[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6017274B2 - Shock absorbing member - Google Patents

Shock absorbing member Download PDF

Info

Publication number
JP6017274B2
JP6017274B2 JP2012251404A JP2012251404A JP6017274B2 JP 6017274 B2 JP6017274 B2 JP 6017274B2 JP 2012251404 A JP2012251404 A JP 2012251404A JP 2012251404 A JP2012251404 A JP 2012251404A JP 6017274 B2 JP6017274 B2 JP 6017274B2
Authority
JP
Japan
Prior art keywords
sheet
absorbing member
impact
thickness
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012251404A
Other languages
Japanese (ja)
Other versions
JP2014098524A (en
Inventor
圭人 関根
圭人 関根
猛 熊澤
猛 熊澤
鮎美 辻野
鮎美 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mino Ceramic Co Ltd
Original Assignee
Mino Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mino Ceramic Co Ltd filed Critical Mino Ceramic Co Ltd
Priority to JP2012251404A priority Critical patent/JP6017274B2/en
Publication of JP2014098524A publication Critical patent/JP2014098524A/en
Application granted granted Critical
Publication of JP6017274B2 publication Critical patent/JP6017274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Description

本発明は、セラミックスからなる部材を接合した接合体を主な構成材料とする衝撃吸収部材に関する。より詳しくは、軽量でありながら、極めて高硬度及び高強度であるといった特徴を具備するとともに、高速飛翔体等の有するエネルギーを高効率で吸収する機能を有する、保護具等の構成材料として極めて有用な衝撃吸収部材に関する。   The present invention relates to an impact-absorbing member mainly composed of a joined body obtained by joining members made of ceramics. More specifically, it is extremely useful as a component material for protective equipment, etc., which has the characteristics of being extremely hard and high in strength while being lightweight, and having the function of absorbing the energy of high-speed flying objects with high efficiency. The present invention relates to a shock absorbing member.

近年、セラミックスを主な構成材料とする衝撃エネルギーの吸収性等に優れた部材について多くの提案がなされている。例えば、特許文献1には、炭化ホウ素を主成分とするセラミックスからなる受衝部と、窒化ケイ素を主成分とするセラミックスからなる基部と、を樹脂からなる結合層で結合した防護部材が記載されている。また、特許文献2には、部分安定化ジルコニア製のシートと、炭化ホウ素やムライト等からなるシートとを積層し、エポキシ樹脂等で接合した衝撃吸収部材が記載されている。   In recent years, many proposals have been made on members that are excellent in impact energy absorption and the like, which are mainly composed of ceramics. For example, Patent Document 1 describes a protective member in which an impact receiving portion made of ceramics containing boron carbide as a main component and a base made of ceramics containing silicon nitride as a main component are combined with a bonding layer made of resin. ing. Patent Document 2 describes an impact absorbing member in which a partially stabilized zirconia sheet and a sheet made of boron carbide, mullite, or the like are laminated and bonded with an epoxy resin or the like.

一方、衝撃吸収部材に限らず、セラミックス等の材料からなる部材を積層することにより、高機能な構造材料が得られることが知られている。例えば、特許文献3には、セラミックス又は焼結合金からなる基材、セラミックスからなる中間層、及びその熱膨張係数が基材の熱膨張率よりも小さいセラミックスからなる最外層を有する、熱衝撃に強い切削工具として有用な積層焼結体が記載されている。なお、基材や最外層を構成するセラミックスとして、アルミナ、窒化ケイ素、窒化ホウ素、及び炭化ケイ素等を適宜組み合わせることが記載されている。   On the other hand, it is known that not only the impact absorbing member but also a highly functional structural material can be obtained by laminating members made of materials such as ceramics. For example, Patent Document 3 discloses a thermal shock that includes a base material made of ceramics or a sintered alloy, an intermediate layer made of ceramics, and an outermost layer made of ceramics whose thermal expansion coefficient is smaller than the thermal expansion coefficient of the base material. A laminated sintered body useful as a strong cutting tool is described. In addition, it is described that alumina, silicon nitride, boron nitride, silicon carbide, and the like are appropriately combined as the ceramic constituting the substrate and the outermost layer.

また、特許文献4には、金属、アルミナ等のセラミックス、及びサーメットを含む、苛酷な条件で使用される切削工具として有用な積層構造焼結体が記載されている。さらに、特許文献5には、多孔質窒化ケイ素の層と、緻密質窒化ケイ素の層とを積層した積層構造を有する、衝撃力、応力、或いは歪みに対して許容性が大きい窒化ケイ素焼結体が記載されている。また、特許文献6には、炭化ホウ素を含有する二つのセラミックス部材を、アルミニウム等の金属を含有する接合材を用いて600℃以上に加熱して接合した接合体が記載されている。   Patent Document 4 describes a laminated structure sintered body useful as a cutting tool used under severe conditions, including metals, ceramics such as alumina, and cermet. Further, Patent Document 5 discloses a silicon nitride sintered body having a laminated structure in which a porous silicon nitride layer and a dense silicon nitride layer are laminated and has a high tolerance for impact force, stress, or strain. Is described. Patent Document 6 describes a joined body in which two ceramic members containing boron carbide are joined by heating to 600 ° C. or higher using a joining material containing a metal such as aluminum.

特開2008−275208号公報JP 2008-275208 A 特開2010−210217号公報JP 2010-210217 A 特開平4−319435号公報JP-A-4-319435 特開平7−137199号公報JP 7-137199 A 特開平9−169571号公報JP-A-9-169571 国際公開第2012/029816号International Publication No. 2012/029816

上述の従来技術のいずれにおいても、異なった特性を示す材料や、同じ材質であっても気孔率等の特性が異なる材料を組み合わせることにより、目的とする機能を発現させようとしている。すなわち、従来、それぞれ固有の特性を有する複数の材料を選択して組み合わせることで、目的とする特性を有する部材を得ようとしていた。しかしながら、製造工程が複雑となってコスト面で不利になる、或いは工業上実用化の妨げとなる可能性がある。例えば、特許文献1に記載の防護部材は、例えば炭化ホウ素のみで構成される部材よりも重く、さらには強度の面においても課題がある。また、特許文献2に記載の衝撃吸収部材は、炭化ホウ素のみで構成される部材より重くなってしまうといった問題がある。   In any of the above-described prior arts, a material having different characteristics or a material having different characteristics such as porosity even if the same material is combined is intended to express a target function. That is, conventionally, a member having desired characteristics has been obtained by selecting and combining a plurality of materials each having unique characteristics. However, there is a possibility that the manufacturing process becomes complicated and disadvantageous in terms of cost, or industrially impeded. For example, the protective member described in Patent Document 1 is heavier than, for example, a member composed only of boron carbide, and further has a problem in terms of strength. Moreover, the impact-absorbing member described in Patent Document 2 has a problem that it is heavier than a member composed only of boron carbide.

さらに、特許文献3に記載の積層焼結体は、衝撃吸収部材としては重く、しかも加圧しながら焼成するといった条件下で製造されることから、大型化が困難である。また、特許文献4に記載の積層構造焼結体は、シリコンの化学反応熱を用いて製造されるので、温度制御等が困難であるとともに、やはり大型化が困難である。また、特許文献5に記載の窒化ケイ素焼結体は、コスト面及び大型化の点で課題を有しているとともに、材料の安定供給する上でも課題がある。さらに、特許文献6に記載の接合体は、セラミックス部材同士を600℃以上の高温条件で接合して得られるものである。このため、コスト面で課題を有するとともに、製造の手間がかかるといった課題もある。   Furthermore, the laminated sintered body described in Patent Document 3 is heavy as an impact absorbing member, and is manufactured under conditions such that firing is performed under pressure, so that it is difficult to increase the size. Moreover, since the laminated structure sintered body described in Patent Document 4 is manufactured using the chemical reaction heat of silicon, it is difficult to control the temperature and the like, and it is also difficult to increase the size. In addition, the silicon nitride sintered body described in Patent Document 5 has problems in terms of cost and size, and also has problems in stably supplying materials. Furthermore, the joined body described in Patent Document 6 is obtained by joining ceramic members to each other under a high temperature condition of 600 ° C. or higher. For this reason, there are problems in terms of cost and labor of manufacturing.

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、高速飛翔体を破壊可能であるとともに、破砕されたことにより生じた小片の有するエネルギーを最小化することや衝撃応力波が裏面側に抜けてしまうことを確実に阻止することができ、かつ、軽量で簡便に製造可能な、保護具の構成材料として極めて有用な衝撃吸収部材を提供することにある。   The present invention has been made in view of such problems of the prior art, and the problem is that the high-speed flying object can be destroyed and the energy of the small pieces generated by being crushed Providing a shock absorbing member that is extremely useful as a component of protective equipment and can be easily manufactured with a light weight that can prevent the shock stress wave from coming back to the back side. There is to do.

本発明者らは上記課題を達成すべく鋭意検討した結果、セラミックスからなる所定の厚さの複数の第1のシート状部材の対向する接合面どうしを、そのヤング率が所定の範囲内である接合層で接合することよって上記課題を達成することが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have a Young's modulus within a predetermined range between the opposing joining surfaces of a plurality of first sheet-like members made of ceramics having a predetermined thickness. The present inventors have found that the above-described problems can be achieved by bonding with a bonding layer, and have completed the present invention.

すなわち、本発明によれば、以下に示す衝撃吸収部材が提供される。
[1]炭化ホウ素を60質量%以上含有するセラミックスからなる厚さ0.1〜mmの複数の第1のシート状部材と、隣接する前記第1のシート状部材の間に配置され、隣接する前記第1のシート状部材の対向する接合面どうしを接合する接合層と、を有するセラミックス接合体を備え、複数の前記第1のシート状部材が、その厚み方向に積層して配置されており、前記接合層が、有機系樹脂を含有する接着剤により形成されており、前記接合層のヤング率が50MPa以上3100MPa未満である衝撃吸収部材。
[2]2〜1000枚の前記第1のシート状部材が、その厚み方向に積層して配置される前記[1]に記載の衝撃吸収部材。
[3]前記セラミックス接合体の表面側から裏面側に向かって、前記第1のシート状部材の厚みが段階的に増大する前記[2]に記載の衝撃吸収部材
[4]前記接合層の厚さが0.01〜1mmである前記[1]〜[]のいずれかに記載の衝撃吸収部材。
]前記セラミックス接合体の裏面側に配置される、破損時に生じた破片を受け止める受容層をさらに備える前記[1]〜[]のいずれかに記載の衝撃吸収部材。
]前記接着剤が、エポキシ樹脂系接着剤、シアノアクリレート系接着剤、変成シリコーン系接着剤、及びポリウレタン樹脂系接着剤からなる群より選択される少なくとも一種である前記[1]〜[]のいずれかに記載の衝撃吸収部材。
That is, according to the present invention, the following impact absorbing member is provided.
[1] Arranged between a plurality of first sheet-like members having a thickness of 0.1 to 1 mm made of ceramics containing 60% by mass or more of boron carbide and the adjacent first sheet-like members. A ceramic joined body having a joining layer that joins the opposing joining surfaces of the first sheet-like member, and a plurality of the first sheet-like members are arranged in a stacking direction in the thickness direction. And the bonding layer is formed of an adhesive containing an organic resin, and the Young's modulus of the bonding layer is 50 MPa or more and less than 3100 MPa.
[2] The impact-absorbing member according to [1], wherein 2 to 1000 sheets of the first sheet-like member are stacked in the thickness direction.
[3] The impact absorbing member according to [2], wherein the thickness of the first sheet-like member increases stepwise from the front surface side to the back surface side of the ceramic joined body .
[4 ] The impact absorbing member according to any one of [1] to [ 3 ], wherein the bonding layer has a thickness of 0.01 to 1 mm.
[ 5 ] The impact-absorbing member according to any one of [1] to [ 4 ], further including a receiving layer that is disposed on the back surface side of the ceramic joined body and receives fragments generated at the time of breakage.
[6] the adhesive, epoxy resin adhesive, cyanoacrylate adhesive, modified silicone-based adhesive, and is at least one selected from the group consisting of polyurethane-based adhesives said [1] to [5 ] The impact-absorbing member according to any one of the above.

本発明の衝撃吸収部材は、薄くて軽量の板状部材でありながら、衝突した高速飛翔体の運動エネルギーを十分に吸収することができる。さらに、衝突した高速飛翔体を破壊可能であるとともに、破砕されたことにより生じた小片の有するエネルギーを最小化することや衝撃波が裏面側(背後)に抜けてしまうことを確実に阻止することができる。しかも、簡便に製造することができるので、経済的にも優れている。特に、炭化ホウ素を含むセラミックスからなるシート状部材(板状部材)の厚みと積層枚数を適切に組み合わせることで、前述の特許文献1及び2に記載の部材に比して高速飛翔体の運動エネルギー吸収能が高く、かつ、高速飛翔体が衝突した際に最表面が割れにくい、より機能性に優れた衝撃吸収部材が提供される。   The impact absorbing member of the present invention is a thin and lightweight plate-like member, but can sufficiently absorb the kinetic energy of the colliding high-speed flying object. Furthermore, it is possible to destroy the colliding high-speed flying object, minimizing the energy of the small pieces generated by being crushed, and reliably preventing the shock wave from escaping to the back side (back). it can. And since it can manufacture simply, it is excellent also economically. In particular, by appropriately combining the thickness of the sheet-like member (plate-like member) made of ceramics containing boron carbide and the number of laminated layers, the kinetic energy of the high-speed flying object compared to the members described in Patent Documents 1 and 2 above. An impact-absorbing member having high functionality and high functionality in which the outermost surface is difficult to break when a high-speed flying object collides is provided.

本発明の衝撃吸収部材の一実施形態を模式的に示す部分断面図である。It is a fragmentary sectional view showing typically one embodiment of an impact-absorbing member of the present invention. 図1Aに示す衝撃吸収部材の一部拡大図である。FIG. 1B is a partially enlarged view of the shock absorbing member shown in FIG. 1A. 本発明の衝撃吸収部材の他の実施形態を模式的に示す部分断面図である。It is a fragmentary sectional view showing typically other embodiments of an impact-absorbing member of the present invention. 本発明の衝撃吸収部材のさらに他の実施形態を模式的に示す部分断面図である。It is a fragmentary sectional view showing typically other embodiment of an impact-absorbing member of the present invention typically.

以下、本発明を実施するための好ましい形態を例に挙げて、本発明をさらに詳細に説明する。従来の技術においては、単に、軽量化、高強度化、及び高硬度化の観点から、衝撃吸収部材の構成材料として炭化ホウ素を選択していた。これに対し、本発明者らは、軽量性を維持しながら保護具としての優れた機能を発揮することができる部材とするためには、高速飛翔体の運動エネルギーを効率的に吸収するとともに、高速飛翔体の衝突時に発生する破砕片による、衝撃吸収部材の内側に存在する人や車両等への損傷を確実に軽減できるようにすることが重要であるとの認識をもつに至った。そして、本発明者らは、かかる認識から、衝撃吸収部材の構成材料としての炭化ホウ素について種々の検討を行った。   Hereinafter, the present invention will be described in more detail with reference to preferred embodiments for carrying out the present invention. In the prior art, boron carbide is simply selected as a constituent material of the shock absorbing member from the viewpoints of weight reduction, high strength, and high hardness. On the other hand, the present inventors efficiently absorb the kinetic energy of the high-speed flying object in order to make the member capable of exhibiting an excellent function as a protector while maintaining light weight, It has come to the recognition that it is important to ensure that damage to people, vehicles, etc. existing inside the shock absorbing member due to the fragments generated at the time of high-speed flying object collision can be reduced. And the present inventors performed various examination about the boron carbide as a constituent material of an impact-absorbing member from this recognition.

その結果、炭化ホウ素を主成分とするセラミックスからなるシート状(薄い板状)部材を複数枚積層し、ヤング率が所定の範囲内である接合層によってシート状部材の接合面どうしを接合して得られる接合体は、接合していない同一厚みの板(非接合体)と比較して、衝撃吸収能が顕著に異なることを見出した。かかる接合体は、静的には非接合体とほぼ同一の機械的特性を示すものであった。しかしながら、この接合体は、高速飛翔体との衝突時に高速飛翔体を破壊できると同時に、微細に破壊されることで、高速飛翔体の運動エネルギーを高効率に吸収することができる。また、表面が微細に破壊されるため、衝撃波の広がりを抑制し、高速飛翔体が衝突した面の形状を維持しやすくなる。なお、本発明の衝撃吸収部材は、複数枚のシート状部材を所定のヤング率の接合層によって接合することにより、衝突した高速飛翔体を破壊できると同時に、衝撃吸収部材中を通過する衝撃波の進展を、セラミックス接合体の内部に存在する高い応力場により阻害すると考えられる。さらに、本発明者らは、検討の結果、シート状部材を薄くするとともに積層枚数を増加することで、高速飛翔体の運動エネルギーをより効率的に表面エネルギーに変換可能であることを見出した。   As a result, a plurality of sheet-like (thin plate-like) members made of ceramics whose main component is boron carbide are laminated, and the joining surfaces of the sheet-like members are joined together by a joining layer whose Young's modulus is within a predetermined range. It has been found that the resulting bonded body has a significantly different impact absorption capacity compared to a non-bonded plate of the same thickness (non-bonded body). Such a joined body statically exhibited almost the same mechanical characteristics as a non-joined body. However, this joined body can destroy the high-speed flying object at the time of collision with the high-speed flying object, and at the same time, can absorb the kinetic energy of the high-speed flying object with high efficiency. Further, since the surface is finely broken, the spread of the shock wave is suppressed, and the shape of the surface on which the high-speed flying object collides can be easily maintained. Note that the impact absorbing member of the present invention can destroy the colliding high-speed flying object by joining a plurality of sheet-like members with a joining layer having a predetermined Young's modulus, and at the same time, the impact wave passing through the impact absorbing member. It is considered that the progress is hindered by a high stress field existing inside the ceramic joined body. Further, as a result of the study, the present inventors have found that the kinetic energy of a high-speed flying object can be converted into surface energy more efficiently by making the sheet-like member thinner and increasing the number of laminated sheets.

炭化ホウ素は、衝撃吸収部材の構成材料として従来用いられている。しかしながら、炭化ホウ素は極めて高価な材料であることから、極めて高い運動エネルギーを有する高速飛翔体が衝突しうる状況下でのみ使用されてきた。これに対して、本発明の衝撃吸収部材は、炭化ホウ素を含有する複数のシート状部材を接合したセラミックス接合体の厚みを薄くすることが可能である。このため、軽量化が可能であるとともに、低コスト化に大いに寄与しうる。すなわち、軽量化の結果、使用中の移動や搬送時のエネルギー消費を低減することができる。このため、人体や車両等への負担を低減することができる。さらに、シート状部材を薄くできるので、焼成工程等の時間を短縮することが可能である。また、表面に凸凹面を形成する場合であってもコスト面で極めて有利であるので、従来の衝撃吸収部材に比して製造コストが低く、その実用価値が極めて高い。したがって、本発明の衝撃吸収部材は、高速飛翔体が衝突しうる状況下だけでなく、様々な技術分野において採用されることが期待される。   Boron carbide has been conventionally used as a constituent material for impact absorbing members. However, since boron carbide is an extremely expensive material, it has been used only in situations where high-speed flying objects having extremely high kinetic energy can collide. On the other hand, the impact absorbing member of the present invention can reduce the thickness of the ceramic joined body obtained by joining a plurality of sheet-like members containing boron carbide. For this reason, it is possible to reduce the weight and greatly contribute to cost reduction. That is, as a result of weight reduction, energy consumption during movement or transportation during use can be reduced. For this reason, the burden on a human body or a vehicle can be reduced. Furthermore, since the sheet-like member can be thinned, it is possible to shorten the time for the firing process and the like. Further, even when the surface is formed with an uneven surface, it is extremely advantageous in terms of cost. Therefore, the manufacturing cost is lower than that of a conventional shock absorbing member, and its practical value is extremely high. Therefore, the impact absorbing member of the present invention is expected to be employed in various technical fields as well as in situations where high-speed flying objects may collide.

図1Aは、本発明の衝撃吸収部材の一実施形態を模式的に示す部分断面図である。また、図1Bは、図1Aに示す衝撃吸収部材の一部拡大図である。図1A及び1Bに示すように、本実施形態の衝撃吸収部材50は、セラミックスからなる複数の第1のシート状部材5と、隣接する第1のシート状部材の間に配置される接合層65と、を有するセラミックス接合体15を備える。第1のシート状部材5は、その厚み方向に積層して配置されている。接合層65は、隣接する第1のシート状部材5の対向する接合面5a,5bどうしを接合している。第1のシート状部材5の構成材料であるセラミックスは、炭化ホウ素を60質量%以上、好ましくは80質量%以上、さらに好ましくは90質量%以上含有する。炭化ホウ素を含有するセラミックスで形成した第1のシート状部材を積層することで、極めて優れた衝撃吸収性を得ることができる。なお、セラミックスに含有される炭化ホウ素の割合の上限値は特に限定されないが、100質量%であることが最も好ましい。   FIG. 1A is a partial cross-sectional view schematically showing an embodiment of the shock absorbing member of the present invention. FIG. 1B is a partially enlarged view of the impact absorbing member shown in FIG. 1A. As shown in FIGS. 1A and 1B, the shock absorbing member 50 of the present embodiment includes a bonding layer 65 disposed between a plurality of first sheet-like members 5 made of ceramics and an adjacent first sheet-like member. And a ceramic joined body 15 having the following. The 1st sheet-like member 5 is laminated | stacked and arrange | positioned in the thickness direction. The bonding layer 65 bonds the bonding surfaces 5a and 5b facing each other between the adjacent first sheet-like members 5. The ceramic which is a constituent material of the first sheet-like member 5 contains boron carbide in an amount of 60% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more. By laminating the first sheet-like member formed of ceramics containing boron carbide, extremely excellent shock absorption can be obtained. In addition, although the upper limit of the ratio of the boron carbide contained in ceramics is not specifically limited, It is most preferable that it is 100 mass%.

第1のシート状部材5の厚さは0.1〜50mm、好ましくは1〜10mmである。第1のシート状部材の厚さが0.1mm未満であると、薄すぎるために製造上実用性に欠ける場合がある。一方、第1のシート状部材の厚さが50mm超であると、衝撃吸収性が低下してしまう。   The thickness of the 1st sheet-like member 5 is 0.1-50 mm, Preferably it is 1-10 mm. If the thickness of the first sheet-like member is less than 0.1 mm, it may be too thin to be practical in production. On the other hand, if the thickness of the first sheet-like member is more than 50 mm, the impact absorbability is lowered.

セラミックス接合体を構成する第1のシート状部材の枚数は複数であれば特に限定されないが、通常、2〜1000枚、好ましくは5〜50枚である。第1のシート状部材の積層枚数が少なすぎると、積層することによって得られる効果が不十分になる場合がある。一方、第1のシート状部材の積層枚数が多すぎると、効果が頭打ちになるとともに、得られるセラミックス接合体が重くなり、保護具としての取り扱い性が低下する傾向にある。   The number of the first sheet-like members constituting the ceramic bonded body is not particularly limited as long as it is plural, but is usually 2 to 1000, preferably 5 to 50. If the number of first sheet-like members stacked is too small, the effect obtained by stacking may be insufficient. On the other hand, when the number of laminated first sheet-like members is too large, the effect reaches a peak and the obtained ceramic joined body becomes heavy, and the handleability as a protective device tends to be lowered.

第1のシート状部材5を構成するセラミックスに含まれる炭化ホウ素は、高硬度であるとともに低比重である。このため、高速飛翔体が衝突する最表面に配置された第1のシート状部材5は、炭化ホウ素の特性によって衝突した高速飛翔体を破壊することができる。また、複数枚の第1のシート状部材を積層して接合したセラミックス接合体15は、炭化ホウ素の機械的特性を示すとともに、接合界面において高い応力場を有している。このため、高速飛翔体が衝突した際には、第1のシート状部材5が微細に破壊されることにより高速飛翔体の運動エネルギーを吸収する。なお、炭化ホウ素からなる第1のシート状部材の相対密度は、89%以上の緻密質であることが好ましい。前述の通り、炭化ホウ素を主成分とするセラミックスからなる複数枚の第1のシート状部材を積層して接合したセラミックス接合体は、その内部に高い応力場を有する。この応力場は、セラミックス接合体の内部を通過する高速飛翔体の衝突時の衝撃波を偏向させる。これにより、本発明の衝撃吸収部材の内側への衝撃は格段に緩和される。   Boron carbide contained in the ceramics constituting the first sheet-like member 5 has high hardness and low specific gravity. For this reason, the 1st sheet-like member 5 arrange | positioned on the outermost surface which a high-speed flying object collides can destroy the high-speed flying object which collided by the characteristic of boron carbide. The ceramic joined body 15 formed by laminating and joining a plurality of first sheet-like members exhibits the mechanical characteristics of boron carbide and has a high stress field at the joining interface. For this reason, when the high-speed flying object collides, the kinetic energy of the high-speed flying object is absorbed by the first sheet-like member 5 being finely broken. In addition, it is preferable that the relative density of the 1st sheet-like member consisting of boron carbide is a dense material of 89% or more. As described above, a ceramic joined body obtained by laminating and joining a plurality of first sheet-like members made of ceramics mainly composed of boron carbide has a high stress field therein. This stress field deflects a shock wave at the time of collision of a high-speed flying object passing through the ceramic bonded body. Thereby, the impact to the inside of the shock absorbing member of the present invention is remarkably reduced.

接合層65のヤング率は50〜5000MPaであり、好ましくは50〜4000MPa、さらに好ましくは70〜3500MPaである。上記数値範囲のヤング率である接合層65により第1のシート状部材5の接合面5a,5bどうしを接合することで、衝撃吸収部材中を通過する衝撃波の進展を高い応力場により阻害し、高速飛翔体の運動エネルギーをより効率的に表面エネルギーに変換することができる。接合層のヤング率が50MPa未満であると、接着強度も低下してしまう。このため、衝撃吸収特性が低下するとともに、衝撃吸収部材自体の形状を保持することが困難になる場合がある。一方、接合層のヤング率が5000MPa超であると、衝撃吸収特性は高い水準で維持されるが、アルミニウム等の金属を用いて高温条件下で接合層を形成する必要がある。このため、製造の手間がかかるとともに、コスト面において課題がある。   The Young's modulus of the bonding layer 65 is 50 to 5000 MPa, preferably 50 to 4000 MPa, and more preferably 70 to 3500 MPa. By joining the joining surfaces 5a and 5b of the first sheet-like member 5 with the joining layer 65 having a Young's modulus in the above numerical range, the progress of the shock wave passing through the impact absorbing member is inhibited by a high stress field, The kinetic energy of a high-speed flying object can be converted into surface energy more efficiently. If the Young's modulus of the bonding layer is less than 50 MPa, the adhesive strength also decreases. For this reason, the impact absorption characteristics are lowered, and it may be difficult to maintain the shape of the impact absorbing member itself. On the other hand, if the Young's modulus of the bonding layer is more than 5000 MPa, the impact absorption characteristic is maintained at a high level, but it is necessary to form the bonding layer under a high temperature condition using a metal such as aluminum. For this reason, it takes time for manufacturing and there are problems in terms of cost.

本明細書における「ヤング率」(縦弾性率)は、引張り法によって測定される値を意味し、下記式(1)にしたがって算出される。
ヤング率(MPa) E=(ΔF×L)/(S×ΔL) ・・・(1)
ΔF:荷重増加分(N)
L :初期長さ(mm)
S :断面積(mm2
ΔL:長さ増加分(mm)
The “Young's modulus” (longitudinal elastic modulus) in this specification means a value measured by a tensile method, and is calculated according to the following formula (1).
Young's modulus (MPa) E = (ΔF × L) / (S × ΔL) (1)
ΔF: Load increase (N)
L: Initial length (mm)
S: sectional area (mm 2 )
ΔL: Length increase (mm)

ヤング率が上記数値範囲内である接合層を形成する材料(接合材)としては、強度、比重、及び工程の簡便性等を勘案し、例えば、有機系樹脂を含有する接着剤を用いることができる。このような接着剤の具体例としては、エポキシ樹脂系接着剤、シアノアクリレート系接着剤、及び変成シリコーン系接着剤等を挙げることができる。なお、これらの接着剤は、一種単独で又は二種以上を組み合わせて用いることができる。   As a material (bonding material) for forming a bonding layer having a Young's modulus within the above numerical range, for example, an adhesive containing an organic resin is used in consideration of strength, specific gravity, process simplicity, and the like. it can. Specific examples of such an adhesive include an epoxy resin adhesive, a cyanoacrylate adhesive, and a modified silicone adhesive. In addition, these adhesive agents can be used individually by 1 type or in combination of 2 or more types.

エポキシ樹脂系接着剤に含有されるエポキシ樹脂は、1分子中に2個以上のオキシラン環(エポキシ基)を有する重合体であり、適当な硬化剤によって3次元化した硬化物(接合層)を形成する。エポキシ樹脂には、ビスフェノールA型、ビスフェノールF型、及びビスフェノールAD型等があり、いずれのエポキシ樹脂を用いてもよい。エポキシ樹脂は、硬化剤の種類によって形成される硬化物(接合層)の特性が大きく変化する。硬化剤としては、例えば、アミン化合物からなるアミン系硬化剤が用いられる。なお、アミン化合物としては、炭化水素の種類により脂肪族、脂環族、及び芳香族アミン等がある。脂肪族アミンは反応性が速く、室温で硬化させることができる。また、得られる硬化物の耐熱性は約100℃である。一方、芳香族アミンは100〜200℃で硬化させることができるとともに、脂肪族アミンを用いた場合よりも耐熱性が高く、耐アルカリ性等の耐薬品性に優れた硬化物を得ることができる。   The epoxy resin contained in the epoxy resin adhesive is a polymer having two or more oxirane rings (epoxy groups) in one molecule, and a cured product (joining layer) that has been three-dimensionalized with an appropriate curing agent. Form. Epoxy resins include bisphenol A type, bisphenol F type, and bisphenol AD type, and any epoxy resin may be used. The properties of the cured product (bonding layer) formed by the epoxy resin vary greatly depending on the type of curing agent. As the curing agent, for example, an amine-based curing agent made of an amine compound is used. Examples of amine compounds include aliphatic, alicyclic, and aromatic amines depending on the type of hydrocarbon. Aliphatic amines are fast reactive and can be cured at room temperature. Moreover, the heat resistance of the obtained hardened | cured material is about 100 degreeC. On the other hand, an aromatic amine can be cured at 100 to 200 ° C., and a cured product having higher heat resistance and excellent chemical resistance such as alkali resistance can be obtained than when an aliphatic amine is used.

シアノアクリレート系接着剤は、雰囲気中の微量な水分によって室温でアニオン重合を開始し、高分子ポリマーとなって短時間で硬化する。このため、接合材としてシアノアクリレート系接着剤を用いれば、短時間でセラミックス接合体を製造することができる。   The cyanoacrylate-based adhesive starts anionic polymerization at room temperature with a small amount of moisture in the atmosphere, and becomes a high-molecular polymer and cures in a short time. For this reason, if a cyanoacrylate adhesive is used as a bonding material, a ceramic bonded body can be manufactured in a short time.

変成シリコーン系接着剤は、その分子末端に反応性シリル官能基を有するポリプロピレンオキシド系液状ポリマーである。この変成シリコーン系接着剤の硬化物は、柔軟で強靭なゴム状弾性体である。このため、接合材として変成シリコーン系接着剤を用いれば、衝撃吸収能がより向上した衝撃吸収部材を製造することができる。   The modified silicone adhesive is a polypropylene oxide liquid polymer having a reactive silyl functional group at its molecular end. The cured product of the modified silicone adhesive is a flexible and tough rubber-like elastic body. For this reason, if a modified silicone adhesive is used as the bonding material, it is possible to manufacture an impact absorbing member with improved impact absorbing ability.

ポリウレタン系樹脂接着剤は、ポリイソシアネートとポリオールとの反応で得られるポリウレタン系樹脂からなる接着剤である。このポリウレタン系樹脂接着剤の硬化物は、ウレタン基や尿素基の繰り返し単位からなるハードセグメントと、屈曲性が高いソフトセグメントとからなる共重合体であり、ハードセグメントは物理架橋として作用し、ソフトセグメントは弾性要素として働く。このソフトセグメントの存在のため、ポリウレタン系樹脂接着剤を用いれば、衝撃吸収能がより向上した衝撃吸収部材を製造することができる。   The polyurethane resin adhesive is an adhesive made of a polyurethane resin obtained by a reaction between polyisocyanate and polyol. The cured product of this polyurethane resin adhesive is a copolymer consisting of a hard segment composed of repeating units of urethane groups and urea groups and a soft segment having high flexibility, and the hard segment acts as a physical crosslink, The segment acts as an elastic element. Due to the presence of this soft segment, if a polyurethane resin adhesive is used, it is possible to produce an impact absorbing member with improved impact absorbing ability.

本実施形態の衝撃吸収部材50を構成するセラミックス接合体15の抗折強度は、好ましくは100MPa以上である。なお、本明細書における「抗折強度」は、4点曲げ法により測定した、接合部分を含むセラミックス接合体の物性値を意味する。   The bending strength of the ceramic joined body 15 constituting the impact absorbing member 50 of the present embodiment is preferably 100 MPa or more. In addition, the “bending strength” in the present specification means a physical property value of a ceramic joined body including a joint portion measured by a four-point bending method.

接合層65の厚さは、0.01〜1mmであることが好ましく、0.02〜0.7mmであることがさらに好ましく、0.02〜0.5mmであることが特に好ましい。なお、接合層の厚さは、例えば、使用する接着剤の量(厚み)を変えることで調整することができる。接合層の厚さが0.01mm未満であると、接合強度が不十分になる場合がある。一方、接合層の厚さが1mm超であると、接着剤の量が過多となってセラミックスが浮き上がることにより接合強度が不十分になる場合がある。   The thickness of the bonding layer 65 is preferably 0.01 to 1 mm, more preferably 0.02 to 0.7 mm, and particularly preferably 0.02 to 0.5 mm. The thickness of the bonding layer can be adjusted, for example, by changing the amount (thickness) of the adhesive used. If the thickness of the bonding layer is less than 0.01 mm, the bonding strength may be insufficient. On the other hand, if the thickness of the bonding layer is more than 1 mm, the bonding strength may be insufficient due to the excessive amount of adhesive and the ceramic floating.

炭化ホウ素は、軽量であるとともに破壊靭性値が低いので、衝撃が加わるとより微細に砕け散る。このため、炭化ホウ素は、本発明の衝撃吸収部材を構成するための材料として好適である。なお、本発明者らは、炭化ホウ素を経済的に作製する技術を既に開発している(国際公開第2008/153177号参照)。この技術を利用すれば、シート状の部材に限らず、炭化ホウ素からなる様々な形状の部材をより安価に提供することができる。   Since boron carbide is lightweight and has a low fracture toughness value, it breaks up more finely when an impact is applied. For this reason, boron carbide is suitable as a material for constituting the shock absorbing member of the present invention. In addition, the present inventors have already developed the technique which produces boron carbide economically (refer international publication 2008/153177). If this technique is utilized, not only a sheet-like member but various shaped members made of boron carbide can be provided at a lower cost.

本発明の衝撃吸収部材においては、セラミックス接合体が、第1のシート状部材に接合層を介して積層して配置される一以上の第2のシート状部材をさらに有することが好ましい。この第2のシート状部材を構成する材料としては、炭化ケイ素、ムライト、及びアルミナなどのセラミックスを挙げることができる。これらのセラミックスからなる第2のシート状部材を、第1のシート状部材と組み合わせてセラミックス接合体を構成すると、第2のシート状部材の内側(人体や車両等)への衝撃をさらに緩和することができるので、保護具の構成部材としてより有用である。上記のセラミックスからなる第2のシート状部材は、高速飛翔体の運動エネルギーを表面エネルギーに変換する能力が高いためである。   In the impact-absorbing member of the present invention, it is preferable that the ceramic joined body further includes one or more second sheet-like members arranged by being laminated on the first sheet-like member via a joining layer. Examples of the material constituting the second sheet-like member include ceramics such as silicon carbide, mullite, and alumina. When a ceramic joined body is configured by combining the second sheet-like member made of these ceramics with the first sheet-like member, the impact on the inside (human body, vehicle, etc.) of the second sheet-like member is further mitigated. Therefore, it is more useful as a component of the protective equipment. This is because the second sheet-shaped member made of the above ceramics has a high ability to convert the kinetic energy of the high-speed flying object into surface energy.

図2は、本発明の衝撃吸収部材の他の実施形態を模式的に示す部分断面図である。図2に示す実施形態の衝撃吸収部材55は、複数の第1のシート状部材5が接合層(図示せず)を介して接合されたセラミックス接合体15と、このセラミックス接合体15の裏面側に配置される、第3のシート状部材30及び第4のシート状部材40からなる受容層とを備えている。このような受容層をセラミックス接合体の背面側に設けることで、セラミックス接合体の破損により生じた破片をより確実に受け止めて背面側により貫通しにくくすることが可能となる。なお、図2においては、第3のシート状部材30及び第4のシート状部材40からなる受容層70を配置した状態を示しているが、受容層70は第3のシート状部材のみで構成してもよく、第4のシート状部材のみで構成してもよい。   FIG. 2 is a partial cross-sectional view schematically showing another embodiment of the impact absorbing member of the present invention. The impact absorbing member 55 of the embodiment shown in FIG. 2 includes a ceramic joined body 15 in which a plurality of first sheet-like members 5 are joined via a joining layer (not shown), and a back surface side of the ceramic joined body 15. And a receiving layer made up of the third sheet-like member 30 and the fourth sheet-like member 40. By providing such a receiving layer on the back side of the ceramic joined body, it is possible to more reliably receive debris generated by breakage of the ceramic joined body and make it less likely to penetrate through the back side. FIG. 2 shows a state in which the receiving layer 70 composed of the third sheet-like member 30 and the fourth sheet-like member 40 is arranged. However, the receiving layer 70 is composed only of the third sheet-like member. Alternatively, it may be composed of only the fourth sheet-like member.

第3のシート状部材30を構成する材料としては、アラミド系繊維などの高強度繊維を挙げることができる。また、第4のシート状部材40を構成する材料としては、アルミニウムやマグネシウムのような比重の小さい金属を挙げることができる。第3のシート状部材や第4のシート状部材を構成するこれらの材料は、板形状で提供されていることが多く、低コストであることからも好ましい材料である。なお、金属などで構成された第4のシート状部材は、保護対象となる人や車両等に対向する、最表面から最も離れた側(背面側)に配置するとよい。   Examples of the material constituting the third sheet-like member 30 include high-strength fibers such as aramid fibers. Moreover, as a material which comprises the 4th sheet-like member 40, the metal with small specific gravity like aluminum and magnesium can be mentioned. These materials constituting the third sheet-like member and the fourth sheet-like member are often provided in a plate shape and are preferable materials because of their low cost. In addition, the 4th sheet-like member comprised with the metal etc. is good to arrange | position on the side (back side) furthest from the outermost surface which opposes the person or vehicle etc. used as protection object.

図3は、本発明の衝撃吸収部材のさらに他の実施形態を模式的に示す部分断面図である。図3に示す実施形態の衝撃吸収部材60は、セラミックス接合体25と、このセラミックス接合体25の裏面側に配置される、受容層となる第3のシート状部材30及び第4のシート状部材40とを備えている。そして、このセラミックス接合体25は、その表面側から裏面側に向かって第1のシート状部材10,20の厚みが段階的に増大するように構成されている。このように、シート状部材10,20の厚みを表面側から裏面側に向かって段階的に増大させる(厚くする)ことにより、内在する応力場に分布が生ずることになる。このため、高速飛翔体の衝突時に発生した衝撃波の進展方向が偏曲されるとともに、セラミックス接合体の破損により生じたセラミックス小片のサイズが制御されて背面側への飛散がより効果的に防止される。   FIG. 3 is a partial cross-sectional view schematically showing still another embodiment of the impact absorbing member of the present invention. The impact absorbing member 60 of the embodiment shown in FIG. 3 includes a ceramic joined body 25, and a third sheet-like member 30 and a fourth sheet-like member that are disposed on the back side of the ceramic joined body 25 and serve as a receiving layer. 40. And this ceramic joined body 25 is comprised so that the thickness of the 1st sheet-like members 10 and 20 may increase in steps toward the back surface side from the surface side. Thus, by increasing (thickening) the thickness of the sheet-like members 10 and 20 stepwise from the front surface side to the back surface side, a distribution occurs in the inherent stress field. For this reason, the propagation direction of the shock wave generated at the time of the collision of the high-speed flying object is deflected, and the size of the ceramic piece generated by the breakage of the ceramic joined body is controlled, and the scattering to the back side is more effectively prevented. The

図3に示す衝撃吸収部材60の表面側(第1のシート状部材10が配置された側)に高速飛翔体が衝突した場合を想定する。この場合、第1のシート状部材10に衝突した高速飛翔体が破壊されるとともに、第1のシート状部材10を構成する炭化ホウ素を含むセラミックスが微細に破壊される。このため、高速飛翔体の運動エネルギーが効率的に吸収される。また、減衰した衝撃波によって、第1のシート状部材10の背面側に配置された、より厚い第1のシート状部材20が破損して大きな破片が形成される。これにより、高速飛翔体の運動エネルギーがほぼ完全に吸収されることになる。そして、セラミックス接合体25の破損により発生した破片は、セラミックス接合体25の背面側に配置された受容層70である第3のシート状部材30と第4のシート状部材40に吸収され、背面側には貫通しない。なお、セラミックス接合体25を、その表面側から裏面側に向かって第1のシート状部材10,20の厚みが段階的に増大するように構成することで、セラミックス接合体25の厚みをより薄くすることが可能となり、衝撃吸収部材60を従来の同等以上の機能を維持しつつ格段に軽量化することができる。   A case is assumed in which a high-speed flying object collides with the surface side (the side on which the first sheet-like member 10 is disposed) of the impact absorbing member 60 shown in FIG. In this case, the high-speed flying object colliding with the first sheet-like member 10 is destroyed, and the ceramic containing boron carbide constituting the first sheet-like member 10 is finely destroyed. For this reason, the kinetic energy of the high-speed flying object is efficiently absorbed. Moreover, the thicker 1st sheet-like member 20 arrange | positioned at the back side of the 1st sheet-like member 10 is damaged by the attenuated shock wave, and a big fragment is formed. As a result, the kinetic energy of the high-speed flying object is almost completely absorbed. The fragments generated by the breakage of the ceramic joined body 25 are absorbed by the third sheet-like member 30 and the fourth sheet-like member 40 which are the receiving layers 70 disposed on the back side of the ceramic joined body 25, and Do not penetrate to the side. The ceramic joined body 25 is configured such that the thickness of the first sheet-like members 10 and 20 increases stepwise from the front surface side toward the back surface side, thereby making the thickness of the ceramic joined body 25 thinner. This makes it possible to significantly reduce the weight of the shock absorbing member 60 while maintaining the same or higher function than the conventional one.

なお、前述の通り、図1Aに示す衝撃吸収部材50を構成する第1のシート状部材5は、その厚み方向に積層して配置されている。ただし、本発明においては、複数の第1のシート状部材は厚み方向に積層して配置されることに限定されず、例えば、横方向に並べて配置されてもよい。複数の第1のシート状部材が横方向に並べて配置される場合、接合層は隣接する第1のシート状部材の端面(狭幅端面)間に配置され、隣接する前記第1のシート状部材どうしを接合する。このように構成することで、本発明の衝撃吸収部材の形状を屈曲形状にすることが可能となる。このため、例えば、人の肩や肘などの屈曲形状に合わせて成形された衝撃吸収部材を容易に得ることができる。   As described above, the first sheet-like member 5 constituting the impact absorbing member 50 shown in FIG. 1A is arranged in a stacked manner in the thickness direction. However, in the present invention, the plurality of first sheet-like members are not limited to being stacked and arranged in the thickness direction, and may be arranged in the horizontal direction, for example. When a plurality of first sheet-like members are arranged side by side in the horizontal direction, the bonding layer is arranged between the end faces (narrow end faces) of the adjacent first sheet-like members, and the adjacent first sheet-like members are arranged. Join each other. By comprising in this way, it becomes possible to make the shape of the impact-absorbing member of this invention into a bending shape. For this reason, for example, it is possible to easily obtain an impact-absorbing member molded in accordance with a bent shape such as a human shoulder or elbow.

次に、本発明の衝撃吸収部材の製造方法について説明する。本発明の衝撃吸収部材の製造方法は、複数の第1のシート状部材を、接合材を介して厚み方向に積層して積層体を得る工程(積層工程)と、得られた積層体の接合材を硬化させて接合層を形成し、セラミックス接合体を得る工程(接合工程)と、を有する。   Next, the manufacturing method of the impact-absorbing member of this invention is demonstrated. The method for producing an impact absorbing member of the present invention includes a step of laminating a plurality of first sheet-like members in the thickness direction via a bonding material to obtain a laminate (lamination step), and joining of the obtained laminates Curing a material to form a bonding layer, and obtaining a ceramic bonded body (bonding step).

積層工程では、第1のシート状部材どうしを接合させる部分(接合面)に接合材を配置する。接合材としては、例えば、前述の有機系樹脂を含有する接着剤等を用いることができる。配置する接合材の厚みは、概ね1mm以下となるようにすればよい。このようにして、接着材を介して複数枚の第1のシート状部材を厚み方向に積層して積層体を得る。   In the laminating step, a bonding material is disposed on a portion (bonding surface) where the first sheet-like members are bonded to each other. As the bonding material, for example, an adhesive containing the aforementioned organic resin can be used. The thickness of the bonding material to be arranged may be approximately 1 mm or less. In this way, a plurality of first sheet-like members are laminated in the thickness direction via the adhesive material to obtain a laminate.

接合工程では、上記積層工程により得られた積層体の接合材を硬化させて接合層を形成する。接合材が有機系樹脂を含有する接着剤である場合、この接合材を硬化させるには、室温条件下で放置するか、或いは少なくとも接合させる部分70〜200℃の温度で加熱すればよい。このようにして接合層を形成すれば、セラミックス接合体を得ることができる。なお、得られたセラミックス接合体をそのまま衝撃吸収部材として用いてもよいし、第2のシート状部材や受容層等を適宜配置して衝撃吸収部材を構成してもよい。   In the joining step, the joining material of the laminate obtained by the above-described lamination step is cured to form a joining layer. When the bonding material is an adhesive containing an organic resin, the bonding material can be cured by leaving it under room temperature conditions, or at least heating at a temperature of 70 to 200 ° C. at which the bonding portions are bonded. When the bonding layer is formed in this manner, a ceramic bonded body can be obtained. The obtained ceramic joined body may be used as it is as an impact absorbing member, or the impact absorbing member may be configured by appropriately arranging a second sheet-like member, a receiving layer, or the like.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified.

(第1のシート状部材の作製)
市販の炭化ホウ素(B4C)粉末を9cm角の金型に充填し、200kg/cm2の圧力で加圧した後、1000kg/cm2の圧力で静水圧プレスを行い、焼成・加工後の厚みが0.1〜50mmとなるような炭化ホウ素成形体を得た。なお、炭化ホウ素粉末としては、平均粒度0.8μm、純度99.5%(酸素含有量1.2%、及び窒素含有量0.2%を除く)のものを用いた。得られた炭化ホウ素成形体を、アルミニウムとシリコンを配置した焼成炉内に入れ、常圧下、アルゴン(Ar)ガスを流しながら2200℃で4時間保持して焼成し、焼成体を得た。ダイヤモンド砥石を用いて厚み0.1〜50mmとなるように得られた焼成体をそれぞれ研削加工して、炭化ホウ素からなる7cm角の第1のシート状部材を得た。得られた第1のシート状部材は、いずれも相対密度が95%以上の極めて緻密なものであった。
(Production of first sheet-like member)
After filling commercially available boron carbide (B 4 C) powder into a 9 cm square mold and pressurizing at a pressure of 200 kg / cm 2 , hydrostatic pressing is performed at a pressure of 1000 kg / cm 2 , and after firing and processing A boron carbide molded body having a thickness of 0.1 to 50 mm was obtained. The boron carbide powder used had an average particle size of 0.8 μm and a purity of 99.5% (excluding oxygen content of 1.2% and nitrogen content of 0.2%). The obtained boron carbide molded body was placed in a firing furnace in which aluminum and silicon were arranged, and was fired under normal pressure at 2200 ° C. for 4 hours while flowing argon (Ar) gas to obtain a fired body. The fired bodies obtained so as to have a thickness of 0.1 to 50 mm were ground using a diamond grindstone to obtain 7 cm square first sheet-like members made of boron carbide. All of the obtained first sheet-like members were extremely dense with a relative density of 95% or more.

(受容層の準備)
市販の芳香族アラミド系樹脂からなるアラミド系繊維(ケブラー(Kevlar):登録商標、デュポン社製)で構成された厚さ1mmのシートを複数枚積層しエポキシ樹脂で一体化して、厚さ3mm、7cm角の第3のシート状部材を用意した。また、厚さ4mm、7cm角のアルミニウム製金属板を用意して、これを第4のシート状部材とした。
(Preparation of receiving layer)
A plurality of 1 mm thick sheets composed of aramid fibers (Kevlar: registered trademark, manufactured by DuPont) made of a commercially available aromatic aramid resin are laminated and integrated with an epoxy resin, a thickness of 3 mm, A 7 cm square third sheet-like member was prepared. In addition, an aluminum metal plate having a thickness of 4 mm and a 7 cm square was prepared and used as a fourth sheet-like member.

(実施例1)
ビスフェノールA型液状エポキシ樹脂(ジャパンエポキシレジン社製)と、アミン系硬化剤(三井化学ファイン社製)とを2:1の割合で混合したものを、厚さ0.1mmの第1のシート状部材100枚のそれぞれの接合面に塗布した後、第1のシート状部材を積層して積層体を得た。得られた積層体を、室温から125℃まで1時間30分かけて昇温させた後、125℃で3時間保持してエポキシ樹脂を硬化させ、厚さ約12mmのセラミックス接合体を得た。得られたセラミックス接合体を衝撃吸収部材(実施例1)とした。なお、エポキシ樹脂のみを上記の条件にて硬化させて得た試料のヤング率を引張り法にて測定したところ、2400MPaであった。
Example 1
A first sheet having a thickness of 0.1 mm is prepared by mixing a bisphenol A type liquid epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.) and an amine curing agent (manufactured by Mitsui Chemicals Fine Co., Ltd.) at a ratio of 2: 1. After apply | coating to each joining surface of 100 members, the 1st sheet-like member was laminated | stacked and the laminated body was obtained. The obtained laminate was heated from room temperature to 125 ° C. over 1 hour and 30 minutes, and then held at 125 ° C. for 3 hours to cure the epoxy resin to obtain a ceramic joined body having a thickness of about 12 mm. The obtained ceramic joined body was used as an impact absorbing member (Example 1). In addition, it was 2400 MPa when the Young's modulus of the sample obtained by hardening | curing only an epoxy resin on said conditions was measured with the tension method.

(実施例2、3、参考例4、5、比較例1)
第1のシート状部材の厚みと枚数を表1に示すようにしたこと以外は、前述の実施例1と同様にして、厚さ約10〜12mmのセラミックス接合体である衝撃吸収部材(実施例2、3、参考例4、5、比較例1)を得た。
(Examples 2 and 3, Reference Examples 4 and 5, Comparative Example 1)
Except that the thickness and number of sheets of the first sheet-like member are as shown in Table 1, the shock absorbing member (Example) which is a ceramic joined body having a thickness of about 10 to 12 mm, as in Example 1 above. 2 , 3, Reference Examples 4, 5, and Comparative Example 1) were obtained.

参考例6)
シアノアクリレート系接着剤(商品名「アロンアルファ」(登録商標、東亞合成社製))を、厚さ1mmの第1のシート状部材10枚のそれぞれの接合面に塗布した後、第1のシート状部材を積層して積層体を得た。得られた積層体を室温で2時間保持して接着剤を硬化させ、厚さ約10.3mmのセラミックス接合体を得た。得られたセラミックス接合体を衝撃吸収部材(参考例6)とした。なお、シアノアクリレート系接着剤のみを硬化させて得た試料のヤング率を引張り法にて測定したところ、3100MPaであった。
( Reference Example 6)
A cyanoacrylate adhesive (trade name “Aron Alpha” (registered trademark, manufactured by Toagosei Co., Ltd.)) is applied to each joint surface of 10 sheets of the first sheet-like member having a thickness of 1 mm, and then the first sheet-like form The member was laminated | stacked and the laminated body was obtained. The obtained laminate was held at room temperature for 2 hours to cure the adhesive, and a ceramic joined body having a thickness of about 10.3 mm was obtained. The obtained ceramic joined body was used as an impact absorbing member ( Reference Example 6). The Young's modulus of a sample obtained by curing only the cyanoacrylate adhesive was measured by a tensile method and found to be 3100 MPa.

(実施例7)
変成シリコーン系接着剤(商品名「PM165」(セメダイン社製))を、厚さ1mmの第1のシート状部材10枚のそれぞれの接合面に塗布した後、第1のシート状部材を積層して積層体を得た。得られた積層体を室温で2時間保持して接着剤を硬化させ、厚さ約10.5mmのセラミックス接合体を得た。得られたセラミックス接合体を衝撃吸収部材(実施例7)とした。なお、変成シリコーン系接着剤のみを硬化させて得た試料のヤング率を引張り法にて測定したところ、100MPaであった。
(Example 7)
After applying a modified silicone adhesive (trade name “PM165” (Cemedine Co., Ltd.)) to each joint surface of 10 sheets of the first sheet member having a thickness of 1 mm, the first sheet member is laminated. To obtain a laminate. The obtained laminate was held at room temperature for 2 hours to cure the adhesive, and a ceramic joined body having a thickness of about 10.5 mm was obtained. The obtained ceramic joined body was used as an impact absorbing member (Example 7). The Young's modulus of a sample obtained by curing only the modified silicone adhesive was measured by a tensile method and found to be 100 MPa.

(実施例8)
ポリウレタン樹脂系接着剤である商品名「PU−62」(東亞合成社製)のA剤とB剤を10:8の割合で混合したものを、厚さ1mmの第1のシート状部材10枚のそれぞれの接合面に塗布した後、第1のシート状部材を積層して積層体を得た。得られた積層体を、室温から80℃まで1時間かけて昇温させた後、80℃で30分保持して接着剤を硬化させ、厚さ約10.2mmのセラミックス接合体を得た。得られたセラミックス接合体を衝撃吸収部材(実施例8)とした。なお、ポリウレタン樹脂系接着剤のみを上記の条件にて硬化させて得た試料のヤング率を引張り法にて測定したところ、70MPaであった。
(Example 8)
10 sheets of 1 mm-thick first sheet-like member in which A and B agents of trade name “PU-62” (manufactured by Toagosei Co., Ltd.), which is a polyurethane resin adhesive, are mixed at a ratio of 10: 8. After apply | coating to each joining surface of this, the 1st sheet-like member was laminated | stacked and the laminated body was obtained. The obtained laminate was heated from room temperature to 80 ° C. over 1 hour, and then held at 80 ° C. for 30 minutes to cure the adhesive to obtain a ceramic joined body having a thickness of about 10.2 mm. The obtained ceramic joined body was used as an impact absorbing member (Example 8). The Young's modulus of a sample obtained by curing only the polyurethane resin-based adhesive under the above conditions was measured by a tensile method and found to be 70 MPa.

(比較例2)
接着剤を用いて接合していない、厚さ10mmの第1のシート状部材を衝撃吸収部材(比較例2)とした。
(Comparative Example 2)
A first sheet-like member having a thickness of 10 mm, which was not joined using an adhesive, was used as an impact absorbing member (Comparative Example 2).

(比較例3)
厚さ1mmの第1のシート状部材10枚を、厚さ10μmのアルミニウム製フィルム(純度:99%)を介在させて積層し、積層体を得た。得られた積層体を真空中、700℃で2時間加熱し、第1のシート状部材を接合して厚さ約10mmのセラミックス接合体を得た。得られたセラミックス接合体を衝撃吸収部材(比較例3)とした。なお、アルミニウム製フィルムの引張り弾性率は71000MPaであった。
(Comparative Example 3)
Ten first sheet-like members having a thickness of 1 mm were laminated with an aluminum film having a thickness of 10 μm (purity: 99%) interposed therebetween to obtain a laminate. The obtained laminate was heated in vacuum at 700 ° C. for 2 hours, and the first sheet-like member was joined to obtain a ceramic joined body having a thickness of about 10 mm. The obtained ceramic joined body was used as an impact absorbing member (Comparative Example 3). The tensile modulus of the aluminum film was 71000 MPa.

(比較例4)
エチレン・酢酸ビニル共重合体接着剤(日本ユニカー社製)を、厚さ1mmの第1のシート状部材10枚のそれぞれの接合面に塗布した後、第1のシート状部材を積層して積層体を得た。得られた積層体を、室温から125℃まで1時間30分かけて昇温させた後、125℃で30時間保持して接着剤を硬化させ、厚さ約10.1mmのセラミックス接合体を得た。得られたセラミックス接合体を衝撃吸収部材(比較例4)とした。なお、エチレン・酢酸ビニル共重合体接着剤のみを上記の条件にて硬化させて得た試料のヤング率を引張り法にて測定したところ、20MPaであった。
(Comparative Example 4)
After an ethylene / vinyl acetate copolymer adhesive (manufactured by Nihon Unicar) is applied to each joint surface of 10 sheets of the first sheet-like member having a thickness of 1 mm, the first sheet-like member is laminated and laminated. Got the body. The obtained laminate was heated from room temperature to 125 ° C. over 1 hour and 30 minutes, then held at 125 ° C. for 30 hours to cure the adhesive, and a ceramic joined body having a thickness of about 10.1 mm was obtained. It was. The obtained ceramic joined body was used as an impact absorbing member (Comparative Example 4). The Young's modulus of a sample obtained by curing only the ethylene / vinyl acetate copolymer adhesive under the above conditions was 20 MPa.

(衝撃破壊試験(1))
圧縮ガスの圧力を飛翔体に伝達させ、発射管内を通過した飛翔体を試料に衝突させる方式のガス加速装置を使用して衝撃破壊試験を行った。なお、飛翔体としては、直径4mmφのベアリング鋼を用いた。また、試料(衝撃吸収部材)にほぼ音速で飛翔体を衝突及び貫通させ、損傷体積(cm3)及び生じた小片の平均径(mm)を測定した。結果を表1に示す。
(Impact fracture test (1))
An impact fracture test was performed using a gas accelerator that transmits the pressure of the compressed gas to the flying object and causes the flying object that passed through the launch tube to collide with the sample. As the flying object, bearing steel having a diameter of 4 mmφ was used. In addition, the flying object collided and penetrated the sample (impact absorbing member) at almost the speed of sound, and the damaged volume (cm 3 ) and the average diameter (mm) of the generated small pieces were measured. The results are shown in Table 1.

Figure 0006017274
Figure 0006017274

(評価)
表1に示すように、エポキシ樹脂系接着剤を用いて製造した衝撃吸収部材については、第1のシート状部材が薄いほど、コーン状に破壊した箇所の損傷体積が小さく、破壊により生じた小片の平均径が小さくなった(実施例1〜3、参考例4、5、比較例2)。また、シアノアクリレート系接着剤、変成シリコーン系接着剤、及びポリウレタン樹脂系接着剤を用いた場合においても、損傷体積はエポキシ樹脂系接着剤を用いた場合とほぼ同等であった(参考例6、実施例7、8)。これに対して、比較例1の衝撃吸収部材は、第1のシート状部材どうしの接合面がはがれたように損傷してしまい、損傷体積と小片の平均径を測定することが不可能であった。また、比較例2の衝撃吸収部材は、大きな欠片が後方に飛散してしまい、損傷体積が大きいことが分かった。なお、比較例2の衝撃吸収部材では、飛翔体が衝突した面に縦横無尽に亀裂が生じたのに対し、実施例1の衝撃吸収部材では、縦横無尽の亀裂はほとんど観察されなかった。
(Evaluation)
As shown in Table 1, with respect to the impact absorbing member manufactured using an epoxy resin adhesive, the thinner the first sheet-like member, the smaller the damaged volume at the location where it was destroyed in a cone shape, and the small pieces produced by the destruction The average diameter became smaller (Examples 1 to 3, Reference Examples 4 and 5, Comparative Example 2). In addition, even when a cyanoacrylate adhesive, a modified silicone adhesive, and a polyurethane resin adhesive were used, the damaged volume was almost the same as when an epoxy resin adhesive was used ( Reference Example 6 , Examples 7, 8). On the other hand, the impact absorbing member of Comparative Example 1 was damaged as if the joint surfaces of the first sheet-like members were peeled off, and it was impossible to measure the damaged volume and the average diameter of the small pieces. It was. Moreover, the impact-absorbing member of Comparative Example 2 was found to have a large damaged volume because large pieces were scattered backward. In the impact absorbing member of Comparative Example 2, cracks were generated in the vertical and horizontal directions on the surface where the flying object collided, whereas in the impact absorbing member of Example 1, almost no vertical and horizontal cracks were observed.

また、比較例3の衝撃吸収部材は、実施例3の衝撃吸収部材とほぼ同等の衝撃吸収特性を有していた。しかしながら、比較例3の衝撃吸収部材を製造するには700℃もの高温で熱処理する必要があるため、実施例3の衝撃吸収部材を製造する場合に比べて製造コストが余計にかかるといった課題がある。一方、比較例4の衝撃吸収部材は第1のシート状部材どうしの接着強度が低く、第1のシート状部材の最前面が大破してしまうといった特異な破壊挙動を示したため、損傷体積及び小片の平均径を測定することができなかった。   Further, the shock absorbing member of Comparative Example 3 had substantially the same shock absorbing characteristics as the shock absorbing member of Example 3. However, in order to manufacture the shock absorbing member of Comparative Example 3, it is necessary to perform heat treatment at a high temperature as high as 700 ° C. Therefore, there is a problem that the manufacturing cost is excessive as compared with the case of manufacturing the shock absorbing member of Example 3. . On the other hand, the impact absorbing member of Comparative Example 4 showed a peculiar fracture behavior such that the adhesive strength between the first sheet-like members was low and the forefront surface of the first sheet-like member was severely damaged. The average diameter could not be measured.

参考例9)
ビスフェノールA型液状エポキシ樹脂(ジャパンエポキシレジン社製)と、アミン系硬化剤(三井化学ファイン社製)とを2:1の割合で混合したものを、厚さ5mmの第1のシート状部材20枚のそれぞれの接合面に塗布した後、第1のシート状部材を積層して積層体を得た。得られた積層体を、室温から125℃まで1時間30分かけて昇温させた後、125℃で3時間保持してエポキシ樹脂を硬化させ、厚さ約100.4mmのセラミックス接合体を得た。得られたセラミックス接合体を衝撃吸収部材(参考例9)とした。なお、エポキシ樹脂のみを上記の条件にて硬化させて得た試料のヤング率を引張り法にて測定したところ、2400MPaであった。
( Reference Example 9)
A first sheet-like member 20 having a thickness of 5 mm is prepared by mixing a bisphenol A liquid epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.) and an amine curing agent (manufactured by Mitsui Chemicals Fine Co., Ltd.) in a ratio of 2: 1. After apply | coating to each joining surface of a sheet | seat, the 1st sheet-like member was laminated | stacked and the laminated body was obtained. The obtained laminate was heated from room temperature to 125 ° C. over 1 hour and 30 minutes, then held at 125 ° C. for 3 hours to cure the epoxy resin, and a ceramic joined body having a thickness of about 100.4 mm was obtained. It was. The obtained ceramic joined body was used as an impact absorbing member ( Reference Example 9). In addition, it was 2400 MPa when the Young's modulus of the sample obtained by hardening | curing only an epoxy resin on said conditions was measured with the tension method.

参考例10〜12)
第1のシート状部材の厚みと枚数を表2に示すようにしたこと以外は、前述の参考例9と同様にして、厚さ約100〜100.2mmのセラミックス接合体である衝撃吸収部材(参考例10〜12)を得た。
( Reference Examples 10-12)
Except that the thickness and the number of sheets of the first sheet-like member are as shown in Table 2, the impact absorbing member which is a ceramic joined body having a thickness of about 100 to 100.2 mm is the same as in Reference Example 9 described above. Reference examples 10 to 12) were obtained.

参考例13)
シアノアクリレート系接着剤(商品名「アロンアルファ」(登録商標、東亞合成社製))を、厚さ5mmの第1のシート状部材20枚のそれぞれの接合面に塗布した後、第1のシート状部材を積層して積層体を得た。得られた積層体を室温で2時間保持して接着剤を硬化させ、厚さ約100.6mmのセラミックス接合体を得た。得られたセラミックス接合体を衝撃吸収部材(参考例13)とした。なお、シアノアクリレート系接着剤のみを硬化させて得た試料のヤング率を引張り法にて測定したところ、3100MPaであった。
( Reference Example 13)
After a cyanoacrylate adhesive (trade name “Aron Alpha” (registered trademark, manufactured by Toagosei Co., Ltd.)) is applied to each joining surface of 20 sheets of the first sheet-like member having a thickness of 5 mm, the first sheet-like adhesive is applied. The member was laminated | stacked and the laminated body was obtained. The obtained laminate was held at room temperature for 2 hours to cure the adhesive, and a ceramic joined body having a thickness of about 100.6 mm was obtained. The obtained ceramic joined body was used as an impact absorbing member ( Reference Example 13). The Young's modulus of a sample obtained by curing only the cyanoacrylate adhesive was measured by a tensile method and found to be 3100 MPa.

参考例14)
変成シリコーン系接着剤(商品名「PM165」(セメダイン社製))を、厚さ5mmの第1のシート状部材20枚のそれぞれの接合面に塗布した後、第1のシート状部材を積層して積層体を得た。得られた積層体を室温で2時間保持して接着剤を硬化させ、厚さ約101mmのセラミックス接合体を得た。得られたセラミックス接合体を衝撃吸収部材(参考例14)とした。なお、変成シリコーン系接着剤のみを硬化させて得た試料のヤング率を引張り法にて測定したところ、100MPaであった。
( Reference Example 14)
After applying the modified silicone adhesive (trade name “PM165” (Cemedine)) to each of the 20 sheets of the first sheet-like member having a thickness of 5 mm, the first sheet-like member is laminated. To obtain a laminate. The obtained laminate was held at room temperature for 2 hours to cure the adhesive, and a ceramic joined body having a thickness of about 101 mm was obtained. The obtained ceramic joined body was used as an impact absorbing member ( Reference Example 14). The Young's modulus of a sample obtained by curing only the modified silicone adhesive was measured by a tensile method and found to be 100 MPa.

参考例15)
ポリウレタン樹脂系接着剤である商品名「PU−62」(東亞合成社製)のA剤とB剤を10:8の割合で混合したものを、厚さ5mmの第1のシート状部材20枚のそれぞれの接合面に塗布した後、第1のシート状部材を積層して積層体を得た。得られた積層体を、室温から80℃まで1時間かけて昇温させた後、80℃で30分保持して接着剤を硬化させ、厚さ約100.4mmのセラミックス接合体を得た。得られたセラミックス接合体を衝撃吸収部材(参考例15)とした。なお、ポリウレタン樹脂系接着剤のみを上記の条件にて硬化させて得た試料のヤング率を引張り法にて測定したところ、70MPaであった。
( Reference Example 15)
20 sheets of a first sheet-like member having a thickness of 5 mm, which is a mixture of A and B agents of trade name “PU-62” (manufactured by Toagosei Co., Ltd.), which is a polyurethane resin adhesive, in a ratio of 10: 8 After apply | coating to each joining surface of this, the 1st sheet-like member was laminated | stacked and the laminated body was obtained. The obtained laminate was heated from room temperature to 80 ° C. over 1 hour, and then held at 80 ° C. for 30 minutes to cure the adhesive to obtain a ceramic joined body having a thickness of about 100.4 mm. The obtained ceramic joined body was used as an impact absorbing member ( Reference Example 15). The Young's modulus of a sample obtained by curing only the polyurethane resin-based adhesive under the above conditions was measured by a tensile method and found to be 70 MPa.

(比較例5)
接着剤を用いて接合していない、厚さ100mmの第1のシート状部材を衝撃吸収部材(比較例5)とした。
(Comparative Example 5)
A first sheet-like member having a thickness of 100 mm that was not joined using an adhesive was used as an impact absorbing member (Comparative Example 5).

(衝撃破壊試験(2))
音速の約3倍の速度で試料(衝撃吸収部材)に飛翔体を衝突させたこと以外は、前述の「衝撃破壊試験(1)」と同様の手順で破壊試験を行った。なお、いずれの衝撃吸収部材(参考例9〜15、比較例5)の場合も飛翔体は貫通しなかったため、飛翔体が衝突した面を目視観察して「亀裂の程度」及び「亀裂の間隔」を評価した。結果を表2に示す。
(Impact fracture test (2))
A destructive test was performed in the same procedure as the “impact destructive test (1)” except that the flying object collided with the sample (impact absorbing member) at a speed about three times the sound speed. In any of the impact absorbing members ( Reference Examples 9 to 15 and Comparative Example 5), since the flying object did not penetrate, the surface on which the flying object collided was visually observed to determine “crack degree” and “crack interval”. Was evaluated. The results are shown in Table 2.

Figure 0006017274
Figure 0006017274

(評価)
表2に示すように、比較例5の衝撃吸収部材では、多くの亀裂が発生していたとともに、亀裂の間隔も狭かった。これに対して、参考例9〜12の衝撃吸収部材では、第1のシート状部材の積層枚数が多く、かつ、第1のシート状部材が薄いほど、発生した亀裂が少なく、その間隔も広くなる傾向にあった。また、シアノアクリレート系接着剤、変成シリコーン系接着剤、及びポリウレタン樹脂系接着剤を用いた場合においても、エポキシ樹脂系接着剤を用いた場合と同様の結果が得られた(参考例13〜15)。
(Evaluation)
As shown in Table 2, in the shock absorbing member of Comparative Example 5, many cracks occurred and the interval between cracks was narrow. On the other hand, in the impact absorbing members of Reference Examples 9 to 12, the more the number of the first sheet-like members stacked, and the thinner the first sheet-like member, the fewer cracks generated and the wider the interval. Tended to be. Moreover, also when a cyanoacrylate adhesive, a modified silicone adhesive, and a polyurethane resin adhesive were used, the same results were obtained as when an epoxy resin adhesive was used ( Reference Examples 13 to 15). ).

(実施例16)
実施例3で作製したセラミックス接合体(厚さ約10.2mm)、アラミド系繊維からなるシートを積層し、エポキシ樹脂で一体化したシート(厚さ10mm)、及びアルミニウム製金属板(厚さ10mm)をこの順に積層して、図1Bに示すような層構成の衝撃吸収部材(実施例16)を作製した。
(Example 16)
A ceramic joined body (thickness: about 10.2 mm) prepared in Example 3, a sheet made of aramid fibers, laminated with an epoxy resin (thickness 10 mm), and an aluminum metal plate (thickness 10 mm) ) Were laminated in this order to produce a shock absorbing member (Example 16) having a layer structure as shown in FIG. 1B.

(比較例6)
比較例2で用いた厚さ10mmの第1のシート状部材と、アラミド系繊維からなるシートを積層し、エポキシ樹脂で一体化したシート(厚さ10mm)、及びアルミニウム製金属板(厚さ10mm)をこの順に積層して衝撃吸収部材(比較例6)を作製した。
(Comparative Example 6)
A first sheet-like member having a thickness of 10 mm used in Comparative Example 2 and a sheet made of aramid fibers were laminated and integrated with an epoxy resin (thickness 10 mm), and an aluminum metal plate (thickness 10 mm) ) Were laminated in this order to produce an impact absorbing member (Comparative Example 6).

(評価)
実施例16及び比較例6の衝撃吸収部材について、前述の「衝撃破壊試験(1)」を行った。その結果、飛翔体は、いずれの衝撃吸収部材の表面で破壊された。しかし、衝撃吸収部材の裏面(アルミニウム製金属板)は異なった状況であった。比較例6の衝撃吸収部材では、アルミニウム製金属板に直径2mmほどの穴が形成された。これに対して、実施例16の衝撃吸収部材では、アルミニウム製金属板に外観上の変化は認められなかった。
(Evaluation)
The impact absorbing member of Example 16 and Comparative Example 6 was subjected to the aforementioned “impact breaking test (1)”. As a result, the flying object was destroyed on the surface of any shock absorbing member. However, the back surface (aluminum metal plate) of the shock absorbing member was in a different situation. In the impact absorbing member of Comparative Example 6, a hole having a diameter of about 2 mm was formed in the aluminum metal plate. On the other hand, in the impact absorbing member of Example 16, no change in appearance was observed in the aluminum metal plate.

(実施例17)
ビスフェノールA型液状エポキシ樹脂(ジャパンエポキシレジン社製)と、アミン系硬化剤(三井化学ファイン社製)とを2:1の割合で混合したものを、厚さ0.5mmの第1のシート状部材4枚のそれぞれの接合面に塗布した後、第1のシート状部材を積層して積層体を得た。得られた積層体を、室温から125℃まで1時間30分かけて昇温させた後、125℃で3時間保持してエポキシ樹脂を硬化させ、厚さ約2.06mmのセラミックス接合体を得た。得られたセラミックス接合体、アラミド系繊維からなるシートを積層し、エポキシ樹脂で一体化したシート(厚さ10mm)、及びアルミニウム製金属板(厚さ10mm)をこの順に積層して、図2に示すような層構成の衝撃吸収部材(実施例17)を作製した。
(Example 17)
A first sheet having a thickness of 0.5 mm is prepared by mixing a bisphenol A type liquid epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.) and an amine curing agent (manufactured by Mitsui Chemicals Fine Co., Ltd.) in a ratio of 2: 1. After apply | coating to each joining surface of four members, the 1st sheet-like member was laminated | stacked and the laminated body was obtained. The obtained laminate was heated from room temperature to 125 ° C. over 1 hour and 30 minutes, and then held at 125 ° C. for 3 hours to cure the epoxy resin to obtain a ceramic joined body having a thickness of about 2.06 mm. It was. The obtained ceramic joined body, sheets made of aramid fibers are laminated, a sheet integrated with an epoxy resin (thickness 10 mm), and an aluminum metal plate (thickness 10 mm) are laminated in this order, and FIG. An impact absorbing member (Example 17) having a layer structure as shown was produced.

(評価)
実施例17の衝撃吸収部材について、前述の「衝撃破壊試験(1)」を行った。その結果、飛翔体は衝撃吸収部材の表面で破壊されたとともに、アルミニウム製金属板に外観上変化は認められなかった。
(Evaluation)
The impact absorbing member of Example 17 was subjected to the aforementioned “impact fracture test (1)”. As a result, the flying object was destroyed on the surface of the shock absorbing member, and no change in the appearance of the aluminum metal plate was observed.

(実施例18)
厚さ0.5mmの第1のシート状部材4枚を、ビスフェノールA型液状エポキシ樹脂(ジャパンエポキシレジン社製)と、アミン系硬化剤(三井化学ファイン社製)とを2:1の割合で混合したものを介在させて積層した。さらに、厚み1mmの第1のシート状部材5枚を、上記エポキシ樹脂と硬化剤の混合物を介在させて積層し、積層体を得た。得られた積層体を室温から125℃まで1時間30分かけて昇温させた後、125℃で3時間保持してエポキシ樹脂を硬化させ、厚み約7.14mmのセラミックス接合体を得た。得られたセラミックス接合体、アラミド系繊維からなるシートを積層し、エポキシ樹脂で一体化したシート(厚さ10mm)、及びアルミニウム製金属板(厚さ10mm)をこの順に積層して、図3に示すような層構成の衝撃吸収部材(実施例18)を作製した。
(Example 18)
Four first sheet-like members having a thickness of 0.5 mm are mixed with a bisphenol A type liquid epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.) and an amine curing agent (manufactured by Mitsui Chemicals Fine Co., Ltd.) in a ratio of 2: 1. Lamination was performed with the mixed material interposed. Furthermore, five first sheet-like members having a thickness of 1 mm were laminated with the mixture of the epoxy resin and the curing agent interposed therebetween to obtain a laminate. The obtained laminate was heated from room temperature to 125 ° C. over 1 hour and 30 minutes, and then held at 125 ° C. for 3 hours to cure the epoxy resin to obtain a ceramic joined body having a thickness of about 7.14 mm. The obtained ceramic joined body, sheets made of aramid fibers were laminated, a sheet integrated with an epoxy resin (thickness 10 mm), and an aluminum metal plate (thickness 10 mm) were laminated in this order, and FIG. A shock absorbing member (Example 18) having a layer structure as shown was produced.

(評価)
実施例18の衝撃吸収部材について、前述の「衝撃破壊試験(1)」を行った。その結果、飛翔体は衝撃吸収部材の表面で破壊されたとともに、アルミニウム製金属板に外観上の変化は認められなかった。
(Evaluation)
The impact absorbing member of Example 18 was subjected to the aforementioned “impact fracture test (1)”. As a result, the flying object was destroyed on the surface of the impact absorbing member, and no change in the appearance of the aluminum metal plate was observed.

以上の結果から、より薄い第1のシート状部材をより多く接合して得られるセラミックス接合体を用いることで、より高い衝撃吸収性を示すことが判明した。   From the above results, it has been found that by using a ceramic joined body obtained by joining a larger number of thinner first sheet-like members, higher shock absorption is exhibited.

本発明の衝撃吸収部材は、従来品と同等以上の高い衝撃吸収性を示すとともに、その厚みを薄くすることができるので、従来品に比して軽量であり、保護具の形成材料として好適である。本発明の衝撃吸収部材の活用例としては、種々の高速飛翔体から人体や車両等へ及ぼすことのある衝撃を、確実に、かつ、人体や車両等への負担を抑制した形で緩和することのできる種々の製品、或いは高速で可動するロボットアーム等の保護部材などを挙げることができる。   The shock absorbing member of the present invention exhibits a high shock absorption equivalent to or higher than that of the conventional product, and can be made thinner, so that it is lighter than the conventional product and is suitable as a material for forming a protective device. is there. As an application example of the impact absorbing member of the present invention, it is possible to reliably reduce the impact that may be exerted on human bodies, vehicles, etc. from various high-speed flying bodies, while suppressing the burden on human bodies, vehicles, etc. And various protective products such as a robot arm that can be moved at high speed.

5,10,20:第1のシート状部材
15,25:セラミックス接合体
30:第3のシート状部材
40:第4のシート状部材
50,55,60:衝撃吸収部材
65:接合層
70:受容層
5, 10, 20: first sheet-like member 15, 25: ceramic joined body 30: third sheet-like member 40: fourth sheet-like member 50, 55, 60: shock absorbing member 65: joining layer 70: Receptive layer

Claims (6)

炭化ホウ素を60質量%以上含有するセラミックスからなる厚さ0.1〜mmの複数の第1のシート状部材と、
隣接する前記第1のシート状部材の間に配置され、隣接する前記第1のシート状部材の対向する接合面どうしを接合する接合層と、を有するセラミックス接合体を備え、
複数の前記第1のシート状部材が、その厚み方向に積層して配置されており、
前記接合層が、有機系樹脂を含有する接着剤により形成されており、
前記接合層のヤング率が50MPa以上3100MPa未満である衝撃吸収部材。
A plurality of first sheet-like members having a thickness of 0.1 to 1 mm made of ceramics containing 60% by mass or more of boron carbide;
A ceramic joined body that is disposed between adjacent first sheet-like members and has a joining layer that joins opposing joining surfaces of the adjacent first sheet-like members;
A plurality of the first sheet-like members are disposed so as to be laminated in the thickness direction,
The bonding layer is formed of an adhesive containing an organic resin,
The impact-absorbing member, wherein the bonding layer has a Young's modulus of 50 MPa or more and less than 3100 MPa.
2〜1000枚の前記第1のシート状部材が、その厚み方向に積層して配置される請求項1に記載の衝撃吸収部材。   The impact-absorbing member according to claim 1, wherein 2 to 1000 sheets of the first sheet-like member are laminated and arranged in the thickness direction. 前記セラミックス接合体の表面側から裏面側に向かって、前記第1のシート状部材の厚みが段階的に増大する請求項2に記載の衝撃吸収部材。   The impact absorbing member according to claim 2, wherein the thickness of the first sheet-like member increases stepwise from the front surface side to the back surface side of the ceramic joined body. 前記接合層の厚さが0.01〜1mmである請求項1〜のいずれか一項に記載の衝撃吸収部材。 The impact-absorbing member according to any one of claims 1 to 3 , wherein the bonding layer has a thickness of 0.01 to 1 mm. 前記セラミックス接合体の裏面側に配置される、破損時に生じた破片を受け止める受容層をさらに備える請求項1〜のいずれか一項に記載の衝撃吸収部材。 The impact-absorbing member according to any one of claims 1 to 4 , further comprising a receiving layer that is disposed on a back surface side of the ceramic bonded body and receives a fragment generated at the time of breakage. 前記接着剤が、エポキシ樹脂系接着剤、シアノアクリレート系接着剤、変成シリコーン系接着剤、及びポリウレタン樹脂系接着剤からなる群より選択される少なくとも一種である請求項1〜のいずれか一項に記載の衝撃吸収部材。 Wherein the adhesive, epoxy resin adhesive, cyanoacrylate adhesive, modified silicone-based adhesive, and any one of claims 1 to 5, at least one selected from the group consisting of a polyurethane resin-based adhesive The impact-absorbing member described in 1.
JP2012251404A 2012-11-15 2012-11-15 Shock absorbing member Active JP6017274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012251404A JP6017274B2 (en) 2012-11-15 2012-11-15 Shock absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012251404A JP6017274B2 (en) 2012-11-15 2012-11-15 Shock absorbing member

Publications (2)

Publication Number Publication Date
JP2014098524A JP2014098524A (en) 2014-05-29
JP6017274B2 true JP6017274B2 (en) 2016-10-26

Family

ID=50940669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012251404A Active JP6017274B2 (en) 2012-11-15 2012-11-15 Shock absorbing member

Country Status (1)

Country Link
JP (1) JP6017274B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5116353B2 (en) * 2007-04-26 2013-01-09 京セラ株式会社 Protective member and protective equipment using the same
JP2009180408A (en) * 2008-01-30 2009-08-13 Kyocera Corp Protective member and protecting device using the same
JP5508743B2 (en) * 2009-03-12 2014-06-04 美濃窯業株式会社 Shock absorbing member
JP4936261B2 (en) * 2010-08-31 2012-05-23 美濃窯業株式会社 BORON CARBIDE-CONTAINING CERAMIC BODY AND METHOD FOR PRODUCING THE BODY

Also Published As

Publication number Publication date
JP2014098524A (en) 2014-05-29

Similar Documents

Publication Publication Date Title
Koricho et al. Effect of hybrid (micro-and nano-) fillers on impact response of GFRP composite
ES2621834T3 (en) Antiballistic article and its production method
US7827899B2 (en) Armor
EP2232190B1 (en) Protection armor
JP5508743B2 (en) Shock absorbing member
US20100196671A1 (en) Polymeric composite article and method of making the same
KR101493642B1 (en) Shock absorbing member and method for producing same
US9919492B2 (en) Armor system with multi-hit capacity and method of manufacture
JP6017274B2 (en) Shock absorbing member
JP2000072889A (en) Molding product of fiber-reinforced composite material
JP2005164071A (en) Bulletproof member
US20120247312A1 (en) Structural panel insert with honeycomb core
JP2018021718A (en) Anti-blade and anti-piercing protective material and protective instrument using protective material
Chai et al. On the mechanics of fracture in monoliths and multilayers from low-velocity impact by sharp or blunt-tip projectiles
Chabera et al. Fabrication and characterization of composite materials based on porous ceramic preform infiltrated by elastomer
JP5095016B1 (en) Shock absorbing member
JP5330071B2 (en) Impact resistant member, human body protective clothing, and method of manufacturing impact resistant member
JP5342685B1 (en) Shock absorbing member and manufacturing method thereof
Bright Effect of hybrid fillers of Mg–Al layered double hydroxide and nanoclay on the mechanical behavior and formability of glass laminate AA5052‐reinforced epoxy composites.
JP2006241308A5 (en)
JP2005281035A (en) Composite structure and shock absorbing member
Oh Effect of residual stress on impact damage in a dissimilar laminated plate at a biaxial bending mode
Ji et al. Impact/debonding tolerant sandwich panel with aluminum tube reinforced foam core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160928

R150 Certificate of patent or registration of utility model

Ref document number: 6017274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250