JP6093685B2 - Flow meter calibration equipment - Google Patents
Flow meter calibration equipment Download PDFInfo
- Publication number
- JP6093685B2 JP6093685B2 JP2013232917A JP2013232917A JP6093685B2 JP 6093685 B2 JP6093685 B2 JP 6093685B2 JP 2013232917 A JP2013232917 A JP 2013232917A JP 2013232917 A JP2013232917 A JP 2013232917A JP 6093685 B2 JP6093685 B2 JP 6093685B2
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- flow meter
- flow
- straight
- calibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
Description
この発明は、流体の流量計を出荷時または再調整時に工場で校正する設備に関する。 The present invention relates to equipment for calibrating a fluid flow meter at the factory at the time of shipment or readjustment.
液体用の流量計を校正するには、校正設備による標準流量と流量計の指示値を比較調整することが行われている。校正装置における標準流量の発生のやり方には幾つかの方法があるが、古くは単なる比較法、また容積法が用いられたが、近年では質量(秤量)法が主流で、これは最も不確かさ(
誤差) を小さくすることが出来る方法で、秤量タンクと転流器( ダイバータ) を使用した通液式静的秤量法がある。
In order to calibrate a flow meter for liquid, a standard flow rate by a calibration facility is compared with an instruction value of the flow meter. There are several methods for generating the standard flow rate in the calibration device. In the old days, the simple method of comparison and the volume method were used, but in recent years, the mass (weighing) method has been the mainstream, which is the most uncertain. (
There is a liquid flow-through static weighing method using a weighing tank and a commutator (diverter).
具体的には、オーバーフローヘッドタンクから安定した標準流量を試験管路に流す。被試験流量計を通過した試験液は被試験流量計から配管を通り噴流となってダイバータ内に噴出する。校正試験の開始とともに、ダイバータを移動させることで噴流からの流れは秤量タンクへ流入する。所定の量が流入した後、試験液の流入を停止させる。その後、秤量計で重量が計量されて、流入した試験液の質量もしくは体積が算出される。同時に流入時間も計測されている。このタンクに取り込まれた液体の質量もしくは体積を流入時間で除することで単位時間あたりの液体量を求める方法である(特許文献1)。この特許文献1における発明は、秤量タンク式の校正設備において流路切替装置に特徴があり、ダイバータのタイミングエラーを小さく調整できるものである。 Specifically, a stable standard flow rate is allowed to flow from the overflow head tank to the test pipe line. The test liquid that has passed through the flow meter to be tested is jetted from the flow meter to be tested into the diverter through the piping. With the start of the calibration test, the flow from the jet flows into the weighing tank by moving the diverter. After the predetermined amount has flowed, the flow of the test solution is stopped. Thereafter, the weight is measured with a weighing meter, and the mass or volume of the test solution that has flowed in is calculated. At the same time, the inflow time is also measured. This is a method of obtaining the amount of liquid per unit time by dividing the mass or volume of the liquid taken into the tank by the inflow time (Patent Document 1). The invention in Patent Document 1 is characterized by a flow path switching device in a weighing tank type calibration facility, and can adjust a diverter timing error to be small.
特許文献2にある発明は、ダイバータの回転制御、および秤量タンクへの流れ制御のためのノズルに工夫がなされたもので、小流量域での流量測定に効果がある。
その他にも多くの文献で、秤量法についての各種改良発明が開示されている。
The invention disclosed in Patent Document 2 is devised in a nozzle for diverter rotation control and flow control to a weighing tank, and is effective in measuring a flow rate in a small flow rate region.
Many other documents disclose various improved inventions regarding the weighing method.
このように種種の改良が試みられ、実際に流体を流して校正を行う実流校正が行われているが、実流校正設備では少ない配管構成で多種の口径の流量計に対応する必要がある。そのためレデューサという配管の管内径を変更するための部品により接続を適宜図っているのが実状である。例えば管内径200mmの配管に対し、少なくは65mmからさらに大きな多種口径の流量計に対応するためにレデューサで配管の管内径を絞り込むなどである。 In this way, various improvements have been attempted, and actual flow calibration is performed in which fluid is actually calibrated, but the actual flow calibration equipment needs to support flowmeters of various diameters with a small number of piping configurations. . Therefore, the actual situation is that connection is appropriately made by a part called a reducer for changing the inner diameter of the pipe. For example, for a pipe having a pipe inner diameter of 200 mm, the pipe inner diameter of the pipe is narrowed down by a reducer in order to cope with flowmeters of various diameters of 65 mm or more.
しかし、十分な校正精度を実現するためには、校正対象である流量計の上流側配管には所定の長さを持つストレート部(直管)を設ける必要があることが知られている。流体に渦、乱流、脈動を生じさせずに正しい軸対象の流体を流量計に与えることが校正精度の確保に必要だからである(非特許文献1を参照)。 However, in order to realize sufficient calibration accuracy, it is known that a straight portion (straight pipe) having a predetermined length needs to be provided in the upstream pipe of the flow meter to be calibrated. This is because it is necessary for ensuring the calibration accuracy to provide the flowmeter with the correct target fluid without causing vortices, turbulence, and pulsations in the fluid (see Non-Patent Document 1).
概ね、流量計の口径(D)に対し、ストレート部の長さは10〜50倍(10D〜50D)が必要とされている。しかし、そのような設備をすべて流量計の口径に対応するように備えることには、設置スペースなどの問題がある。便宜上テーパー角度10度以下のレデューサをストレートと同様とみなすこともできるが、やはり現場状況との間に精度差異が生じる。 Generally, the length of the straight part is required to be 10 to 50 times (10D to 50D) with respect to the diameter (D) of the flow meter. However, providing all such equipment so as to correspond to the diameter of the flow meter has problems such as installation space. For convenience, a reducer with a taper angle of 10 degrees or less can be regarded as the same as a straight, but there is still a difference in accuracy from the field situation.
本願発明は、多種の口径の流量計に対応することができて、十分な精度を実現できる校正設備の提供を目的とする。 An object of the present invention is to provide a calibration facility that can deal with flowmeters of various diameters and can realize sufficient accuracy.
本願発明は、流量計の校正設備において、
流量計の校正設備において、
上流から流体を流通させる上流配管と、
前記上流配管より管内径の小さな管で前記配管内に一端を挿入されて、他端を前記流量計の入口に接合される直管と、
前記直管の管内径と等しい口径の測定管を有する流量計と、
前記流量計から流体を流通させる下流配管と、
を備える流量計の校正設備である。
The present invention is a flow meter calibration facility,
In flow meter calibration equipment,
An upstream pipe for circulating fluid from the upstream;
A straight pipe with one end inserted into the pipe with a pipe having a smaller inner diameter than the upstream pipe and the other end joined to the inlet of the flow meter,
A flow meter having a measuring tube having a diameter equal to the inner diameter of the straight tube;
Downstream piping for flowing fluid from the flow meter;
Is a calibration facility for a flowmeter.
また、本願発明は、前記直管は、その管内径(D)の10倍(10D)以上の長さを有することを特徴とする流量計の校正設備でもある。 The straight pipe according to the present invention is also a flowmeter calibration facility characterized in that the straight pipe has a length of 10 times (10D) or more of the pipe inner diameter (D).
本願発明は、前記流量計の測定管出口と前記下流配管との間に、さらにもう一つの上流側と同様な直管を備えることを特徴とする流量計の校正設備でもよい。また、前記直管の前記配管内の一端に整流板を設置してもよい。さらに整流効果を高める効果がある。 The invention of the present application may be a flowmeter calibration facility characterized in that a straight pipe similar to that on the other upstream side is provided between the measurement pipe outlet of the flowmeter and the downstream pipe. Moreover, you may install a baffle plate in the end in the said piping of the said straight pipe. Furthermore, there is an effect of enhancing the rectification effect.
本願発明による校正設備では、設置スペースの制約を受けることなく十分な長さのストレート管を設けることが可能になる。その結果、実際のプラント現場で使用される配管環境と同様の校正が行うことができる。 In the calibration facility according to the present invention, it is possible to provide a straight tube having a sufficient length without being restricted by the installation space. As a result, the same calibration as the piping environment used in an actual plant site can be performed.
以下、本願発明を実施の一形態に基づき説明する。図1は、液体流量校正設備の全体的な概要を示す図である。この図において、液体流量校正設備は、液体を溜めた試験液タンク106から液体を試験管路108に導き、試験管路108において安定な流れを発生させる。流量調節バルブ104で調整した安定な流れは、試験管路108に設けた流量計105を通過し、ノズル102と秤量容器107との間に設けたダイバータ101を経由して秤量容器107に流入する。その後、液体流量校正設備は、所定時間(
流入時間) 経過後、ダイバータ101により流れを切り替えて、秤量容器107への液体の流入を停止させる。
Hereinafter, the present invention will be described based on an embodiment. FIG. 1 is a diagram showing an overall outline of a liquid flow rate calibration facility. In this figure, the liquid flow rate calibration equipment guides the liquid from the test liquid tank 106 in which the liquid is stored to the
After the elapse of time, the flow is switched by the diverter 101 to stop the flow of the liquid into the weighing container 107.
そして、液体流量校正設備は、秤量容器107へ流入した液体の流入量と流入時間とから単位時間あたりの液体の流量を求め、求めた流量と、流量計105によって計測された流量とにより、流量計105を校正する。なお、103は秤量計であり、そこから発信される重量データと所定の密度データと、流量計105から得られる流量データを用いて、校正処理が行われる。
Then, the liquid flow rate calibration equipment obtains the flow rate of the liquid per unit time from the inflow amount and the inflow time of the liquid that has flowed into the weighing container 107, and the flow rate is calculated based on the obtained flow rate and the flow rate measured by the
[発明の要部]
本願発明は、上述の構成で言えば、試験管路108と流量計105との接続にかかる流量計の前後流路の配管構成にある。図1中の点線100で囲われた箇所である。
図2に、従来のレデューサ111を用いた流量計の設置された流路の配管構成を示す図を示す。図左側が上流側であり、矢印は流体の進行方向を示す。試験管路である配管108に流体が流通される。配管108の管内径は流量計105の測定管路114の口径よりも大きい。以下、上流からの順で述べると、配管108にレデューサ111が接合されている。接合はフランジ等で行われる。そして、レデューサ111の細端には短い直管部112が形成されている。これらはフランジまたはフランジレスの接合部113で流量計105に接合される。この接合部113に圧力プローブなど設置させる場合もある。
[Main parts of the invention]
The present invention is in the piping configuration of the flow path before and after the flow meter according to the connection between the
In FIG. 2, the figure which shows the piping structure of the flow path in which the flowmeter using the
流量計105は測定管路114と変換器116から構成される。変換器116は流量を電気信号に変換するものである。そして、この管路114の入口の口径(D)は、配管108の径よりも小さいのでレデューサ111が存在している。流量計105の下流側は上流側と同様に、逆レデューサであるディフューザ117を介して下流の配管119に接合される。なお、これらの管は同軸上にあるのはもちろんである。
以上が、従来技術のレデューサを用いた流量計管路構成である。
The
The above is the flow meter pipeline configuration using the reducer of the prior art.
次に図3に基づいて、本願発明にかかる流量計流路の配管構成を説明する。
ここでは、上流側から配管108が流量計105の近傍に位置づけられている。流量計105の測定管路114入口とこの配管108との間に直管200を装備する。直管200は配管108とはジョイント201で支持されて、流体の密閉性を担保する。一方、流量計105側にはフランジ202で接合する。直管200の上流側の一端は配管108に内包されて、多端は流量計105の測定管路114に接合される。直管200の多くの部分は配管108に挿管されている状態である。
Next, based on FIG. 3, the piping structure of the flowmeter flow path concerning this invention is demonstrated.
Here, the
こうして、直管200に所定の長さを確保するために、管内径=流量計の口径(D)の相当倍(20D〜50D)を形成するとしても、直管200の大半部分は配管108の内部にあるので、当該設備配管の延長化は防げる。
Thus, in order to secure a predetermined length in the
なお、本図では、流量計105の上流側だけを改良した例を示し流量計105の下流側は、従来例と変わらずにディフューザ117のままとしたが、下流側にも直管200と同様にもう一つの直管203を伸ばして下流配管119まで直接つなげると流れの安定にいっそう効果がある。概ね、長さ10D程度でも効果がある。
In this figure, an example in which only the upstream side of the
その他、直管200の配管108内の一端先端部に、整流板205を設けることでもよい。このような直管の先端に整流板を設ける作業は容易であり、なお整流板の効果が十分得られるものである。
In addition, a rectifying
本願発明(以下、「新レデューサ」と呼ぶ)を適用して、二つの設備環境においてサンプルデータを取得して、その精度および標準偏差を比較した表を次の表1に示す。
測定パラメータは以下のとおりとする。
流量計口径 80mm、 流量計測定値は記載の流量データに記す(単位m3/h)。
The measurement parameters are as follows.
The flow meter diameter is 80 mm, and the flow meter measurement value is written in the flow data shown (unit m 3 / h).
I.設備Aとは、配管108がその管内径と同一口径の流量計105からなる直管形状のもの(レデューサなし)を言う。
II.設備Bとは、従来レデューサで校正した場合は、流量計105の上流に従来型のレデューサを装備したもの、
また、新レデューサで校正した場合は流量計105の上流に直管200を装備した(新レデューサ型)を言う。
I. The equipment A is a straight pipe shape (no reducer) in which the
II. Equipment B, when calibrated with a conventional reducer, is equipped with a conventional reducer upstream of the
In addition, when calibrated with a new reducer, the
表1の従来レデューサーでは、設備Aと設備Bの器差
器差={(測定流量 − 基準流量)/基準流量} ・・・・(1)
に違いが発生し、従来レデューサが流量出力に影響を与えていることがわかる。
In the conventional reducer of Table 1, the difference between the instrument A and the instrument B = {(measured flow rate−reference flow rate) / reference flow rate} (1)
It can be seen that the conventional reducer has an influence on the flow rate output.
つまり表の最右欄に示すように、従来レデューサで校正した場合には、設備による差異
差異={設備Aのデータ − 設備Bデータ} ・・・・(2)
が設備依存の差異として現れることになるので、設備にかなり左右される。
一方、新レデューサで校正した場合には、設備による差異は現れない。すなわち、精度自体は流量計ごとにキャラクタリゼーション(環境パラメータによる特性調整作業)を行うので問題はなくなり、むしろ設備(AまたはB)による精度上の差異が少なくなるメリットがある。
That is, as shown in the rightmost column of the table, when calibrated with a conventional reducer, the difference between facilities = {data of equipment A−data of equipment B} (2)
Will appear as an equipment-dependent difference, so it depends a lot on the equipment.
On the other hand, when calibrated with the new reducer, there is no difference due to equipment. That is, since the accuracy itself is characterized for each flow meter (characteristic adjustment work by environmental parameters), there is no problem, and there is an advantage that the difference in accuracy due to the equipment (A or B) is reduced.
流体として、液体を主に説明してきた。そこでは、電磁流量計、渦流量計、超音波流量計などの使用が可能である。また、流体は液体に限らず気体であっても、本願発明の効果は期待できるので、気体流量計などにも適用は可能である。
なお、本願発明の実施例では質量(秤量)法の校正システムをベースにして説明したが、その他の容積法などにも、本願発明を適用することに支障はないはずであるし、そのような実施は本願発明の範囲に入る。
As a fluid, liquid has been mainly described. There, an electromagnetic flow meter, a vortex flow meter, an ultrasonic flow meter, or the like can be used. Further, even if the fluid is not limited to liquid but gas, the effect of the present invention can be expected, so that it can be applied to a gas flow meter and the like.
In the embodiments of the present invention, the description has been made based on the calibration system of the mass (weighing) method, but there should be no problem in applying the present invention to other volumetric methods. Implementation is within the scope of the present invention.
100 発明の要部
101 ダイバータ
102 ノズル
103 秤量計
104 流量調節バルブ
105 流量計
106 試験液タンク
107 秤量容器
108 試験管路(上流)配管
111 レデューサ
112 ストレート部
113 流量計入口接合部
114 流量計測定管路
116 変換器
117 ディフューザ
119 下流配管
200 直管
201 ジョイント部
202 フランジ部
203 もう一つの直管
205 整流板
100 essential parts of the invention 101 diverter
102 Nozzle 103 Weighing Meter 104
Claims (4)
上流から流体を流通させる上流配管と、
前記上流配管より管内径の小さな管で前記配管内に一端を挿入されて、他端を前記流量計の入口に接合される直管と、
前記直管の管内径と等しい口径の測定管を有する流量計と、
前記流量計から流体を流通させる下流配管と、
を備える流量計の校正設備。 In flow meter calibration equipment,
An upstream pipe for circulating fluid from the upstream;
A straight pipe with one end inserted into the pipe with a pipe having a smaller inner diameter than the upstream pipe and the other end joined to the inlet of the flow meter,
A flow meter having a measuring tube having a diameter equal to the inner diameter of the straight tube;
Downstream piping for flowing fluid from the flow meter;
Calibration equipment for flowmeters equipped with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013232917A JP6093685B2 (en) | 2013-11-11 | 2013-11-11 | Flow meter calibration equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013232917A JP6093685B2 (en) | 2013-11-11 | 2013-11-11 | Flow meter calibration equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015094617A JP2015094617A (en) | 2015-05-18 |
JP6093685B2 true JP6093685B2 (en) | 2017-03-08 |
Family
ID=53197116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013232917A Active JP6093685B2 (en) | 2013-11-11 | 2013-11-11 | Flow meter calibration equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6093685B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6557550B2 (en) * | 2015-08-21 | 2019-08-07 | アズビル株式会社 | Method and apparatus for testing liquid flowmeter |
JP6288027B2 (en) * | 2015-09-28 | 2018-03-07 | 株式会社タツノ | Calibration apparatus and calibration method |
JP6338202B2 (en) * | 2015-09-28 | 2018-06-06 | 株式会社タツノ | Calibration device |
JP6288026B2 (en) * | 2015-09-28 | 2018-03-07 | 株式会社タツノ | Calibration device |
CN111780835A (en) * | 2020-07-24 | 2020-10-16 | 安东仪器仪表检测有限公司 | Calibration method for high-efficiency liquid phase transfer liquid flowmeter |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5449168A (en) * | 1977-09-27 | 1979-04-18 | Toshiba Corp | Actual flow test apparatus of flow meter |
JPS57205097U (en) * | 1981-06-24 | 1982-12-27 | ||
JPH03235024A (en) * | 1990-02-13 | 1991-10-21 | Hitachi Ltd | Flowmeter |
JP4604243B2 (en) * | 2004-09-10 | 2011-01-05 | 独立行政法人産業技術総合研究所 | Liquid flow meter calibration device |
JP5411879B2 (en) * | 2011-01-06 | 2014-02-12 | 株式会社小野測器 | Flow meter calibration device |
-
2013
- 2013-11-11 JP JP2013232917A patent/JP6093685B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015094617A (en) | 2015-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6093685B2 (en) | Flow meter calibration equipment | |
FI116159B (en) | Apparatus and method for determining the characteristics of a fluid flow | |
JP5346423B2 (en) | Flanged vortex flowmeter with integral taper diameter expansion | |
Martim et al. | Electromagnetic flowmeter evaluation in real facilities: Velocity profiles and error analysis | |
JP2010533868A (en) | Two-phase flow meter | |
JP2011526366A (en) | Speed enhancement flow measurement | |
US10139259B2 (en) | System and method for metering gas based on amplitude and/or temporal characteristics of an electrical signal | |
CA2778063C (en) | Accessory apparatus for flowmeters | |
US6644132B1 (en) | Flow profile conditioner for pipe flow systems | |
RU2013132615A (en) | NUCLEAR MAGNETIC FLOW METER | |
JP2014232007A (en) | Flow rate measurement method for gas-liquid two-phase and two-phase measurement device | |
JP2017181214A (en) | Adjusted gas flowmeter | |
KR102059009B1 (en) | Apparatus for calibrating a flowmeter at microflow in full pipe and non-full pipe using bypass | |
Martim et al. | Measurement and Instrumentation | |
JP4858446B2 (en) | Reactor water system piping and ultrasonic flow meter system | |
CN110411525B (en) | Multiphase flow determination method | |
JP2017181215A (en) | Method for evaluating hydrogen gas dispenser | |
JP3155814B2 (en) | Flow measurement control system | |
Liu et al. | Investigations into the behaviours of Coriolis flowmeters under air-water two-phase flow conditions on an optimized experimental platform | |
KR20220026165A (en) | Flow meter calibration system for reducing energy loss | |
CN207585729U (en) | A kind of heavy caliber fluid flowmeter on-line calibration device | |
Tang et al. | Pressure, temperature, and other effects on turbine meter gas flow measurement | |
JPH08304134A (en) | Flow-rate measuring device | |
Mori et al. | Effects of inner surface roughness and asymmetric pipe flow on accuracy of profile factor for ultrasonic flow meter | |
JP4581439B2 (en) | Ultrasonic flow measurement system and ultrasonic flow measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160324 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170131 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6093685 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |