式で表される化合物であること、である。
Figure 0006031856
(式中、x は4〜12である)
また、本発明の別の要旨は、前記イソシアネート基を有する化合物の少なくとも一部は、一般式(1)で表される化合物及び/又は平均官能基数が2以上、かつ数平均分子量が300〜5000のポリイソシアネートであること、である。
また、本発明の別の要旨は、前記イソシアネート化合物を非水溶媒全体に対して0.01質量%以上5質量%以下含有すること、である。
また、本発明の別の要旨は、前記X線光電子分光法から求められる表面含酸素率(O/C)が1.0atom%以上であること、である。
また、本発明の別の要旨は、前記負極は、アルゴンイオンレーザーラマンスペクトル法における1580cm−1のピーク強度に対する1360cm−1のピーク強度の比とし
て定義されるラマンR値が0.10以上である炭素質材料を少なくとも1種類以上含有する負極活物質を含むこと、である。
また、本発明の別の要旨は、前記炭素質材料の表面酸素を酸素存在下でメカノケミカル処理する方法によって付与すること、である。
本発明により、特に高容量化されたリチウム二次電池設計において電池のサイクル耐久特性が著しく改善された非水系電解液電池が提供される。この理由は、下記のように推測される。
本発明によると、電解液にイソシアネート化合物を含むことによって、溶媒の還元分解を効果的に抑制する良質な皮膜が負極活物質表面に形成される。さらに、その皮膜の一部が負極活物質表面の酸素官能基との間の強い相互作用によって強固に結着するとみられる。その結果として、充放電の繰り返しにおける皮膜の物理的、化学的安定性が高まり、還元分解抑制効果を長期的に持続させることが可能となった。
また、イソシアネート化合物のサイクル特性に及ぼす効果は、負極活物質表面の酸素官能基量、すなわちX線光電子分光法から求められるおよそ0.8atom%の表面含酸素率(O/C)を境にして飛躍的に高まり、さらに表面含酸素率(O/C)を増すに従って効果が高まる傾向があることを見出した。この理由は現在のところ明らかとなっていないが、上述の相互作用の強さが酸素官能基量に依存するためとみられる。
以下、本発明の実施の形態について詳細に説明するが、本発明はこれらに限定されるものではなく、任意に変形して実施することができる。
1.負極
本発明の非水系電解液二次電池に用いる負極は、リチウムイオンを吸蔵放出可能な負極であり、特定の負極活物質を含むものである。以下に負極に使用される負極活物質について述べる。
<負極活物質>
負極活物質として用いられる炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質を400〜3200℃の範囲で1回以上熱処理した炭素質材料、
(3)負極活物質層が少なくとも2種以上の異なる結晶性を有する炭素質からなり、かつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種以上の異なる配向性を有する炭素質からなり、かつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよく好ましい。また、(1)〜(4)の炭素質材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
上記(2)の人造炭素質物質並びに人造黒鉛質物質としては、天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n−へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物等が挙げられる。
<X線パラメータ>
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、0.335nm以上であることが好ましく、また、通常0.360nm以下であり、0.350nm以下が好ましく、0.345nm以下がさらに好ましい。また、学振法によるX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、1.0nm以上であることが好ましく、中でも1.5nm以上であることがさらに好ましい。
<体積基準平均粒径>
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)であり、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。
体積基準平均粒径が上記範囲であれば、不可逆容量の増大による、初期の電池容量の損失を抑制できるとともに、塗布による電極作製の工程を含む場合に、均一な電極塗布が可能となる。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なうことができる。該測定で求められるメジアン径を、本発明の炭素質材料の体積基準平均粒径と定義する。
<ラマンR値、ラマン半値幅>
炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値であり、通常0.01以上であり、0.03以上が好ましく、0.1以上がさらに好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。
また、炭素質材料の1580cm−1付近のラマン半値幅は特に制限されないが、通常10cm−1以上であり、15cm−1以上が好ましく、また、通常100cm−1以下であり、80cm−1以下が好ましく、60cm−1以下がさらに好ましく、40cm−1以下が特に好ましい。
ラマンR値及びラマン半値幅は、炭素質材料表面の結晶性を示す指標であるが、炭素質材料は、化学的安定性の観点から適度な結晶性が有する一方、充放電によってLiが入り込む層間のサイトを消失しない程度の結晶性であることが好ましい。なお、集電体に塗布した後のプレスによって負極を高密度化する場合には、電極板と平行方向に結晶が配向しやすくなるため、それを考慮することが好ましい。
ラマンR値又はラマン半値幅が上記範囲であると、炭素質材料と非水系電解液との反応を抑制することができるとともに、サイトの消失による負荷特性の低下を抑制することができる。
ラマンスペクトルの測定は、ラマン分光器(日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm−1付近のピークPAの強度IAと、1360cm−1付近のピークPBの強度IBとを測定し、その強度比R(R=IB/IA)を算出する。該測定で算出されるラマンR値を、本発明の炭素質材料のラマンR値と定義する。また、得られるラマンスペクトルの1580cm−1付近のピークPAの半値幅を測定し、これを本発明の炭素質材料のラマン半値幅と定義する。
また、上記のラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm−1
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
<BET比表面積>
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値であり、通常0.1m・g−1以上であり、0.7m・g−1以上が好ましく、1.0m2・g−1以上がさらに好ましく、1.5m・g−1以上が特に好ましく、また、通常100m・g−1以下であり、25m・g−1以下が好ましく、15m・g−1以下がさらに好ましく、10m・g−1以下が特に好ましい。
BET比表面積の値が上記範囲であると、電極表面へのリチウムの析出を抑制することができる一方、非水系電解液との反応によるガス発生を抑制することができる。
BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行う。該測定で求められる比表面積を、本発明の炭素質材料のBET比表面積と定義する。
<円形度>
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。炭素質材料の粒径が3〜40μmの範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上が好ましく、0.8以上がより好ましく、0.85以上がさらに好ましく、0.9以上が特に好ましい。
炭素質材料の円形度が大きいほど、充填性が向上し、粒子間の抵抗を抑えることができるため、高電流密度充放電特性は向上する。従って、円形度が上記範囲のように高いほど好ましい。
円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行う。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明の炭素質材料の円形度と定義する。
円形度を向上させる方法は、特に制限されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダーもしくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。
<タップ密度>
炭素質材料のタップ密度は、通常0.1g・cm−3以上であり、0.5g・cm−3
以上が好ましく、0.7g・cm−3以上がさらに好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下がさらに好ましく、1.6g・cm−3以下が特に好ましい。タップ密度が上記範囲であると、電池容量を確保することができるとともに、粒子間の抵抗の増大を抑制することができる。
タップ密度の測定は、目開き300μmの篩を通過させて、20cm3のタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。該測定で算出されるタップ密度を、本発明の炭素質材料のタップ密度として定義する。
<配向比>
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上がさらに好ましく、また、通常0.67以下である。配向比が、上記範囲であると、優れた高密度充放電特性を確保することができる。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。該測定で算出される配向比を、本発明の炭素質材料の配向比と定義する。
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
<アスペクト比(粉)>
負極活物質の炭素質材料のアスペクト比(長径/短径)は、通常0.05以上、好ましくは0.07以上、更に好ましくは0.1以上、特に好ましくは0.14以上、また、通常20以下、好ましくは15以下、更に好ましくは10以下、特に好ましくは7以下の範囲である。
アスペクト比が小さすぎる又は大きすぎると、粒子形状が平板状若しくは針状となるため電極中で集電体に対して平行に配向し易く、Li挿入に伴う膨張が一方向になるため導電パス切れが起きサイクル特性が悪化する傾向がある。
これに対し、アスペクト比が上記範囲であれば、高容量化のために電極密度を高くした場合、炭素質材料が球形や立方体に近い形状になり、炭素質材料が潰れ難く、集電体からの剥離などが起き難くサイクル特性が向上するので好ましい。
更に炭素質材料間空隙が大きくなり易く、粒子間のLi拡散が早くなりレート特性の向上が期待できるので好ましい。更にまた、炭素質材料が潰れ難いため負極中で炭素質材料が配向し難く、充放電に伴う電極の膨張を抑制でき、活物質間の導電パスが保持されるこ
とから、サイクル特性が向上するため好ましい。
また、電極膨張を抑制できるので電池内部の空間を確保し易く、酸化分解による少量のガス発生が生じても、電池内部に空間があるので内圧の上昇が少なく、電池の膨張等が起き難いので好ましい。
アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50μm以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明の炭素質材料のアスペクト比と定義する。
上記範囲のアスペクト比を有する球形化黒鉛粒子を得る方法は、特に限定されないが、例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し黒鉛粒子に与える装置を用いることが好ましい。具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置を用いることが好ましい。また、炭素材料を循環させることによって機械的作用を繰り返して与える機構を有するもの、若しくは、循環機構を有しないが装置を複数台連結させ処理する機構を有するものであるのが好ましい。好ましい装置の一例として、(株)奈良機械製作所製のハイブリダイゼーションシステムなどを挙げることができる。
<副材混合>
副材混合とは、負極電極中及び/又は負極活物質中に性質の異なる炭素質材料が2種以上含有していることである。ここでいう性質とは、X線回折パラメータ、メジアン径、アスペクト比、BET比表面積、配向比、ラマンR値、タップ密度、真密度、細孔分布、円形度、灰分量の群から選ばれる1つ以上の特性を示す。
これらの副材混合の、特に好ましい例としては、体積基準粒度分布がメジアン径を中心としたときに左右対称とならないこと、ラマンR値が異なる炭素質材料を2種以上含有していること、及びX線パラメータが異なること等が挙げられる。
副材混合の効果の1例として、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素質材料を導電材として含有されることにより、電気抵抗を低減させることが挙げられる。
副材混合として導電材を混合する場合には、1種を単独で混合してもよく、2種以上を任意の組み合わせ及び比率で混合してもよい。また、導電材の炭素質材料に対する混合比率は、通常0.1質量%以上、0.5質量%以上がこのましく、0.6質量%以上が更に好ましく、また、通常45質量%以下であり、40質量%以下が好ましい。混合比が上記範囲であると、電気抵抗低減効果を確保することができるとともに、初期不可逆容量の増大を抑制することができる。
<表面含酸素率(O/C値と省略する)>
本発明における表面含酸素率はX線光電子分光法(XPS)を用いて測定することができる。
表面含酸素率O/C値は、X線光電子分光法測定としてX線光電子分光器を用い、測定対象を表面が平坦になるように試料台に載せ、アルミニウムのKα線をX線源とし、マルチプレックス測定により、C1s(280〜300eV)とO1s(525〜545eV)のスペクトルを測定する。得られたC1sのピークトップを284.3eVとして帯電
補正し、C1sとO1sのスペクトルのピーク面積を求め、更に装置感度係数を掛けて、CとOの表面原子濃度をそれぞれ算出する。得られたそのOとCの原子濃度比O/C(O原子濃度/C原子濃度)×100を炭素材の含酸素官能基量O/C値と定義する。
O/C値は、0.8atom%以上、好ましくは、1.0atom%以上、より好ましくは1.5atom%以上、更に好ましくは、3.0atom%以上である。上限は通常15atom%以下、好ましくは10%以下、より好ましくは7.5atom%以下である。O/C値が上記範囲にあることにより、本発明の効果を十分に奏すことができ、また、電解液との反応性が増し、充放電効率の低下やガス発生の増加を防ぐ。
<含酸素官能基の制御>
通常、炭素質材料表面には、その種類や製造履歴によって任意量の酸素官能基が存在するが、本発明に用いる炭素質材料は積極的に酸素官能基を導入してもよい。
炭素質材料表面に含酸素官能基を導入する方法は、公知の方法や新たに発明されたいずれの方法も使用できる。例えば、硝酸、過マンガン酸塩、重クロム酸塩、次亜塩素酸塩、過硫酸アンモニウム、過酸化水素、オゾン等の酸化剤による酸化処理、シラン化合物等のカップリング剤による処理、ポリマーグラフト化処理、プラズマ処理等の公知の方法の他、新たに開発した方法も使用でき、またこれらの方法を組み合わせてもよい。
また、その他の含酸素官能基導入法としては、酸素原子を含む液体乃至気体雰囲気下におけるメカノケミカル処理が挙げられる。本法を用いれば、雰囲気や処理条件などによって、容易に酸素官能基の導入量を制御することができるので好ましい。
使用する装置としては、被処理物に圧縮力と剪断力とを同時にかけることができる装置であればよく、装置構造は特に限定されない。このような装置として、たとえば加圧ニーダー、二本ロールなどの混練機、回転ボールミル、ハイブリダイゼーションシステム((株)奈良機械製作所製)、メカノマイクロス((株)奈良機械製作所製)などを使用することができる。
被処理物の周辺雰囲気としては、処理時に表面に官能基が付与できれば、特に指定はないが、酸素原子を含む液体乃至気体が望ましい。処理自体は大気中組成である酸素20mol%程度あれば、十分に官能基の付与が行われるが、窒素雰囲気中では、これらの効果は期待できない。
酸素の含有濃度としては、通常0.1mol%以上、好ましくは1mol%以上、より好ましくは、5mol%以上、更に好ましくは20mol%以上、また、通常80mol%以下、好ましくは50mol%以下、より好ましくは40mol%以下である。与える酸素分圧が小さすぎると官能基付与が不十分でサイクル特性向上の効果が得にくくなる傾向があり、大きすぎると、爆発などの危険があり、安全運転上の問題が発生する傾向がある。
また、大気組成以外にも、水やメタノール、エタノール、イソプロピルアルコールに代表される単座のアルコールやエチレングリコールやプロピレングリコールに代表される多座のアルコール、同様にエーテル、エステル化合物なども好ましく用いることができる。また気体では、オゾン、一酸化炭素、SOやNOなども好ましく用いることができる。
酸素官能基量は、逆に官能基を脱離させる方法によって制御しても良い。例えば、不活性ガスや還元性ガスを含む雰囲気下で焼成すると、酸素官能基は気体化して容易に脱離させることができる。
<負極の構成と作製法>
電極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法を用いるこ
とができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを後述する集電体に塗布、乾燥した後にプレスすることによって形成することができる。
(集電体)
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、さらに好ましくは圧延法による圧延銅箔と、電解法による電解銅箔である。
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがあるためである。
(集電体と負極活物質層との厚さの比)
集電体と負極活物質層の厚さの比は特に制限されないが、「(非水系電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下がさらに好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上がさらに好ましく、1以上が特に好ましい。集電体と負極活物質層の厚さの比が大きすぎると、高電流密度充放電時に集電体がジュール熱による発熱を生じる傾向がある。また、集電体と負極活物質層の厚さの比が小さすぎると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する傾向がある。
(結着材)
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、ポリイミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
また、イソシアネート基と結合する官能基がバインダーの分子内にあると、イソシアネート化合物から誘導される皮膜成分の物理的強度が増して、サイクル特性がより改善される場合がある。好ましい官能基としては、アミノ基、ヒドロキシル基、カルボキシル基が挙げられる。こうしたバインダーはスラリー物性や塗工性に影響しない範囲で配合される。
負極活物質に対するバインダーの割合は、0.1質量%以上が好ましく、0.5質量%
以上がさらに好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対するバインダーの割合が大きすぎると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く傾向がある。また、バインダーの割合が小さすぎると、負極電極の強度低下を招く傾向がある。
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がさらに好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がさらに好ましい。
(スラリー形成溶媒)
スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒としては、水、アルコール等が挙げられ、有機系溶媒としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(増粘剤)
増粘剤は、通常、負極活物質層を作製する際のスラリーの粘度を調整するために使用される。増粘剤としては、特に制限されないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
さらに増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が少なすぎると、著しく塗布性が低下する傾向がある。また、増粘剤の割合が多すぎると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する傾向がある。
(電極密度)
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がさらに好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下がさらに好ましく、1.9g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密
度が大きすぎると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く傾向がある。また、密度が小さすぎると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する傾向がある。
(負極板の厚さ)
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に制限されないが、負極板から金属箔(集電体)厚さを差し引いた負極活物質層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上、また、通常300μm以下、好ましくは280μm以下、より好ましくは250μm以下が望ましい。
(負極板の表面被覆)
また、上記負極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
2.非水系電解液
2−1.電解質
<リチウム塩>
電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
例えば、LiPF、LiBF、LiClO、LiAlF、LiSbF、LiTaF、LiWF等の無機リチウム塩;
LiWOF等のタングステン酸リチウム類;
HCOLi、CHCOLi、CHFCOLi、CHFCOLi、CFCOLi、CFCHCOLi、CFCFCOLi、CFCFCFCOLi、CFCFCFCFCOLi等のカルボン酸リチウム塩類;
CHSOLi、CHFSOLi、CHFSOLi、CFSOLi、CFCFSOLi、CFCFCFSOLi、CFCFCFCFSOLi等のスルホン酸リチウム塩類;
LiN(FCO)、LiN(FCO)(FSO)、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CFSO)(CSO)等のリチウムイミド塩類;
LiC(FSO、LiC(CFSO、LiC(CSO等のリチウムメチド塩類;
その他、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBFCF、LiBF、LiBF、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩類;
リチウムビス(オキサラト)ボレート、リチウムジフルオロ(オキサラト)ボレート、リチウムトリス(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムテトラフルオロ(オキサラト)ホスフェート等の含ジカルボン酸錯体リチウム塩;等が挙げられる。
中でも、LiPF、LiBF、LiSbF、LiTaF、LiN(FSO、LiN(FSO)(CFSO)、LiN(CFSO、LiN(CSO、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO、LiC(CFSO、LiC(CSO、LiBFCF、LiBF、LiPF(CF、LiPF(C等が出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましい。
非水系電解液中のリチウム塩の濃度は、本発明の効果を損なわない限り、その含有量は特に制限されないが、電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、非水系電解液中のリチウム塩の総モル濃度は、通常0.3mol/L以上、好ましくは0.4mol/L以上、より好ましくは0.5mol/L以上であり、また、通常3mol/L以下、好ましくは2.5mol/L以下、より好ましくは2.0mol/L以下である。リチウム塩の総モル濃度が上記範囲にあることにより、低温特性、サイクル特性、高温特性等の効果が向上する。また、電解液の電気伝導率が十分となり、また、粘度上昇による電気伝導度の低下や、電池性能の低下を防ぐ。
また、上記リチウム塩は任意に組合せて使用してもよい。
2−2.溶媒
非水溶媒としては、飽和環状及び鎖状カーボネート、フッ素原子を少なくとも1つを有するカーボネート、環状及び鎖状カルボン酸エステル、エーテル化合物、スルホン系化合物等を使用することが可能である。また、これら非水溶媒は、任意に組み合わせて使用してもよい。
<飽和環状カーボネート>
飽和環状カーボネートとしては、炭素数2〜4のアルキレン基を有するものが挙げられる。具体的には、炭素数2〜4の飽和環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の配合量の下限は、非水溶媒100体積%中、通常5体積%以上、好ましくは10体積%以上、また、通常95体積%以下、好ましくは90体積%以下、より好ましくは85体積%以下である。飽和環状カーボネートの配合量が上記範囲にあることにより、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の負荷特性を良好な範囲としやすくなる。
<鎖状カーボネート>
鎖状カーボネートとしては、炭素数3〜7のものが好ましい。
具体的には、炭素数3〜7の鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボ
ネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート等が挙げられる。
中でも、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
鎖状カーボネートの配合量は、非水溶媒100体積%中、通常5体積%以上、好ましくは10体積%以上、より好ましくは15体積%以上、また、通常90体積%以下、好ましくは85体積%以下である。鎖状カーボネートの配合量が上記範囲にあることにより、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。また、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。
<フッ素原子を有するカーボネート>
フッ素原子を有するカーボネートとして、フッ素原子を有する飽和鎖状カーボネート(以下、フッ素化飽和鎖状カーボネートともいう)、及びフッ素原子を有する飽和環状カーボネート(以下、フッ素化飽和環状カーボネートともいう)のどちらも用いることができる。
フッ素化飽和鎖状カーボネートのフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化飽和鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。フッ素化飽和鎖状カーボネートとしては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体等が挙げられる。
フッ素化ジメチルカーボネート誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
フッ素化エチルメチルカーボネート誘導体としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
フッ素化ジエチルカーボネート誘導体としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2’−フルオロエチルカーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチル−2’−フルオロエチルカーボネート、2,2,2−トリフルオロエチル−2’,2’−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等が挙げられる。
フッ素化飽和鎖状カーボネートとしては、特に2,2,2−トリフルオロエチルメチルカーボネート、及びビス(2,2,2−トリフルオロエチル)カーボネートが好ましい。
また、フッ素化飽和鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
フッ素化飽和環状カーボネートとしては、炭素原子数2〜6のアルキレン基を有する飽和環状カーボネートの誘導体が挙げられ、例えばエチレンカーボネート誘導体である。エチレンカーボネート誘導体としては、例えば、エチレンカーボネート又はアルキル基(例えば、炭素原子数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられ、中でもフッ素原子が1〜8個のものが好ましい。
具体的には、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート等が挙げられる。
フッ素化飽和環状カーボネートとしては、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート及び4,
5−ジフルオロ−4,5−ジメチルエチレンカーボネートよりなる群から選ばれる少なくとも1種が特に好ましい。これらは高イオン伝導性を与え、かつ好適に界面保護被膜を形成する。
また、フッ素化飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
フッ素原子を少なくとも1つを有するカーボネートを用いる場合の配合量は、非水系電解液100質量%中、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常90質量%以下、好ましくは85質量%以下、より好ましくは80質量%以下である。
特にフッ素原子を少なくとも1つを有するカーボネートを溶媒的に用いる場合の配合量は、非水系電解液100質量%中、通常5質量%以上、好ましくは7質量%以上、より好ましくは10質量%以上であり、また、通常90質量%以下、好ましくは70質量%以下、より好ましくは50質量%以下である。上記範囲内にあることにより、電池を高電圧動作させた際に非水系電解液の副分解反応を抑制でき、電池耐久性を高めることができると共に、非水系電解液の電気伝導率の極端な低下を防ぐことができる。溶媒的に用いる場合は、フッ素原子を少なくとも1つを有するカーボネートの中でも、フッ素化飽和カーボネートであることが好ましい。
一方、フッ素原子を少なくとも1つを有するカーボネートを助剤的に用いる場合の配合量は、非水系電解液100質量%中、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常5質量%以下、好ましくは4質量%以下、より好ましくは3質量%以下である。上記範囲内にあることにより、電荷移動抵抗を過度に増加させずに耐久性を向上できるため、高電流密度での充放電耐久性を向上させることができる。
フッ素原子を少なくとも1つを有するカーボネートを2種以上併用する場合であっても、上記の範囲内で調整することが好ましい。
尚、上記フッ素原子を少なくとも1つ有するカーボネートを溶媒的および助剤的に用いる場合について記載したが、実際に用いる場合は溶媒あるいは助剤に明確な境界線は存在せず、任意の割合で非水系電解液を調製できるものとする。
<環状カルボン酸エステル>
環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3〜12のものが挙げられる。具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
環状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
環状カルボン酸エステルの配合量は、非水溶媒100体積%中、通常5体積%以上、好ましくは10体積%以上、また、通常50体積%以下、好ましくは40体積%以下である。上記範囲内にあることにより、非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。
<鎖状カルボン酸エステル>
鎖状カルボン酸エステルとしては、その構造式中の全炭素数が3〜7のものが挙げられる。具体的には、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチル、酪酸メチル、酪酸エチル、酪酸−n−プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸−n−プロピル、イソ酪酸イソプロピル等が挙げられる。
中でも、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が、粘度低下によるイオン伝導度の向上の点から好ましい。
鎖状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
鎖状カルボン酸エステルの配合量は、非水溶媒100体積%中、通常10体積%以上、好ましくは15体積%以上、また、通常60体積%以下、好ましくは50体積%以下である。上記範囲内にあることにより、非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、負極抵抗の増大を抑制し、非水系電解液電池の大電流放電特性、サイクル特性を良好な範囲としやすくなる。
<エーテル系化合物>
エーテル系化合物としては、一部の水素がフッ素にて置換されていてもよい炭素数3〜10の鎖状エーテル、及び炭素数3〜6の環状エーテルが好ましい。
炭素数3〜10の鎖状エーテルとしては、ジエチルエーテル、ジ(2−フルオロエチル)エーテル、ジ(2,2−ジフルオロエチル)エーテル、ジ(2,2,2−トリフルオロエチル)エーテル、エチル(2−フルオロエチル)エーテル、エチル(2,2,2−トリフルオロエチル)エーテル、エチル(1,1,2,2−テトラフルオロエチル)エーテル
、(2−フルオロエチル)(2,2,2−トリフルオロエチル)エーテル、(2−フルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、(2,2,2−トリフルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、エチル−n−プロピルエーテル、エチル(3−フルオロ−n−プロピル)エーテル、エチル(3,3,3−トリフルオロ−n−プロピル)エーテル、エチル(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、エチル(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2−フルオロエチル−n−プロピルエーテル、(2−フルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2−フルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2,2,2−トリフルオロエチル−n−プロピルエーテル、(2,2,2−トリフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、1,1,2,2−テトラフルオロエチル−n−プロピルエーテル、(1,1,2,2−テトラフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−プロピルエーテル、(n−プロピル)(3−フルオロ−n−プロピル)エーテル、(n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3−フルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3,3,3−トリフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2−フルオロエトキシ)メタン、メトキシ(2,2,2−トリフルオロエトキシ)メタンメトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2−フルオロエトキシ)メタン、エトキシ(2,2,2−トリフルオロエトキシ)メタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(2−フルオロエトキシ)メタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタンジ(2,2,2−トリフルオロエトキシ)メタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(1,1,2,2−テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2−フルオロエトキシ)エタン、メトキシ(2,2,2−トリフルオロエトキシ)エタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2−フルオロエトキシ)エタン、エトキシ(2,2,2−トリフルオロエトキシ)エタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2−フルオロエトキシ)エタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、(2−フルオロエトキシ)(1,1,
2,2−テトラフルオロエトキシ)エタン、ジ(2,2,2−トリフルオロエトキシ)エタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(1,1,2,2−テトラフルオロエトキシ)エタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
炭素数3〜6の環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチルテトラヒドロフラン、1,3−ジオキサン、2−メチル−1,3−ジオキサン、4−メチル−1,3−ジオキサン、1,4−ジオキサン等、及びこれらのフッ素化化合物が挙げられる。
中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
エーテル系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
エーテル系化合物の配合量は、非水溶媒100体積%中、通常5体積%以上、好ましくは10体積%以上、より好ましくは15体積%以上、また、通常70体積%以下、好ましくは60体積%以下、より好ましくは50体積%以下である。上記範囲内にあることにより、鎖状エーテルのリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすく、負極活物質が炭素質材料の場合、鎖状エーテルがリチウムイオンと共に共挿入されて容量が低下するといった事態を回避しやすい。
<スルホン系化合物>
スルホン系化合物としては、炭素数3〜6の環状スルホン、及び炭素数2〜6の鎖状スルホンが好ましい。1分子中のスルホニル基の数は、1又は2であることが好ましい。 環状スルホンとしては、モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めてスルホラン類ともいう)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
中でも、2−メチルスルホラン、3−メチルスルホラン、2−フルオロスルホラン、3−フルオロスルホラン、2,2−ジフルオロスルホラン、2,3−ジフルオロスルホラン、2,4−ジフルオロスルホラン、2,5−ジフルオロスルホラン、3,4−ジフルオロスルホラン、2−フルオロ−3−メチルスルホラン、2−フルオロ−2−メチルスルホラン、3−フルオロ−3−メチルスルホラン、3−フルオロ−2−メチルスルホラン、4−フルオロ−3−メチルスルホラン、4−フルオロ−2−メチルスルホラン、5−フルオロ−3−メチルスルホラン、5−フルオロ−2−メチルスルホラン、2−フルオロメチルスルホラン、3−フルオロメチルスルホラン、2−ジフルオロメチルスルホラン、3−ジフルオロメチルスルホラン、2−トリフルオロメチルスルホラン、3−トリフルオロメチルスルホラン、2−フルオロ−3−(トリフルオロメチル)スルホラン、3−フルオロ−3−(トリフルオロメチル)スルホラン、4−フルオロ−3−(トリフルオロメチル)スル
ホラン、5−フルオロ−3−(トリフルオロメチル)スルホラン等が、イオン伝導度が高く入出力が高い点で好ましい。
また、鎖状スルホンとしては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、n−プロピルエチルスルホン、ジ−n−プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n−ブチルメチルスルホン、n−ブチルエチルスルホン、t−ブチルメチルスルホン、t−ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル−n−プロピルスルホン、ジフルオロメチル−n−プロピルスルホン、トリフルオロメチル−n−プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−プロピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル−n−プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、ペンタフルオロエチル−n−ブチルスルホン、ペンタフルオロエチル−t−ブチルスルホン等が挙げられる。
中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、イソプロピルメチルスルホン、n−ブチルメチルスルホン、t−ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル−n−プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、トリフルオロメチル−n−ブチルスルホン、トリフルオロメチル−t−ブチルスルホン等がイオン伝導度が高く入出力が高い点で好ましい。
スルホン系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
スルホン系化合物の配合量は、非水溶媒100体積%中、通常5体積%以上、好ましくは10体積%以上、より好ましくは15体積%以上であり、また、通常40体積%以下、好ましくは35体積%以下、より好ましくは30体積%以下である。上記範囲内にあることにより、サイクル特性や保存特性等の耐久性の向上効果が得られやすく、また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避することができ、非水系電解液電池の充放電を高電流密度で行う場合に、充放電容量維持率が低下するといった事態を回避しやすい。
<イソシアネート基を有する化合物>
本発明におけるイソシアネート基を有する化合物(以下適宜、「イソシアネート化合物」という)は、分子内にイソシアネート基を少なくとも1つ以上有する化合物であれば特に制限はない。
イソシアネート化合物としては、下記一般式(1)で表されるものが好ましい。
Figure 0006031856
上記式中、Aは、水素原子、ハロゲン原子、ビニル基、イソシアネート基、又はC 〜 C 2 0 の脂肪族炭化水素基(ヘテロ原子を有していてもよい)又はC 〜C 2 0 の芳香族炭化水素基( ヘテロ原子を有していてもよい)を表す。B は、酸素原子 、S O 、OSO2、SO3、OCO、COO、又は、C 〜 C 2 0 の脂肪族炭化水素基( ヘテロ原子を有していてもよい)、又はC 〜C 2 0の芳香族炭化水素基
( ヘテロ原子を有していてもよい)を表す。
一例としては次のような化合物などが挙げられる。
ジイソシアナトスルホン、ジイソシアナトエーテル、トリフルオロメタンイソシアネート、ペンタフルオロエタンイソシアネート、トリフルオロメタンスルホニルイソシアネート、ペンタフルオロエタンスルホニルイソシアネート、ベンゼンスルホニルイソシアネート、p-トルエンスルホニルイソシアネート、4−フルオロベンゼンスルホニルイソシアネート、1,3−ジイソシアナトプロパン、1,3−ジイソシアナトプロペン、1,3−ジイソシアナト−2−フルオロプロパン、1,4−ジイソシアナトブタン、1,4−ジイソシアナト−2−ブテン、1,4−ジイソシアナト−2−フルオロブタン、1,4−ジイソシアナト−2,3−ジフルオロブタン、1,5−ジイソシアナトペンタン、1,5−ジイソシアナト−2−ペンテン、1,5−ジイソシアナト−2−メチルペンタン、1,6−ジイ
ソシアナトヘキサン、1,6−ジイソシアナト−2−ヘキセン、1,6−ジイソシアナト−3−ヘキセン、1,6−ジイソシアナト−3−フルオロヘキサン、1,6−ジイソシアナト−3,4−ジフルオロヘキサン、2,4,4−トリメチルヘキサメチレンジイソシアナート、2,2,4−トリメチルヘキサメチレンジイソシアナート、1,7−ジイソシアナトヘプタン、1,8−ジイソシアナトオクタン、1,9−ジイソシアナトノナン、1,10−ジイソシアナトデカン、1,12−ジイソシアナトデカン、1−イソシアナトエチレン、イソシアナトメタン、1−イソシアナトエタン、1−イソシアナト−2−メトキシエタン、3−イソシアナト−1−プロペン、イソシアナトシクロプロパン、2−イソシアナトプロパン、1−イソシアナトプロパン、1−イソシアナト−3−メトキシプロパン、1−イソシアナト−3−エトキシプロパン、2−イソシアナト−2−メチルプロパン、1−イソシアナトブタン、2−イソシアナトブタン、1−イソシアナト−4−メトキシブタン、1−イソシアナト−4−エトキシブタン、メチルイソシナトホルメート、イソアナトシクロペンタン、1−イソシアナトペンタン、1−イソシアナト−5−メトキシペンタン、1−イソシアナト−5−エトキシペンタン、2−(イソシアナトメチル)フラン、イソシアナトシクロヘキサン、1−イソシアナトヘキサン、1−イソシアナト−6−メトキシヘキサン、1−イソシアナト−6−エトキシヘキサン、エチルイソシアナトアセテート、イソシアナトシクロペンタン、イソシアナトメチル( シクロヘキサン)、1−イソシア
ナトヘプタン、エチル3−イソシアナトプロパノエート、イソシアナトシクロオクタン、2−イソシアナトエチル−2−メチルアクリレート、1−イソシアナトオクタン、2 −
イソシアナト− 2,4 ,4 − トリメチルペンタン、ブチルイソシアナトアセテート、エチル4−イソシアナトブタノエート、1−イソシアナトノナン、1−イソシアナトアダマンタン、1−イソシアナトデカン、エチル6−イソシアナトヘキサノエート、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、ジシクロヘキシルメタン−1,1’−ジイソシアネート、ジシクロヘキシ
ルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、イソホロンジイソシア
ネート、1,6,11−トリイソシアナトウンデカン、4−イソシアナトメチル−1,8
−オクタメチレンジイソシアネート、1,3,5−トリイソシアネートメチルベンゼン、ビシクロ[2.2.1]ヘプタン−2,5−ジイルビス(メチル=イソシアネート)、ビシクロ[2.2.1]ヘプタン−2,6−ジイルビス(メチル=イソシアネート)、1,3,5−トリス(6−イソシアナトヘキサ−1−イル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、4−(イソシアナトメチル)オクタメチレン=ジイソシアネート、1−イソシアナトウンデカン、ジイソシアナトベンゼン、トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、エチルジイソシアナトベンゼン、トリメチルジイソシアナトベンゼン、ジイソシアナトナフタレン、ジイソシアナトビフェニル、ジフェニルメタンジイソシアネート、2,2−ビス(イソシアナトフェニル)ヘキサフルオロプロパン、メトキシカルボニルイソシアネート、メトキシスルホニルイソシアネート、アリルイソシアネート、ビニルイソシアネート。
中でも、1,4−ジイソシアナトブタン、1,5−ジイソシアナトペンタン、1,6−ジイソシアナトヘキサン、1,7−ジイソシアナトヘプタン、1,8−ジイソシアナトオクタン、1,9−ジイソシアナトノナン、1,10−ジイソシアナトデカン、トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−1,1’−ジイソシ
アネート、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメ
タン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、イソホロンジイソシアネート、1,6,11−トリイソシアナトウンデカン、4−イソシアナトメチル−1,8−オクタメチレンジイソシアネート、1,3,5−トリイソシアネートメチルベンゼン、ビシクロ[2.2.1]ヘプタン−2,5−ジイルビス(メチル=イソシアネート)、ビシクロ[2.2.1]ヘプタン−2,6−ジイルビス(メチル=イソシアネート)、1,3,5−トリス(6−イソシアナトヘキサ−1−イル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、2,4,4−トリメチルヘキサメチレンジイソシアナート、2,2,4−トリメチルヘキサメチレンジイソシアナート、4−(イソシアナトメチル)オクタメチレン=ジイソシアネート、メトキシカルボニルイソシアネート、メトキシスルホニルイソシアネートが好ましい。
これらのうち、1,6−ジイソシアナトヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、2,4,4−トリメチルヘキサメチレンジイソシアナート、2,2,4−トリメチルヘキサメチレンジイソシアナート、メトキシカルボニルイソシアネート、メトキシスルホニルイソシアネートが特に好ましい。
上記化合物が好ましい理由として、原料が工業的な入手し易いものであり、電解液の製造コストが低く抑えられる点や、イソシアネート化合物の中でも非水系電解液中に溶解し易い点や電極表面での反応性が最適である点が挙げられる。
また、下記の式(2)で示される構造を有するジイソシアネート化合物は、充放電に伴う電極の膨張・収縮の物理的変形に対する耐性を効果的に高めることができるため好ましい。これは鎖状のメチレン基が皮膜及び/又は電極構造中に取り込まれることで、そうした構造体に適度な弾性を付与する為である。従って、この目的においてはメチレン基の長さが重要であって、式中、xは4〜12が好ましく、さらに好ましくは4〜8である。具
体的には、1,4−ジイソシアナトブタン、1,5−ジイソシアナトペンタン、1,6−ジイソシアナトヘキサン、1,7−ジイソシアナトヘプタン、1,8−ジイソシアナトオクタン等が挙げられる。
Figure 0006031856
また、本発明に用いるイソシアネート化合物は、式(2)で示されるジイソシアネート化合物を主原料にして製造されるポリイソシアネートを用いても良い。製造上の容易性から、ウレトジオン、オキサジアジトリオン、ビウレット、ウレタン、アロファネート、イソシアヌレートから選ばれる一種以上の骨格を有するポリイソシアネートが好ましく用いられる。各々の骨格は分子内に2つ以上含まれていても良い。
ポリイソシアネートの数平均分子量は、通常200以上、好ましくは300以上、また、通常10000以下、好ましくは5000以下、より好ましくは3000以下である。数平均分子量が上記範囲にあることにより、電解液への溶解が容易である傾向にある。
平均官能基数は2以上、好ましくは3以上、また、通常12以下、好ましくは10以下、より好ましくは8以下である。平均官能基数が上記範囲にあることにより、皮膜の安定性を高めることができ、また、官能基の増加による正極の電荷移動抵抗の増加が容認できる。
本発明で用いるイソシアネート化合物は、ブロック剤でブロックして保存安定性を高めた、所謂ブロックイソシアネートも含まれる。ブロック剤には、アルコール類、フェノール類、有機アミン類、オキシム類、ラクタム類を挙げることができ、具体的には、n−ブタノール、フェノール、トリブチルアミン、ジエチルエタノールアミン、メチルエチルケトキシム、ε−カプロラクタム等を挙げることができる。
イソシアネート化合物に基づく反応を促進し、より高い効果を得る目的で、ジブチルスズジラウレート等のような金属触媒や、1,8−ジアザビシクロ[5.4.0]ウンデセン−7のようなアミン系触媒等を併用することも好ましい。
本発明のイソシアネート化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
本発明の非水系電解液の組成中におけるイソシアネート化合物の濃度は、本発明の効果を著しく損なわない限り任意であるが、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは1.5質量%以下の範囲である。上記範囲であれば、電池内の化学的及び物理的安定性を十分に高めることができるとともに、皮膜形成による過度な抵抗増加を抑制することができる。
なお、イソシアネート化合物は市販のものを用いても良く、また、製造する場合にはその製造方法は限定されず、公知の方法により製造したものを用いることができる。
<1−4.助剤>
本発明の非水系電解液には、上述の電解質、非水溶媒、イソシアネート化合物以外に、目的に応じて適宜助剤を配合しても良い。助剤としては、以下に示される不飽和結合を有する環状カーボネート、フッ素原子を有する不飽和環状カーボネート、過充電防止剤、その他の助剤、等が挙げられる。
(不飽和結合を有する環状カーボネート)
不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と略記する場合がある)も、負極表面に皮膜を形成するため、電池の寿命を向上させる効果を有する。
前記不飽和環状カーボネートとしては、炭素−炭素二重結合及び/又は炭素−炭素三重結合を有する環状カーボネートであれば、特に制限はなく、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。
不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環や炭素−炭素二重結合又は炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類、エチニルカーボネート類、プロパルギルカーボネート等が挙げられる。
ビニレンカーボネート類としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート等が挙げられる。
芳香環や炭素−炭素二重結合又は炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、4−フェニル−5−ビニルエチレンカーボネート、4−アリル−5−フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート等が挙げられる。
中でも、特に本発明の化合物と併用するのに好ましい不飽和環状カーボネートとしては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、通常50以上、好ましくは80以上、また、通常250以下、好ましくは150以下である。上記範囲内にあることにより、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現しやすい。不飽和環状カーボネートの分子量は、不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。
不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併有してもよい。また、不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。不飽和環状カーボネートの配合量は、非水系電解液100質量%中、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常5質量%以下、好ましくは4質量%以下、より好ましくは3質量%以下である。上記範囲であれば、非水系電解液二次電池のサイクル特性の向上を図ることができ、さらに高温保存特性の低下に伴う放電容量維持率の低下を抑制できる一方、過度な皮膜形成による抵抗の増加を抑制することができる。
(フッ素化不飽和環状カーボネート)
フッ素化環状カーボネートとして、不飽和結合とフッ素原子とを有する環状カーボネート(以下、「フッ素化不飽和環状カーボネート」と略記する場合がある)を用いることも好ましい。フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上があれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1個又は
2個のものが最も好ましい。
フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート等が挙げられる。
芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。
中でも、特に本発明の化合物と併用するのに好ましいフッ素化不飽和環状カーボネートとしては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、250以下である。上記範囲であれば、非水系電解液に対するフッ素化環状カーボネートの溶解性を確保しやすく、本発明の効果が発現しやすい。フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。
フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。また、フッ素化不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。フッ素化不飽和環状カーボネートの配合量は、通常、非水系電解液100質量%中、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常5質量%以下、好ましくは4質量%以下、より好ましくは3質量%以下である。上記範囲であれば、非水系電解液二次電池のサイクル特性の向上を図ることができ、さらに高温保
存特性の低下に伴う放電容量維持率の低下を抑制できる一方、過度な皮膜形成による抵抗増加を抑制することができる。
(過充電防止剤)
本発明の非水系電解液において、非水系電解液二次電池が過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
過充電防止剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。過充電防止剤は、非水系電解液100質量%中、通常0.1質量%以上であり、また、通常5質量%以下である。また、好ましくは0.2質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.5質量%以上であり、また、好ましくは3質量%以下、より好ましくは2質量%以下である。上記範囲でれば、過充電防止効果を十分に図ることができ、一方、高温保存特性等の電池特性を確保することができる。
<その他の助剤>
本発明の非水系電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、リチウムビス(フルオロスルホニル)イミド、リチウムビス(トリフルオロメタンスルホニル)イミド、フルオロスルホン酸リチウム、トリフルオロメタンスルホン酸リチウム、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート、リチウムトリス(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムテトラフルオロオキサラトホスフェートなどのリチウム塩が挙げられる。これらの助剤を添加することにより、サイクル特性や低温放電特性を向上させることができる。
また、高温保存後の容量維持特性やサイクル特性を向上させることができる助剤として、エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、
3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1,4−ブタンスルトン、1−ブテン−1,4−スルトン、3−ブテン−1,4−スルトン、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等の含窒素化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物等が挙げられる。これらの助剤は1種を単独で用いても、2種以上を併用してもよい。
その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。その他の助剤は、非水系電解液100質量%中、通常0.01質量%以上であり、また、通常5質量%以下である。その他の助剤の配合量は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、好ましくは3質量%以下、より好ましくは1質量%以下である。上記範囲であれば、助剤の効果を十分に発揮しつつ、電池への悪影響を抑制することができる。
以上に記載してきた非水系電解液は、本発明に記載の非水系電解液電池の内部に存在するものも含まれる。具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調製し、下記に記載する方法にて別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。
3.電池構成
本発明の非水系電解液電池は、非水系電解液電池の中でも二次電池用、例えばリチウム二次電池用の電解液として用いるのに好適である。以下、本発明の非水系電解液を用いた非水系電解液電池について説明する。
本発明の非水系電解液二次電池は、公知の構造を採ることができ、典型的には、イオン(例えば、リチウムイオン)を吸蔵・放出可能な負極及び正極と、上記の本発明の非水系電解液とを備える。
4.正極
<正極活物質>
以下に正極に使用される正極活物質について述べる。
(組成)
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO等のリチウム・コバルト複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化
物、LiNiO2等のリチウム・ニッケル複合酸化物、等が挙げられる。また、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられ、具体例としては、リチウム・ニッケル・コバルト・アルミ複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物等が挙げられる。これらの中でも、電池特性が良好であるため、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物が好ましい。
置換されたものの具体例としては、例えば、Li1+aNi0.5Mn0.5、Li1+aNi0.8Co0.2、Li1+aNi0.85Co0.10Al0.05、Li1+aNi0.33Co0.33Mn0.33、Li1+aNi0.45Mn0.45Co0.1、Li1+aNi0.475Mn0.475Co0.05、Li1+aMn1.8Al0.2、Li1+aMn、Li1+aMn1.5Ni0.5、xLiMnO・(1−x)Li1+aMO(M=遷移金属であり、例えば、Li、Ni、Mn及びCoからなる群より選ばれる金属など)等が挙げられる(a;0<a≦3.0)。これらの置換金属元素の組成式中での比率は、それを用いた電池の電池特性や材料のコストなどの関係により適宜調節される。
リチウム含有遷移金属リン酸化合物は、LiMPO(M=周期表の第4周期の4族〜11族の遷移金属からなる群より選ばれた一種の元素、xは0<x<1.2)で表すことができ、上記遷移金属(M)としては、V, Ti, Cr, Mg, Zn, Ca, Cd, Sr, Ba, Co, Ni,
Fe, MnおよびCuからなる群より選ばれる少なくとも一種の元素であることが好ましく、Co,Ni,Fe,Mnからなる群より選ばれる少なくとも一種の元素であることがより好ましい
。例えば、LiFePO、LiFe(PO4)、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、LiMnPO等のリン酸マンガン類、LiNiPO等のリン酸ニッケル類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
これらの中でも、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類が、高温・充電状態での金属溶出が起こりにくく、また安価であるために好適に用いられる。
なお、上述の「LiMPOを基本組成とする」とは、その組成式で表される組成のものだけでなく、結晶構造におけるFe等のサイトの一部を他の元素で置換したものも含むことを意味する。さらに、化学量論組成のものだけでなく、一部の元素が欠損等した非化学量論組成のものも含むことを意味する。置換する他の元素はAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の元素であることが好ましい。上記他元素置換を
行う場合は、0.1mol%以上5mol%以下が好ましく、さらに好ましくは0.2mol%以上2.5mol%以下である。
上記正極活物質は、単独で用いてもよく、2種以上を併用してもよい。
また、本発明のリチウム遷移金属系化合物粉体は、異元素が導入されてもよい。異元素としては、B、Na、Mg、Al、K、Ca、Ti、V、Cr、Fe、Cu、Zn、Sr、Y、Zr、Nb、Ru、Rh、Pd、Ag、In、Sn、Sb、Te、Ba、Ta、Mo、W、Re、Os、Ir、Pt、Au、Pb、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Bi、N、F、Cl、Br、Iの何れか1種以上の中から選択される。これらの異元素は、リチウム遷移金属系化合物の結晶構造内に取り込まれていてもよく、あるいは、リチウム遷移金属系化合物の結晶構造内に
取り込まれず、その粒子表面や結晶粒界などに単体もしくは化合物として偏在していてもよい。
(表面被覆)
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により該正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。
表面付着物質の量としては、該正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合があるため、本組成範囲が好ましい。
本発明においては、正極活物質の表面に、これとは異なる組成の物質が付着したものをも「正極活物質」という。
(形状)
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐため好ましい。また、板状等軸配向性の粒子であるよりも球状ないし楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作成する際の導電材との混合においても、均一に混合されやすいため好ましい。
(メジアン径d50
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは1.0μm以上、最も好ましくは2μm以上であり、上限は、好ましくは20μm以下、より好ましくは18μm以下、さらに好ましくは16μm以下、最も好ましくは15μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成、即ち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ該正極活物質を2種類以上混合することで、正極作成時の充填性をさらに向上させることができる。
なお、本発明では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA−920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
(平均一次粒子径)
一次粒子が凝集して二次粒子を形成している場合には、該正極活物質の平均一次粒子径としては、好ましくは0.03μm以上、より好ましくは0.05μm以上、さらに好ましくは0.08μm以上であり、特に好ましくは0.1μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、さらに好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
なお、本発明では、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
<正極の構成と作製法>
以下に、正極の構成について述べる。本発明において、正極は、正極活物質と結着材とを含有する正極活物質層を、集電体上に形成して作製することができる。正極活物質を用いる正極の製造は、常法により行うことができる。即ち、正極活物質と結着材、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成されることにより正極を得ることができる。
正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは95質量%以下、より好ましくは93質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、下限として好ましくは1.5g/cm3以上、より好ましくは2g/cm3、さらに好ましくは2.2g/cm3以上であり、上限としては、好ましくは4.0g/cm3以下、より好ましくは3.8g/cm3以下、さらに好ましくは3.6g/cm3以下の範囲である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
(導電材)
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で
併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また上限は、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
(結着材)
正極活物質層の製造に用いる結着材としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層中の結着材の割合は、通常0.1質量%以上、好ましくは1質量%以上、さらに好ましくは3質量%以上であり、上限は、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、最も好ましくは10質量%以下である。結着材の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
(増粘剤)
増粘剤は、通常、正極活物質層の製造に用いるスラリーの粘度を調製するために使用することができる。特に水系媒体を用いる場合、増粘剤と、スチレン−ブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。さらに増粘剤を添加する場合には、活物質に対する増粘剤の割合は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、また、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
(集電体)
正極集電体の材質としては特に制限されず、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また上限は、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電子接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
(正極板の厚さ)
正極板の厚さは特に限定されないが、高容量かつ高出力の観点から、正極板から金属箔(集電体)厚さを差し引いた正極活物質層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、上限としては、好ましくは500μm以下、より好ましくは450μm以下である。
(正極板の表面被覆)
また、上記正極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
5.セパレータ
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。
さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%
以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
セパレータのガーレ値はフィルム厚さ方向の空気の通り抜け難さを表し、100mlの空気が該フィルムを通過するのに必要な秒数で表現するため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚さ方向の連通性が良いことを意味し、その数値が大きい方がフィルムの厚さ方向の連通性が悪いことを意味する。連通性とは、フィルム厚さ方向の孔のつながり度合いである。本発明のセパレータのガーレ値が低ければ、様々な用途に使用することが出来る。例えば非水系リチウム二次電池のセパレータとして使用した場合、ガーレ値が低いということは、リチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。セパレータのガーレ値は、任意ではあるが、好ましくは10〜1000秒/100mlであり、より好ましくは15〜800秒/100mlであり、更に好ましくは20〜500秒/100mlである。ガーレ値が1000秒/100ml以下であれば、実質的には電気抵抗が低く、セパレータとしては好ましい。
6.電池設計
<電極群>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。
<外装ケース>
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合
金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
<保護素子>
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
<外装体>
本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体は、特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン等が用いられる。
また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
<実施例1>
[負極]
以下の物性を有する炭素質材料を負極活物質として用いた。具体的には、上記の方法にて測定した負極活物質の格子面(002面)のd値(層間距離)が0.336nm、体積基準平均粒径が11.6μm、BET比表面積が3.4m/g、タップ密度が0.99g・cm−3、ラマンR値が0.33、O/C値が0.91である天然黒鉛を用いた。
前記負極活物質98質量部に、増粘剤及びバインダーとして、それぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100質量部及びスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ18μmの銅箔に塗布して乾燥し、プレス機で電極密度1.7g/cmに圧延し、切り出したものを負極として用いた。
[正極]
正極活物質としてニッケルマンガンコバルト酸リチウム(LiNi1/3Mn1/3Co1/3)90質量部を用い、カーボンブラック7質量部とポリフッ化ビニリデン3
質量部を混合し、N−メチル−2−ピロリドンを加えスラリー化し、これを厚さ15μmのアルミニウム箔の両面に均一に塗布、乾燥した後、正極活物質層の密度が2.6g・cm−3になるようにプレスして正極とした。
[電解液]
乾燥アルゴン雰囲気下、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合物(容量比3:3:4)に、十分に乾燥したLiPF6を非水電解液全量で1モル/Lとなるように溶解させた(この電解液を「基準電解液」と称する場合がある)。基準電解液に、1,6−ジイソシアナトヘキサン(HDI)を0.5質量%となるように加え、非水系電解液を調製した。
[リチウム二次電池]
上記の正極、負極、及びポリエチレン製セパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層した。こうして得られた電池要素を筒状のアルミニウムラミネートフィルムで包み込み、電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。更に、電極間の密着性を高めるために、ガラス板でシート状電池を挟んで加圧した。
[電池の評価]
[慣らし運転]
25℃の恒温槽中、シート状の非水系電解液二次電池を0.2Cで4.1Vまで定電流−定電圧充電した後、0.2Cで3.0Vまで放電した。これを5サイクル行って電池を安定させた。なお、1Cとは電池の全容量を1時間で放電させる場合の電流値のことである。
[サイクル特性の評価]
慣らし運転が終了した電池を60℃において2Cに相当する定電流で充電後、2Cの定電流で放電する過程を1サイクルとして、750サイクル実施した。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、2Cとはその2倍の電流値を、また0.2Cとはその1/5の電流値を表す。(750サイクル目の放電容量)÷(1サイクル目の放電容量)×100の計算式から、容量維持率を求めた。
[低温放電特性の評価]
初期容量の50%に相当する電気量だけ充電させた電池に対して、−30℃の環境下で0.3C、0.5C、1.0C、1.5C、2.0C、および2.5Cで各々10秒間放電させ、その2秒目の電圧を測定した。このようにして得られた電流−電圧曲線において、3Vになるときの電流値を算出し、この値を低温放電特性(出力)とした。{(慣らし
運転後の低温放電特性)−(1000サイクル後の低温放電特性)}÷(慣らし運転後の
低温放電特性)×100の計算式から、低温放電特性の変化率を求めた。
<実施例2>
以下の物性を有する炭素質材料を負極活物質として用いた。具体的には、負極活物質の格子面(002面)のd値(層間距離)が0.336nm、体積基準平均粒径が9.8μm、BET比表面積が4.2m/g、タップ密度が1.00g・cm−3、ラマンR値が0.39、O/C値が1.02である天然黒鉛を用いた。負極活物質を変えた以外は、実施例1と同じ正極、電解液を用い電池を組み立て、同様に容量維持率のみを求めた。
<実施例3>
以下の物性を有する炭素質材料を負極活物質として用いた。ここで、負極活物質は窒素雰囲気下で1000℃焼成した後に過酸化水素水による酸化処理を行った。具体的な物性値は
、負極活物質の格子面(002面)のd値(層間距離)が0.336nm、体積基準平均粒径が9.7μm、BET比表面積が3.7m/g、タップ密度が1.00g・cm−3、ラマンR値が0.51、O/C値が1.50である天然黒鉛を用いた。負極活物質を変えた以外は、実施例1と同じ正極、電解液を用い電池を組み立て、同様に容量維持率を求めた。
<実施例4>
以下の物性を有する炭素質材料を負極活物質として用いた。ここで、負極活物質は空気中でメカノケミカル処理を行った。具体的な物性値は、負極活物質の格子面(002面)のd値(層間距離)が0.336nm、体積基準平均粒径が9.7μm、BET比表面積が4.4m/g、タップ密度が0.94g・cm−3、ラマンR値が0.39、O/C値が4.07である天然黒鉛を用いた。負極活物質を変えた以外は、実施例1と同じ正極、電解液を用い電池を組み立て、同様に容量維持率を求めた。
<実施例5>
以下の物性を有する炭素質材料を負極活物質として用いた。ここで、負極活物質は空気中でメカノケミカル処理を行った。具体的な物性値は、負極活物質の格子面(002面)のd値(層間距離)が0.336nm、体積基準平均粒径が9.7μm、BET比表面積が4.5m/g、タップ密度が0.91g・cm−3、ラマンR値が0.50、O/C値が6.2である天然黒鉛を用いた。負極活物質を変えた以外は、実施例1と同じ正極、電解液を用い電池を組み立て、同様に容量維持率を求めた。
<比較例1>
負極活物質として、実施例1と同じ活物質を水素存在下で焼成した材料を用いた。具体的な物性値は負極活物質の格子面(002面)のd値(層間距離)が0.336nm、体積基準平均粒径が11.6μm、BET比表面積が3.4m/g、タップ密度が0.99g・cm−3、ラマンR値が0.28、O/C値が0.41である。負極活物質を変えた以外は、実施例1と同じ正極、電解液を用い電池を組み立て、同様に容量維持率を求めた。
<比較例2>
負極活物質として、実施例5と同じ活物質を窒素雰囲気下で1000℃焼成した材料を用いた。具体的な物性値は負極活物質の格子面(002面)のd値(層間距離)が0.336nm、体積基準平均粒径が9.7μm、BET比表面積が4.5m/g、タップ密度が0.91g・cm−3、ラマンR値が0.46、O/C値が0.59である。負極活物質を変えた以外は、実施例1と同じ正極、電解液を用い電池を組み立て、同様に容量維持率を求めた。
<比較例3>
電解液を基準電解液に変えた以外は、比較例2と同じ負極、正極を用い電池を組み立て、同様に容量維持率を求めた。
<比較例4>
電解液を基準電解液に変えた以外は、実施例1と同じ負極、正極を用い電池を組み立て、同様に容量維持率を求めた。
<比較例5>
電解液を基準電解液に変えた以外は、実施例2と同じ負極、正極を用い電池を組み立て、同様に容量維持率を求めた。
<比較例6>
電解液を基準電解液に変えた以外は、実施例5と同じ負極、正極を用い電池を組み立て
、同様に容量維持率を求めた。
実施例2、実施例5、比較例2、比較例3、比較例5と比較例6の電池についてはサイクル試験を1000サイクルまで継続し、低温放電特性の変化率を求めた。
Figure 0006031856
表1から明らかなように、O/C値が本発明の範囲内である負極と本発明のイソシアネート化合物を含有する非水系電解液を組み合わせた場合は(実施例1〜5)、O/C値が本発明の範囲外である負極と本発明のイソシアネート化合物を含有する非水系電解液を組み合わせた場合(比較例1〜2)及び非水系電解液に本発明のイソシアネート化合物を含有しない場合(比較例3〜6)と比較してサイクル容量維持に優れることが分かる。
また、サイクル維持率に及ぼす効果の程度は、O/C値が0.8付近をしきい値として顕著になり、さらにO/C値が増加するに従ってサイクル維持率が増加する傾向があるが、その増加の程度は非水電解液中にイソシアネート化合物が含まれる場合の方がより大きい。すなわち、O/C値が高いほど本発明の化合物の効能が高まることを示している。一般に電池は繰り返し使用に対して性能が安定していることが望ましいが、本発明によればサイクル試験に伴う低温放電特性の変化も大幅に抑制可能である(実施例2、5と比較例5、6の比較)。上記と同じように、非水系電解液中にイソシアネート化合物が含まれる場合において、O/C値に依存して顕著にその効果が大きくなる傾向がある。
このように優れた電池耐久性を発揮する理由は、イソシアネート化合物による溶媒の還元分解を効果的に抑制する良質な皮膜の形成と、その皮膜の一部が負極活物質表面の酸素官能基との間の強い相互作用によって強固に結着するためと推測される。

Claims (7)

  1. リチウム塩とこれを溶解する非水系溶媒を含有してなる非水系電解液と、リチウムイオンを吸蔵放出可能な負極、並びに正極を備えた非水系電解液二次電池であって、前記負極はX線光電子分光法から求められる表面含酸素率(O/C)が0.8atom%以上である炭素質材料からなる負極活物質を含み、且つ、前記非水系電解液がイソシアネート基を有する化合物を非水溶媒全体に対して0.01質量%以上5質量%以下含有する含有していることを特徴とする非水系電解液二次電池。
  2. 前記イソシアネート基を有する化合物の少なくとも一部が、一般式(1)で表される化合物であることを特徴とする、請求項1に記載の非水系電解液二次電池。
    Figure 0006031856
    (式中、Aは、水素原子、ハロゲン原子、ビニル基、イソシアネート基、又はC〜C20の脂肪族炭化水素基(ヘテロ原子を有していてもよい)又はC〜C20の芳香族炭化水素基(ヘテロ原子を有していてもよい)を表す。Bは、酸素原子、SO、OSO 、SO 、OCO、COO、又は、C〜C20の脂肪族炭化水素基(ヘテロ原子を有していてもよい)、又はC〜C20の芳香族炭化水素基(ヘテロ原子を有していてもよい)を表す。)
  3. 前記一般式(1)で表される化合物の少なくとも一部が、一般式(2)式で表される化合物であることを特徴とする、請求項1または2に記載の非水系電解液二次電池。
    Figure 0006031856
    (式中、x は4〜12である)
  4. 前記イソシアネート基を有する化合物の少なくとも一部が、平均官能基数が2以上、かつ数平均分子量が300〜5000のポリイソシアネートを含むことを特徴とする請求項1〜3のいずれか1項に記載の非水系電解液二次電池。
  5. 前記X線光電子分光法から求められる表面含酸素率(O/C)が1.0atom%以上であることを特徴とする、請求項1〜のいずれか1項に記載の非水系電解液二次電池。
  6. 前記負極は、アルゴンイオンレーザーラマンスペクトル法における1580cm−1のピーク強度に対する1360cm−1のピーク強度の比として定義されるラマンR値が0.10以上である炭素質材料を少なくとも1種類以上含有する負極活物質を含むことを特徴とする、請求項1〜のいずれか1項に記載の非水系電解液二次電池。
  7. 前記炭素質材料の表面酸素を酸素雰囲気下でメカノケミカル処理する方法によって付与することを特徴とする、請求項1〜のいずれか1項に記載の非水系電解液二次電池の製造方法
JP2012155492A 2011-07-12 2012-07-11 非水系電解液二次電池 Active JP6031856B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155492A JP6031856B2 (ja) 2011-07-12 2012-07-11 非水系電解液二次電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011153805 2011-07-12
JP2011153805 2011-07-12
JP2012155492A JP6031856B2 (ja) 2011-07-12 2012-07-11 非水系電解液二次電池

Publications (2)

Publication Number Publication Date
JP2013038072A JP2013038072A (ja) 2013-02-21
JP6031856B2 true JP6031856B2 (ja) 2016-11-24

Family

ID=47887454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155492A Active JP6031856B2 (ja) 2011-07-12 2012-07-11 非水系電解液二次電池

Country Status (1)

Country Link
JP (1) JP6031856B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6030995B2 (ja) * 2013-05-15 2016-11-24 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池
WO2015136688A1 (ja) 2014-03-14 2015-09-17 株式会社東芝 非水電解液二次電池及び電池パック
JP6459695B2 (ja) * 2014-03-26 2019-01-30 三菱ケミカル株式会社 非水系電解液二次電池
WO2015152046A1 (ja) * 2014-03-31 2015-10-08 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
US10170794B2 (en) * 2015-06-01 2019-01-01 Samsung Sdi Co., Ltd. Electrolyte additive for lithium battery, electrolyte for lithium battery, and lithium battery including the electrolyte additive
JP7445873B2 (ja) 2018-10-31 2024-03-08 パナソニックIpマネジメント株式会社 非水電解質二次電池および非水電解液
JP7579784B2 (ja) * 2019-06-04 2024-11-08 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池
CN114583243B (zh) * 2020-11-30 2024-07-02 三明市海斯福化工有限责任公司 锂离子电池
CN114583242B (zh) * 2020-11-30 2024-08-09 深圳新宙邦科技股份有限公司 锂离子电池
KR102732917B1 (ko) * 2021-10-22 2024-11-25 주식회사 엘지에너지솔루션 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
CN116315033A (zh) * 2021-12-21 2023-06-23 诺莱特电池材料(苏州)有限公司 一种二次电池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059040A1 (fr) * 2001-01-25 2002-08-01 Hitachi Chemical Co., Ltd. Particule de graphite artificiel et son procede de production, electrode negative de batterie secondaire a electrolyte non aqueux et son procede de production et batterie secondaire au lithium
JP2002222650A (ja) * 2001-01-25 2002-08-09 Hitachi Chem Co Ltd 非水電解液二次電池負極用黒鉛質粒子及びその製造法、非水電解液二次電池負極並びに非水電解液二次電池
JP4672955B2 (ja) * 2001-08-10 2011-04-20 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料およびその製造方法
JP4537736B2 (ja) * 2003-10-28 2010-09-08 日東電工株式会社 電池
JP5390736B2 (ja) * 2004-12-07 2014-01-15 富山薬品工業株式会社 電気化学デバイス用非水電解液
JP5418955B2 (ja) * 2007-04-26 2014-02-19 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2008291046A (ja) * 2007-05-22 2008-12-04 Toyota Motor Corp 高分子−無機微粒子複合体
JP5503217B2 (ja) * 2008-10-15 2014-05-28 古河電気工業株式会社 リチウム二次電池用負極材料、リチウム二次電池用負極、それを用いたリチウム二次電池、リチウム二次電池用負極材料の製造方法、およびリチウム二次電池用負極の製造方法。
WO2010110441A1 (ja) * 2009-03-27 2010-09-30 三菱化学株式会社 非水電解液二次電池用負極材料及びこれを用いた非水電解液二次電池
JP2011014379A (ja) * 2009-07-02 2011-01-20 Sony Corp 非水電解質二次電池及びその製造方法
KR102208587B1 (ko) * 2011-12-28 2021-01-28 미쯔비시 케미컬 주식회사 비수계 전해액 및 비수계 전해액 이차 전지

Also Published As

Publication number Publication date
JP2013038072A (ja) 2013-02-21

Similar Documents

Publication Publication Date Title
JP6750716B2 (ja) フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
JP6906476B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6624243B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6031856B2 (ja) 非水系電解液二次電池
JP6069843B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5962028B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
KR102167579B1 (ko) 비수계 전해액 및 그것을 이용한 비수계 전해액 전지
JP6167470B2 (ja) 非水系電解液電池
KR101837785B1 (ko) 비수계 전해액 2차 전지
WO2011099585A1 (ja) 非水系電解液及び非水系電解液二次電池
WO2013100081A1 (ja) 非水系電解液及び非水系電解液二次電池
JP6035776B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
CN106030889A (zh) 非水电解液及使用该非水电解液的非水电解质二次电池
JP5655653B2 (ja) 非水系電解液及びそれを用いたリチウム二次電池
JP6131757B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2013051198A (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6201485B2 (ja) 非水系電解液二次電池
JP2013206843A (ja) 非水系電解液電池
JP6500541B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP5906915B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5842379B2 (ja) 非水系電解液二次電池
JP6693200B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP6191395B2 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP5760665B2 (ja) 非水系電解液及び非水系電解液電池
JP2019186222A (ja) 非水系電解液、及びそれを用いた非水系電解液二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161010

R150 Certificate of patent or registration of utility model

Ref document number: 6031856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350